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ON CONVERGENCE AND ACCURACY OF
THE J -JACOBI METHOD UNDER THE DE RIJK PIVOT STRATEGY∗

VJERAN HARI† AND VEDRAN NOVAKOVIĆ‡

Abstract. This paper proves global convergence of the elementwise J-Jacobi method for J-Hermitian matrices
under the de Rijk pivot strategy and briefly considers the asymptotic convergence of the method. Also considered
is the accuracy of a new code for hyperbolic rotations of order two that employs only correctly rounded operations.
The numerical tests demonstrate the advantage in the convergence speed of the J-Jacobi method under the de Rijk
pivot strategy over the same method under the row-cyclic strategy for both the two-sided and the one-sided (implicit)
variant of the method.
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1. Introduction. This paper considers the elementwise J-Jacobi method of Veselić [49]
for solving the eigenvalue problem of J-Hermitian matrices. It solves one theoretical problem
related to global convergence, and it shows how to increase the accuracy of the method.

The J-Jacobi method solves the generalized eigenvalue problem Ax = λJx, where A is
a complex Hermitian matrix of order n, J is a real diagonal matrix of signs, and where for
some real number µ, the Hermitian matrix A− µJ is positive (or negative) definite. In short,
the method solves the definite J-Hermitian eigenvalue problem.

The importance of the method stems from the fact that the definite generalized eigenvalue
problem Ax = λBx, with indefinite Hermitian matrices A and/or B, can be reduced to
the J-Hermitian eigenvalue problem via the Hermitian indefinite factorization of Bunch
and Parlett [7]. Many real-world problems lead to the generalized eigenvalue problem, one
example being that in [42]. Even some important quadratic eigenvalue problems, such as those
for overdamped pencils [38], can be reduced to the J-Hermitian eigenvalue problem [49].
Perhaps the most important application of the J-Jacobi method lies in the area of the accurate
computation of the eigenvalues and eigenvectors of indefinite Hermitian matrices. A brief
description of this relatively novel approach can be found in the introductions of the papers [21]
and [22]. However, pioneering work and a deep analysis of the underlying matrix theory,
which includes the development and research of the elementwise and block J-Jacobi methods,
has been carried out by Veselić, Slapničar, Truhar, and others (see [5, 21, 22, 28, 43, 44, 45,
46, 47, 48, 50]).

This paper aims to resolve some open problems related to the elementwise J-Jacobi
method. This is especially important in the context of block J-Jacobi methods, which are
well suited for contemporary parallel computers [30, 41]. We view the elementwise J-Jacobi
method as an excellent candidate for the core (also called pointwise or unblocked) algorithm
of the block J-Jacobi method [21, 22]. This is due to its accuracy as well as its speed on nearly
diagonal J-Hermitian matrices. Note that the core algorithm operates on matrices of small
order.
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One open problem related to the elementwise J-Jacobi method is the global convergence
under the de Rijk pivot strategy [9]. There are several incentives for considering this pivot
strategy. The most important one is that it nearly minimizes the number of cycles (also
called sweeps) needed to complete the diagonalization over the set of cyclic strategies. This
property might be the reason why it is used in the implementation of the Jacobi singular value
decomposition (SVD) method in LAPACK [2]. Although the de Rijk pivot strategy is not
cyclic, it is tightly connected to the row-cyclic strategy, and in the later stages of the process
it reduces to the row-cyclic strategy [19]. The de Rijk strategy has been extensively studied
in [19], where the global and quadratic convergence of the standard elementwise and the block
Jacobi method have been proved. Here we directly use some bounds from [19].

The second open problem is related to enhancing the accuracy of the J-Jacobi method.
This is important because the high relative accuracy is a trademark of the method. Recent
advances in implementing elementary functions with the correct rounding of the result, e.g., in
the context of the CORE-MATH project [40], enable us to compute, in common data types,
trigonometric [32] and hyperbolic 2 × 2 complex rotations more accurately than with the
established formulas.

The two-sided J-Jacobi method for the definite J-Hermitian eigenproblem naturally
induces its implicit, one-sided counterpart for computing the hyperbolic singular value de-
composition [6], or the HSVD for short. The one-sided J-Jacobi method for computing the
HSVD of a full column-rank matrix G implicitly executes the two-sided method on the pair
(G∗G, J) by transforming only the columns of G, unlike the slower and less stable two-sided
J-Kogbetliantz HSVD method [34]. Since the HSVD has applications beyond its role in
solving Hermitian indefinite eigenproblems, for example in radar tracking [23] in the signal
processing [24] domain, we also briefly describe and numerically test the one-sided J-Jacobi
method for the HSVD.

