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Abstract. In this paper we describe a simple observation that can be used to extend two recently proposed struc-
ture preserving methods for the eigenvalue problem for real Hamiltonian matrices to the case of complex Hamiltonian
and skew-Hamiltonian matrices.
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1. Introduction. In two recent papers [4, 5], the authors developed new structure pre-
serving numerical methods for the computation of eigenvalues and invariant subspaces of real
Hamiltonian matrices. The new methods are a large step in the direction of solving an open
problem posed by Paige/Van Loan [17], i.e., to develop a method for the computation of the
Hamiltonian Schur form having a complexity ofO(n3) and being strongly backward stable.
Such a method would compute the exact Hamiltonian Schur form of a nearby Hamiltonian
matrix. For realskew-Hamiltonianmatrices a method satisfying the above requirements can
immediately be derived from the method proposed by Van Loan in [18] for determining the
eigenvalues for real Hamiltonian matrices. But this method is not applicable in the complex
case and also is not able to yield certain Lagrangian invariant subspaces ofHamiltonianma-
trices that are needed in the context of computing the solution to algebraic Riccati equations
or optimal control problems; see, e.g., [11, 15]. The new structure preserving methods of
[5, 4] also cannot deal with the case of complex Hamiltonian matrices, but there are several
important applications where the eigenvalue problem for complex Hamiltonian matrices has
to be solved; see, e.g., [6, 16]. In this paper we therefore discuss structured methods for
complex Hamiltonian and skew-Hamiltonian matrices.

Let us first introduce some notation. We will denote byΛ(A) the spectrum of a matrix
A, by Λ+(A), Λ−(A) the subsets ofΛ(A) of eigenvalues with positive and negative real
parts, respectively and we will denote byInv+(A), Inv−(A) the invariant subspaces ofA
corresponding toΛ+(A), Λ−(A), respectively. SuperscriptsT andH denote the transpose
and the conjugate transpose, respectively.

DEFINITION 1.1. LetJ :=
[

0 In
−In 0

]
, whereIn is then× n identity matrix.

i) A matrixH ∈ C2n×2n is calledHamiltonian if (HJ)H = HJ . The Lie algebra of
Hamiltonian matrices inC2n×2n is denoted byH2n. A Hamiltonian matrix has the

block form

[
F D
G −FH

]
, whereF,D,G ∈ Cn×n,D = DH , andG = GH .

ii) A matrixN ∈ C2n×2n is calledskew-Hamiltonianif (NJ)H = −NJ . The Jordan
algebra of skew-Hamiltonian matrices inC2n×2n is denoted bySH2n. A skew-
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Hamiltonian matrix has the block form

[
F D
G FH

]
, whereF,D,G ∈ Cn×n,D =

−DH , andG = −GH .
iii) A matrix S ∈ C2n×2n is calledsymplecticif SJSH = J . The Lie group of symplec-

tic matrices inC2n×2n is denoted byS2n.
iv) The Lie group of unitary matrices inCn×n is denoted byUn and the Lie group of

unitary symplectic matrices inC2n×2n is denoted byUS2n.

Hamiltonian and skew-Hamiltonian matrices have certain obvious properties, which fol-
low directly from the definition.

PROPOSITION1.2.
i) Multiplication with i :=

√
−1 represents an isomorphism between the classes of

complex Hamiltonian and skew-Hamiltonian matrices, i.e.,H ∈ H2n if and only if
iH ∈ SH2n.

ii) For H ∈ H2n, if λ ∈ Λ(H), then also−λ̄ ∈ Λ(H). Furthermore, ifH is real, then
also−λ, λ̄ ∈ Λ(H).

iii) For N ∈ SH2n, if λ ∈ Λ(N), thenλ̄ ∈ Λ(N). Furthermore, ifN is real, then each
eigenvalue ofN has even algebraic multiplicity.

iv) Similarity transformations with symplectic matrices leave the classes of Hamiltonian
and skew-Hamiltonian matrices invariant, i.e., ifU ∈ S2n, H ∈ H2n, andN ∈
SH2n, thenU−1HU ∈H2n andU−1NU ∈ SH2n.

v) If U ∈ US2n, thenU can be partitioned as

U =
[

U1 U2

−U2 U1

]
, U1, U2 ∈ Cn×n.

