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Abstract. We describe a randomized variant of the block conjugate gradient method for solving a single positive
definite linear system of equations. This method provably outperforms the preconditioned conjugate gradient method
with a broad class of Nystrom-based preconditioners, without ever explicitly constructing a preconditioner. In
analyzing our algorithm, we derive theoretical guarantees for new variants of the Nystrom-preconditioned conjugate
gradient method, which may be of separate interest. We also describe how our approach yields fast algorithms for
key data-science tasks such as computing the entire ridge regression regularization path and generating multiple
independent samples from a high-dimensional Gaussian distribution.
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1. Introduction. Solving the regularized linear system
1.1) A, x =D, A=A+,

where A € Rx4 jg symmetric positive definite and p > 0, is a critical task across the
computational sciences. Systems of the form (1.1) arise in a variety of settings, including the
following:
Positive definite linear systems. When p = 0, (1.1) is simply the task of solving a positive
definite linear system Ax = b, one of the most common problems in numerical linear algebra.
Ridge regression. Given a data matrix Z € R™*4_ 3 source term f € R™, and a regulariza-
tion parameter . > 0, the ridge regression problem' is to find a minimizer x of

1.2 in (||Zx — f||? 3.
(1.2) min (1Zx — €% + pulx]?)

A direct computation shows that the solution to (1.2) is also the solution to
(Z'Z 4 ul)x = Z'f,

i.e., a system of the form (1.1) with A = Z"Z and b = Z'f. In a number of applications, we
are interested in the whole regularization path, i.e., x = x,,, for all values p > 0, for instance,
in order to perform cross-validation to select a value u for future predictions.

Sampling Gaussians. If b has independent standard normal entries, then g + A'/?b is a
Gaussian vector with mean p and covariance A.. In order to approximate A'/?b, it is common
to make use of the identity

(1.3) Al/?p = g/ A(A + 2’T) 'bdz.
™ Jo

The factor (A + 22I)~!b in the integrand of (1.3) is of the form (1.1) with u = 22. Often we
are interested in sampling several Gaussian vectors with the same covariance matrix.
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IRidge regression is a special case of Tikhonov regularization, where y||x||? is replaced by a somewhat more

general regularization term || T'x||2 [22].
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FIG. 1.1. The relative error ||A~'b — alg||a /||A~1b]||a in terms of the matrix loads (left) and the wall-
clock time (right) for our proposed randomized variant of the block conjugate gradient method ( ), the
standard conjugate gradient method ( = += ), the Nystrom-preconditioned conjugate gradient method from [25]
( === ), and the generalization of the Nystrom-preconditioned conjugate gradient method using higher-depth
Nystrom approximations ( ). Our method outperforms all these methods without the need for selecting
hyperparameters (see Theorem 3.3), which may be difficult to do effectively in practice. In particular, we store A in 8
separate 1000 x 8000 chunks and perform (block) matrix-vector products with A by sequentially loading a single
chunk from the disk into random-access memory and performing the appropriate part of the products. The runtime is
dominated by the cost of loading chunks of the matrix into memory, so the wall-clock-time is nearly proportional to
the matrix loads. A full description of the experiment is given in Section 7.1.

1.1. (Block) Krylov subspace methods. All three problems described above are com-
monly solved using a class of algorithms called Krylov subspace methods (KSMs); see,
e.g., [8, 39, 63]. KSMs make use of the so-called Krylov subspace

Ki(A,b) :=span{b, Ab,..., A" 'b},

which can be efficiently computed using matrix-vector products with A. Since it is often of
interest to solve (1.1) for multiple values of u, we repeatedly make use of the fact that the
Krylov subspace is shift-invariant, i.e., that

(1.4) Vp e C: Ki(Ayu, b) =Ki(A,b).

In this paper, we advocate for the use of generalizations of KSMs, called block-KSMs.
Given a matrix B € R4 (typically m < d) with columns b(") ... b("™)_ the block Krylov
subspace is defined as

(1.5) Ki(A,B) := K:(A,bW) 4 - 4 (A, ™).

That is, IC; (A, B) is the space consisting of all linear combinations of vectors in the Krylov
subspaces Kt(A, b)), ... K;(A,b™). Analogous to (1.4), the block Krylov subspace is
shift-invariant, i.e., ¢ (A, B) = (A, B) for any shift y.

As we discuss in Section 1.2, compared to their single-vector counterparts, block-KSMs
have a number of computational benefits on modern computational architectures. As such,
block-KSMs are widely used for tasks in numerical linear algebra, such as low-rank approxi-
mation and eigenvalue approximation, for which they are known to satisfy strong theoretical
guarantees [31, 38, 43, 46, 51, 62, 68].

Interestingly, the use of block-KSMs for solving problems like (1.1) is more limited (see
Section 6 for a discussion), and single-vector methods such as the conjugate gradient algorithm
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are more popular. A high-level aim of this paper is to encourage further study on the use of
block-KSMs for tasks such as (1.1). In particular, we believe that techniques from randomized
numerical linear algebra have the potential to provide new insights and theoretical guarantees
for block-KSMs used to solve (1.1).

1.2. Computational assumptions. Throughout this paper, we assume A is accessed
only through matrix-vector products x — Ax or block matrix-vector products [X1 - - - X,,] —
[Ax; - - - AX,,]. While one can simulate a block matrix-vector product using m matrix-vector
products, in many settings the cost of block products is often nearly independent of the block
size m (as long as m is not too large). For example, this can be the case when A is so large that
it must be loaded in chunks from slow memory (as in Figure 1.1), where A is the Hessian of a
large neural network and matrix-vector products are performed using ‘“Pearlmutter’s trick” [58],
or where A corresponds to the solution operator of an integral equation and is applied via a
fast direct solver [45]. Allowing for more efficient data access is widely understood as one of
the major benefits of many randomized linear algebra algorithms [46, 68].

The algorithms we propose in this paper are designed to economize the number of times
that A is loaded into memory (henceforth referred to as matrix loads) and not with respect to
other costs such as matrix-vector products, floating-point operations, or storage. In settings
where matrix loads are not the dominant cost, the proposed algorithms may not yield significant
advantages. The costs of the algorithms from this paper are further discussed in Section 3.2,
and we explore them in the numerical experiments in Section 7. A detailed understanding
of tradeoffs for various costs is somewhat beyond the scope of this paper but is of practical
importance.

1.3. Notation. We denote the eigenvalues of A by Ay > - -+ > A\g. We write k = A1/ Aq,
and let kp11(p) = (Apg1 + p)/(Aa + p) be the condition number of A, with the top-
r eigenvalues removed. The eigenvalues of an arbitrary positive definite matrix M are
A1(M) > .-+ > XA3(M). The condition number of M is k(M) := A;(M)/\s(M), and the
spectral norm is ||[M]| := X;(B). The M-norm of a vector x is defined as

Ix/lM = |IMY2x|| = VXTMx.

1.4. Organization. In Section 2 we describe key background on Krylov subspace meth-
ods and preconditioning. Our algorithm and main conceptual results are described in Section 3.
Explicit and simple-to-use probabilistic results are proved in Section 4. We discuss our bounds
in the context of previous work in Section 6 and show how the theory we develop can be
used to sample Gaussian vectors in Section 5. Finally, numerical experiments are provided in
Section 7.

2. Background. In this section, we provide an overview of a number of relevant algo-
rithms. The methods we discuss in this section are standard, and for mathematical simplicity,
we define them by their optimality conditions rather than algorithmically (all of our bounds
assume exact arithmetic); see, e.g., [33, 48, 63] for comprehensive treatments of these methods.

2.1. The preconditioned conjugate gradient method. The preconditioned conjugate
gradient (PCG) algorithm is a powerful KSM for solving positive definite linear systems. It
makes use of a symmetric positive definite preconditioner P, that transforms the system
A, x = b into the system

(P,Y2A,P, /%)y =P, '/?b, Pl/’x =y,
and operates over a transformed Krylov subspace

2.1) Ki(Au,b;P,) = Ki(P,'A,, P}, 'b).
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Specifically, the PCG method is defined by an optimality condition.
DEFINITION 2.1. The t-th PCG iterate corresponding to a positive definite preconditioner
P, is defined as

pcg; (i) :=  argmin ||A;1b —X||a,-
x€K,(A,,b;P,)

The iterate pcg, (1) can be computed using ¢ — 1 matrix-vector products with A (and ¢ products
with P;l).

