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PRECONDITIONED EIGENSOLVERS—AN OXYMORON? �
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Abstract. A short survey of some results on preconditioned iterative methods for symmetric eigenvalue prob-
lems is presented. The survey is by no means complete and reflects the author’s personal interests and biases, with
emphasis on author’s own contributions. The author surveys most of the important theoretical results and ideas
which have appeared in the Soviet literature, adding references to work published in the western literature mainly to
preserve the integrity of the topic. The aim of this paper is to introduce a systematic classification of preconditioned
eigensolvers, separating the choice of a preconditioner from the choice of an iterative method. A formal definition of
a preconditioned eigensolver is given. Recent developments in the area are mainly ignored, in particular, on David-
son’s method. Domain decomposition methods for eigenproblems are included in the framework of preconditioned
eigensolvers.
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1. Preconditioners and Eigenvalue Problems.In recent decades, the study of precon-
ditioners for iterative methods for solving large linear systems of equations, arising from
discretizations of stationary boundary value problems of mathematical physics, has become
a major focus of numerical analysts and engineers. In each iteration step of such methods, a
linear system with a special matrix, the preconditioner, has to be solved. The given system
matrix can be available only in terms of a matrix-vector multiplication routine. It is known
that the preconditioner should approximate the matrix of the original system well in order to
obtain rapid convergence. For finite element/difference problems, it is desirable that the rate
of convergence is independent of the mesh size.

Preconditioned iterative methods for eigenvalue computations are relatively less known
and developed. Generalized eigenvalue problems are particularly difficult to solve.

Classical methods, such as the QR algorithm, the conjugate gradient method without
preconditioning, Lanczos method, and inverse iterations are some of the most commonly
used methods for solving large eigenproblems.

In quantum chemistry, however, Davidson’s method, which can be viewed as a precon-
ditioned eigenvalue solver, has become a common procedure for computing eigenpairs; e.g.,
[15, 16, 32, 47, 12, 81, 84]. Davidson-like methods have become quite popular recently; e.g.,
[12, 73, 61, 62, 74]. New results can be found in other papers of this special issue of ETNA.

Although theory can play a considerable role in development of efficient preconditioned
methods for eigenproblems, a general theoretical framework is still to be developed. We note
that asymptotic-style convergence rate estimates, traditional in numerical linear algebra, do
not allow us to conclude much about the dependence of the convergence rate on the mesh
parameter when a mesh eigenvalue problem needs to be solved. Estimates, to be useful,
must take the form of inequalities with explicit constants. Thelow-dimensionaltechniques,
developed in [37, 35, 42, 44], can be a powerful theoretical tool for obtaining estimates of
this kind for symmetric eigenvalue problems.

Preliminary theoretical results are very promising. Sharp convergence estimates have
been established for some preconditioned eigensolvers; e.g., [27, 21, 19, 20, 22, 35, 36]. The
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estimates show, in particular, that the convergence rates of preconditioned iterative methods,
with an appropriate choice of preconditioner, are independent of the mesh parameter for mesh
eigenvalue problems. Thus, preconditioned iterative methods for symmetric mesh eigenprob-
lems can be approximately as efficient as the analogous solvers of symmetric linear systems
of algebraic equations. They can serve as a basis for developing effective codes for many
scientific and engineering applications in structural dynamics and buckling, ocean modeling,
quantum chemistry, magneto-hydrodynamics, etc., which should make it possible to carry out
simulations in three dimensions with high resolution. A much higher resolution than what can
be achieved presently is required in many applications, e.g., in ocean modeling and quantum
chemistry.

Domain decomposition methods for eigenproblems can also be analyzed in the context
of existing theory for the stationary case; there are only a few results for eigenproblems, see
[48, 4, 5, 11]. Recent results for non-overlapping domain decomposition [43, 39, 45, 46]
demonstrate that an eigenpair can be found at approximately the same cost as a solution of
the corresponding linear systems of equations.

In the rest of the paper, we first review some well-known facts for preconditioned solvers
for systems. Then, we introduce preconditioned eigensolvers, separating the choice of a
preconditioner from the choice of an iterative method, and give a formal definition of a pre-
conditioned eigensolver. We present several ideas that could be used to derive formulas for
preconditioned eigensolvers and show that different ideas lead to the same formulas. We sur-
vey some results, which have appeared mostly in Soviet literature. We discuss preconditioned
block algorithms and domain decomposition methods for eigenproblems. We conclude with
numerical results and some comments on our bibliography.

2. Preconditioned Iterative Methods for Linear Systems of Equations.We consider
a linear algebraic systemLu = f with a real symmetric positive definitematrixL: Since a di-
rect solution of such linear systems often requires considerable computational work, iterative
methods of the form

uk+1 = uk � kB
�1(Luk � f)(2.1)

with a real symmetric positive definite matrixB; are of key importance. The matrixB is
usually referred to as the preconditioner. It is common practice to use conjugate gradient type
methods as accelerators in such iterations.

Preconditioned iterative methodsof this kind can be very effective for the solution of
systems of equations arising from discretization of elliptic operators. For an appropriate
choice of the preconditionerB; the convergencedoes not slow down when the mesh is refined,
and each iteration has a small cost.

The importance of choosing the preconditionerB so that the condition number ofB�1L
either is independent ofN; the size of the system, see D’yakonov [22], or depends weakly,
e.g., polylogarithmically onN; is widely recognized. At the same time, the numerical so-
lution of the system with the matrixB should ideally require of the order ofN; or N lnN;
arithmetic operations for single processor computers.

It is important to realize thatthe preconditioned method (2.1) is mathematically equiva-
lent to the analogous iterative method without preconditioning, applied to the preconditioned
systemB�1(Lu � f) = 0: We shall analyze such approach for eigenproblems in the next
section.

