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QUADRATURE FORMULAS FOR RATIONAL FUNCTIONS *

F. CALA RODRIGUEZ, P. GONZALEZ-VERA, AND M. JIMENEZ PAIZ}

Abstract. Letw be an L -integrable function ofi—1, 1] and let us denote

1
I,(f) = / J(@)w(z)dz,
-1

wheref is any bounded integrable function with respect to the weight funciiowe consider rational interpolatory
quadrature formulas (RIQFs) where all the poles are preassigned and the interpolation is carried out along a table of

points contained ifC \ [-1, 1].
The main purpose of this paper is the study of the convergence of the RIQGE§ .

Key words. weight functions, interpolatory quadrature formulas, orthogonal polynomials, multipoietBad”
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1. Introduction. This work is mainly concerned with the estimation of the integral

1
(1.1) L(f) = / @w(a)da,

wherew(x) is an Ly—integrable function (possibly complex) ¢r1, 1] and f is a bounded
complex valued function. The existence of the intedrdlf) should be understood in the
sense that the real and imaginary partsf¢f)w(x) are Riemann integrable functions on
[—1, 1], either properly or improperly. We propose approximations of the form

(12) In(f) = ZAj,nf(mj,n)
j=1

which we will refer to as am—point quadrature formula with coefficients or weights; ,, }
and nodeqz; ,}. As it is well known, the key question in this context is how to choose the
nodes and weights so that(f) turns out to be a “good” estimation @f (f).
Classical theory is based on the fact of the density of the saafeall polynomials in
the class”([—1, 1]) of the continuous functions. Assuming that the integrals

1
cr = /ka(x)dx, k=0,1,..,
21

exist and are easily computable, when repladifig) in (1.1) by a certain polynomidP(zx),
1,(P) will provide us with an approximation faf, (f).

Concerning the choice of the polynomi{z), many techniques have been developed
in the last decades making use of interpolating polynomials. More precisely,gigestinct
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40 Quadrature formulas for rational functions

nodes{z; ,}on[—1,1],letP,_;(f;z) denote the interpolating polynomial of degree at most
n — 1 to the functionf at these nodes, i.e.,

(1.3) P,_1(f;x) = zn: Lin(x)f(zjn) (Lagrange Formula)
j=1

wherel; ,, € II,,_; (space of polynomials of degree at mast 1), satisfies

1 ifj=k
Lin (@) = 0jk = { 0 ifj#k.

We see thatl,, (P,_1(f,.)) provides us with a quadrature formula of the form (1.2) with
Ajn=1,1n), i=1,2,..,n I,(f) is called am-point interpolatory quadrature formula
and clearly integrates exactly any polynomiain 11,, _4, i.e.,

(1.4) I,(P)=1,(P), VYPell,_.

An important aspect in this framework is the problem of the convergence. That is, how
to choose the nodegr; »,}7_;, n = 1,2,... so that the resulting interpolatory quadrature
formula sequencél,,(f)} converges td,,(f), with f belonging to a class of functions “as
large as possible”.

Many contributions have been given in the last two decades. For the sake of completeness
we shall state a result by Sloan and Smith (see [12]), culminating a series of previous works
of these authors (see e.g. [13] and [14]).

THEOREM1.1. Let3(z) be a real and L-integrable function ori—1, 1] andw(z) be a
weight function ori—1, 1] (w(z) > 0) such that

[y

_ w(z)

Let{z;,}, s = 1,2,...,n, n € N be the zeros of the*"-monic orthogonal polynomial
with respect tav(z) on[-1, 1], and

In(f) = Z Aj,nf(xj,n);
=1

then-point interpolatory quadrature formula at the nodgs; ,,}. Then

lim In(f) = Iﬂ(f)a

n—oo

for all real-valued bounded functiofi(z) on [—1, 1] such that the integral

1
Is(f) = / @)

exists.

In this work, we propose to make use of quadrature formula (1.2), integrating exactly
rational functions with prescribed poles outsidel, 1]. Observe that polynomials can be
considered as rational functions with all the poles at infinity.