The simplest choice of a preconditioner is P, = I, which yields the standard conjugate
gradient (CG) algorithm [40].

DEFINITION 2.2. The t-th CG iterate is defined as

cg,(1) := argmin HA;lb —x|[a,,-
x€K:(A,,b)

2.1.1. Convergence. The PCG (and hence the CG) algorithm satisfies a well-known
convergence guarantee in terms of the condition number of P;l/ 2AMP;1/ 2; see, e.g., [33].2

COROLLARY 2.3. Let P, be any preconditioner. Then the t-th preconditioned-CG iterate
corresponding to the preconditioner P, satisfies

AZ'b — pe 2t
= IIAlpbﬁt(M)HA“ <2exp | -
—1/2 —1/2
n Plla, \/H(PM AP

Corollary 2.3 implies that if we can find P, such that H(P;1/2AMP;1/2) is small, then
the PCG iteration converges rapidly. The choice of P, minimizing this condition number
is, of course, P, = A, but this is not a practical preconditioner; if we knew A M L then we
could easily compute the solution A;lb. Thus, finding a suitable choice of P, that balances
improvements in the convergence of the PCG method with the cost of building/applying P,, is

critical.

2.2. Deflation preconditioners. If A is poorly conditioned due to the presence of r
eigenvalues much larger than the remaining n — r eigenvalues, then we might hope to learn a
good approximation of the top-r eigenvalues and “correct” this ill-conditioning. Towards this
end, suppose we have a good rank-r approximation UDUT of A, where U has orthonormal
columns and D is diagonal. Intuitively, this low-rank approximation contains the information
needed to remove the top eigenvalues of A, thereby reducing the condition number of the
preconditioned system. In particular, one can form the preconditioner

1

2.2 P,:=—UD+p U +(I-UUT

where # > 0 is a parameter that must be chosen along with the factorization UDUT.
It is not hard to verify that

-1 —1y1T T
Pt = (0+ U +pul)~'UT + (I-UUT).

This means that applying P;l to a vector can be done in O(dr) arithmetic operations, which
is relatively cheap if » < d. Hence, as long as a reasonable factorization UDUT can be
obtained, (2.2) can be used as a preconditioner; see [26, 37] and the references therein.

2Here we use that ((v/k — 1)/(v/k + 1))t < exp(—2t/+/r) for all x > 1 in order to obtain a simpler
expression than the typical bound. This approximation is pessimistic when x /= 1, but it is clear from our analysis
that other bounds for the CG method can be used instead.
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2.2.1. Exact deflation. Traditionally, it has been suggested to take UDUT as [A],, i.e.,
the best rank-r approximation of A, that is, to set D as the diagonal matrix containing the
top-r eigenvalues of A and U containing the corresponding eigenvectors. In this case, (2.2) is
sometimes called a spectral deflation preconditioner. The name arises because the eigenvalues

of P,'?A,P;, "% are

0+H7"'79+N7AT+1+.u“a"'7>\d+/u‘7
—_—

r-copies

and hence, if & € [Ag,Ary1], then the condition number of P,'/?A,P;'/? is
Krs1(p) = (A1 + 1)/ (Aa + ). In other words, the top-r eigenvalues of A, are deflated.
In combination with Corollary 2.3, this yields the following convergence guarantee:

COROLLARY 2.4. Let P, be the preconditioner (2.2) corresponding to [Al],, the rank-r
truncated SVD of A, and let 6 € [Ag, \r11]. Then the t-th PCG iterate (Definition 2.1)
corresponding to the preconditioner P, satisfies

A b —pc 2
|A; "D — peg;(1)]la, < 20xp (_ '

IAL DA, kg1 (1)

When A, 11 < A; and p is not too large, then the rate of convergence guaranteed by the
bound can be much faster than without preconditioning (r = 0).> Of course, any potential
benefits with respect to convergence must be weighted against the cost of constructing the
spectral deflation preconditioner, and exact deflation, which requires computing the top
eigenvectors of A, can be costly.

2.2.2. Nystrom preconditioning. Techniques from randomized numerical linear algebra
allow near-optimal low-rank approximations of A to be computed very efficiently [38, 68], so
we might hope that the corresponding preconditioner works nearly as well as spectral deflation
while being much cheaper to compute.

In particular, it is reasonable to take UDUT as the eigendecomposition of the randomized
block-Krylov Nystrom approximation, mathematically defined as

(2.3) A(K,) = (AK,)(K]AK,)"(K]A),

where K, := [Q AQ --- A*71Q] € R™¥(Y) and @ € R?* is a matrix of independent
standard normal random variables.* This variant of the Nystrém approximation is among
the most powerful randomized low-rank approximation algorithms and can be implemented
using s matrix loads. Note, however, that the algorithm should not be implemented as written
in (2.3). In particular, one should avoid using a monomial basis K and carefully structure the
interactions with A to avoid unnecessary costs; see, e.g., [68] for a pseudocode.
Nystrom-based preconditioning is effective in theory and practice and has been an active
area of research in recent years [0, 16, 21, 25, 41, 46, 74]. Most related to this paper is the the-
oretical analysis of [25], which proves that if s = 1, § = A\;(A(Q)), and the sketching dimen-
sion £ is of the order of the effective dimension deg(p) := tr(AA ') = S A/ (i + 1),
then the Nystrom PCG method converges in at most t = O(log(1/¢)) iterations, i.e., indepen-
dent of any spectral properties of A. Our analysis makes use of the same general techniques as

3The standard CG method also satisfies bounds in terms of Ar41/Aqg, at least in exact arithmetic; see Theorem B.1
and the discussion in Appendix B.

“In this paper, we only consider Nystrém preconditioning where €2 is a Gaussian matrix. Variants of a Nystrom
approximation based on subsampling rows/columns of A are effective in some settings (e.g., kernel ridge regression);
see [25, §2.2.3] for a discussion.
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those in [25] but is applicable when s > 1 as well as when o = 0. We discuss the theoretical
bounds of [25] in Appendix B.2.

3. Our approach: the augmented block-CG method. In this paper we advocate for
the direct application of block KSMs to (1.1). The concept of block Krylov subspaces (1.5)
naturally gives rise to the block-CG algorithm [54].

DEFINITION 3.1. Let B = [b() ... b(™)]. The t-th block-CG iterates are defined as

bcggl)(,u) ;= argmin ||A;1b(i) —x|la,-
x€K:(A,.B)

The block-CG iterates bcggl) (), ..., bcggm) (1) can be simultaneously computed using
t — 1 block matrix-vector products with A. We further discuss the implementation and the
costs in Section 3.2.

3.1. Implicit preconditioning. Our main conceptual result is that by augmenting b with
2, the block-CG method implicitly enjoys the benefits of certain classes of preconditioners
built using £2. We begin with a key observation about the relation between the block Krylov
subspace (1.5) and the preconditioned Krylov subspace (2.1) corresponding to a certain class
of preconditioners.

THEOREM 3.2. Suppose that P,, = (I+X) ™!, where range(X) C Ks11(A ., Q). Then,

Ki(A,,b;P,) CKi(A,b) + Kty s (A, Q).

The basic idea is simple. By definition, £C;(A ,, b; P,,) consists of linear combinations of
the vectors

(P'A)P b = (I+X)A)"T+X)b,  k=0,1,...,t—1,

and each ((I+ X)A,,)*(I+ X)b can be expressed as a linear combination of vectors that
live in the specified space.
Proof. By the shift invariance of (block) Krylov subspaces, we have

Ki(A,b) + Ko s (A, Q) = Ki(AL,b) + Ky s (A, Q).

Hence, without loss of generality it suffices to consider the case ;© = 0. For notational
simplicity, we denote P, by P.
We proceed by induction, beginning with the base case t = 1. Observe that,

Ki(P~'A, P 'b) = span(P~'b) = span((I + X)b) = span(b + Xb).