In preparation for our description of preconditioned eigenvalue algorithms based on do-
main decomposition, we introduce some simple ideas and notation. For an overview of work
on domain decomposition methods, see, e.g., [57].
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Domain decomposition methods can be separated into two categories, with and without
overlap of sub-domains. Methods with overlap of subdomains can usually be written in a
form similar to (2.1), and the domain decomposition approach is used only to construct the
preconditionerB. The class of methods without overlap can be formulated in algebraic form
as follows.

LetL be a2� 2 block matrix, and consider the linear system�
L1 L12
L21 L2

��
u1
u2

�
=

�
f1
f2

�
:(2.2)

Here,u1 corresponds to unknowns in sub-domains, andu2 corresponds to mesh points on
the interface between sub-domains. We assume that the submatrixL1 is “easily invertible.”
In domain decomposition, solving systems with coefficient matrixL1 means solving corre-
sponding boundary value problems on sub-domains. Then, by eliminating the unknownsu1;
we obtain a linear algebraic system of “small” size:

SLu2 = g2; g2 = f2 � L21L
�1
1 f1;

where

SL = L2 � L21L
�1
1 L12 = S�L > 0

is theSchur complementof the blockL1 in the matrixL:
Iterative methods of the form

uk+12 = uk2 � kS
�1
B (SLu

k
2 � g2)(2.3)

with some preconditionerSB = S�B > 0 can be used for the numerical solution of the
linear algebraic system. Conjugate gradient methods are often employed instead of the simple
iterative scheme (2.3). The Schur complementSL does not have to be computed explicitly
in such iterative methods. With an appropriate choice ofSB ; the convergence rate does
not deteriorate when the mesh is refined, and each iteration has a minimal cost. The whole
computational procedure can therefore be very effective.

3. Preconditioned Symmetric Eigenproblems.We now consider the partial symmet-
ric eigenvalue problem

Lu = �u;

where the matrixL is symmetric positive definite,L = L� > 0. Typically a couple of
the smallest eigenvalues� and corresponding eigenvectorsu need to be found. Very often,
e.g., when the Finite Element Method (FEM) is applied to an eigenproblem with differential
operators, we have to solve resulting generalized symmetric eigenvalue problems

Lu = �Mu;

for matricesL = L� > 0 andM = M� > 0. In some applications, e.g., in buckling,
the matrixM may only be nonnegative, or possibly indefinite. To avoid problems with in-
finite eigenvalues�, we define� = 1=� and consider the following generalized symmetric
eigenvalue problem

Mu = �Lu;(3.1)
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for matricesM = M� andL = L� > 0 with eigenvalues�1 > �2 � � � � � �min and
corresponding eigenvectors. In this problem, one usually wants to find the top part of the
spectrum.

In the present paper, we will consider the problem of finding the largest eigenvalue�1
of (3.1), which we assume to be simple, and a corresponding eigenvectoru1. We will also
mention block methods for finding a group of the firstp eigenvalues and the corresponding
eigenvectors, and discuss orthogonalization to previously computed eigenvectors.

In structural mechanics, the matrixL is usually referred to asstiffnessmatrix, andM as
massmatrix. In the eigenproblem (3.1),M is still a mass matrix andL is a stiffness matrix,
in spite of the fact that we put an eigenvalue on an unusual side. An important difference
between the mass matrixM and the stiffness matrixL is thatM is usually better condi-
tioned thanL. For example, when a simplest FEM with the mesh parameterh is applied to
the classical problem of finding the main frequencies of a homogeneous membrane, which
mathematically is an eigenvalue problem for the Laplace operator, thenM is a FEM approxi-
mation of the identity withcondM bounded by a constant uniformly inh, andL corresponds
to the Laplace operator withcondL growing ash�2 whenh! 0.

When problem (3.1) is a finite difference/element approximation of a differential eigen-
value problem, we would like to chooseM andL in such a way that the finite dimensional
operatorL�1M approximates a compact operator. In structural mechanics, such choice cor-
responds toL being a stiffness matrix andM being a mass matrix, notvice versa. Then,
eigenvalues�i of problem (3.1) tend to the corresponding eigenvalues of the continuous prob-
lem.

The ratio

�1 � �2
�1 � �min

plays a major role in convergence rate estimates for iterative methods to compute�1; the
largest eigenvalue. When this ratio is small, the convergence may be slow. It follows from
our discussion above that the denominator should not increase when the mesh is refined, for
mesh eigenvalue problems.

We now turn our attention to preconditioning. LetB = B� be a symmetric precon-
ditioner. There is no consensus on whether one should use a symmetric positive definite
preconditioner only, or an indefinite one, for symmetric eigenproblems. A practical compar-
ison of symmetric eigenvalue solvers with positive definite vs. indefinite preconditioners has
not yet been described in the literature.

When we apply the preconditioner to our original problem (3.1), we get

B�1Mu = �B�1Lu;(3.2)

We do not suggest applying such preconditioning explicitly. We use (3.2) to introduce pre-
conditioned eigensolvers, similarly to that for linear system solvers.

If the preconditionerB is positive definite, we can introduce a new scalar product
(?; ?)B = (B?; ?): In this scalar product, the matricesB�1M andB�1L in (3.2) are sym-
metric, andB�1L is positive definite. Thus, the preconditioned problem (3.2) belongs to
the same class of generalized symmetric eigenproblems as our original problem (3.1). The
positive definiteness of the preconditioner allows us to use iterative methods for symmetric
problems, like preconditioned conjugate gradient, or Lanczos-based methods.

