Volume 41, pp. 328-349, 2014.
Discontinuous Galerkin methods for the p-biharmonic equation from a discrete variational perspective
Tristan Pryer
Abstract
We study discontinuous Galerkin approximations of the $p$-biharmonic equation for $p\in (1,\infty)$ from a variational perspective. We propose a discrete variational formulation of the problem based on an appropriate definition of a finite element Hessian and study convergence of the method (without rates) using a semicontinuity argument. We also present numerical experiments aimed at testing the robustness of the method.
Full Text (PDF) [354 KB], BibTeX
Key words
discontinuous Galerkin finite element method, discrete variational problem, $p$-biharmonic equation
AMS subject classifications
65N30, 65K10, 35J40
< Back