Clearly b € Ki(A,b) and Xb € range(X) C K,11(A,€), so it follows that
b+ Xb C L(A,b) + Ki15(A, Q) as desired.
Now, assume that

Ki1(P7'A,P7'b) C K 1(A,b) + Ke—1)+s(A, Q).
We consider the order-¢ subspace

K:(P7'A, P 'b) =span{P b, (P"'A)P'b,...,
(P7'A)2P b, (P7'A)"" 1P 1b}.
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From the inductive hypothesis, we know that forall j =0, ...,t — 2,

P AP b e K 1 (P'A,P'b) C K 1(A,b) + Kiis 1(A, Q)
C Ki(A,b) + K1 s(A, Q),

where the last inclusion follows from the nested property of Krylov subspaces.
Thus, it remains to show that (P71 A)!"1P~1b € K;(A, b) + Ky s(A, Q). To this end,
letv = (P 1A)!~2P Db, and observe that

(P'A) P b= (P'A)v =TI+ X)Av = Av + XAv.

Clearly XAv C range(X) C K 11(A, Q). Moreover, as noted, the vector v satisfies
Vv E ]Ct_l(A, b) + ICt_A,_s_l(A, Q), and so

Av € AK;_1(A,b) + AKyss_1(A, Q) C Ki(A,b) + Kiss(A, Q).

This proves the result. a

Theorem 3.2 allows to relate the performance of the augmented block-CG algorithm to
the PCG one, with a broad choice of preconditioner.

THEOREM 3.3. Fix any matrix Q € R¥™™, and let P,=(1+ X)~! be any precon-
ditioner where range(X) C Ks11(A, Q). Define the augmented starting block B = [b Q).
Then, for any t > s, the t-th block-CG iterate is related to the (t — s)-th preconditioned-CG
iterate corresponding to the preconditioner P, such that

_ 1 _
1A "D — beg” (1)]|a, < |A; "D — peg,_, (1) a,-

Proof. Clearly K:(A,b) + Ki15(A, Q) C Kty s(A, [b Q]), so the result follows imme-
diately from Theorem 3.2, the optimality of the block-CG algorithm, and the definition of the
preconditioned CG method. a

REMARK 3.4. Theorem 3.3 asserts that the augmented block-CG method automatically
performs no worse than the Nystrom PCG method (with the best choice of s and ) after the
same number of matrix loads.’ In particular, when UDUT = A(K,), where (K,) is the
Nystrom approximation (2.3), then the deflation preconditioner P, defined in (2.2) has the
form

P!l=1I+X, where range(X) C Ksy1(A, Q).

This is a deterministic statement that explains the relative performance of the algorithms in
Figure 1.1.

In Section 4, we use Theorem 3.3 and a new bound for Nystrom preconditioning (Theo-
rem 4.7), when €2 is a Gaussian random matrix, to prove probabilistic bounds for the block-CG
algorithm reminiscent of Corollary 2.4 for the spectral deflation preconditioner.

3.2. Computational costs. The block-CG method is a standard algorithm in numeri-
cal analysis, and there are many mathematically equivalent implementations, i.e., different
implementations that produce the same output in exact arithmetic. Here we describe a block-
Lanczos-based implementation of the block-CG method that is particularly suitable for our
applications to ridge regression and Gaussian sampling.

SRecall that s matrix loads are used to compute the Nystrom approximation A (K), whose range lives in
Ks+1 (A: Q)
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The block-Lanczos algorithm applied to (A, B) produces, after ¢ iterations, matrices Q
with orthonormal columns and T'; with bandwidth 2m + 1 satisfying

range(Q;) = K¢(A, B), T, = Q/ AQ..

A standard computation reveals that

3.1) beg " (1) = [|b]|Q(Ts + uI) e,

where e; = [1,0,...,0]". In particular, since K;(A,,B) = K;(A, B) for any scalar y, (3.1)
can be used to compute the block-CG iterate for multiple values of u using the same Q;
and T;. For more details on the block-Lanczos method and the connection to the block-CG
method, see, e.g., [8, 54, 62, 67].

There are many variants of the block-Lanczos method since there are many possible
orthogonalization schemes that can be used within block-Lanczos-type algorithms [1, 7, 53].
The following provides a high-level overview of the costs associated with block-Lanczos
methods with full reorthogonalization:

THEOREM 3.5. Suppose that B € R*™. The block-Lanczos algorithm (with full
orthogonalization) applied to (A, B) produces, after t iterations, matrices Q; and T using:

e  — 1 matrix loads of A (for a total of m(t — 1) total matrix products),
e O(dm?t?) floating-point operations (in addition to products with A ), and
e O(dmt) storage (in addition to the storage required for A).

Subsequently, for any p > 0, the t-th block-CG iterates bcggl)(,u) can be computed using
additional O(dmt + m3t) floating-point operations.

Proof. Let n = dim (K¢ (A, B)). Since B has m columns, by definition (1.5) of the block
Krylov subspace, n < min{d, mt}. At each iteration the block-Lanczos algorithm performs
one matrix load (m parallel matrix products) and lower-order arithmetic. The dominant storage
cost is to store Q;, which has n < mt columns of length n. The arithmetic cost is dominated
by the O(dn?) = O(dm?t?) operations required to obtain Q; using full reorthogonalization.
Recall that T (and hence T 4 pI) is an n X n matrix with bandwidth O(m). Thus, the linear
system (T; + uI)z = e; can be solved in O(nm?) = O(m3t) time. Subsequently, since Q;
is a d x n matrix, Q;z can be computed in O(dn) = O(dmt) time. O

We emphasize that, similar to the unpreconditioned CG method (see, e.g., [5, 28, 39]),
after the block-Lanczos algorithm has been run, the cost to compute the block-CG iterates for
multiple values of p is relatively small. This is in contrast to the Nystrom PCG method, which
is not particularly well suited for solving (1.1) for multiple values of y: while the Nystrom
approximation can be reused, the PCG algorithm must be re-run, and new products with A
have to be computed.

Notice that the costs (besides the matrix loads) scale with the block size m. We again
remind the reader that, while Theorem 3.3 guarantees that the augmented block-CG method
outperforms Nystrom preconditioning in terms of matrix loads, our theory provides no guaran-
tees for other costs such as matrix products or floating-point operations. Users should carefully
consider the costs and benefits associated with the various algorithms in the context of their
own computing environments.

REMARK 3.6. By avoiding orthogonalizing and storing the whole Krylov basis, it
is in fact possible to reduce the floating-point costs to O(dmtL + m3tL) and the storage
to O(dm + dL), where L is the number of values of y at which one wishes to evaluate

bcgil)(u) [54]. However, there are several caveats to such an implementation. First, such

methods require knowing the values of 1 at which one wishes to evaluate bcggl) (1) ahead of
time. Second, the finite-precision behavior of such methods can differ highly from the exact
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arithmetic behavior. We explore the impacts of finite-precision arithmetic in Appendix A,
where we perform some numerical experiments that indicate that full reorthogonalization may
be unnecessary in some situations.

For methods based on the standard Lanczos algorithm, there is quite a bit of theory that
guarantees that such methods can still work, even without orthogonalization [8, 20, 32, 52, 55,
56]. Block Krylov methods must contend with additional difficulties such as blocks becoming
ill-conditioned or even rank-deficient as the iteration proceeds (which can happen even in exact
arithmetic). Unfortunately, much less theory is known about the block-Lanczos algorithm in
finite-precision arithmetic [70]. Without reorthogonalization, we observe that in many cases
the block-CG method fails to converge at all, while in other cases it does converge for some
time; see Appendix A. Understanding this behavior is well beyond the scope of the current
work.

4. Probabilistic bounds. In this section we prove probabilistic bounds for the augmented
block-CG algorithm. In light of Theorem 3.3, our strategy for obtaining bounds for the block-
CG method is simply to derive bounds for the Nystrom PCG method. To do this, we follow
the approach developed in [25] and use a deterministic bound for the condition number of the
Nystrom-preconditioned system. Note that the block-CG method always performs at least as
well as CG (in terms of matrix loads) and hence is guaranteed to converge (in exact arithmetic).

The following is a minor generalization of [25, Proposition 5.3] to allow arbitrary §. The
proof is contained in Appendix C.1 for completeness.

PROPOSITION 4.1. Let P, be the Nystrém preconditioner (2.2) corresponding to the
Nystrém approximation A (K) for any K and shift parameter 0 > 0. Then,

_ _ 1 1
n(Pﬂl/2AHPN1/2) < (9 +u+]|A - A<K>||) <9+M + py ’u> .

In particular, Proposition 4.1 implies that if ||A — A(K)|| & A\-;1 and 6 € [Ag, A\r11],
then k(P> A, P ) & kpyy ().