If the preconditionerB is not positive definite, the preconditioned eigenvalue problem
(3.2) is no longer symmetric, even if the preconditioner is symmetric, For that reason, it is dif-
ficult to develop a convergence theory of eigensolvers with indefinite preconditioners, compa-
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rable with that developed for the case of positive definite preconditioners. Furthermore, itera-
tive methods for nonsymmetric problems, e.g., based on minimization of the residual, should
be employed when the preconditioner is indefinite, thus increasing computational costs. We
note, however, that multigrid methods for eigenproblems, see a recent paper [10] and ref-
erences there, usually use indefinite preconditioners, often implicitly, and provide tools for
constructing high-quality preconditioners.

What is aperfectpreconditioner for an eigenvalue problem? Let us assume that we
already know an eigenvalue, which we assume to be simple, and want to compute the corre-
sponding eigenvector as a nontrivial solution of the following homogeneous system of linear
equations:

(M � �L)u = 0:(3.3)

In this case, the best preconditioner would be the one based on the pseudoinverse of
M � �L:

B�1 = (M � �L)y:

Indeed, withB�1 defined in this fashion, the preconditioned matrixB�1(M � �L) is an
orthogonal projector on an invariant subspace, which is orthogonal to the desired eigenvector.
Then, one iteration of, e.g., the Richardson method

uk+1 = wk + �kuu; wk = B�1(M � �L)uk(3.4)

with the optimal choice of the step�k = �1 gives the exact solution.
To compute the pseudoinverse we need to know the eigenvalue and the corresponding

eigenvector, which makes this choice of the preconditioner unrealistic. Attempts were made
to use an approximate eigenvalue and an approximate eigenvector, and to replace the pseu-
doinverse with the approximate inverse. Unfortunately, this leads to the preconditioner, which
is not definite, even if� is the extreme eigenvalue as it is typically approximated from the
inside of the spectrum. The only potential advantage of using this indefinite preconditioner
for symmetric eigenproblems is a better handling of the case where� lies in a cluster of
unwanted eigenvalues, assuming a high quality preconditioner can be constructed.

If we require the preconditioner to be symmetric positive definite, a natural choice forB
is to approximate the stiffness matrix,

B � L:

In many engineering applications, preconditioned iterative solvers for linear systems
Lu = f are already available, and efficient preconditionersB � L are constructed. In
such cases, the same preconditioner can be used to solve an eigenvalue problemMu = �Lu;
moreover, a slight modification of the existing codes for the solution of the systemLu = f
can be used to solve the partial eigenvalue problem withL.

Closeness ofB andL is typically understood up to scaling and is characterized by the
ratio � = �0=�1, where�0 and�1 are constants from the operator inequalities

�0B � L � �1B; �0 > 0;(3.5)

which are defined using associated quadratic forms. We note that1=� is the (spectral) condi-
tion number ofB�1L with respect to the operator norm induced by the vector norm, corre-
sponding to theB-based scalar product(?; ?)B :
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Under assumption (3.5), the following simple estimates of eigenvalues�i of the operator
B�1(M � �L), where� is a fixed scalar, placed between two eigenvalues of eigenproblem
(3.1),�p � � > �p+1, hold [34, 35, 36]:

0 � �0(�i � �) � �i � �1(�i � �); i = 1; : : : ; p;

��1(�� �j) � �j � ��0(�� �j) < 0; j > p:

These estimates show that the ratio� = �0=�1 does indeed measure the quality of a positive
definite preconditionerB applied to system (3.3) as it controls the spread of the spectrum of
B�1(M � �L) as well as the gap between positive and negative eigenvalues�.

In the rest of the paper the preconditioner is always assumed to be a positive definite
matrix when approximatesL in the sense of (3.5). We want to emphasize that although
preconditioned eigensolvers considered here are guaranteed to converge with any positive
definite preconditionerB, e.g., with the trivialB = I , convergence may be slow.

In some publications, e.g., in the original paper by Davidson [15], a preconditioner is es-
sentially built-in into the iterative method, and it takes some effort to separate them. However,
such a separation seems to be always possible and desirable. Thus, when comparing different
eigensolvers, the same preconditioners must be used for sake of fairness. The choice of the
preconditioner is distinct from a choice of the iterative solver. In the present paper, we are
not concerned with the problem of constructing a good preconditioner; we concentrate on
iterative solvers instead.

At a recent conference on linear algebra, it was suggested that preconditioning, as we
describe it in this section, is senseless, when applied to an eigenproblem, because it does not
change eigenvalues and eigenvectors of the original eigenproblem. In the next section, we
shall see that some eigenvalue solvers are, indeed, invariant with respect to preconditioning,
but we shall also show that some other eigenvalue solvers can take advantage of precondi-
tioning. The latter eigensolvers are the subject of the present paper.

4. Preconditioned Eigensolvers - A Simple Example.We now address the question
why some iterative methods can be calledpreconditionedmethods. Let us consider the fol-
lowing two iterative methods for our original problem (3.1):

uk+1 = wk + �kuk; wk = L�1(Muk � �kLuk); u0 6= 0;(4.1)

and

uk+1 = wk + �kuk; wk = (Muk � �kLuk); u0 6= 0;(4.2)

where scalars�k and�k are iteration parameters. We ignore for a moment that method (4.1)
does not belong to the class of methods under consideration in the present paper since it
requires the inverse ofL.

Though quite similar, the two methods exhibit completely different behavior when ap-
plied to thepreconditionedeigenproblem (3.2). Namely, method (4.1) is not changed, but
method (4.2) becomes thepreconditionedone -

uk+1 = wk + �kuk; wk = B�1(Muk � �kLuk); u0 6= 0:(4.3)

We note that the eigenvectors of the iteration matrix(M � �kL) appearing in (4.2)
are not necessarily the same as those of problem (3.1). This is the main difficulty in the
theory of methods such as (4.2), but this is also the reason why using the preconditioning
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makes the difference and gives hope to achieve better convergence of (4.3), as eigenvalues
and eigenvectors of the matrixB�1(M � �kL) do actually change when we apply different
preconditioners.