For a Hamiltonian matrixH ∈H2n that has no purely imaginary eigenvalues, Paige and
Van Loan [17] showed that there exists a matrixU ∈ US2n so that

QHHQ =
[
R T
0 −RH

]
, T = TH , R is upper triangular,(1.1)

which is called theHamiltonian Schur form. The same proof also works for the skew-
Hamiltonian case. For a real skew-Hamiltonian matrix, however, such a form always exists
without any restriction on the eigenvalues [18]. Necessary and sufficient conditions for the
existence of the Hamiltonian Schur form if the matrix has purely imaginary eigenvalues are
given in [11, 13, 14].

Unfortunately, the construction of a method for the computation of this Schur form that
has complexityO(n3) and is strongly stable, i.e., computes the Hamiltonian Schur form of
a nearby Hamiltonian matrix, is still an open problem, although a lot of progress has been
made in recent years [1, 4, 5, 8].

For real skew-Hamiltonian matricesN , Van Loan’s method presented in [18] can be used
to develop a structural QR algorithm as follows. First, a real matrixQ1 ∈ US2n is computed
such that

QT1 NQ1 =:
[
F1 D1

0 FT1

]
,(1.2)

whereF1 is upper Hessenberg andD1 is skew symmetric. Then an orthogonal matrixQ̃2 ∈
Un is computed by the standard QR algorithm (see, e.g., [9]) such thatF2 := Q̃T2 F1Q̃2 is in
real Schur form. Hence, withQ2 := diag(Q̃2, Q̃2) ∈ US2n we obtain that

QT2 Q
T
1 NQ1Q2 =:

[
F2 D2

0 FT2

]
(1.3)



ETNA
Kent State University 
etna@mcs.kent.edu

P. Benner, V. Mehrmann and H. Xu 117

is in skew-Hamiltonian Schur form. But this method is not applicable in the case thatN has
a nontrivial complex part, since then the initial transformation to the Hessenberg-like form
(1.2) is in general not possible as can be seen from the following example.

EXAMPLE 1. LetN =
[
−1 −i
i −1

]
∈ SH2, thenΛ(N) = {−2, 0}. Obviously,N

cannot have a Hessenberg form as in (1.2). The methods derived in [4, 5] for the Hamiltonian
eigenvalue problem can also not be used in the complex case. These methods compute in an
initial step thesymplectic URV decompositionof a Hamiltonian matrixH, that is, two real
matricesU, V ∈ US2n are computed such that

UTHV =
[
H1 H2

0 HT
3

]
,(1.4)

whereH1 is upper triangular andH3 is upper Hessenberg. It follows (see [5]) that

V TH2V =
[
−H3H1 (H3H2)T −H3H2

0 (−H3H1)T

]
has exactly the form (1.2). But for complex matrices, this initial reduction does not always
exist as the next example demonstrates.

EXAMPLE 2. Consider the Hamiltonian matrix

H =
√

2
2

[
i −1
1 i

]
.

SinceH2 = N , whereN is as in Example 1,H2 cannot have the form (1.2), and henceH
cannot have the form (1.4).

In this paper we will study the case of general complex Hamiltonian and skew-
Hamiltonian matrices and show how the method of Van Loan and the new methods of [4, 5]
can be extended to this case. In Section 2 we will first show how to compute eigenvalues of
complex Hamiltonian and skew-Hamiltonian matrices. The obtained algorithm will be the
basis for a method to compute invariant subspaces as presented in Section 3. We will briefly
discuss the complexity of the algorithms and their numerical properties in Section 4. Nu-
merical examples in Section 5 demonstrate the reliability and performance of the proposed
algorithms. Some concluding remarks are given in Section 6.

2. Eigenvalue Computation. In order to develop a method for the complex case we will
first transform the structured complex eigenvalue problem into a structured real problem of
double size. After solving the eigenvalue problem for this extended matrix, we will recover
the eigenvalues of the original matrix. The method can be viewed as a generalization of
the real algorithm proposed in [5], and we will discuss the relationship to this algorithm in
Section 4. The basis for our new approach is the following simple observation. If we partition
N ∈ SH2n asN = N1 + iN2 with N1, N2 real, thenN1 ∈ SH2n, N2 ∈ H2n. Moreover,
by Definition 1.1,N1 andN2 can be written as

N1 =
[
F1 D1

G1 FT1

]
, D1 = −DT

1 , G1 = −GT1 ,

N2 =
[
F2 D2

G2 −FT2

]
, D2 = DT

2 , G2 = GT2 .