Low-rank approximation is one of the most-studied problems in randomized numerical
linear algebra, and many bounds have been developed. In the remainder of this section, we
employ these bounds to obtain guarantees for the augmented block-CG algorithm.

Our first result, which we prove in Section 4.1, is a “numerical analysis”-style bound
based on the error guarantees for a Nystrom low-rank approximation in [68].

THEOREM 4.2. Let Q € R P ywhere ¢ > log(1/8)/1og(100), be a random
Gaussian matrix. Suppose that p > 2 and

) log(d) 3 1 4r A2
sZm1n{3—|— > ,§+Zlog 4+p—lz)\2 .

i>r Tl

Then, the block-CG iterate bcggl)(,u) satisfies, with probability at least 1 — 6,

A;'b — beg!" -
Vi 0 IA, begr (1)l a, <vexp |- t=8 .
AL "Dlla, 3v/krs1 (1)

This implies that, after a small burn-in period of at most O(log(d)) iterations, we have
exponential convergence at a rate roughly 1/+/ k1 ().

Note that A (K), as defined in (2.3), can have a rank as large as s, so we might hope
that we can deflate roughly /s eigenvalues. Recent work [9, 50] implies that this is more
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or less the case. In Section 4.2 we use this result to prove our second result, a “theoretical
computer science”’-type bound.
THEOREM 4.3. Let Q € RY be a Gaussian matrix and r > 0. Then, for some

, d . /\Z - )\i+1
=0 - log(A) +1log [ = A= N
s (Z og(A) + log (5)> ’ i:l,i..rft}lf?/ﬂ—l A1 7

the block-CG iterate bcgil) (u) satisfies, with probability at least 1 — 6,

A7'b — beg!" -
{\WO: p'b—beg Wla, _, _?)tis |

|AL'b|la, K1 (1)

In contrast to Theorem 4.2, which requires ¢ > r + 2, Theorem 4.3 allows any choice of £.
The bound reveals that we obtain exponential convergence at a rate of roughly 1/+/k.+1(1),
after roughly s ~ r/¢ matrix loads (and hence r ~ ¢s matrix-vector products). Note that the
logarithmic dependence on the eigenvalue gaps A is generally considered to be mild due to
“smoothed-analysis”-type effects of finite-precision arithmetic [9, 50].

REMARK 4.4. The fact that Theorems 4.2 and 4.3 guarantee an accurate result for all
> 0 with high probability (as opposed to a single value of y) will be important in our
applications. In particular, it allows guarantees for computing the entire ridge-regression
regularization path, and this will be necessary in the analysis of our algorithm for sampling
Gaussian vectors.

REMARK 4.5. Bounds based on condition numbers (such as Theorem 4.2) are often pes-
simistic in practice. To determine how many iterations to run, it is more common to use some
sort of a posteriori error estimate. For example, monitoring the residual |b — A ubcggl) ()]l
gives some indication of the quality of the solution. More advanced techniques can also be
used [49].

4.1. Explicit bound. In this section, we prove Theorem 4.2. We do not attempt to
optimize constants, opting instead for simple arguments and clean theorem statements.

We begin by recalling an error guarantee for a Nystrom low-rank approximation that
compares the Nystrom error ||A — A(K,)|| to the error ||A — [A].|| = Ar41 of the best
possible rank-r approximation to A.

THEOREM 4.6 ([68, Theorem 9.1]). Suppose that 2 € RIX("+D) js a random Gaussian
matrix, and define K, := [ AQ --- A571Q). Then, ifp > 2,

2
E|A - A(K,)|? 1 4r A2
1og< 2 SS(S—%)210g 4+p—1z)\2 .

r+1 i>r r+1

To prove our main convergence guarantee for our augmented block-CG algorithm, we
derive a new bound for Nystrom preconditioning that may be of independent interest.

THEOREM 4.7. Suppose that Q € R¥("+0) is a random Gaussian matrix, and define
K, = [QAQ --- A*71QJ. Let P, be the Nystrém preconditioner (2.2) corresponding
to the Nystrom approximation A(K) for any shift parameter 0 € [\g, A\,+1]. Suppose that
p>2and

. log(d) 3 1 4r A2
> 3 2y Zog (4 i)Y
S—mm{ Ty g tyes +p—1;)\3+1
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Then, with probability at least 99/100,
{Vu >0: n(P;l/QAMP;l/Q) < 28/»@T+1(u)}.

Note that our bound for the Nystrom PCG method applies even when p = 0, whereas the
bounds in [25] require u to be sufficiently large relative to the sketching dimension r 4 p, and
only s = 1 is considered.

Proof. The proof is a simple consequence of Theorem 4.6 and Proposition 4.1. We begin
by bounding ||A — A(K)||. We first note that the minimum is always attained by the second
term. Indeed, since r < d and \; /A1 < 1, for i > r, and since p > 2, we have

2
or ;‘Z < 4d”.
(p - 1) i>r /\7‘+1
Now, using properties of the logarithm,
log(4 + 4d?) = log(1 + d?) + log(4) < log(d?) + log(2) + log(4) = log(8) + 2log(d).

The claim then follows since 3/2 + log(8)/4 < 3.
With the condition on s, Theorem 4.6 guarantees that

E[IA - AMK)?| <222,
Applying Markov’s inequality, we therefore obtain that

1
— 2 > Lel/2)2 < —
IP’[HA AK)|? > 100- e AM] < 169

Now condition on the event that {||A — A(K)| < 10e'/4\,,;}. Since § < 41 and sz > 0,
we have

0+ p+ Bl < (14 10e*)(Arg1 + p) < 14(Argr + ).

Next, since 6 > Ay,

( 1 1 ) 2
+ < :
O+p  Aatp Ad+
The result follows by combining the above equations. a
The proof of Theorem 4.2 is now straightforward. To get a high-probability bound, we
use a simple boosting “trick”. We expect that more refined results can be obtained directly.

Proof of Theorem 4.2. We first analyze the case ¢ = 1 (i.e., § = 1/100). By Theorem 4.7,
we are guaranteed that, with probability at least 99/100,

@.1) {vu >0: w(P;/2A, P %) < 28/1T+1(,u)}.

When the event in (4.1) holds, Corollary 2.3 guarantees that

ns o, AT D —peg(Dlla, _ 2t
M= T AT S ‘
n 7”+1(/u‘)

The result follows from Theorem 3.3 and the fact that 1/28/2 < 3.
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We now analyze the case for arbitrary ¢ > 1. Partition Q = [Q; --- Q,] € RI*(r+2)q,
Then, fori =1,...,q, Q; € R¥+2) are independent Gaussian matrices. By our analysis of
the ¢ = 1 case, the block-CG algorithm with starting block [b €2;] fails to reach the specified
accuracy within ¢ iterations with probability at most 1/100. The probability that all of these ¢
(independent) instances fail to reach this accuracy is therefore at most (1/100)? < §. Finally,
since

Ki(A,[bQ;]) CK:(A, ),

the block-CG algorithm with starting block [b €] performs no worse than the block-CG
algorithm with starting block [b €2;] (for any ¢) and hence fails to reach the stated accuracy
within ¢ iterations with probability at most J. a

4.2. Improved matrix-vector product complexity. In this section, we prove Theo-
rem 4.3. The general approach is identical to the proof of Theorem 4.2, but we use a different
bound for the Nystrom low-rank approximation.

THEOREM 4.8 ([9, Theorem 1.3]). Let 2 € R%** pe a Gaussian matrix. Then, for some

r d ) Ai — Nig1
— 0 log(A) +1log [ £ A= ks 23
s=0 (6\/5 0g(A) + log <65>) ’ i:l,..%l[?/e]q A

with probability at least 1 — 8, there is a matrix Q € R*¥*" with orthonormal columns and
range(Q) C Ks(A, Q) such that

A —QQTA[ < (1+&)Art1.

Note that Theorem 4.8 is not stated for a Nystrom low-rank approximation. However,
a Nystrom low-rank approximation is better than a projection-based low-rank approxima-
tion [68], which allows us to prove Theorem 4.3.