The paper is organized as follows. In Section 2 we present the algorithm that diagonalizes
a 2× 2 Hermitian or J-Hermitian matrix. We also present some facts and estimates related to
the J-Hermitian eigenproblem and to the method. We define a “stable” J-Jacobi method that
is less prone to instabilities in the floating-point environment. Almost all of these results are
taken from the original paper [49]. We also describe the de Rijk pivot strategy. In Section 3
we prove global convergence of the J-Jacobi method under the de Rijk pivot strategy. To this
end we consider a new pivot strategy that is equivalent to the de Rijk strategy. We first prove
all the auxiliary results for this new pivot strategy and then complete the global convergence
proof under the de Rijk strategy. We also prove global convergence of the stable method
under the de Rijk strategy. At the end of this section we briefly discuss the ultimate quadratic
convergence of the method. In Section 4 we switch our attention to floating-point arithmetic
and to the accuracy of the elementwise J-Jacobi method by presenting new formulas for the
angle-restricted hyperbolic rotations, with relative error bounds for the hyperbolic tangents,
cosines, and sines. A noticeable improvement in the relative errors over those obtained with
established formulas is illustrated by an exhaustive test. We describe the numerical tests for
the two-sided and the one-sided J-Jacobi method in Section 5 and conclude the paper with a
discussion of future work in Section 6.

2. The J -Jacobi method under the de Rijk pivot strategy. In this section, we briefly
describe the algorithm of the method and then the de Rijk pivot strategy. We begin with some
basic facts related to the J-Hermitian eigenvalue problem Ax = λJx.

We assume that A − µJ is positive definite, where A is a Hermitian matrix of order
n, J = diag(Im,−In−m), 1 ≤ m < n, and µ is a real number. The number µ is called a
definitizing shift. If a nonsingular matrix C satisfies C∗JC = J , then it is called J-unitary.
J-unitary matrices form a multiplicative group. Since A− µJ is positive definite, there exists
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a J-unitary matrix C such that C∗AC = Λ, where Λ = diag(λ1, . . . , λm, λm+1, . . . , λn) is
real and (see [49])

(2.1) δ0 = λm + λm+1 > 0.

Here, λ1, . . . , λm,−λm+1, . . . ,−λn are the eigenvalues of the generalized eigenvalue prob-
lem Ax = λJx arranged in non-increasing order. They are also the eigenvalues of the matrix
JA, and we say that they are the eigenvalues of the pair (A, J). In [49] it has been shown
that the set of all definitizing shifts is the open interval (−λm+1, λm) and that (see [49, Theo-
rem 2.1])

arr + ass >δ0, 1 ≤ r ≤ m < s ≤ n,(2.2) ∣∣∣∣ 2ars
arr + ass

∣∣∣∣ ≤ [1− δ2
0

(arr + ass)2

]1/2

, 1 ≤ r ≤ m < s ≤ n.(2.3)

Originally, in [49], the relations (2.1)–(2.3) were proved for a symmetric matrix A, but it
can be easily verified that they also hold when A is complex Hermitian. These relations are
essential for analyzing the algorithm and for the convergence proof.

IfA−µJ is negative definite, then (−A)−(−µ)J is positive definite and−A is Hermitian.
This shows that we only need to consider the positive definite J-Hermitian eigenvalue problem.

2.1. The J -Jacobi algorithm. Here we recall basic formulas and relations linked to the
elementwise J-Jacobi method, which we briefly call the J-Jacobi method.

The J-Jacobi method gradually diagonalizes the matrix A using J-unitary plane transfor-
mations. The iterative process has the form

(2.4) A(k+1) = [U (k)]∗A(k)U (k), k ≥ 1,

where A(1) = A and each U (k) is a J-unitary plane matrix. This notation means that
[U (k)]∗JU (k) = J , k ≥ 1, and that each U (k) differs from the identity matrix in one principal
submatrix of order 2. Such a principal submatrix is called the pivot submatrix of U (k), and it
is usually denoted by Û (k). The role of Û (k) is to diagonalize Â(k), the pivot submatrix of
A(k), via the congruence transformation

(2.5) [Û (k)]∗Â(k)Û (k) = [Û (k)]∗
[
a

(k)
ii a

(k)
ij

a
(k)
ji a

(k)
jj

]
Û (k) =

[
a

(k+1)
ii

a
(k+1)
jj

]
, k ≥ 1.

The indices i and j are pivot indices, and (i, j), i < j, is a pivot pair. The pivot pair determines
which off-diagonal elements of A(k) are nullified. Obviously, the pivot indices are functions
of k, i = i(k), j = j(k), where k counts the steps of the iterative process (2.4). The element
a

(k)
ij is the pivot element in step k.

As shown in [49], [21, Sect. 2.3], and [5, Sect. 7.1], the matrix Û (k) has the form

(2.6) Û (k) = Φ̂(k)(φk)R̂(k)(θk),

where

(2.7) Φ̂(k)(φk) = diag(eıφk , 1) or Φ̂(k)(φk) = diag(1, e−ıφk),

and

(2.8) R̂(k)(θk) =



[
cosh(θk) sinh(θk)

sinh(θk) cosh(θk)

]
if 1 ≤ i ≤ m < j ≤ n,[

cos(θk) − sin(θk)

sin(θk) cos(θk)

]
elsewhere.
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The role of the phase φk is to make the pivot submatrix Â(k) real and symmetric,

[Φ̂(k)(φk)]∗Â(k)Φ̂(k)(φk) =

[
a

(k)
ii |a(k)

ij |
|a(k)
ji | ajj

]
, a

(k)
ji = [a

(k)
ij ]∗,

which implies φk = arg(a
(k)
ij ). Alternatively, one can write (see Section 4)

Φ̂(k)(φk) = diag(e−ıφk , 1) or Φ̂(k)(φk) = diag(1, eıφk), φk = arg(a
(k)
ji ).