Thus, if we introduce the unitary matrix

Y2n :=
√

2
2

[
I2n iI2n
I2n −iI2n

]
,(2.1)
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and the permutation matrix

P :=


In 0 0 0
0 0 In 0
0 In 0 0
0 0 0 In

 ,(2.2)

then we obtain the real matrix

N := PHY H2n

[
N 0
0 N

]
Y2nP =


F1 −F2 D1 −D2

F2 F1 D2 D1

G1 −G2 FT1 FT2
G2 G1 −FT2 FT1

 =:

[
F D
G FT

]
.

(2.3)
It is easy to verify thatD = −DT , G = −GT , soN ∈ SH4n ∩ IR4n×4n and thus we
can apply Van Loan’s algorithm to determine the eigenvalues ofN and also to get the real
skew-Hamiltonian Schur form

WT
1 NW1 =

[
R T
0 RT

]
=: R,(2.4)

whereR ∈ IR2n×2n is quasi upper triangular,T = −T T , andW1 ∈ US4n is real.
By Proposition 1.2 iii),Λ(N) = Λ(N) and it is not difficult to see that

Λ(N) = Λ(R).(2.5)

Hence the eigenvalues of the complex skew-Hamiltonian matrixN can be computed by ap-
plying Van Loan’s method to the double size real skew-Hamiltonian matrixN in (2.3).

Since Van Loan’s method is strongly backward stable it is clear that the computed eigen-
values ofN are the exact eigenvalues of a real skew-Hamiltonian matrix near toN andN is
similar to diag(N,N ). BecauseR is real,Λ(R) is symmetric with respect to the real axis,
thus also the symmetry ofΛ(N) is preserved.

Unfortunately, in general this method does not determine the skew-Hamiltonian Schur
form ofN . Set

V := Y2nPW1 =
[
V11 V12

V21 V22

]
.

Then combining (2.3) and (2.4), we obtain[
N 0
0 N

]
V = V

[
R T
0 RT

]
.(2.6)

Comparing the (1,1) blocks on both sides of (2.6) yields

NV11 = V11R.

If V11 is nonsingular, then we get the Schur decomposition ofN via the QR decomposition
of V11, but if V11 is singular then we only get a certain non-Lagrangian invariant subspace of
N from the basis ofrangeV11.

By the isomorphism in Proposition 1.2 i) we also immediately obtain a method for the
computation of the eigenvalues of a complex Hamiltonian matrixH ∈ H2n. Substituting
N = iH into (2.3) and usingiH = −iH, by (2.4) we obtain withV = Y2nPW1 that

V H diag(H,−H)V = − iR,(2.7)
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and by (2.5), we the get the spectrum ofH as

Λ(H) = − iΛ(R).(2.8)

In this section we have shown how we can use a simple observation on the extension of
complex skew-Hamiltonian matrices to a real problem of the same structure to compute the
eigenvalues via the structure preserving method of Van Loan. In the next section we discuss
the computation of invariant subspaces.

3. Computation of Invariant Subspaces. In this section we show how to compute
Inv+(H) andInv−(H), the invariant subspaces of a complex matrixH ∈H2n, correspond-
ing to the eigenvalues with negative and positive real parts, respectively. These are the impor-
tant subspaces needed in applications from control theory, see, e.g., [11, 15]. We will assume
for simplicity that the Hamiltonian matrices that we discuss have no purely imaginary eigen-
values such thatdim Inv+(H) = n = dim Inv−(H). In case there exist purely imaginary
eigenvalues, there are several ways to distribute these eigenvalues in the Schur form, and it is
still an open question what is the best way to do this. See [4, 14] for detailed comments.