Proof of Theorem 4.3. We set e =10e'/*—1. Since range(Q) C range(K,), the standard
monotonicity property of the Nystrom approximation implies || A — A(K)|| < [|A — A{(Q)]|
Next, [68, Lemma 5.2] asserts that for any matrix Q with orthonormal columns, we obtain
that |[A — A(Q)|| < ||A — QQTA|. Thus, by Theorem 4.8 (with ¢ set to an appropriate
constant), the given condition on s ensures that, with probability at least 1 — J, the estimate
|A — A(K,)|| < 10e*\,. ;1. holds. The result then follows similarly to the proof of
Theorem 4.2. a

REMARK 4.9. A number of algorithms for Gaussian-process regression make use of
block-KSMs to simultaneously solve a linear system and apply a matrix function to a collection
of Gaussian random vectors (for stochastic trace estimation) [30, 73]. Our bounds are relevant
in this context and provide further theoretical justification for the use of block-KSMs in these
settings.

5. Gaussian sampling. Several applications in data science and statistics require sam-
pling Gaussians with a given mean and covariance [2, 3, 66, 71]. A standard approach is to
transform an isotropic Gaussian vector. Indeed, suppose that b ~ A/(0,I) (i.e., the entries of
b are independent standard Gaussians). Then, for positive definite A,

w+AY2b ~ N(p, A).

In other words, in order to sample Gaussian vectors with covariance A, it suffices to apply
the matrix square root of A to a standard Gaussian vector and then shift this result by p. The
most computationally difficult part of this is applying the square root of A to b.
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Recall the relation (1.3)
2 (oo}
Al/?p = 7/ A(A +2°T)"'bdz.
™ Jo

When ¢ is sufficiently large, we might hope that cg,(2?) ~ (A + 22I)~'b. This motivates the
following definition:
DEFINITION 5.1. The t-th Lanczos square root iteration is defined as
2 [ 9
sq; = — Acg,(z7)dz.
T Jo
This and closely related methods appear throughout the literature [8, 13, 59].
Often we wish to sample multiple vectors from N (u, A), and so we might use a block
variant of Definition 5.1.
DEFINITION 5.2. Let B = [b™) ... b("™)]. The t-th block-Lanczos square root iterate is
defined as

i 2 [~ i
bsqg ) = ;/ Abcg; )(22) dz.
0

Both algorithms can be efficiently implemented using the (block)-Lanczos algorithms; see,
e.g., [8].

We can use the bounds for the augmented block-CG algorithm from Section 4 to derive
bounds for the block-Lanczos square root algorithm. In particular, using Theorem 4.2, we
prove the following:

THEOREM 5.3. Let b, ... b("™) € R% be independent standard Gaussian random
vectors. Suppose that

log(m /)]~
< _ = N
rs(m-1) [1og(100)
Then, with probability at least 1 — 6,

- 1A172b0) — bsq”)|
[AT2][b@]

< log (16k) exp <_t -2+ 10g(d)/2)> }

3 Kr+1 (0)

Similarly, using Theorem 4.3, we obtain the next theorem.
THEOREM 5.4. Let bV, ... ' b(™ € RY be independent standard Gaussian random
vectors and r > 0. Then, for some

. d , Ai = Aig1
s=0(—log(A)+log( <)), A= man R
(m 8(A) +log (5)) i=1,me)[r/m-1)]-1 A

with probability at least 1 — 6,

. [AY2bO —bsq;”| t—s
Vi : : <log(16k)exp | —————— | ;.
{ IA/2[[[b@] 3v/kr+1(0)

Proof of Theorems 5.3 and 5.4. Our proof is optimized for simplicity rather than sharpness.
For notational convenience, let b = b() and = [b(2), o ,b("”)]. As noted in Section 5,
Q € R (™1 is independent of b. Consider the event

|A;'b — begt™ (1)) a
5.1 V>0 —t L <ep(p) ¢
{ |AZ DA, !
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where

() = 2ex o tes )
gi(p) =2 P( 3 Fér+1(ﬂ)>

To prove Theorem 5.3, note that the choice of r ensures that m — 1 > (r + 2)q for
g = [log(m/d)/log(100)]. Therefore, with s = 2 + log(d)/2, Theorem 4.2 guarantees
that (5.1) holds with probability at least 1 — §/m. Likewise, to prove Theorem 5.4, note that
Theorem 4.3 guarantees that (5.1) holds with probability at least 1 — § /m (where we have
used that m < d so that log(dm/d) = O(log(d/9))).

From this point on, we condition on (5.1), and the two proofs are identical. Applying
standard norm inequalities, we obtain a bound

IAA; "D — Abcgi” ()] = | AA,2AL (AL D — begi" ()]
—1/2 -1 (1)
< ||AA||AL D — beg, (1) a,-
Under the assumption that the event in (5.1) holds, we bound
1A' — begt” (1) a, < ()AL ], < e(w)llA; [l

We observe that
Y A1
VAt 1 \/>\1 +u

|AA 2| = max

and similarly,

1 1

A 1/2 —max .
A N vERTRsvET

Therefore, since ¢} () < £5(0),
H )‘151&( Hbll
TVt )

Applying the triangle inequality for integrals and (5.2), we find

(5.2) |AA'D — Abcg!! ()

IAY/2b — bsq |

/ A(A +2°T) 'b — Abcg\M (22)dz

2 o0
<=z / |A(A + 2°T)"'b — Abcgt! (22)dz
0
A b
(5.3) lgt )|| H
V1 +22) (Mg + 22)
A direct computation reveals
1 K1 —X\/A
(5.4) / 4 = K 1/ d),
0 VO +22) (A +22) VAd
where K (m) := Oﬂ/ ?(1 — msin®(2))~1/2dz is the complete elliptic integral of the first kind.

Standard bounds for elliptic integrals (see Lemma C.1) guarantee that, for all z > 1,

5.5) —f K(1—2) < 4£10g(16x) L og(162).
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Therefore, applying (5.5) with 2 = kK = A1 /A4 to (5.3) and (5.4), we get a bound

VAT

Since /A1 = ||A'/2]|, this is the desired result for b(1).

To obtain the final result, we observe that b(*), ... b(™) and bsq,El)7 ...,bsq; " are
permutation invariant in distribution. Thus, the above result in fact applies to each b(*) and
bsqgi) pair with probability at least 1 — 6 /m. Applying a union bound over these m events
gives the main result. |

Theorems 5.3 and 5.4 give bounds for the matrix-vector products required by the block-
Lanczos method. For instance, Theorem 5.3 implies that we can roughly use

m)

m(log(d) + /Krt1 log (log(n)/e))

matrix-vector products, where r = O(m/log(m)). In contrast, existing bounds for meth-
ods like the single-vector Lanczos square root method (Definition 5.1) [10, 59] sample a
single Gaussian vector with roughly 1/« log(1/e) matrix-vector products. Therefore, when
Ar+1 < A1, the total number of matrix-vector products is reduced significantly by using the
block method in Definition 5.2.

REMARK 5.5. For sampling Gaussians, some preconditioning-like approaches can be
applied [13, 29, 59]. As far as we are aware, there are no theoretical guarantees for such
methods similar to those presented in the current work. In addition, analogous to the case
of linear systems, we expect block methods to enjoy the benefits of working over a larger
subspace.

REMARK 5.6. Relating KSMs for matrix functions to KSMs for (shifted) linear systems
via integral relations is widely used in order to design and analyze algorithms for matrix
functions; see, e.g., [10, 27, 64, 72]. However, it is generally difficult to use preconditioners
for linear systems for matrix functions, as preconditioned Krylov subspaces do not generally
satisfy a shift-invariance property. As such, the integral relation no longer yields an efficient-
to-implement algorithm. On the other hand, we expect similar analyses, based on implicit
preconditioning with the block-CG algorithm, to work for other functions.

5.1. Sampling with the inverse covariance. Computing A ~'/b is used to transform
vectors with covariance matrix A to a “whitened” coordinate space, where the covariance is
the identity, and this has found use in a number of data-science applications [42, 59].

We can define an approximation for applying inverse square roots similar to the block-
Lanczos square root iterate (Definition 5.2).