The role of the angle θk is to nullify |a(k)
ij |. This implies

tanh(2θk) =
−2|a(k)

ij |
a

(k)
ii + a

(k)
jj

, 1 ≤ i ≤ m < j ≤ n,(2.9)

tan(2θk) =
2|a(k)

ij |
a

(k)
ii − a

(k)
jj

, 1 ≤ i < j ≤ m or m+ 1 ≤ i < j ≤ n.(2.10)

The relations (2.1)–(2.3) imply that | tanh(2θk)| < 1.
Let us consider the case 1 ≤ i ≤ m < j ≤ n. We have (see [28, 49])

a
(k+1)
ii = a

(k)
ii + tanh(θk) |a(k)

ij |,(2.11)

a
(k+1)
jj = a

(k)
jj + tanh(θk) |a(k)

ij |,(2.12)

and consequently,

a
(k+1)
ii + a

(k+1)
jj = (a

(k)
ii + a

(k)
jj )κk,

where

κk = 1− tanh(θk) tanh(2θk) =

√
1− tanh2(2θk) > 0 .

Here, we used (2.9). Note that

trace(A(k))− trace(A(k+1)) = a
(k)
ii + a

(k)
jj − (a

(k+1)
ii + a

(k+1)
jj ) = (a

(k)
ii + a

(k)
jj )(1− κk).

Together with (2.2), this implies

tanh(θk) tanh(2θk) =
trace(A(k))− trace(A(k+1))

a
(k)
ii + a

(k)
jj

≤ trace(A(k))− trace(A(k+1))

δ0
.(2.13)

Thus, during the “hyperbolic steps”, the trace of A(k) is not increased, and it is decreased if
and only if a(k)

ij 6= 0.
Now let us consider the “trigonometric steps”, which occur when the pivot element lies

within the diagonal blocks of order m and n − m of A(k). In this case, the transforma-
tion is the same as for the standard Jacobi method for Hermitian matrices. Then we have
−π/4 ≤ θk ≤ π/4, and

a
(k+1)
ii = a

(k)
ii + tan(θk) |a(k)

ij |,(2.14)

a
(k+1)
jj = a

(k)
jj − tan(θk) |a(k)

ij |,(2.15)
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and consequently,

a
(k+1)
ii + a

(k+1)
jj = a

(k)
ii + a

(k)
jj and trace(A(k+1)) = trace(A(k)).

Thus, during the entire process, trace(A(k)) is a non-increasing function of k.
In the convergence analysis we use a measure that is usually called the departure from the

diagonal form, or off-norm. We have

off(X) = ‖X − diag(X)‖F ,

where X is a square matrix and ‖ · ‖F is the Frobenius norm. The spectral and infinity norms
are denoted by ‖ · ‖2 and ‖ · ‖∞, respectively.

Let µ be a real number such that A− µJ is positive definite. Since congruence transfor-
mations of a Hermitian matrix do not change the number of positive eigenvalues, each matrix
A(k) − µJ is positive definite, and we have

0 < ‖A(k) − µJ‖F =
[
λ2

1(A(k) − µJ) + · · ·+ λ2
n(A(k) − µJ)

]1/2
≤ λ1(A(k) − µJ) + · · ·+ λn(A(k) − µJ) = trace(A(k) − µJ)

= trace(A(k))− µ trace(J) = trace(A(k))− (2m− n)µ, k ≥ 1.(2.16)

Here, λ1(A(k) − µJ), . . . , λn(A(k) − µJ) denote the eigenvalues of the matrix A(k) − µJ .
In addition, we have

(2.17) 0 ≤ off(A(k)) ≤ ‖A(k) − µJ‖F ≤ trace(A(k))− (2m− n)µ, k ≥ 1.

From (2.17) we see that trace(A(k)) is bounded below by (2m− n)µ. Since trace(A(k)) is
non-increasing, it is convergent. Hence, relation (2.13) implies

(2.18) tanh(θk) tanh(2θk)→ 0, as k →∞, over the set of hyperbolic steps.

Since

tanh(θk) tanh(2θk) =
2 tanh2(θk)

1 + tanh2(θk)
≥ tanh2(θk),

we obtain, using (2.2), (2.9), and (2.18),

(2.19)
2|a(k)

ij |
δ0

≤
2|a(k)

ij |
a

(k)
ii + a

(k)
jj

= − tanh(2θk)→ 0, as k →∞,

over the set of hyperbolic steps. In this way we have shown that

(2.20) a
(k)
i(k)j(k) → 0, as k →∞, over the set of hyperbolic steps.

If the eigenvectors of the pair (A, J) are required, then the product U (1)U (2) · · ·U (k) has to
be computed, which may not converge to a J-unitary matrix. However, if A(k) converges
to a diagonal matrix, then for sufficiently large k, the columns of this product will be good
approximations of the eigenvectors of the pair (A, J).

If A is real, then the formulas above are simplified. The matrix Φ̂(k) is no longer present.
The angle θk is defined by (2.9) or (2.10), with |a(k)

ij | replaced by a(k)
ij . The same replacement
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has to be made in the formulas for updating the diagonal elements. All other relations remain
valid.