Under these assumptions,R defined in (2.4) is inSH4n, has no real eigenvalues, and is
in real skew-Hamiltonian Schur form. Hence,−iR ∈ H4n is in Hamiltonian Schur form.
For matrices in Hamiltonian Schur form, the eigenvalue reordering procedure of Byers [7, 8]
can be employed to determine a matrixW2 ∈ US4n such that

WH
2 (−iR)W2 =

[
R̂ T̂

0 −R̂H
]

=: R̂ ∈ H4n,(3.1)

and all eigenvalues of̂R have negative real parts, i.e.,Λ(R̂) = Λ−(R̂). LetU := VW2, then
by (2.7) and (3.1) we have

UH
[
H 0
0 −H

]
U = R̂.(3.2)

THEOREM 3.1. Suppose thatH ∈ H2n has no purely imaginary eigenvalues and sup-
pose that

UH
[
H 0
0 −H

]
U = R̂ =

[
R̂ T̂

0 −R̂H
]

(3.3)

is in Hamiltonian Schur form withΛ(R̂) = Λ−(R̂). PartitionU =
[
U11 U12

U21 U22

]
accord-

ingly. Then there exist matricesΦ,Ψ,Θ ∈ U2n such that

(3.4)

U11 = Φ
[
In 0
0 0

]
Θ =:

[
Φ1 0

]
Θ,

U21 = Ψ
[

0 0
0 In

]
Θ =:

[
0 Ψ2

]
Θ,

and the columns ofΦ1, Ψ2 form orthogonal bases ofInv−(H) andInv+(H), respectively.
Proof. ¿From (3.3) we obtain

HU11 = U11R̂, HU21 = − U21R̂.(3.5)
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SinceΛ(R̂) = Λ−(R̂), we have

rangeU11 ⊆ Inv−(H), rangeU21 ⊆ Inv+(H).(3.6)

By assumptionH has no purely imaginary eigenvalues, and thus Proposition 1.2 ii) implies
that there are exactlyn eigenvalues inΛ+(H) andn eigenvalues inΛ−(H). Hence,

dim Inv−(H) = dim Inv+(H) = n,(3.7)

and thus

rankU11 ≤ n, rankU21 ≤ n.(3.8)

On the other hand,U is unitary. Using the CS decompositions [9] ofU11 andU21 there exist
Φ,Ψ,Θ ∈ U2n so that

U11 = Φ
[

Σ 0
0 0

]
Θ, U21 = Ψ

[
∆ 0
0 I2n−r

]
Θ,

whereΣ,∆ ∈ IRr×r are diagonal with nonnegative diagonal elements,Σ 6= 0, andΣ2+∆2 =
Ir. The first inequality of (3.8) impliesrank Σ ≤ n. If rank Σ 6= n, thenrankU21 > n,
which contradicts the second inequality of (3.8). Hencerank Σ = n. MoreoverΣ = In, since
otherwise,∆ 6= 0, and thusrankU21 > n which again contradicts (3.8). This shows (3.4).
The remaining assertions follow from (3.6), (3.7) and the fact thatΦH1 Φ1 = ΨH

2 Ψ2 = In.

In summary we obtain the following algorithm for the computation ofInv−(H).
ALGORITHM 1. This algorithm computes the (Lagrangian) invariant subspace corre-

sponding to the eigenvalues in the open left half plane of a complex matrixH ∈ H2n having
no purely imaginary eigenvalues.

Input: A complex Hamiltonian matrixH ∈ H2n having no purely imaginary eigenval-
ues.

Output: Φ1 ∈ C2n×n, with ΦH1 Φ1 = In, range Φ1 = Inv−(H).
Step 1 SetN = iH and determine the matrixN as in (2.3). Apply Van Loan’s algo-

rithm [18] toN to compute the real skew-Hamiltonian Schur form,

WT
1 NW1 :=

[
R T
0 RT

]
=: R,

whereW1 ∈ US4n andR is quasi upper triangular.
Step 2 Determine a matrixW2 ∈ US4n by using Byers’ unitary symplectic reordering

method [8] applied toiR, so that

WH
2 (−iR)W2 =

[
R̂ T̂

0 −R̂H
]

=: R̂

with Λ(R̂) = Λ−(R̂).

SetU11 :=
[
I2n 0

]
U

[
I2n
0

]
, whereU = Y2nPW1W2.