The main aim will be to prove a similar result to Theorem 1.1 for rational interpola-
tory quadratures formulas (RIQFs), where orthogonal polynomials with respect to a varying
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weight function will play a fundamental role. In this respect this work can be considered as
a continuation of the paper by Galez-Vera, et al.(see [8]), where the convergence of this
type of quadrature exactly integrating rational functions with prescribed poles, was proved
for the class of continuous functions satisfying a certain Lipschitz condition, and it can be
also considered as a continuation of the paper written by Cala@raeir’and bpez Lago-
masino (see [3]) where they proved convergence (exact rate of convergence) of this type of
interpolating quadrature formulas approximating Markov-type analytic functions.

The common contribution in those papers ([3] and [8]) was to display the connection be-
tween Multipoint Pad-type Approximants and Interpolating Quadrature Formulas. Here, we
start from a “purely” numerical integration point of view and, as an immediate consequence
of this approach, a known result about uniform convergence for Multipoine-Rgpé Ap-
proximants will be easily deduced.

2. Preliminary results. Leta = {a;, : j = 1,2,..,n, n = 1,2,...} be compactly
contained inC \ [—1, 1], i.e., such that
(2.1) d(é&; [-1,1]) = mindist[a 5 [~ 1, +1]] = 6 > 0.

In the sequel, we shall refer to this property as thebdndition"for &. Set

n

() = H(a: — ).

j=1

In what follows, we need to introduce the following spaces of rational functions. For each
n € N, define

Loy = { P) . pe HQ,H} and R, = { P) . pe Hn_l}

[ () |2 ()

Letw(x) be a given weight function op-1, 1] and consider the function

w(z)

(@)

(2.2) wp () >0, Vo e [-1,1].

LetQ, () be then"-orthogonal polynomial with respectds, () on[—1, 1] and let{; .},

be then zeros ofQ,, (). Then, positive numbers; ,,, Ao, . . ., An., €Xist such that
1 no
(23) / f(x)wn ({E)d(E = Z Aj,nf(xj,n)a Vf S 1_[27171
1 =
P(x)

TakeR € Ly,. ThenR(x) = W P € 1l,,_; and one has
T

1

/ Rz)w(z)dz = / P@on(@)de = 3" M Plasn) = 3 N R(wi0) = Tu(R),

—1 j=1

whereX;,, = Ajn|mn(z;,)|> > 0. Thus, ann-point quadrature formula, with positive
coefficients or weights, which is exact ify,,, has been defined. We will refer to it as the
n-point Gauss formula fo£.,,. Now, we give the following result of uniform boundness for
the coefficients of this quadrature formulas.
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LEMMA 2.1.Under the conditions above, a positive const&hexists such that

> XNm <M, n>L
j=1

REMARK 1. In case thaty is a Newtonian table, i.e.,
d={ajn=0ajr, 1<j<k, k=1,....,n, and necZ,;}

contained inC \ [—1, 1], condition (2.1) can be omitted in order to prove Lemria

Proceeding as in [10, Theorem 1, p. 101], and making use of Theorem 1.1 in [7], we can
now give a characterization theorem for these quadrature formulas.

THEOREM 2.2. A quadrature formula of the type

I.(f) = ZAj,nf(xj;’ﬂ)

is exact inLq,, if and only if,
() L.(f)is exactinR,, and
(i) foreachn € N, {z;,}}_, are the zeros of the!”-orthogonal polynomial),, ()
with respect to functiow,, (z) given by(2.2).
These Gauss formulas can be obtained in the same way as Markov’s for the polyno-
mial case (see e.g. [11] and references found therein), integrating the rational interpolation
function Ry, € L, Which is the solution of the Hermite interpolation problem:

Bou(fi@jn) = f(@jn) -
’zn(f;x;,n) = f’(x]jm)} j=1,2,..,n

where{z; ,}7_, aren distinct nodes irj—1,1] and f is a differentiable function of-1, 1].
Following this procedure, error formulas can be derived by integrating the interpolation error
(see[11l] and [7]).