Let us examine closer method (4.3), which is a generalization of Richardson method
(3.4). It can be used for finding�1 and the corresponding eigenvectoru1. Iteration parameters
�k can be chosen as a function ofuk such that�k ! �1; asuk ! u1: A common choice is
the Rayleigh quotient for problem (3.1):

�k = �(uk) = (Muk; uk)=(Luk; uk);

Then, vectorwk is collinear to the gradient of the Rayleigh quotient at the pointuk in the
scalar product(?; ?)B = (B?; ?); and methods such as (4.3) are calledgradient methods. We
will call the methods given by (4.3), for which�k is not necessarily equal to�(uk); gradient-
type methods. It is useful to note, that the formula for the Rayleigh quotient above is invariant
with respect to preconditioning, provided that the scalar product is changed, too. Iteration
parameters�k can be chosen to maximize�(uk+1); thus, providingsteepest ascent. Equiva-
lently, uk+1 can be found by the Rayleigh–Ritz method in the trial subspacespanfuk; wkg:
This steepest gradient ascent method for maximizing the Rayleigh quotient is a particular
case of a general steepest gradient ascent method for maximizing a nonquadratic function.
Interestingly, in our case the choice of�k is not limited to positive values, as a general the-
ory of optimization would suggest. Examples were found in [38] when�k may be zero, or
negative.

Method (4.3) is the easiest example of a preconditioner eigensolver. In the next section
we attempt to describe the whole class of preconditioned eigensolvers, with a fixed precondi-
tioner.

5. Preconditioned Eigensolvers: Definition and Ideas.We define a preconditioned
iterative method for eigenvalue problem (3.1) as a polynomial method of the following kind,

un = Pmn
(B�1M;B�1L)u0;(5.1)

wherePmn
is a polynomial of themn-th degree of two independent variables, andB is a

preconditioner.
Our simple example (4.3) fits the definition withmn = n andPmn

being a product of
monomials

B�1M � �kB�1L+ �kI:

Clearly, we get the best convergence on this class of methods, when we simply takeun

to be the Rayleigh–Ritz approximation on the generalized Krylov subspace corresponding
to all polynomials of the degree not larger thann: Unfortunately, computing a basis of this
Krylov subspace, even for a moderate value ofn, is very expensive. An orthogonal basis of
polynomials could help to reduce the cost, as in the standard Lanczos method, but very little
is known on operator polynomials of two variables, cf. [58]. However, it will be shown in
the next section, that there are some simple polynomials which provide fast convergence with
small cost of every iteration.

Preconditioned iterative methods, satisfying our definition, could be constructed in many
different ways. One of the most traditional ideas is to implement the classical Rayleigh
quotient iterative method

uk+1 = (M � �kL)�1Luk; �k = �(uk);



ETNA
Kent State University 
etna@mcs.kent.edu

A. V. Knyazev 111

with a preconditioned iterative solver of the systems that appear on every (outer) iteration,
e.g., [83]. A similar inner-outer iteration method could be based on more advanced truncated
rational Krylov method, e.g., [69, 72], or on Newton’s method for maximizing/minimizing
the Rayleigh quotient. A homotopy method, e.g., [14, 50, 31, 86, 53], is quite analogous to the
previous two methods, if a preconditioned iterative solver is used for inner iterations. When
employing an inner-outer iterative method, a natural question is how many inner iterations
should be performed. Our simple example (4.3) of a preconditioned eigensolver given in
the previous section can be viewed as an inner/outer iterative method with only one inner
iteration. In the next section, we shall consider another approach, based on an auxiliary
eigenproblem, which leads to an inner/outer iterative method, and discuss the optimal number
of inner iterations.

Let us also recall two other ideas of constructing preconditioned eigensolvers, as used
in the previous section. Firstly, we can pretend that the eigenvalue� is known, take a pre-
conditioned iterative solver for the homogeneous system (3.3), and just change the value of�
on every iteration. Secondly, we can use general preconditioned optimization methods, like
the steepest ascent, or the conjugate gradient method, to maximize the Rayleigh quotient. In
the latter approach, we do not have to avoid local optimization problems, like the problem
of finding the step�k in the steepest ascent method (4.3), which usually cause trouble for
general nonquadratic functions in optimization, since for our function, the Rayleigh quotient,
such problems can be solved easily and cheaply by the Rayleigh–Ritz method.

As far as methods fall within the same class of preconditioned eigensolvers, their origi-
nation does not matter much. They should compete against each other, and, first of all, against
old well-known methods, which we discuss in the next section. With so many ideas available,
it is relatively simple to design formally new methods. It is, on the other hand, difficult to
design better methods and methods with better convergence estimates.