Step 3 ComputeΦ1, an orthogonal basis ofrangeU11, using any numerically stable or-
thogonalization scheme, for example a rank-revealing QR-decomposition; see, e.g.,
[9].

End
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The same algorithm can also be used to computeInv+(H). In this case we need to form
U21, the(2, 1) block ofU and then compute an orthogonal basis ofrangeU21.

REMARK 1. There are still some improvements possible in the described algorithm. First
it would be nice if it could be performed completely in real arithmetic and second, it would
be ideal if the additional structure in the blocksF ,D,G could be exploited. At this writing,
we are not aware how to achieve this.

REMARK 2. In [4] a method similar to Algorithm 1 was proposed for the eigenproblem of
real Hamiltonian matrices. The method uses a new matrix factorization, called the symplectic
URV decomposition. This factorization in general only exists for real matrices. Using the
symplectic URV decomposition, it is possible to compute the Hamiltonian Schur form of the
extended matrix

B :=
[

0 H
H 0

]
, H ∈H2n real

or equivalently, the extended Hamiltonian matrixB̂ := PTBP . The invariant subspace ofH
is then obtained from the Lagrangian invariant subspace ofB or B̂.

On the other hand with the complex unitary symplectic matrix
X = diag(In,−iIn, In,−iIn), we get

−iN = XHB̂X,

i.e., the Hamiltonian matriceŝB and−iN are symplectically similar. Therefore, both meth-
ods can be used for computing the Hamiltonian Schur form of the same matrix−iN . Hence
Algorithm 1 shares the same methodology with the method proposed in [4]. Because the sym-
plectic URV decomposition can be used to exploit the given matrix structures more efficiently,
this method is more efficient than Algorithm 1 for real Hamiltonian matrices. Thus, the com-
plexity of Algorithm 1 is much higher than that of the algorithm presented in [4]. Hence we
recommend to use the method in [4] for real problems; Algorithm 1 should only be used for
complex problems as it offers no advantage over the method in [4] with respect to numerical
stability and accuracy.

4. Complexity and Error Analysis. The computational complexities for the three steps
of Algorithm 1 are given in Table 4.1. Following [9], any floating point operation (+, −, ∗,
/, √ ) is counted as aflop. Note that in Step 1, only real operations are involved. The flop
counts are based on the estimated computational cost of the standard numerical linear algebra
algorithms as given in [9] and the estimated flops for Van Loan’s algorithm as given in [3, 18].
We assume that the structure of (skew-)Hamiltonian and orthogonal symplectic matrices as
given in Definition 1.1i), ii) and Proposition 1.2v) is fully exploited and that in Step 3, a QR
factorization with column pivoting is used. The total flop count is based on the assumption
that one complex flop is roughly as expensive as four real flops.

Step 1 2 3 total
flops 397 1

3n
3 (real) 40n3 (complex) 18 2

3n
3 (complex) ≈ 158n3 (complex)

TABLE 4.1
Flop counts for Algorithm 1

These numbers compare with205n3 complex flops for the computation of the same in-
variant subspace via the Schur method as suggested in [12]. If only eigenvalues are required,
then only Step 1 of Algorithm 1 is performed without accumulating the similarity transfor-
mations. This requires about320

3 n3 real flops for the computation of the skew-Hamiltonian
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Hessenberg form and160
3 n3 for the Hessenberg QR algorithm [9], altogether160n3 real flops.

The computation of the eigenvalues of a complex2n × 2n matrix using the nonsymmetric
QR algorithm needs about80n3 complex flops.

In [4] we have given the error analysis for the proposed structure preserving method for

the Hamiltonian Schur form of the extended Hamiltonian matrixB̂ = PT
[

0 H
H 0

]
P ,

and the invariant subspaces of the real Hamiltonian matrixH. By Remark 2 the same error
analysis can be carried out for the complex case. LetW = W1W2 ∈ US4n, whereW1,W2 ∈
US4n are updated in Algorithm 1. Let̂R be the finite precision analogue to the Hamiltonian
triangular matrixR computed by Algorithm 1. We have

WH(−iN )W = R̂+ E , E ∈ H4n, ||E|| < cε||H||,(4.1)

where|| . || is the spectral norm,ε is the machine precision, andc is a constant.
By (1.1) there exists a unitary symplectic matrixQ such that