Assuming thaty satisfies thé—condition, the class of rational functio®s= U,,enRy,
is dense iC[—1, 1] ([8, Theorem 4]. Thus, a theorem on convergence of Gauss quadrature
formulas inL,,, can be proved in an analogous way to the polynomial case. We give only a
sketch of its proof.

THEOREM 2.3. The sequencél,(f)} of Gauss quadrature formulas fats,, n =
1,2,..., converges to

L(f) = / f@o(a)da.

for any bounded Riemann integrable function[e, 1].
Proof. Takef € C([—1, 1]). Now, since a positive constaft exists such that

D inl =D Ajn < K,
j=1 j=1

and by the density of the clagin C([—1, 1]), it follows that

lim In(f) = Iw(f)

n—00
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Convergence in the class of the bounded Riemann integrable functions is a consequence of
the factthat\; , >0, j=1,2,...,n, neN([6, pp. 127-129]). O

We state two lemmas that will be useful in the next section. The former can be found in
[15, Theorem 1.5.4].

LEMMA 2.4.Letw be a weight function ofi-1, 1] with

1
/ w(z)dr < 400,
-1

and letf be a real-valued and bounded function enl, 1] such that the Riemann integral

/ 11 f(@)w(z)ds

exists. Then, for any > 0, there exist polynomialg and P such that

/ P(z) - p(a)w(z)de < e,

-1

and—M —e <p(z) < f(z) < P(x) < M +¢, Vae[-1,1]with

M_max{ }

We will state a similar result for rational functions. L&t= U,enG,, € C\ [—1, 1], with
an = {aj, € C\ [-1,1], j = 1,2,...,n}, satisfy theS—condition (2.1) and furthermore,
assume that for each € N, there existsn = m(n), with 1 < m < n, such thaty,, ,, € Gy,
satisfiedR(aym, n)| > 1.

LEMMA 2.5.Letw be a given weight function dr-1, 1] with

inf
xEl[IEI,l] f(l')

sup f(x)

z€[—1,1]

)

1
/ w(z)dr < 400,

-1

and letf be a complex bounded function pnl, 1] such that the integral

/ 11 f(@)w(z)ds

exists. Then, for any > 0, there exists? € R satisfying
[ 15 - R <,
and
|f(z) — R(z)| < 2(M +¢),

where) is a positive constant depending ¢n
Proof. We can writef (z) = f1(x)+if2(x) wheref; (j = 1,2) are bounded real-valued

functions on[—1, 1] such thatf_l1 fj(z)w(x)dz exists forj = 1,2. By using Lemma 2.4,
polynomialsp:, p2, Py and P, exist such that foj = 1,2 and any’ > 0, we have

(24) M~ <p;e) < fy(2) < Pya) < M;+ ¢, Vee[-1,1]
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with
M; = max inf fi(x)|,| sup fi(x)| .,
z€e[—1,1] z€[—1,1]

and

1
(2.5) / [Pj(z) — pj(z)w(z)dz < €.

-1

The functionsF'(z) = pi(x) + ip2(x) andG(x) = Pi(z) + iPy(z) are continuous and
complex—valued offt-1, 1]. So, by thej-condition, there exist sequencgs,} and{R,,} in
‘R such that
(2.6) lim r,(z) = F(z) and lim R,(x) = G(z),
uniformly on[—1, 1].