6. Theory for Preconditioned Eigensolvers.Gradient methods with a preconditioner
were first considered for symmetric operator eigenvalue problems in the form of steepest as-
cent/descent methods by B. A. Samokish [75], who also derived asymptotic convergence rate
estimates. W. V. Petryshyn [65] considered these methods for some nonsymmetric operators,
using symmetrization. A. Ruhe [70, 71] clarified the connection of gradient methods (4.3)
and similar iterative methods for finding a nontrivial solution of the following preconditioned
system

B�1(M � �1L)u = 0:(6.1)

S. K. Godunovet al. [27] obtained the first non-asymptotic convergence rate estimates
for preconditioned gradient iterative methods (3.2); however, to prove linear convergence
they assumed that

�20B
2 � L2 � �21B

2;

which is more restrictive than (3.5). E. G. D’yakonovet al. [21, 18, 19] obtained the first
explicit estimates of linear convergence for gradient iterative methods (3.2), including the
steepest descent method, using the natural assumption (3.5). In our notations, and somewhat
simplified, the main convergence rate estimate of [21, 18, 22] for method (4.3) with

�k = �(uk) and�k = �1(�
k � �min)

can be written as

�1 � �n

�n � �2
� (1� �)n

�1 � �0

�0 � �2
; � =

�0
�1

�1 � �2
�1 � �min

;(6.2)



ETNA
Kent State University 
etna@mcs.kent.edu

112 Preconditioned Eigensolvers

under the assumption that�0 > �2: The same estimate holds when�k is chosen to maximize
the Rayleigh quotient�(uk+1); i.e. for the steepest ascent.

How sharp is estimate (6.2)? Asymptotically, when�k � �1, the convergence rate
estimate of [75] is better than estimate (6.2). When� � 1, we haveB � L and method (4.3)
becomes a standard power method with a shift. The convergence estimate of this method; e.g.,
[35, 36], is better than estimate (6.2) with� � 1. Nonasymptotically and for small/moderate
values of� it is not clear whether estimate (6.2) is sharp, or not, but it is the best known
estimate.

If instead of�0 > �2 more general condition�p � �0 > �p+1 with somep > 1 holds,
and�n is also betweenp-th andp + 1-th eigenvalues, then estimate (6.2) is still valid [22]
when we replace�1 and�2 with �p and�p+1, correspondingly. In numerical experiments,
method (4.3) usually converges to�1 with a random initial guess. When�p � �0 > �p+1,
the sequenceuk needs to passp saddle points to reach tou1 and can get stuck in the middle,
in principle. For a general preconditionerB, there is no theory to predict whether this can
happen for a given initial guessu0.

E. G. D’yakonov played a major role in establishing preconditioned eigensolvers as
asymptotically optimal methods for discrete analogs of eigenvalue problems with elliptic
operators. Many of his results on the subject are collected in his recent book [22].

V. G. Prikazchikovet al. derived somewhat weaker convergence estimates for the steep-
est ascent/descent only, see [67, 66, 87, 68] and references there. The possibility of using
Chebyshev parameters to accelerate convergence of (4.3) has been discussed by V. P. Il’in
and A. V. Gavrilin, see [33]. A variant, combining (4.3) with the Lanczos method, is due
to David Scott [77]; hereB = I: The key idea for both papers is the same. We use it here
to discuss the issue of the optimal number of inner iterations. Let the parameter� be fixed.
Consider the auxiliary eigenvalue problem

B�1(M � �L)v = �v:(6.3)

If � = �1; then there exist a zero eigenvalue� and the corresponding eigenvector of (6.3)
is also the eigenvector of the original problem (3.1) corresponding to�1: The eigenproblem
(6.3) can be solved for a fixed� = �k by using inner iterations, e.g., the power method
with Chebyshev acceleration, see [33], or the Lanczos method, see [77]. The new value
� = �k+1 is then calculated as the Rayleigh quotient of the most recent vector iterate of the
inner iteration. This vector also serves as an initial guess for the next inner iteration cycle.
Such inner-outer iterative method falls within our definition of preconditioned eigensolvers.
If only one inner iteration is used, the method in identical to (4.3). Thus, inner-outer iteration
methods can be considered as a generalization of method (4.3). One question which arises at
this point is whether it is beneficial to use more than one inner iterations. We discuss below a
theory, developed by the author in [34, 35, 36], that gives a somewhat positive answer to the
question.

An asymptotic quadratic convergence of the outer iterations with aninfinite number of
inner iterations was proved by Scott [77]. The same result was then proved in [34, 35, 36] in
the form of the following explicit estimate

�1 � �k+1 �

�
1 +

4�

(1� �)2
�1 � �2
�1 � �k

��1
(�1 � �k); � =

�0
�1
;

under the assumption�k > �2. This estimate was used to study the case of a finite number
of inner iterations.

An explicit convergence rate estimate, established in [34, 35, 36], is similar to (6.2) and
shows the following: 1)the method converges geometrically for any fixed number of inner
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iterations; 2) a slow, but unlimited, increase of the number of inner iterations during the
process improves the convergence rate estimate, averaged with regard to the number of inner
iterations.

We do not reproduced here the estimate for a general case of an inner-outer iterative
solver as it is too cumbersome. When applied to method (4.3) with�k = �(uk) and�k =
�1(�

k � �min), the estimate becomes

�1 � �k+1

�k+1 � �2
�
�
1� (1� �)maxf�; �kg

� �1 � �k

�k � �2
;(6.4)

where

�k =

�
1 +

�
1

�
� 1

�
��k
��1�

1 +
1

4

(1� �)2

�
�k
��1

� 
1 +

�
1

�
� 1

�s
��k

� + (� � �)�k

!�1
;

(6.5)

and

� = (1� �)2; � =
�0
�1

�1 � �2
�1 � �min

; �k =
�1 � �k

�1 � �2
:

Estimate (6.4) is sharp for sufficiently large�, or small initial error�1 � �0, in which
case it improves estimate (6.2). However, when� is small, the estimate (6.4) is much worse
than (6.2).

The general estimate of [34, 35, 36] also holds for the following method,

�(un+1) = maxu2K �(u),
K = spanfun; B�1(M � �nL)un; : : : ; (B�1(M � �nL))knung,

(6.6)

wherekn is the number of inner iteration steps for then-th outer iteration step. Method (6.6)
was suggested in [34, 35, 36], and was then rediscovered in [63].