As noted in [49], the J-Jacobi method never breaks down in exact arithmetic, although
large hyperbolic angles θk can appear before the pivot elements become sufficiently small.
In such a case, the pivot submatrix Û (k), and consequently the plane transformation matrix
U (k), have a large condition number, which increases the condition number of the product
U (1)U (2) · · ·U (k). As shown in [49], the condition number of U (1)U (2) · · ·U (k) will ulti-
mately be determined only by the initial pair (A, J). However, a temporary increase of this
quantity can lead to instability and loss of accuracy in the output data. A remedy for this
potential instability consists of bounding the angle θk so that the absolute value of each
hyperbolic tangent tanh(θk) is bounded by some suitable number tmax smaller than 1. We
call the method that is “stabilized” in this way the stable J-Jacobi method. In [49] the choice
tmax = 0.5 has been suggested. For our implementation, we have taken tmax = 0.8 and
provide an explanation for this choice in Section 5.

We end this section with a remark. The pivot submatrix of U (k) can have the form
Φ̂(k)(φk)R̂(k)(θk)[Φ̂(k)(φk)]∗, where R̂(k) and Φ̂(k) are given by relations (2.8) and (2.7),
respectively. If this new form of Û (k) is denoted by V̂ (k), then V̂ (k) = Û (k)[Φ̂(k)(φk)]∗, i.e.,

(2.21) V̂ (k)(θk) =



[
cosh(θk) e−ıφk sinh(θk)

eıφk sinh(θk) cosh(θk)

]
if 1 ≤ i ≤ m < j ≤ n,[

cos(θk) −e−ıφk sin(θk)

eıφk sin(θk) cos(θk)

]
elsewhere.

Using relation (2.5) we have

[
a

(k+1)
ii

a
(k+1)
jj

]
= Φ̂(k)(φk)

[
a

(k+1)
ii

a
(k+1)
jj

]
[Φ̂(k)(φk)]∗

= Φ̂(k)(φk)[Û (k)]∗Â(k)Û (k)[Φ̂(k)(φk)]∗

= [V̂ (k)]∗Â(k)V̂ (k), k ≥ 1.

This shows that V̂ (k) also diagonalizes the pivot submatrix Â(k) and serves the same purpose
as Û (k). Note that V̂ (k)(θk) can be equivalently represented by the tangents instead of the
sines (i.e., the sines of θk are not strictly required) as
(2.22)

V̌ (k)(θk) =



[
1 e−ıφk tanh(θk)

eıφk tanh(θk) 1

]
· cosh(θk) if 1 ≤ i ≤ m < j ≤ n,[

1 −e−ıφk tan(θk)

eıφk tan(θk) 1

]
· cos(θk) elsewhere.

The form (2.22) simplifies transformations of row and column pairs. In the real case, when
φk = 0, each new element is formed by a single fma operation (fused multiply-add operation),
followed by a multiplication by the cosine (if the cosine is not the unity). Otherwise, a complex
analogue of the fma operation x · y + z can be employed, but at present a correct rounding of
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the components of the result is difficult to achieve. We use1

fma(x, y, z) = fma(<(x),<(y), fma(−=(x),=(y),<(z)))

+ ı fma(<(x),=(y), fma(=(x),<(y),=(z))),

followed by a multiplication of the real and imaginary components of the result by the cosine.
In this way, the transformations are not only faster than those implied by (2.21) but also
independent of the compiler’s complex arithmetic and thus numerically reproducible (see
also [31]). Here, <(w) and =(w) denote the real and imaginary parts of w.

2.2. The de Rijk pivot strategy. Here, we describe the de Rijk pivot strategy. To this
end we use almost the same notation as in [19].

The selection of pivot pairs is defined by a pivot strategy. We can identify it with a
function I : N → Pn, where

(2.23) N = {1, 2, . . .}, Pn = {(r, t); 1 ≤ r < t ≤ n}.

Here, Pn contains pairs of indices that address the elements in the upper triangle of the matrix
A. Hence, it has

N = n(n− 1)/2

pairs. If I is periodic, then I is called a periodic pivot strategy. Let P be the period of I. If

P = N (P ≥ N) and {I(k) : k = 1, . . . , P} = Pn,

then I is called a cyclic (quasi-cyclic) pivot strategy. Then the first cycle (quasi-cycle) consists
of the first P steps of the method. More about pivot strategies can be found in [15, 25, 39],
and especially in [20, Section 3].

The most commonly used cyclic pivot strategy is the row-cyclic strategy. It is defined by
the row-wise ordering of the set Pn, i.e., by the sequence of pairs

Or = (1, 2), (1, 3), . . . , (1, n), (2, 3), (2, 4), . . . , (2, n), (3, 4), . . . , (n− 1, n).