Take real and imaginary parts andsgtr) = r,, 1(z)+ir, 2(z) andR,, (z) = R, 1(z)+
iRy, 2(x). From (2.6) it clearly follows that

lim 7y 1(x) = p1(x), lim R, 1(x) = Pi(x),

lim 7y 2(x) = pa(x), lim R, 2(x) = Pa(x),
n— 00 n—o0

uniformly on [-1,1]. Therefore, for” > 0, there existsg € N such that'n > ng

rna(z) =" < pi(z) <rpi(z)+e”

(2.7) Ror(z)—" < Py(a) <Rn71(x)+e”} vz € [-1,1]

Without loss of generality we can assume that = a + ib with a < —1 andb > 0 (am
such thai®(a,,)| > 1). Leta,, denotes the complex conjugatef,. On the other hand,
the function(z — «,,,) ! is obviously inR . Write
1 - _m - . b .
_ r7Qm __T7A4 L, = hi(z) + tha(z),

T — Qm |J) - O4m|2 |.1? - 04m,|2 |J) - 04m,|2 .

wherex — a > 0 (sincea < —1). Set

v = min {hi(x)} >0, and v = max {hi(x)}>0.
z€[—1,1] xe[—1,1]

Takee” = &v; with € > 0 arbitrary. Then, by (2.7), for alt € [-1,1],

(2.8) Tn,1(2) — Eh1(x) < p1(z) < rp1(x) + Eha(2)
and

(2.9) Ry1(x) — €hi(z) < Pi(x) < Rpa(x) + Ehy(x).
Define now

Si(x) =rp1(x) —E€hi(z), Ri(z) = Rpi(z) +Ehi(x), =xe€[-1,1].

Then, by (2.4), (2.8) and (2.9), we haVe(z) < fi(z) < Ry(x), Vx € [-1,1]. On the other
hand, by (2.7),

S1(z) = rna(x) = Eha(x) > pr(x) — € = Eha(z) Z pr(x) — " — Ea,
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(recall thaty, = max, ¢y 1j{h1(x)} > 0). Now, by (2.4),5(z) > —M; — &' —&" —évy
(" = v1€). Then,

Si(z) > =My — &' — (71 +12)é.
By (2.4) and (2.7),
Ri(z) < Pi(z) +&" +éhi(x) < My + € +€e" + &y =M+ + (11 +7)E.
In short, the functions$; (z) and R, (z) defined above satisfy
(2.10)—M; — &' — (m1 +12)€ < Si(x) < fi(z) < Ri(z) < My +€" + (m +12)E.
Similarly, consideringz (), it can be deduced for the functigi(x) that

(211) —My — e — (51 + 52)5 < SQ(J)) < fg(.l?) < RQ(J)) < Moy + e+ (51 + 52)5,

where
Sa(z) = rp2() — Eha(w), 61 = minge[—1 yy{h2(z)} > 0,
RQ(J?) = Rn,g(.ﬁ) + éhg(l‘), Oy = maxxe[,lyl]{hg(x)} > 0.
Define
(@) = S1(@) +182(x) = [rn1(2) = Eh1(2)] + ilrn a2 (z) — Eha(w)]
= rp(z) — Elh1(x) + iha(z)] = rp(x) — pra— ER.
Similarly

R(z) = Ru () +iR2(x) = [Bn1(2) + b (2)] + i[Bn,2(2) + Eha(2)]

= R, (z) + é[h1(z) + ihe(x)] = Ry (x) + eR.

Om

Now, by (2.10) and (2.11), it follows

(212)  |f(z) — R(z)| < [fi(z) — Ra(2)| + [ f2(z) — Ra()]
= (Ra(2) = fr(2)) + (Rz(x) — fa(2))
<2[My + &'+ (71 + 72)E] + 2[Ms + & + (61 + d2)€].

On the other hand, by the uniform convergence, we have, fon, 2

+1 +1
lim rn,j(x)w(x)dx:/ pj(z)w(z)dz, and
n—oo J_1 -1
+1 +1
lim R, j(x)w(z)dx :/ Pj(z)w(z)dz.
n—oo J_1 -1

Recalling the notatiod,,(f) = ffll f(z)w(z)dx, fore” > 0, there existsr; € N, such that
foranyn > nq,