Our interpretation of the well known Davidson method [15, 73, 81] has almost the same
form:

�(un+1) = maxu2D �(u),
D = spanfu0; B�1(M � �0L)u0; : : : ; B�1(M � �nL)ung.

(6.7)

The convergence properties of this method are still not well understood. A clear disadvantage
of the method in its original form (6.7) is that the dimension of the subspace grows with every
step.

Our favorite subclass of preconditioned eigensolvers is preconditioned conjugate gradi-
ent (CG) methods, e.g., [13] withB = I . A simplest variant of a preconditioned CG method
can be written as

uk+1 = wk + �kuk + kuk�1; wk = B�1(Muk � �kLuk); �k = �(uk);(6.8)

with properly chosen scalar iteration parameters�k andk. The easiest choice of parameters
is based on an idea of local optimality, e.g., [39], namely, we simply choose�k andk to
maximize the Rayleigh quotient ofuk+1 by using the Rayleigh–Ritz method. We give a
block version of the method in the next section.

For the locally optimal version of the preconditioned CG method, we can trivially apply
convergence rate estimates (6.2) and (6.4).
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It is interesting to compare theoretical properties of CG type methods for linear systems
vs. eigenvalue problems.

A central fact of the theory of variational iterative methods for linear systems, with sym-
metric and positive definite matrices, is that the global optimum can be achieved using a local
three-term recursion. In particular, the well-known locally optimal variant of the CG method,
in which both parameters in the three-term recursion are chosen to minimize locally the en-
ergy norm of the error, leads to the same approximations as the global optimization if the
same initial guess is used; e.g., [28, 13]. Analogous methods for symmetric eigenvalue prob-
lems are based on minimization (or, in general, on finding stationary values) of the Rayleigh
quotient. The Lanczos (global optimization) and the CG (local optimization) methods are no
longer equivalent for eigenproblems because the Rayleigh quotient is not quadratic and does
not even have a positive definite Hessian.

Numerous papers on CG methods for eigenproblems attempt to derive sharp convergence
estimates; see: [76, 26, 3]; see also [25, 24, 85, 82].

So far, we have only discussed the problem of finding an eigenvector corresponding to
an extreme eigenvalue. To find thep-th largest eigenvalue, wherep is not too big, a block
method, which we consider in the next section, or orthogonalization to previously computed
eigenvectors, can be used.

Let us consider the orthogonalization using, as a simple example, a preconditioned eigen-
solver (4.3) with an additional orthogonal projection onto an orthogonal complement of the
subspace spanned by the computed eigenvectors:

uk+1 = P?wk + �kuk; wk = B�1(Muk � �kLuk); u0 6= 0:(6.9)

We now discuss the choice of scalar products, when defining the orthogonal projectorP?.
First, we need to choose a scalar product for the orthogonal complement of the subspace

spanned by the computed eigenvectors. TheL scalar product,(?; ?)L = (L?; ?), is a natu-
ral choice here. WhenM is positive definite, it is common to use theM scalar product as
well. Second, we need to define a scalar product, with respect to which our projectorP? is
orthogonal. A traditional approach is to use the same scalar product as on the first step. Un-
fortunately, with such choices, the iteration operator in method (6.9) is no longer symmetric
with respect to theB scalar product. This makes theoretical investigation of the influence of
orthogonalization to approximately computed eigenvectors quite complicated; see [22, 20],
where direct analysis of perturbations is included. To preserve symmetry, we must use aB-
orthogonal projectorP? in spite of the fact that we use a different scalar product on the first
step to define the orthogonal complement. In this case we can use the standard and simple
backward error analysis, see [35, 36], instead of the direct analysis, see [22, 20]. The ac-
tual computation ofP?w for a givenw, however, requires special attention. LetŴ be the
subspace, spanned by approximate eigenvectors, and find a basis for the subspaceB�1L ~W .
A B-orthogonal complement to the latter subspace coincides with theL-orthogonal comple-
ment of the subspace,~W . Therefore we can use the standardB-orthogonal projector onto the
B-orthogonal complement ofB�1L ~W .

We note that using a scalar product associated with an ill-conditioned matrix, likeL, or
B, may lead to unstable methods.

Another, simpler, but in some cases more expensive, possibility of locking the converged
eigenvectors is to add them in the basis of the trial subspace of the Rayleigh–Ritz method.

7. Preconditioned Subspace Iterations.Block methods, or subspace iterations, or si-
multaneous iterations are well known methods for the simultaneous computation of several
leading eigenvalues and corresponding invariant subspaces. Preconditioned iterative methods
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of that kind were developed in [75, 59, 52, 9], mostly withB = I: The simplest example is a
block version of method (4.3):

ûk+1i = wk
i + �ki u

k
i ; w

k
i = B�1(Muki � �ki Lu

k
i ); i = 1; : : : ; p;(7.1)

whereuk+1i is then computed by the Rayleigh–Ritz method in the trial subspace

spanfûk+11 ; : : : ; ûk+1p g:

The iteration operator for (7.1) is complicated and nonlinear if parameters�ki and�ki change
with i, thus making it difficult to study its convergence. The only nonasymptotic explicit con-
vergence rate estimate of method (7.1) with a natural choice�ki = �(uki ), has been published
only recently [8]. Sharp accuracy estimates of the Rayleigh-Ritz method, see [40], plays a
crucial role in the theory of block methods.

Gradient-type methods (7.1) with�ki = �(ukp) chosen to be independent ofi, have been
developed by D’yakonov and Knyazev in [19, 20]. Convergence rate estimates have been es-
tablished only for�p. These gradient-type methods are more expensive than gradient methods
with �ki = �(uki ). This is because in the first phase only the smallest eigenvalue of the group,
�p; �p > �p+1; and the corresponding eigenvector can be found; see [20, 8] for details.