Suppose A(N+1) is obtained at the end of the first cycle of the J-Jacobi method under the
row-cyclic strategy. Then we have

A(N+1) = [U (1)U (2) · · ·U (N)]∗A(1)U (1)U (2) · · ·U (N)

= [U (1:n−1)U (n:2n−3) · · ·U (N)]∗A(1)U (1:n−1)U (n:2n−3) · · ·U (N)

= [U1,2:nU2,3:n · · ·Un−1,n]∗A(1)U1,2:nU2,3:n · · ·Un−1,n,

where

U (r1:r2) = U (r1) · · ·U (r2), 1 ≤ r1 ≤ r2 ≤ n,(2.24)
Ur,r+1:n = Ur,r+1 · · ·Urn, 1 ≤ r ≤ n− 1.(2.25)

In the special case when r2 = r1, we have U (r1:r1) = U (r1). Continuing the process, in cycle
t, one simply adds (t− 1)N to the superscripts of the terms in the above relations. We will

1As in a widely used implementation in the cuComplex.h header from the NVIDIA’s CUDA Toolkit,
https://developer.nvidia.com/cuda-toolkit.
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also use the notation U [t]
r,r+1:n, 1 ≤ r ≤ n − 1, where U [t]

r,r+1:n = U
[t]
r,r+1 · · ·U

[t]
rn and the

matrices U [t]
rs belong to cycle t of the method.

The cycle t is comprised of the steps k ∈ Ct, where

Ct = {(t− 1)N + 1, (t− 1)N + 2, . . . , tN}.

The de Rijk pivot strategy [9] is a modified row-cyclic strategy. It uses, additionally, (at most)
n− 1 transposition matrices within each cycle. We describe it by considering one full cycle of
the row-cyclic process (2.4), say the first cycle. We use the same notation as for the row-cyclic
strategy.

REMARK 2.1. Obviously, we misuse the terms “cycle” and “cyclic” because the de Rijk
strategy is not cyclic. Since the transposition matrices are plane matrices, each “cycle” of
the method actually uses at most N + n − 1 plane transformations. One may say that it is
more like a quasi-cyclic method with period not larger than N + n− 1. However, in every
later “quasi-cycle”, the transposition matrices may be different from those in the current one.
Namely, for any given r, 1 ≤ r ≤ n − 1, the value of r′ in the transposition matrix Irr′
depends on the “quasi-cycle”. If r′ = r, then Irr′ is omitted. Thus, the current quasi-cycle can
have fewer than N + n − 1 steps. Here, Irr′ = [e1, . . . , er′ , . . . , er, . . . , en], r < r′, where
In = [e1, . . . , en] is the identity matrix.

Let us consider the first cycle of the method. To this end, we simplify the notation by
using only subscripts or superscripts. The first cycle can be described as follows:

(2.26) A(N+1) = A[1] = [U [1]]∗A(1)U [1],

where

(2.27) U [1] = P1U
(1:n−1)P2U

(n:2n−3) · · ·Pn−2U
(n−2:n−1)Pn−1U

(N).

In (2.27), we have used the notation from (2.24). Using (2.25), we obtain

(2.28) U [1] = P1U1,2:nP2U2,3:n · · · Pn−2Un−2,n−1:nPn−1Un−1,n.

Here, Pi, 1 ≤ i ≤ n − 1, are the transposition matrices that swap the rows and columns of
the current matrix. They will be defined later. In each subsequent cycle, these permutation
matrices can differ from those in the previous cycle.

Let

(2.29) s` = 1 + 2 + · · ·+ ` =
`(`+ 1)

2
, 1 ≤ ` ≤ n− 1, s0 = 0.

Since sn−1 = 1 + 2 + · · ·+ n− 1 = N , from (2.29) we obtain N − sn−1 = 0 and

N − s` = N − (1 + 2 + · · ·+ `) = (n− 1) + (n− 2) + · · ·+ (`+ 1), 1 ≤ ` < n− 1.

Consequently, we have

N − sn−r + 1 =

{
1 r = 1,

1 + (n− 1) + (n− 2) + · · ·+ (n− (r − 1)) 2 ≤ r ≤ n− 1.

In step k = N − sn−r + 1, the transformation A(k+1) = [PrU
(k)]∗A(k)[PrU

(k)] takes place.
Obviously, if Pi = In for all 1 ≤ i ≤ n − 1, then in the considered cycle, the de Rijk
strategy coincides with the row-cyclic one. Considering PrU (k) to be a single transformation

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

34 V. HARI AND V. NOVAKOVIĆ

matrix has an advantage since then one “cycle” consists of exactly N transformations. In the
convergence analysis we will also consider PrU (k) corresponding to two transformations, the
first using Pr and the second using U (k).

Let us now define the permutation matrices. We have

(2.30) Pr = Irr′ , r′ ≥ r, 1 ≤ r ≤ n− 1,

where Irr′ is the transposition matrix. To define r′, we have to take into account that we
want the matrix J to be invariant under the congruence transformation with Irr′ . This means
that in the case 1 ≤ r ≤ m − 1 (m + 1 ≤ r ≤ n − 1), we must have 1 ≤ r ≤ r′ ≤ m
(m+ 1 ≤ r ≤ r′ ≤ n).

The subscript r′ is defined as follows:

(2.31) a
(N−sn−r+1)
r′r′ =


maxr≤`≤m a

(N−sn−r+1)
`` 1 ≤ r ≤ m− 1,

a
(N−sn−m+1)
mm r = m,

maxr≤`≤n a
(N−sn−r+1)
`` m+ 1 ≤ r ≤ n− 1.