DEFINITION 5.7. Let B = [b() ... b("™)]. The t-th block-Lanczos inverse square root
iteration is defined as

, 9 [ ,
bisq."” := ;/ beg'? (22) de.
0

Note that bisqgi) = A’lbsqgi). Therefore, Theorem 5.3 immediately gives a bound for
Definition 5.7 since

|A~Y2B — bisq,|| = [|[A™Y?B — A" 'bsq,||
= [|[AT(AY2B — bsq,)|| < [|A7!]||[AY/?B — bsq,|l.
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6. Discussion and comparison with previous work. There are many other related
approaches to solving the problems in Section 1. For instance, KSMs are commonly used
to solve Tikhonov regression problems, using the shift-invariance of Krylov subspaces (1.4)
to efficiently solve for the whole regularization path [5, 28, 39]. Similarly, as discussed
in Section 5, KSMs are also used for tasks involving matrix functions, including sampling
Gaussian vectors [8, 13, 59]. The techniques discussed in Section 5 are likely applicable to
other functions as well.

The block-CG algorithm is widely used to solve linear systems with multiple right-hand
sides, and in such settings, working over the block Krylov subspace is often advantageous
compared to working over the individual Krylov subspaces [4, 24, 47, 54]. The block-CG
approach is also used to solve single linear systems. For instance, so-called enlarged KSMs
split the right-hand size vector b into multiple vectors using a domain decomposition approach,
and then apply the block-CG algorithm to this collection of vectors [34, 35, 36]. Augmenting
a KSM with random vectors was shown to be beneficial in numerical experiments appearing
in concurrent work [75, Appendix B].

While we are unaware of any bounds similar to Theorem 4.3, bounds similar to Theo-
rem 4.2 are known. In particular, in [54, Section 4] a convergence bound for the block-CG
algorithm is derived in terms of y/\1/Ag—m+1, i-€., the condition number of A with the
bottom m eigenvalues removed.® At a high level, in [54] this bound is obtained by showing
that the block Krylov subspace contains vectors that can approximately annihilate a subset of
the eigenvalues of A. Thus, in principle, other sets of eigenvalues (besides the bottom ones)
can be eliminated. The bounds of [54] work for any starting block (but, as a result, are more
technical, depending on how “good” the starting block is). It would not be surprising if such
quantities can be bounded when the starting block is Gaussian.

KSMs are widely used for both low-rank approximation and problems involving matrix
functions, but their behavior for these problems is fundamentally different. As such, it would
be interesting to try to avoid relying on a black-box reduction for low-rank approximation. For
example, while low-rank approximation is complicated by the presence of repeated eigenvalues,
solving linear systems is not. The approach of [54] is closely related to the approaches used
in [51, 68] to prove bounds for low-rank approximation, so it is conceivable that, by taking the
approach of [54] but using modern tools from randomized numerical linear algebra, one may
be able to directly derive better bounds for randomized versions of the block-CG method.

More broadly, there are many randomized algorithms for linear systems and regression.
For instance, a recent line of work shows that certain stochastic iterative methods enjoy
an implicit preconditioning-like effect [15, 17, 18, 19, 44], with convergence independent
of the top eigenvalues. These algorithms have runtime guarantees better than KSMs in
some settings [17]. In addition, for tall least-squares problems, the sketch-and-precondition
framework for building a preconditioner for KSMs is extremely effective [46, 61], resulting
in algorithms with optimal theoretical complexity [12, 14]. A number of recent works in
randomized numerical linear algebra [9, 11, 50, 68] have made use of various nestedness
properties of block-KSMs similar in flavor to Theorem 3.2 in order to obtain more efficient
algorithms.

7. Numerical experiments. We implement the block-CG and the block-Lanczos square
root iterates using the block-Lanczos algorithm with full reorthogonalization in Python. The
code to replicate the experiments in this paper is available at the repository
https://github.com/tchen-research/precond_without_precond. The s
matrix loads required to build the Nystrém preconditioner are accounted for in the plots. For

%Note that the ordering of the eigenvalues in [54] is reversed from the present paper.
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the Nystrom PCG algorithm, we set 6 as the smallest eigenvalue of the Nystrom approximation.
We use the same random Gaussian matrix £ € R%*¢ for the Nystrém PCG and the block-CG
method. More numerical experiments, including ones without full reorthogonalization, are
included in Appendices B and A.

7.1. Convergence. We begin by comparing the convergence of the methods discussed in
this paper for several test problems. The results of this experiment are illustrated in Figure 7.1,
and, as expected, our augmented block-CG method outperforms the others, often by orders of
magnitude. We also observe that the Nystrom PCG method benefits from using s > 1, i.e.,
from performing more than one pass over A when building the preconditioner.

As discussed in Section 1.2, throughout this paper we assume that matrix loads (iterations)
are the dominant cost. For reference, we have also displayed the convergence as a function of
matrix-vector products in Figure A.4.

outliers20, d = 5000, ¢ = 20 nos7,d =729, (=1 raefsky4, d = 19779, { = 10
10° 5 10° 3

-1
10 101 4

1072 4

error

10—3 -
10—3 o

10—4 o

o4
=g

T T T T T T
0 25 50 75 100 200 100 200
matrix-loads matrix-loads matrix-loads

FIG. 7.1. The relative error || A= b — alg||a /|| A~ 'b|| a versus the matrix loads for the block-CG method
( ), the CG method ( ==+=), and the Nystrom PCG method with s = 1( === )and s = 3 ( )
for several test problems.

7.1.1. The introductory figure. Figure 1.1 is run for the fastdecay problem
(d = 8000) with ¢ = 10. Nystrom preconditioning is run with a grid of parameters. Specifi-
cally, we use depths s € {1, 5,11} and a range of 6, including the choice § = A\(A(€2)).

The timings are produced based on a setting where A cannot be stored in its entirety
in fast memory. In particular, we store A in 8 separate 1000 x 8000 chunks and perform
(block) matrix-vector products with A by sequentially loading a single chunk from the disk
into the random-access memory and performing the appropriate part of the products. Similar
to [68, Section 6.1], we observe that the runtime of the algorithm is dominated by the cost of
loading these chunks into random-access memory.

7.2. Regularization parameter. In Figure 7.2 we display the error after a fixed number
of matrix loads as a function of pu. As expected, this plot indicates that our augmented
block-CG outperforms the other methods for each value of ;. Perhaps more importantly, our
block-CG method can efficiently compute the solution to (1.1) for many values of p, without
the need for additional matrix loads (see Theorem 3.5). This is in contrast to the Nystrom
PCG method, which requires a new run for each value of . For tasks such as ridge regression,
this is of note.

We note that the maximum attainable accuracy of the block-CG algorithm (an effect of per-
forming the numerical experiments in finite-precision arithmetic, which prevents convergence
to the true solution) seems to be higher than that of other methods, causing stagnation.
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fastdecay, d = 8000, ¢ = 10, matrix loads = 20
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FIG. 7.2. The relative error || A}, p— alglla,/IlAL 1b”Au after a fixed number of matrix loads as a function
of the regularization parameter p for the block-CG method ( ), the CG method ( =—+= ), and the Nystrom
PCG method withs = 1( === )and s = 3 ( ).

7.3. Sampling Gaussians. We perform an experiment comparing the block-Lanczos
square root iterate to the standard Lanczos square root iterate. In particular, in Figure 7.3, we
compare the maximum error in approximating A'/2b(®)_ i =1,... m, for the two methods.
All runs of the single-vector method are done in parallel so that the number of matrix loads
is independent of m. The block method outperforms the single-vector method, and the
performance gains are often significant.

outliers20, d = 5000, m = 10 outliers20, d = 5000, m = 100 fastdecay, d = 8000, m = 10
1Un o 100 4
-1 J
10 10-2
: )
= 1072 4
g 104 4
; 103 4
Z 1076 4
e 1074 5
107 4 107% 1
1070 e
0 15 30 45 60 75 90 105 0 2 4 6 8 10 0 10 20 30 40 50 60 70 80
matrix-loads matrix-loads matrix-loads

FIG. 7.3. The maximum relative sample error max; || A1/2b; — alg||/||A1/2b; || versus the matrix loads for
the Lanczos square root ( ==+= ) and the block-Lanczos square root algorithm ( ).

8. Outlook. We have introduced a variant of the block-CG method which outperforms
the Nystrom PCG method in certain settings. Our work provides theoretical evidence of the
virtues of block Krylov subspace methods for solving a single linear system of equations and
for sampling Gaussian vectors. We believe that future work should study a more practical
variant of the augmented block-CG algorithm, where deflation is used to reduce the block size
as soon as it is recognized that the benefits of a large block size are no longer justified.