QHHQ =
[
S L
0 −SH

]
, Λ(S) = Λ−(H).(4.2)

LetK ∈ US2n be such that

KH

[
−SH 0
L S

]
K =

[
−ŜH L̂

0 Ŝ

]
, Λ(Ŝ) = Λ−(H).(4.3)

Then using theseparationbetween two matrices as defined by (see, e.g., [9])

sep(A,B) := min
X 6=0

||AX −XB||
||X || ,

and employing

δ := min{sep(SH ,−S), sep(Ŝ,−ŜH)},(4.4)

we obtain as in [4] the following result.
THEOREM 4.1. Let S, L, Ŝ, L̂ be defined in (4.2) and (4.3) andδ be as in (4.4). Let

E be the error matrix as in (4.1). Furthermore, letΦ1 be the output of Algorithm 1 in exact
arithmetic and letΦε be the computed output in finite arithmetic. Denote byξ ∈ IRn×n the
diagonal matrix of canonical angles betweenrange Φ1 andrange Φε. If

8||E||(δ + max{||L||, ||L̂||}) < δ2,

then

|| sin ξ|| < cs
||E||
δ

< cscε
||H||
δ
,(4.5)

with cs = 8
√

10 + 4√
10 + 2

≈ 11.1.

REMARK 3. The above theorem essentially shows that the invariant subspace computed
by Algorithm 1 is as accurate as to be expected from a numerical backward stable method
as long as the condition numbers of the stable and unstableH-invariant subspaces given
by sep(SH ,−S) andsep(Ŝ,−ŜH), respectively, are approximately equal. The fact that the
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accuracy of the computed invariant subspace is affected by the conditioning of the compli-
mentary subspace can be expected as Algorithm 1 basically computes both subspaces at the
same time.

By applying the perturbation theory for the Hamiltonian Schur form developed recently
in [10] we can get more precise error bounds. But note that this does not affect the qual-
itative behavior of the error bound as explained above. Therefore and due to its relatively
complicated structure, we refrain here from presenting details of the theory in [10].

5. Numerical Examples. We have implemented the computation of the real skew-
Hamiltonian Schur form of the matrixN as in (2.3) and the computation of the eigenvalues
of complex Hamiltonian matrices in Fortran 77. We present two examples demonstrating the
numerical accuracy and performance of the algorithm.

The test results reported here were obtained on a Sun Ultra10 with 512 MByte main
memory and a 299 MHz UltraSPARC-IIi CPU using IEEE double precision arithmetic. All
subroutines were compiled using standard optimization and double-word alignment (compiler
flags -O -dalign ). The standard public domain versions of LAPACK and BLAS [2],
compiled with the same compiler flags, were used. It should be noted that on the machine
used, the cost of complex arithmetic compared to real arithmetic using Fortran 77 code does
not follow the model used to estimate flops earlier in this paper. For matrix multiplication of
n× n matrices as implemented in the BLAS Level 3 subroutines DGEMM and ZGEMM for
real and complex arithmetic, respectively, the complex version required less than twice the
time of the real version forn = 100. The ratio even becomes smaller asn is increased. The
tests were confirmed by results obtained on a PC with a 200 MHz AMD K6 CPU.

We will compare the subroutine ZHAEV for computing eigenvalues of complex Hamilto-
nian matrices using the method presented in Section 2 to the LAPACK driver routine ZGEEV
for computing eigenvalues of general non-Hermitian matrices based on the QR algorithm.

EXAMPLE 3. [18, Example 2] This example was used in [18] to demonstrate the possible
loss of accuracy in the method for computing the eigenvalues of real Hamiltonian matrices.
We have turned the example into a complex problem, still having the same real eigenvalues.

LetA = diag(1, 10−2, 10−4, 10−6, 10−8 ). Then a Hamiltonian matrixH is obtained
by

H = UH
[
A 0
0 −AH

]
U,

whereU ∈ US10 is randomly generated by five real symplectic rotations and five complex
reflectors. Thus,Λ(H) = {±1,±10−2,±10−4,±10−6,±10−8}.