—" + 1, (pl) <1, (rn,l) <" + Iw(pl)
—&" + 1,(P1) <I,(Rn1)< " + 1,(P).
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We have now
Iw(Rl - Sl) - Iw(Rn,l + ghl —Tn,1 + éhl) - Iw(Rn,l) - Iw(rn,l) + 2€Iw(h1)v

and

+1
I,(h) = hi(z)w(z)dz < yaco,
-1
with ¢g = f_+11 w(z)dz, which can be taken ds Thus, from (2.5),
I,(Ry — S1) < I,(P1) — I,(p1) + 2(" + 728) < & + 2(g" + %28).
Similarly, it can be deduced that
IW(RQ — SQ) <&+ 2(6/” + 525).
This yields
+1 +1 +

[ @) - r@le@ds < [ 1A6) - Ri@lw@de+ [ 1) - Ralo)(@)ds

1 1

1 — —
+1

+1
- / ()~ Al + / (Ra(2) — fola) () da

§ Iw(Rl - Sl) + Iw(RQ - 52)
(2.13) < 26 +2[e"” + (72 + 62)é].

TakingM = M; + M, from (2.12) and (2.13), the proof follows. [O

3. Convergence of interpolatory quadrature formulas. In this section we will be con-
cerned with the estimation of the integral

Is(f) = / f@)(e)da,

whereg(x) is anL;-integrable function (possibly complex) jr 1, 1], i.e.

1
/ |B(2)|dx < +o0.

-1

For givenn distinct nodes x; ,, Z2.n, Z3n, - - -, Tnn IN [—1,1], there existn coefficients
A1, A2 p,y ..., Ay such that

Is(f) =D  Ajnf(@in) == In(f), Vf€ERn.
j=1
Let R,_1(f, z) be the unique interpolant tbin R,
Rn—l(f;xj,n) Zf($j7n), j =1,2,...,n, n€ N.

Settingmg (x) = ]‘[le(x —ajk), k=1,2,..., and sincg{x, ' }7_, is a Chebyshev system
in (—1,1), existence and uniqueness of such interpolant is guaranteed (see e.g. [5, p. 32]).
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Then, as in the polynomial case,(,, = oo, j =1,2,...,n), itis easily proved (see [10, p.
80]), that

I.(f) = ZAj,nf(xj,n) = Iﬁ(Rnfl(fa )

Jj=1

Hence, we will sometimes refer %, (f) as ann-point interpolatory quadrature formula for
Rn.

Let w(x) be a given weight function ofi-1,1], (i.e.,w(z) > 0, a.e.on [—1,1]),
satisfying

1
/ )" dr = K} < +oo.

1 w(z)

We can establish the following
THEOREM3.1.Let f be abounded functionib, , = {f : [-1,1] — C: f_ll |f(z)]Pw(x)de <
oo}. Then,

() = In(f)] < Kiflf = Bnall2.0,

where|| f]|2,.- denotes the weightel,-norm, i.e.,

o= [ 11 @)l g

Proof. Making use of the Cauchy-Schwarz inequality, we have

I1f]

[L(f) = In(F)] = [Is(f) = Is(Rn—1(f, )] = ‘/_1(f(x) — Rn1(f,2))B(x)dx

B@)
Velo)

1

- </11(f(x) = (£, x))QW(x)de> | (/11 %dfn) %
< Ki|lf = Ru—a(f, )2w. O

Thus, we see that the, ., convergence of the interpolants at the nodes of the quadrature
implies convergence of the sequence of quadrature formulas. Now, the questions are: How to
find nodes{z; ,, } in [-1, 1] such that

i (1 = Ruoa(£,0)

= |/1(f(x) — Rpa(f,z)V/w(z)

2w — Oa

and in which class of functions (as large as possible) does it hold?