It would also be interesting to understand the extent to which similar ideas can be
extended to other tasks involving matrix functions, such as estimating the trace of matrix
functions. Existing algorithms often involve applying matrix functions to many Gaussian
vectors [23, 50, 69], so it seems likely that using block-Krylov methods may be advantageous
compared to using single-vector methods. However, existing theory does not reflect this.
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Appendix A. More numerical experiments. In this section we offer further numerical
experiments which provide additional insight into the behavior of our augmented block-CG as
well as the Nystrom PCG algorithms.

A.1. Convergence. We provide more test problems comparing the convergence of the
block-CG with the Nystrom PCG and the CG method, as described in Section 7.1. As observed
in Figure 7.1, the block-CG algorithm outperforms the other methods in terms of matrix loads,
and it often does so significantly.

Note that for the out 1iers20 problem, we now append ¢ = 10 or £ = 22 Gaussian
vectors (rather than ¢ = 20 as shown in Figure 7.1). This problem has 20 large eigenvalues,
and the small amount of oversampling significantly improves the convergence of the Nystrom
PCG method with s = 1. We also include a test with the bot tom20 problem, which has 20
small eigenvalues.

A.2. Block size. Theorem 4.3 suggests that the accuracy of low-rank approximations of
A, built from the information in the block Krylov subspace K; (A, €2), where €2 is a random
Gaussian matrix, depends on bk, regardless of the individual values of b and k. In Figure A.2,
we present the error (after a fixed number of matrix loads) as a function of the block size,
and in Figure A.3, we display the condition number of P;l/ QAuP,Il/ ? as a function of the
block size. In some cases, the Nystrom PCG method with depth s = 3 behaves similarly to
the Nystrom PCG method with depth s = 1 when the same number of matrix-vector products
is used. For instance, for the out 1iers20 problem, both methods have a significant drop in
the error (due to a significant drop in the condition number) when the dimension of the Krylov
subspace is roughly equal to 20, the number of outlying eigenvalues.
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outliers20, d = 5000, ¢ =10 outliers20, d = 5000, ¢ = 20 outliers20, d = 5000, ¢ = 22
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1075 1 1074 4
107° 4 1075 4
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l’] 2’5 5’0 7’5 (’) 2’5 5’0 7’5 (’] 2’5 5’0 7’5
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100 ——— T
1071 4
1072 4
10-3 4
g o
g 10771 10-5 4
1076 + 10-7 4
(’] 2’0 4’0 (’) E") 1’0 1’5 (’l 5’0 1(’)0
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FIG. A.1. The relative error || A='b — alg||a /|| A~ 1b||a versus the matrix loads for the block-CG method

( ), the CG method ( ==-= ), and the Nystrom PCG method withs = 1( === )and s = 3 ( )
for several test problems; see also Figure 7.1.
outliers20, d = 5000, loads = 40 nos7, d = 729, loads = 60 raefsky4, d = 19779, loads = 60
0 LI i s s ] 10° { s=mmnemononmc e
______________ '
I S, e
1072 5 i 107" 4
|
I | -2
g \ 1077 5 10!
s 1
1072 4 !
. 10-5
1074 4 107!
1074 .
0 5 10 15 20 0 5 0 5 10 15
block size block size

block size

FIG. A.2. The relative error ||A~1b — alg||a /||A~1b]||a versus the Nystrom starting block size £ (the
number of columns in Q) for the block-CG method ( ), the CG method ( =—+= ), and the Nystrom PCG

method with s = 1( === )and s = 3( ) for several test problems.

A.3. Matrix-vector cost. In Figure A.4, we display the convergence as a function of
matrix-vector products for the same test problems as in Figure 7.1. Here, our block-CG
algorithm underperforms the other methods. This does not conflict with any of our theory,
which is stated in terms of matrix loads. However, it serves as a reminder that our method may
not be suitable in all computational settings; see Section 1.2.
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outliers20, d = 5000 nos7, d = 729 raefsky4, d = 19779
109 < 10° 4 BN
L 2 x 10"
2 s
£ 107 10° 4
g
5
;; 10° 4 107 4
103 | 10(, ] 1011 .
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
block size block size block size
FI1G. A.3. The condition number n(PEl/QAHP;Ip) of the Nystrom preconditioner for s = 1 ( === )
and s = 3 ( ) as a function of the block size £ (number of columns in 2). For reference, we also show

(Aew1+p)/(Aa+p) ( ).

A.4. Test problems. In Figure A.5, we display the spectrums of the test problems that
we used.

outliers20, d = 5000, x = 1.0 x 10*° nos7, d = 729, k = 2.4 x 10° raefsky4, d = 19779, k = 3.1 x 10%
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FI1G. A.5. Spectrum of test problems used in this paper.
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FIG. A.4. The relative error || A~ b — alg||a /|| A~ 1b|| o versus the matrix-vector products for the block-CG
method ( ), the CG method ( ==+= ), and the Nystrom PCG method with s = 1( === )and s = 3
( ) for the same test problems as in Figure 7.1.

Appendix B. Further discussion of the Nystrom PCG/CG/Block-CG method. Current
theory for the Nystrom PCG and CG methods raises some interesting questions about the
efficacy of the Nystrom PCG algorithm if costs are measured in terms of matrix-vector products.
In particular, the bounds for the Nystrom PCG method do not guarantee that the algorithm uses
any fewer matrix-vector products than the CG method. In this section, we provide a discussion
with the aim of raising some considerations about the Nystrém PCG algorithm that are likely
of importance to practitioners and may constitute interesting directions for future work.

B.1. Bounds for the CG method in terms of the deflated condition number. In
Theorem 4.7, we show that if s = O(log(d)), then k(P /2 A, P "/%) = O(A\ry1/Aa). Itis
informative to compare such a bound against similar bounds for the CG method. Towards this
end, we recall a standard bound for the CG iterates; see, e.g., [33].

THEOREM B.1. For any r > 0, the CG iterate satisfies

A b — —
AT~ ila, (20 r)
[ATBlla, e (1)

Theorem B.1 guarantees that the CG method converges at a rate of \/\,1/Aq after a burn-in
period of r iterations. This is reminiscent of the bounds for the Nystrom PCG method presented
in this paper, which guarantee convergence at this rate, after a preconditioner build-time of
roughly O(r) matrix products.
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B.2. Bounds in terms of the effective dimension. The main theoretical bounds for the
Nystrom PCG method from [25] are in terms of the effective dimension

Ai
i+

d
der(p) = tr(AA") =)

The main result is a guarantee for the condition number of the Nystrom-preconditioned system.

THEOREM B.2 ([25, Theorem 1.1]). Let Q € R**¢ be a matrix of independent standard
normal random variables for some € > 2[1.5deg (1) + 1. Then, with 0 = X\e(A(Q)), the
Nystrom-preconditioned system satisfies

E|x(P,?A,P,'/?)| < 28.

When (P}, "/>A,P,;"/?) is bounded by a constant, the preconditioned CG method will
converge to a fixed accuracy (e.g., 10~% or 10716) in a number of iterations independent of
the condition number or the spectral properties of A.

We can convert Theorem B.1 to a bound in terms of the effective dimension by noting
that all but the first O(d.fr) eigenvalues of A are bounded by p. In particular, [25, Lemma 5.4]
implies that for any r and px > 0,

(B.1) > 2de(p) = Ay1 < p.

Together, Theorem B.1 and (B.1) give a bound for the CG method in terms of the effective
dimension.
COROLLARY B.3. The CG iterate satisfies
|AL "D — cgla,
IAL"D —cgolla,

< 2exp (—\/i(t - 2deff(ﬂ))) .

Corollary B.3 asserts that after a burn-in of 2d.(p) iterations, the CG method converges
in O(log(1/¢)) iterations. Thus, the theory in [25] does not guarantee that the Nystrom PCG
method has any major benefits over CG in terms of matrix-vector products.

B.3. Is Nystrom PCG a good idea? The existence of a bound like Theorem B.1 seems
damning; the CG method automatically satisfies bounds similar to those of the Nystrom PCG
method, without the need to construct and store a preconditioner. However, as we now discuss,
the full story is much more subtle, and we believe the Nystrom PCG algorithm is still a viable
method in many instances.

First, the Nystrom PCG method is able to parallelize matrix-vector products used to build
the preconditioner. Thus, the number of matrix loads can be considerably less than required
by the CG method. This is reflected in our experiments in Figure 7.1.