One can see that the rows and columns r and r′ of A(N−sn−r+1) are swapped just before the
annihilation of the elements in the rth row and column begins. From (2.31) and (2.30), we see
that this swapping makes the (r, r)-element larger than or equal to the elements at positions
(`, `), where 1 ≤ r < ` ≤ m or m+ 1 ≤ r < ` ≤ n. If r′ = r, then we have Pr = Irr = In,
and no swap occurs. We also have Pm = Imm′ = In.

We see that the de Rijk strategy tries to order the first m and the last n −m diagonal
elements in non-increasing order during the process.

3. Global convergence. Here, we prove global convergence of the J-Jacobi method
under the de Rijk strategy. We first consider the complex method. Later, we consider the stable
J-Jacobi method and finally the real methods.

We first show that the process (2.4) under this strategy can be rearranged to facilitate the
convergence analysis. To this end, we need the notion of equivalent pivot strategies.

3.1. A pivot strategy equivalent to the de Rijk strategy. Every cyclic pivot strategy is
defined by an ordering of the set Pn from (2.23). If

O = (i1, j1), (i2, j2), . . . , (iN , jN )

is an ordering of Pn, then the associated cyclic strategy I = IO is defined by
(i(k), j(k)) = (ir, jr) provided that k − 1 ≡ r − 1 (mod N), 1 ≤ r ≤ N .

We say that the pairs (r, s) and (r′, s′) from Pn are disjoint or commuting if the sets
{r, s} and {r′, s′} are disjoint. One can easily see that if the pairs (r, s) and (r′, s′) from Pn
are commuting, then the plane transformations defined by those pairs also commute.

Let T be any subset of Pn containing τ, 2 ≤ τ ≤ N , elements. Let O(T ) be the set of
all finite sequences of pairs from T such that each sequence from O(T ) contains all pairs
from T . Let O ∈ O(T ), O = (i1, j1), (i2, j2) . . . (it, jt), t ≥ τ . An admissible transposition
on O is any transposition of two adjacent terms,

(ir, jr), (ir+1, jr+1) 7−→ (ir+1, jr+1), (ir, jr), 1 ≤ r ≤ t− 1,

provided that (ir, jr) and (ir+1, jr+1) are disjoint.
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The following definition is due to Hansen (see [13]).
DEFINITION 3.1. Two sequences O, Õ ∈ O(T ) are equivalent if one can be obtained

from the other by a set of admissible transpositions. In this case we write O ∼ Õ. If T = Pn
and O ∼ Õ, then the associated quasi-cyclic pivot strategies IO and IÕ are equivalent, and
we write IO ∼ IÕ.

An easy inspection shows that ∼ is an equivalence relation on O(T ). Note that each
cyclic strategy is also considered to be quasi-cyclic.

LEMMA 3.2. Let O = (i1, j1), . . . , (it, jt) and Õ = (̃i1, j̃1), . . . , (̃it, j̃t) be two se-
quences from O(T ), T ⊆ Pn. Let Uirjr and Ũĩr j̃r , r = 1, . . . , t, be generated by the
process (2.4) following the orderings O and Õ, respectively, so that

A(r+1) = (Ui1j1 · · ·Uirjr )∗A(Ui1j1 · · ·Uirjr ),

Ã(r+1) = (Ũĩ1 j̃1 · · · Ũĩr j̃r )∗A(Ũĩ1 j̃1 · · · Ũĩr j̃r )

holds for r = 1, . . . , t. If O ∼ Õ, then

(3.1) Upq = Ũpq, for all (p, q) ∈ T ,

and

(3.2) A(t+1) = Ã(t+1).

If (p, q) is repeated in O, i.e., if

(p, q) = (i1′ , j1′) = · · · = (ik′ , jk′) and (p, q) = (̃i1′′ , j̃1′′) = · · · = (̃ik′′ , j̃k′′),

for some 1′ < 2′ < · · · < k′ and 1′′ < 2′′ < · · · < k′′, then relation (3.1) takes the form

Ui1′ j1′ = Ũĩ1′′ j̃1′′ , . . . , Uik′ jk′ = Ũĩk′′ j̃k′′ ,

while (3.2) remains the same.
Proof. It suffices to prove Lemma 3.2 under the assumption that Õ results from O by

applying only one admissible transformation. However, the proof for this special case is almost
identical to the proof of [13, Theorem 1].

From Definition 3.1, we see that two cyclic pivot strategies are equivalent if their defining
orderings are such. This implies that for two equivalent cyclic strategies, the matrices obtained
after each cycle are the same and that during the same cycle, the plane transformations that
nullify the element at the same position are identical.

REMARK 3.3. Note that the above assertions hold in exact arithmetic but not neces-
sarily in floating-point arithmetic. For example, let (i′, j′) and (i′′, j′′) be disjoint, and let
two equivalent sequences O and Õ be such that O = . . . , (i′, j′), (i′′, j′′), . . . and
Õ = . . . , (i′′, j′′), (i′, j′), . . ., i.e., the sequences differ by an admissible transposition. As-
sume that (i′′, j′)—or, similarly, (i′, j′′)—is present in O and Õ after both (i′, j′) and (i′′, j′′).
Before (i′′, j′) (or (i′, j′′)) becomes the pivot pair, the element of the iteration matrix at this
position is transformed at least twice following either O or Õ, but in a different order. This
may cause different rounding errors to be accumulated in the element in question.