The following are the block version of the steepest ascent method:

uk+1i 2 spanfuk1 ; : : : ; u
k
p; w

k
1 ; : : : ; w

k
pg(7.2)

and the block version of the conjugate gradient method:

uk+1i 2 spanfuk�11 ; : : : ; uk�1p ; uk1 ; : : : ; u
k
p ; w

k
1 ; : : : ; w

k
pg;(7.3)

where

wk
i = B�1(Muki � �ki Lu

k
i ); �

k
i = �(uki );

and the Rayleigh–Ritz method is used to computeuk+1i in the corresponding trial subspace.
Unfortunately, the previously mentioned theoretical results for rate of convergence cannot
be directly applied to methods (7.2) and (7.3). We were not able to prove theoretically that
our block CG method (7.3) is the most efficient preconditioned iterative solver for symmetric
eigenproblems, but it was supported by preliminary numerical results, included at the end of
the present paper.

Another known idea of constructing block methods is to use methods of nonlinear opti-
mization to minimize, or maximize, the trace of the projection matrix in the Rayleigh–Ritz
method, e.g., [13, 23], hereB = I .

To compute an eigenvalue�p in the middle of the spectrum, withp large, using block
methods and/or finding all previous eigenvalues and eigenvectors and applying orthogonal-
ization are computationally very expensive. In this case, the Rayleigh quotient iteration with
sufficiently accurate solutions of the associated linear systems, or methods similar to those
described in [64], may be more effective.

In some applications, e.g., in buckling, both ends of the spectrum should be computed.
Block methods are known [13] that compute simultaneously largest and smallest eigenvalues.

8. Domain Decomposition Eigensolvers.Domain decomposition iterative methods for
eigenproblems have a lot in common with the analogous methods for linear systems. Domain
decomposition also provides an interesting and important application of the preconditioned
eigensolvers discussed above.
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For domain decomposition with overlap, we can use any of preconditioned eigensolvers
and construct a preconditioner based on domain decomposition. In this case, at every step
of the iterative solver when a preconditioner is applied, we need to solve linear systems on
sub-domains, in parallel if an additive Schwarz method is employed to construct the precondi-
tioner. We strongly recommend using a positive definite preconditioner, which approximates
the stiffness matrixL. Such preconditioners are widely used in domain decomposition linear
solvers, and usually satisfy assumption (3.5) with constants independent of the mesh size pa-
rameter. As long as the preconditioner is symmetric positive definite, all theoretical results
for general preconditioned eigensolvers apply.

This simple approach appears to be much more efficient than methods based on eigen-
value solvers on sub-domains as inner iterations of a Schwarz-like iterative method; see [56],
as the cost of solving an eigenproblem on a sub-domain is often about the same as the cost of
solving the original eigenproblem.

Domain decomposition without overlap requires separate treatment. Let the matricesL
andM be of two-by-two block form as in (2.2). The original eigenvalue problem (3.1) can
then be reduced to the problem

S(�)u2 = 0;(8.1)

known as Kron’s problem, e.g., [80, 78], where

S(�) =M2 � �L2 � (M21 � �L21)(M1 � �L1)
�1(M12 � �L12);

is the Schur complement of the matrixM � �L. This problem was studied by A. Abramov,
M. Neuhaus, and V. A. Shishov [1, 79].

In analogy with (2.3), we suggest the following method

uk+12 = f�S�1B S(�k) + �kIguk2 ;(8.2)

whereSB is a preconditioner forS1 = L2 � L21L
�1
1 L12; the Schur complement ofL and

1

�
S(�)! �S1 as�!1:

We now discuss how to choose the parameters�k and�k. The parameter�k can be
determined either from the formula�k = �1(�

k � �min), or from a variational principle, see
[43, 39, 45, 46] for details.

The choice of the parameter�k is more complicated. If we actually compute theu1
component as the following harmonic-like extension

uk1 = (M1 � �L1)
�1(M12 � �L12)u

k
2 ;

then it would be natural to use the Rayleigh quotient for�k = �(uk): Interestingly, this is
not a good idea as�(uk) may not be monotonic as a function ofk. Below we discuss a better
way to select�k as some function ofuk2 described in [43, 39, 45, 46].

Similarity of the method for the second component (8.2) and the method (4.3) was used
in [43, 39, 45, 46] to establish convergence rate estimates of (8.2) similar to (6.2). Our general
theory for studying the rate of convergence cannot be used directly because the Schur com-
plementS(�) is a rational function of� and�k cannot be computed as a Rayleigh quotient.

For regular eigenvalue problems, i.e. forM = I; method (8.2) with a special formula
for �k; was proposed in [43]. It was shown that method (4.3) with the preconditioner

B = �kL�M +

�
0 0
0 SB � S�k

�
(8.3)



ETNA
Kent State University 
etna@mcs.kent.edu

A. V. Knyazev 117

is equivalent to method (8.2). Using this idea and known convergence theory of method
(4.3), convergence rate estimates of method (8.2) were obtained. A direct extension of the
methods to generalized eigenvalue problems (3.1) was carried out in [39]; steepest ascent and
conjugate gradient methods were presented, but without convergence theory.

In [45, 46], a new formula

B = L+

�
0 0
0 SB � S1

�
:(8.4)

was proposed that made it possible to estimate the convergence rate of method (8.2) for
generalized eigenvalue problems (3.1).

Formulas for�k in [43, 39, 45, 46] depend on the choice ofB and are too cumbersome
to be reproduced here. We only note that the latter choice ofB unfortunately leads to a
somewhat more expensive formula.