However, these same plots indicate that in terms of matrix products, CG significantly
outperforms the Nystrom PCG method (the s¢ matrix products to build the Nystrom precon-
ditioner require only one matrix load). On the other hand, in apparent contradiction to our
experiments, the experiments in [25] indicate that the Nystrom PCG method consistently and
significantly outperforms the CG method.

Recall that the experiments in Section 7 are done using full reorthogonalization (so that
exact arithmetic theory is still applicable). On the other hand, the experiments in [25] appear
to have been done without reorthogonalization. It is well known that Theorem B.1 does not
hold in finite-precision arithmetic without reorthogonalization for any r > 0.” On the other

7A weaker version does still hold [32].
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hand, Corollary 2.3 can be expected to hold to a close degree [32, 48]. Since the Nystrom PCG
algorithm works by explicitly decreasing the condition number of /{(P;U ’A #P,jl/ 2), the
convergence of the Nystrom PCG method in finite-precision arithmetic is still well described
by the exact arithmetic theory for Nystrom PCG.

fastdecay, d = 8000, ¢ = 22 fastdecay, d = 8000, ¢ = 22
100] —r—emim 1004 —-—
T e .
10-1 \\ 10-1 N
S N,
~ \&
1072 Ss. 1072 4 ‘\\
5107 \\\ 51074 '\\\\\
5 S 5 N
1074 . 1074 4 AN
~ A
_ NN 5 W
1075 ~ 107 4 Y
106 1076 4
0 25 50 75 100 125 150 0 25 50 75 100 125 150
matrix-products matrix-products
(a) The CG method ( ==+= ) and the Nystrém PCG (b) The CG method ( == += ) with reorthogonalization
method with s = 1 ( === ) without any reorthogo-  for 22 iterations and the Nystrom PCG method with
nalization. s = 1( === ) without any reorthogonalization.

FIG. B.1. The relative error ||A~'b — alg||a/||A~'b||a as a function of the matrix products. The light
curves show the convergence with full reorthogonalization.

We illustrate this point of comparison explicitly in Figure B.1a. We run the CG and
the Nystrom PCG method for the fastdecay problem (for which A\;/Ag >> Aog/Ag). As
expected, the CG method with reorthogonalization burns in for roughly 20 iterations, and
then begins converging much more rapidly at a rate depending on A2 /A4, outperforming the
Nystrom PCG method with reorthogonalization (s = 1, ¢ = 22), which uses 22 matrix-vector
products® to build the preconditioner, at which point it also converges at a rate depending on
A21/Aq. However, if reorthogonalization is not used, then the CG method converges at a much
slower rate depending on A; /A4 while the Nystréom PCG method still converges at the faster
rate depending on 21 /4.

B.4. What if CG uses some reorthogonalization? Comparing the vanilla CG with the
Nystrom PCG method as in Figure B.1a is perhaps a bit unfair to CG; the Nystrom PCG
method incurs costs in building, storing, and applying the preconditioner. To put the algorithms
on more equal footing, we might allow the CG method to use a similar amount of storage
and arithmetic operations to do some form of reorthogonalization. While there are many
complicated schemes based on detailed analyses of the Lanczos algorithm in finite-precision
arithmetic [57, 65], a simple scheme is to perform reorthogonalization only for the first s¢
iterations and then to continue orthogonalizing against these vectors in subsequent iterations.
In this case, the cost of reorthogonalization during the first s/ iterations will be O(ds?(?)
operations (the same as the cost to build the Nystrom preconditioner), and subsequently
orthogonalizing against these vectors will require O(ds¢) operations per iteration—the same
as the cost to apply the Nystrom preconditioner to a vector.

In Figure B.1b we display the behavior of the CG method with full reorthogonalization
for the first 22 iterations and then orthogonalizing the subsequent Krylov basis vectors against

8We need some oversampling to capture the top eigenspace.
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these first thirty vectors. Compared to Figure B.1a, we observe that CG now converges as
rapidly as the Nystrom PCG method.

B.S. The block-CG method. In Figure 7.1 we compare the performance of these meth-
ods when we do not use full reorthogonalization. In particular, we run the Nystrom PCG
method with s = 3 without any reorthogonalization. Building the preconditioner requires
orthogonalizing s/ vectors. For the block-CG and CG methods, we use full reorthogonalization
until we have a set of 3¢ vectors and then continue to orthogonalize only against these vectors.
For reference, we also display the convergence of the block-CG and the CG algorithm if no
reorthogonalization is used at all. Unfortunately, far less is known about the behavior of the
block-CG and block-Lanczos methods in finite-precision arithmetic than is known about their
single-vector counterparts.

outliers20, d = 5000, ¢ = 20 nos7,d="729, (=1 raefsky4, d = 19779, ¢ = 10
10° A 100 4

9x 107!
5 8 x 107!
<
5
6x 1071
7x107!
6x 1071
T T T T T T T T T T
0 25 50 75 0 100 200 0 100 200
matrix-loads matrix-loads matrix-loads

FIG. B.2. The relative error || A~1b — alg||ao /||A~'b||a versus the matrix loads for the block-CG method
( ) with reorthogonalization for 3 iterations, the CG method ( ==+= ) with reorthogonalization for 3/
iterations, and the Nystrom PCG method with s = 3 ( ) without any reorthogonalization. The light curves
show convergence of the block-CG and CG methods with no reorthogonalization. The test problems are the same as
in Figure 7.1.

Appendix C. Omitted proofs. In this section, we provide proofs that were omitted in the
main text.

C.1. Proof of Proposition 4.1.

Proof of Proposition 4.1. Let A(K) have a rank-r eigendecomposition UDUT, and
define

E=A-AK), A,=A(K)+ulL
Note that
P! =(0+p)UD+pl) 'UT +(I-UUT),
and observe that
A, =UDU" + I = UMD+ U + u(I-UU").

We begin with an upper bound for the eigenvalues of P;l/ ’A HP;U 2, Using the defini-
tion of E and the triangle inequality,

P2 AP < (P 2AL PR (P 2ER, 2
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Using that U has orthonormal columns, we get
P, /2R, P, = (94 p)UUT + u(1-UUT)

P;l/QK#P;UzH = 0 + p. Again using that § > 0, we note that
2| < | E|. Therefore, we find that

and hence, since 6 > 0,
|P~1/2|| < 1 and hence |P;,"/°EP,,

(C.1) P, AP 2 <0+ p+ B

We now derive a lower bound for the eigenvalues of P;l/ QAMP;U ®. Noting that
(P, ?A, P, /)1 = P}/2A;1P}/2 is similar to A,,'/*P,,A,;'/?, the definition of P,,
and the triangle inequality implies

(P2 AP 27 = AP LAY

1
_ —1/2( 1 T . T —1/2
HAM <9+MU(D—|—MI)U +(I-UU ))AM H
1

< m||A;1/2U(D +uD)UTA 2|+ |A 21— UUT)A V2.

Since UDUT is obtained from a Nystrom approximation to A, UDUT < A. Therefore,
U(D + pI)UT < A + pI, and hence

—1/2 TA—1/2
|A,/?U(D + D) UTA, 2| < 1.

Likewise, sinceI — UUT <1,

1
—1/2 T\ A —1/2 —1y _
|A, 2@ -UUNA V2| <A = pw—
1 1
AP ATV < ——
|| i IR H—0+‘u+)\n+u
Therefore,
1 1
C2 P PAP YY) < — p —

Combining (C.1) and (C.2) gives the result. 0
C.2. A bound for the elliptic integral.

LEMMA C.1. For m < 1, define
/2
K(m) = / (1 —msin?(2))"Y2dz.
0
Then, for all x > 1,
5
VzK(1 —x) < 3 log(16z).

Proof. The result [60, Theorem 1.3] asserts that if m € (0, 1), then

(C3) K(m) < log (%) (1 + 1_47”) .
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It is well known that K (m) satisfies

and hence,

Rearranging gives

T

ﬁK(l—x)SK(l—l).

Ifz > 1,then1 — 1/x € (0, 1), so we can apply (C.3) to obtain the bound

VaK(l—x) <log

4 1
(1 + /x> :
V1/z 4
The result follows by noting that (1 + 1/(4z))/2 < 5/8. a
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