A typical example of two equivalent cyclic strategies is the row- and column-cyclic
strategies. The latter is defined by the column-wise ordering of Pn:

Oc = (1, 2), (1, 3), (2, 3), (1, 4), (2, 4), (3, 4), . . . , (1, n), (2, n), . . . , (n− 1, n).
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Let us consider the first “cycle” of the J-Jacobi method defined by relations (2.26)–(2.28).
From relation (2.27) or (2.28), we can read the sequence of pairs associated with the de Rijk
strategy. We denote it by OR,

OR = (1, 1′), (1, 2 : n), (2, 2′), (2, 3 : n), . . . , (m− 1, (m− 1)′), (m− 1,m : n),

(m,m+ 1 : n), (m+ 1, (m+ 1)′), (m+ 1,m+ 2 : n), . . . ,

(n− 1, (n− 1)′), (n− 1, n).

Here, we use the notation (r, p : q) = (r, p), (r, p+1), . . . , (r, q), p < q, and (r, p : p) = (r, p).
If a pair (s, t) commutes with all pairs from (r, p : q), then we say that (s, t) commutes with
(r, p : q) and vice versa.

Note that the pairs (r, r′) are not linked through nullifying the off-diagonal elements.
They are linked through swapping the rows and columns r and r′ provided that r′ > r. We
make the following assumption:

If r = r′ for some r, then the pair (r, r′) is removed from OR.

In this way, each pair from OR is an element of Pn. Let us partition the matrices
A(k), k ≥ 1, obtained by the J-Jacobi method under the de Rijk strategy according to
J = diag(Im, In−m),

A =

[
A11 A12

A21 A22

]
, A(k) =

[
A

(k)
11 A

(k)
12

A
(k)
21 A

(k)
22

]
m

n−m , k ≥ 1.

Now we define a modification of the de Rijk pivot strategy that will be used in the global
convergence proof. For simplicity, we call it the modified de Rijk strategy. First, we describe it
in words.

We apply the J-Jacobi method to A in the following order:
(1) it uses the de Rijk strategy for the block A11,
(2) it nullifies the elements of the block A12 using the row-cyclic strategy,
(3) it uses the de Rijk strategy for the block A22.

Let us denote the associated sequence of pairs by ÕR. We have

ÕR = (1, 1′), (1, 2 : m), (2, 2′), (2, 3 : m), . . . , (m− 1, (m− 1)′), (m− 1,m),

(1,m+ 1 : n), (2,m+ 1 : n), . . . , (m,m+ 1 : n),

(m+ 1, (m+ 1)′), (m+ 1,m+ 2 : n), . . . , (n− 1, (n− 1)′), (n− 1, n).

If r = r′ for some r, then the same assumption is applied to ÕR.
We denote the pivot strategies linked to OR and ÕR by IR and ĨR, respectively. Note that

the sequences OR and ÕR are not necessarily orderings of Pn because the pairs (r, r′) with
r < r′ are repeated in OR and ÕR.

LEMMA 3.4. We have

ÕR ∼ OR.
Proof. Let us prove that ÕR results from OR by a set of admissible transpositions. To this

end, let us consider the sequence OR.
For each r, 2 ≤ r ≤ m− 1, the pair (r, r′) commutes with (r − 1,m+ 1 : n). So, it can

be moved just behind (r − 1,m). In this way we obtain

OR ∼ (1, 1′), (1, 2 : m), (2, 2′), (1,m+ 1 : n), (2, 3 : m), (3, 3′), (2,m+ 1 : n), . . . ,

(m− 1, (m− 1)′), (m− 2,m+ 1 : n), (m− 1,m), (m,m+ 1 : n),

(m+ 1, (m+ 1)′), (m+ 1,m+ 2 : n), . . . , (n− 1, (n− 1)′), (n− 1, n).
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Next, note that for each r, 1 ≤ r ≤ m − 1, the sequence of pairs (r,m + 1 : n) commutes
with both (s, s + 1 : m) and (s, s′), for s > r. Applying the appropriate transpositions of
pairs for r = 2, . . . ,m− 1, we obtain the sequence ÕR.

Concerning IR and ĨR, we have to make an additional test. Note that the values of r′ in IR
and ĨR are chosen independently of each other. So, we have to test whether the values of r′ in
(r, r′) are the same for IR and ĨR.

This is obvious for r = 1. Now, the proof can use mathematical induction with respect
to r, 1 ≤ r ≤ m − 1. In the induction step, we use the fact that the plane transformations
from Ur−1,m+1:n do not change any diagonal element from the position (r, r) to (m,m).
Therefore, (r, r′) has to be the same in both pivot strategies because they apply the same
algorithm to obtain r′ when r is given. This algorithm uses only the diagonal elements
a

(N−sn−r+1)
rr , . . . , a

(N−sn−r+1)
mm .