As a first answer, we have

THEOREM3.2. Let f be a complex continuous function pal, 1] andw(z) > 0 a.e. on
[-1,1]. Let{z;n}7_;, n=1,2,..., denote the zeros @}, (z), thent” monic orthogonal
polynomial with respect to

w(z)

[ () |2
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on[—1,1]. Then,

lim ||f - Rn—l(f7 ')HQ#‘J =0.
n—oo

Proof. LetT,,_1(z) € R,, denote the best minimax rational approximanffe), i.e.,

pn-1(f) = = Tacallimagy = max [f(2) = Toa(@)] < If = Bl -y, VR € Ra

Then, we have

”f - Rnfl(fv ')”Zw = Hf —Tn1+Th-1— Rnfl(fv ')”Zw
<|f = Ta-allzw + [[Th-1 — Ro—1(f, )2,

—{/Wﬂm—fammﬁmmM}E

-1

1
2

+{/1mlﬂ@—Rnﬂﬂmﬂmmm}

-1

But|T,,—1(x) — Ru—1(f,x)|> € L2y, sincex is real. Then,

-

||f - Rn—l(f7 ')||2,w < pn—l(f)-\/a + {Z /\j,n|Tn—1(xj,n) - Rn—l(f7 Jjj,n)|2}
j=1

1

< pn-a1(f)-veo + pn-a(f) {Z /\j,n} )

with ¢g = f_ll w(x)dx, that is,

1

(3.1 1f = Rn—1(f, 2.0 < pu—1(f) § Vo + (Z Aj,n)

Jj=1

By Lemma 2.1, there exists a constartsuch that

/\jm, < ]\47 Vn Z 1.

n
=1

J

Since, (see [8])

lim p,(f) =0,

n—oo

from (3.1) the proof of the theorem follows. 0O
We have immediately the following
COROLLARY 3.3. Let 3 be anL;-integrable complex function dr-1, 1] such that

1
/ —W(x)lex < +o00.

1 w(T)
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Letl,(f) = Z?Zl A, . f(z;,) be then-point interpolatory quadrature formula iR, with
nodes{acj,n};’:1 at the zeros of),,, then'” monic orthogonal polynomial with respect to

w(x)

:W, J)E[—l,l]

Wn (37)
Then

lim I,(f) = 15(f),

n—oo

for any complex functioyf continuous on—1, 1]
Now, making use of Banach-Steinhaus Theorem (see e.g. [10, p. 264]), we have,
COROLLARY 3.4.Under the same conditions as in Corolla3s, there exists a positive
constantM such that

n
S Ajnl <M, n=12,...

j=1

ExAMPLE 1. (Multipoint Pace-type Approximants)
For z € C\ [-1, 1], consider the functiorf (z, z) = (2 — x)~! (in the variabler, andz
as a parameter), so that

%dm = F3(z).

Is(f (- 2))

We have

L7 =30 2 = Bl

2= Tjn Qn

j=1

with Q,.(2) = [[j—1(# — ;) and P,_1(2) € II,—1. In order to characterize such

rational functions, it should be recalled that

In(f) = IB(Rn—l(f, )),

R,—1(f,-) being the interpolantirk, at the nodegx; , }_; to f(z).
Write R,,_1(z,7) = R,,_1((z — )", ). We have that

1 . Qn(z) T (2)
z—z Qn(2) ()|’

which can be easily checked that belong®tp, and since?,,(z;,,) = 0, then

R, 1(z,2) =

Ruca(z250) = - 1%'.”, j=1,2,....n
Thus |
@ G o= (- 8Ene)
= Be) Iy [ ]
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Hence,
_ Pn_l(Z) _ |: Qn(l‘)ﬂ'n(Z) :|
(3.3) Fs(z) 00 02) Is = x)Qn(z)ﬂn(x)
_ ma(2) Qn(z) B(x)
= e ) ) 2 _xda:.

We see that the rational functio‘?ﬁ% (with a prescribed denominator) interpolat&s(z)
at the nodega; » }7_,. Following[3], we will refer to this rational function as a Multipoint
Pade-type Approximant (MPTA) tB(z).