In Table 5.1 we present the absolute errors of the eigenvaluesλ̃ computed by ZHAEV
and ZGEEV. For demonstration purposes, we also give the results obtained by the imple-
mentation of Van Loan’s method described in [3] applied to the above example where the
transformations accumulated inU are all chosen real.

Here, the loss of accuracy of order||H||2/|λ| in Van Loan’s method is obvious while both
ZHAEV and ZGEEV compute all eigenvalues to full accuracy.

EXAMPLE 4. We tested our subroutines for randomly generated Hamiltonian matrices
with entries distributed uniformly in the interval[−1, 1 ]. The eigenvalues computed by
ZHAEV are as accurate as for ZGEEV. In Figure 5.1 we present the minimum singular value
of H − λ̃I2n, denoted byσmin(H − λ̃I2n), for ann = 50 example and all eigenvalues in
the closed right half plane (in this case, these are 52, i.e., 4 eigenvalues are located on the
imaginary axis). The given error measure is the backward error of the computed eigenvalues
λ̃ in the sense that it equals the 2-norm of the perturbation matrixE ∈ C2n×2n of smallest
2-norm for whichλ̃ is an exact eigenvalue ofH +E. It can be seen from Figure 5.1 that both
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λ ZHAEV ZGEEV [3]

1 1.7× 10−17 1.6× 10−15 1.2× 10−15

10−2 1.1× 10−17 2.5× 10−17 1.0× 10−17

10−4 2.6× 10−17 3.3× 10−17 1.3× 10−14

10−6 3.9× 10−17 3.2× 10−17 1.7× 10−14

10−8 1.8× 10−17 3.0× 10−17 4.3× 10−11

TABLE 5.1
Example 3, absolute errors|λ− λ̃|.

methods compute the eigenvalues accurately with no significant preference of one algorithm
over the other.
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FIG. 5.1.Example 4, backward error of computed eigenvalues (n = 50).

We also measured the CPU times required by ZHAEV and ZGEEV forH ∈ C2n×2n with
n varying from50 to 500. For each value ofn, we recorded the CPU seconds of execution
time required to solve 10 randomly generated Hamiltonian eigenvalue problems. Table 5.2
shows the mean CPU seconds of execution time measured on the Sun Ultra10.

n 50 100 150 200 250 300 350 400 450 500

ZGEEV 0.41 3.1 11.7 28.8 56.8 99.5 157.9 238.1 339.7 470.6

ZHAEV 0.22 1.7 7.1 20.6 47.8 77.9 126.5 193.5 276.8 386.5
TABLE 5.2

Example 4, average CPU seconds of execution times for ZHAEV and ZGEEV across 10 trials.
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The table shows that for these Hamiltonian matrices, ZHAEV requires about half of the
execution time of ZGEEV for smalln and tends to 80% of the execution time of ZGEEV
for largern. This varying ratio of execution times can be explained by the varying ratio of
CPU times required for complex operations compared to real operations. Moreover, ZHAEV
is implemented using non-blocked algorithms while ZGEEV benefits from its block-oriented
(BLAS Level 3 based) implementation in particular for largern.

Besides the faster computation of the eigenvalues, ZHAEV returns the right pairing of
the eigenvalues as±λi, i = 1, . . . , n. Since ZGEEV treats a Hamiltonian matrix like an
arbitrary nonsymmetric matrix, small perturbations can and do cause computed eigenvalues
with small real parts to cross the imaginary axis. Moreover, it is difficult to decide whether
eigenvalues are on the imaginary axis or not. In contrast to this, all simple purely imaginary
eigenvalues computed by ZHAEV come out having exact real part zero as these are simple
real eigenvalues ofR in (2.4).

6. Conclusion. We have demonstrated a simple trick that allows to use Van Loan’s
method for the computation of Hamiltonian Schur forms of real skew-Hamiltonian matrices
to be extended to the case of complex Hamiltonian and skew-Hamiltonian matrices. For this
modification we have given an error analysis and also shown its connection to other recent
structure preserving methods. Numerical experiments demonstrate that the accuracy of the
proposed algorithm for computing eigenvalues is as good as to be expected from the error
analysis. The performance of the method in comparison to unstructured methods shows that
some benefit is gained from exploiting the structure.
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