Our Fortran-77 code that computes eigenvalues of the Laplacian in the L-shaped domain
on a uniform mesh, using preconditioned domain decomposition Lanczos-type method, is
publicly available at http://www-math.cudenver.edu/˜aknyazev/software/L.

It is also possible to design inner-outer iterative methods, based on the Lanczos method,
for example, as outer iterations for the operatorL�1M; and a preconditioned conjugate gradi-
ent method as inner iterations for solving linear systems with the matrixL: Another possibil-
ity is to use inner-outer iterative methods based on some sort of Rayleigh quotient iterations;
e.g., [41]. We expect such methods not to be as effective as our one-stage methods.

For other results on similar methods, see, e.g., [48, 54, 55, 7]. The Kron problem for
differential equations can also be recast in terms of the Poincare–Steklov operators, see [49]
where a method similar to (8.2) was described.

The mode synthesis method, e.g., [11, 5, 6], is another domain decomposition method for
eigenproblems. This is a discretization method, where a couple of eigenfunctions correspond-
ing to leading eigenvalues are first computed in every sub-domain. Then, these functions are
used as basis functions in the Rayleigh–Ritz method for approximating the original differen-
tial eigenproblem. The method works particularly well for eigenvalue optimization problems
in mechanics; e.g., [2, 51], where a series of eigenvalue problems with similar sub-domains
needs to be solved. We believe that for a singe eigenvalue problem the mode synthesis method
is usually less effective than the methods considered above.

9. Numerical Results. With so many competing preconditioned eigensolvers available,
it is important to have some common playground for numerical testing and comparing differ-
ent methods. Existing theory is not developed enough to predict whether method “A” would
always be better than method “B,” except for a few cases.

Numerical tests and comparisons are still in progress; here, we present some preliminary
results.

We compare our favorite block methods: the steepest ascent (SA) (7.2) and the conjugate
gradient (CG) (7.3), with the block sizep = 3. We plot, however, errors for only two top
eigenvalues, leaving the third one out of the picture. The two shades of red represent method
(7.2), and the two shades of blue correspond to method (7.3). It is easy to separate the methods
as the CG method converges in 100–200 iterations in all tests shown, while the SA requires
at least 10 times more steps.

In all testsM = I , and we measure the eigenvalue error as

errori =
1

�ki
�

1

� i
; i = 1; 2;

for historical reasons.
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FIG. 9.1.Error for the block Steepest Ascent and the block CG methods. Hundred runs,N = 400.

In our first test, a model eigenvalue problem 400-by-400 with stiffness matrixL =
diagf1; 2; 3; : : : ; 400g, is solved, see Figure 9.1. For this problem,

�1 = 1; �2 =
1

2
; �3 =

1

3
; �min =

1

400
:

On Figure 9.1, numerical results of 100 runs of the same codes are displayed, with a
random initial guess and arandom preconditionerB, satisfying assumption (3.5) with� =
10�3:

In similar further tests, we use the same codes to solve a modelN -by-N eigenvalue
problem with a randomly chosen diagonal matrixL such that

�1 = 1; �2 =
1

2
; �3 =

1

3
; �min = 10�10:

In these tests, our goal is to check that huge condition number ofL, the size of the problem
N; and distribution of eigenvalues in the unwanted part of the spectrum do not noticeably
affect the convergence, as we would expect from theoretical results for simpler methods. As
in the previous experiments, the initial guess and the preconditioner are randomly generated,
and� = 10�3:

Figure 3.1 and 3.2 show that, indeed the convergence is about the same for different
values ofN and different choices of parameters.

On all figures, the elements of a bundle, of convergence history lines, are quite close,
which suggests that our assumption (3.5) on the preconditioner, is fundamental, and that the
ratio � = �0=�1 does predict the rate of convergence. We also observe that convergence for
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FIG. 9.2.Twenty runs,N = 1200:

the first eigenvalue, in dark colors, is typically, but not always, faster than that for the second
one, in lighter colors and dashed. That is especially noticeable on SA convergence history.
Finally, we can draw the conclusion that the CG method is clearly superior.

10. Conclusion. Preconditioned eigensolvers have been the subject of recent research.
Hopefully, the present paper could help to point out some unusual and forgotten references,
and to prevent old results and ideas from being rediscovered. An introduced systematic clas-
sification of preconditioned eigensolvers should make it easier to compare different methods.

An interactive Web page for preconditioned eigensolvers was created at

http://www-math.cudenver.edu/˜aknyazev/research/eigensolvers.
All the references of the present paper were available in the BIBTEX format on this Web
page, as well as some links to software.

The author would like to thank anonymous reviewers and R. Lehoucq for their numer-
ous helpful suggestions and comments. The author was grateful to an editor at ETNA for
extensive copy editing.

Finally, we wanted to comment on the bibliography. A part of the BIBTEX file was
produced using MathSciNet, an electronic version of the Mathematical Reviews. That was
where our references could be checked, and little-known journals, being referred to, could be
identified. When citing Soviet works, we put references to English versions when available.
Most often, the latter were just direct translations from Russian, but we decided not to give
references to the originals, only to the translations. When citing papers in Russian, we gave
English translations of the titles, usually without transliteration, but we provided only translit-
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FIG. 9.3.Ten runs,N = 2000:

eration of sources, i.e. journals and publishers, and always add a note “in Russian.” Several
Russian titles were published by Acad. Nauk SSSR Otdel Vychisl. Mat., which stands for
the Institute of Numerical Mathematics of the USSR Academy of Sciences. Many results on
the subject by the author were published with detailed proofs in Russian in the monograph
[35]; a survey of these results, without proofs, was published in English in [36].

A preliminary version of the present paper was published as a technical report UCD-
CCM 135, 1998, at the Center for Computational Mathematics, University of Colorado at
Denver.
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