REMARK 2. The same expression as (i8.3) for the error was also obtained if8],
which is basically inspired frorfiL6, p. 186]

By using Corollary 3.4 and the Stieltjes-Vitali Theorem (see e.g. [9, Theorem 15.3.1]),
the following can be proved:

COROLLARY 3.5. The sequence of MPTA

()

Q"(z) nEN,

defined in(3.2), converges td’;(z), uniformly on compact subsets©f\ 1, 1].
Now, we are in a position to prove the following

THEOREM 3.6. Let L] | (x) denote the interpolant ifR,, to the functionf (z) at the

nodes{z; , }}_; which are the zeros of the’" orthogonal polynomial with respect to, ()
on[—1,1]. Then,

+1
Jim 12 = 1 = Jim [ EL @) = f(@)Pute)ds = o

for any complex-valued and bounded functiorj-et, 1], such that the integral
[*] f@)w(z)dz, exists.
Proof. We have

1L~ I3, = / L]\ (2) — f(2)Pw(e)da

+1
= B + L0130 =2 [ RLI_ (@) f(@))w(z)da.

-1

Hence

(3.4) 1L +2L,(IL] |1 £])-

w S I3+ IL7 -

Now, L], € R, implies that|L] | € L5, = {|WPE£;\2’
the real line. So ,

P € IIy,_1}, when restricted to

||L£71||§,w = Z)‘] n|Ln 1(Tjn) Z)\J nl f(250)]
Settingf (z) = f1(z) + if2(x), we have

L7 3,

o= Nl fE(@in) + f5(@j0)]-

=1
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Thus

n n
Tim (L) 03, = Hm > A () + lim YN f3 (250)
Jj=1 Jj=1
+1 +1

= 1 R (z)w(x)de + » fi(@)w(a)de

+1
— [ If@)Pule)ds

-1
= 1 £1I3..
On the other hand, by the Cauchy-Schwarz inequality,

2

(et} = ([ @i ekeas)

<(/ + o) + L1 (0)Pw(eld

= 113 12150
Thereforelim sup,,_, Iw(|f||L£71|) < || f113...» and by (3.4) it follows that

(3.5) limsup L, (|f — L1 _1 %) < 4] f13..

n—oo

Now, givene > 0, by Lemma 2.5, there exisf8 € R, such that

|f(z) = R(z)| <2(M +¢), Vzel[-11],

and
+1

/_1 |f(z) — R(z)|w(z)dx < e.
Hence,

+1

I =Rl = [ 1f@) = Ro)Pole)ds
+1
= [ 1@ = R@)If@) - R@)eo)ds
+1

(3.6) < oM +2) [1 F(2) — R(z)|w(x)dz < 26(M + &),

For sufficiently larges, we haveL? | = R,andwegef —L! , = f—R+R—-L{ | =
f=R— (L}~ L)) =f-R-L" Hence|f — L, |3, = (f - R) — LI =},
and by (3.5-3.6), it holds that

limsup || f — L], 3., = limsup | (f = R) — LIT3.,

n—oo n—oo

3.7 <4|f - Rl3., <8(M +¢)e.

Clearly, from (3.7) the proof follows. [
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REMARK 3. The theorem above can be considered as an extension to the rational case
of the famous Erdls-Tuién result for polynomial interpolation (s¢é, pp. 137-138] Actu-
ally, an earlier rational extension was carried out by Walter Van Assche et dR]jrunder
the restriction that the pointa;,, are real, distinct and is a Newtonian table, and only
considering continuous functions ¢n1, 1].

Finally, making use of Theorem 3.1 and Theorem 3.6, we can state the main result we
referred to in the beginning, (compare with Theorem 1.1).

THEOREM 3.7. Let 5 be an L -integrable function ori—1, 1] andw(z) > 0, a.e. on
[—1, 1] be such that

[

_ w(z)

Let I,(f) = Z;”:l Ajnf(z;,) be then-point interpolatory quadrature formula iR,
whose nodesz; . }/_,, are the zeros of),,(z), then'™ monic orthogonal polynomial with

w(x)

respect to= -+, = € [~1,1]. Assume that the tabiesatisfies the same conditions as those
in Lemma2.5. Then,

+1

lim I,(f) = 15(f) = ) f(@)B(z)da,

n—00

for all bounded complex—valued functioff on [—1,1] such that the integral
fjll f(z)B(z)dx exists.
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