Now, using Lemma 3.2 with OR and ÕR instead of O and Õ, we conclude that
A(N+1) = Ã(N+1), or in another notation A[1] = Ã[1], where A[1] (Ã[1]) is obtained from A
after one full cycle under the de Rijk (modified de Rijk) pivot strategy.

EXAMPLE 3.5. To confirm our conclusions numerically, taking into account Remark 3.3,
we have performed a numerical test. Using the MPFR library [12] with p bits of precision, we
compute the matrices A[1] and Ã[1] by applying the J-Jacobi method to the same matrix pair
(A, J) under the pivot strategies IR and ĨR. We choose A to be a Hermitian positive definite
matrix of order n = 20, and we set m = 10. Note that A− 0 · J is positive definite, which
ensures that the J-Jacobi method can be applied to the matrix pair (A, J). We take A as the
ill-conditioned [1] symmetric Pascal matrix Sn, where sij =

(
i+j−2
j−1

)
.

Let tpq be either tan θpq or tanh θpq , depending on the kind of transformation computed
for the pivot pair (p, q) in the first cycle of the algorithm with the de Rijk strategy. When
the modified de Rijk strategy is used instead, the notation changes to t′pq. For a fixed p, the
generated tpq and t′pq are written out as quadruple precision values, each with 36 decimal digits
after and one before the dot, as well as the elements of the iteration matrices A[1] and Ã[1]

after the first cycle of the de Rijk and the modified de Rijk strategies, respectively. The relative
errors ρ[p]

t = maxp<q(|tpq − t′pq|/|tpq|) and ρ[p]
A = ‖A[1] − Ã[1]‖F /‖A[1]‖F are computed

from those outputs, for several values of p. Table 3.1 confirms that the two strategies produce
effectively indistinguishable transformations (i.e., θpq) and iteration matrices after a full cycle,
for p sufficiently large.

TABLE 3.1
Numerical differences between the de Rijk and the modified de Rijk strategies after the first cycle.

p ρ
[p]
t ρ

[p]
A p ρ

[p]
t ρ

[p]
A

64 1.86762 · 10−13 3.27395 · 10−24 73 0 4.14221 · 10−27

69 1.88331 · 10−15 2.42271 · 10−25 81 0 0

3.2. The global convergence proof. Recall that we have shown A[1] = Ã[1]. By a
simple induction argument, we have

(3.3) A[t] = Ã[t], t ≥ 1,
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where A[t] and Ã[t] are obtained after a completion of cycle t. Recall that A[t] = A((t−1)N+1),
Ã[t] = Ã((t−1)N+1), t ≥ 1. Let

Ã =

[
Ã11 Ã12

Ã21 Ã22

]
Ã(k) =

[
Ã

(k)
11 Ã

(k)
12

Ã
(k)
21 Ã

(k)
22

]
m
n−m , k ≥ 1,

where the sequence (Ã(k), k ≥ 1) is obtained by applying the J-Jacobi method to A under
the modified de Rijk strategy.

Our aim is to show that

(3.4) lim
t→∞

off(Ã[t]) = 0.

From (3.4) and (3.3), we see that (3.4) holds with A[t] instead of Ã[t]. Afterwards, we show
that off(A(k)) tends to zero as k increases.

To prove (3.4), we consider a sequence of matrices that is obtained by splitting each cycle
related to ÕR into three parts. Let

ÕR = [Õ1 Õ2 Õ3],

where

Õ1 = (1, 1′), (1, 2 : m), (2, 2′), (2, 3 : m), . . . , (m− 1, (m− 1)′), (m− 1,m),

Õ2 = (1,m+ 1 : n), (2,m+ 1 : n), . . . , (m,m+ 1 : n),

Õ3 = (m+ 1, (m+ 1)′), (m+ 1,m+ 2 : n), . . . , (n− 1, (n− 1)′), (n− 1, n).

By Mi we denote number of pairs in Õi, 1 ≤ i ≤ 3. We have

M1 =
m(m− 1)

2
, M2 = m(n−m), M3 =

(n−m)(n−m− 1)

2
.

Let us consider a cycle t, t ≥ 1, of the J-Jacobi method under the modified de Rijk
strategy. We denote by Ã[t]

1 , Ã[t]
2 , Ã[t]

3 , respectively, the iterated matrix obtained after com-
pleting the batch of transformations which nullify the elements of Ã[t]

11, Ã((t−1)N+M1+1)
12 ,

Ã
((t−1)N+M1+M2+1)
22 . We have

Ã
[t]
1 = Ã((t−1)N+M1+1), Ã

[t]
2 = Ã((t−1)N+M1+M2+1), Ã

[t]
3 = Ã(tN+1) = Ã[t+1].

Now consider the sequence S1,

S1 = off(Ã), off(Ã
[1]
1 ), off(Ã

[1]
2 ), off(Ã

[1]
3 ), off(Ã

[2]
1 ), off(Ã

[2]
2 ), off(Ã

[2]
3 ), off(Ã

[3]
1 ), . . .

If the sequence S1 converges to zero, then relation (3.4) holds because (off(Ã[t]), t ≥ 1) is a
subsequence of S1.

The sequence S1 converges to zero if and only if the same is true for the following sequence
S2:

S2 = off(Ã
[1]
3 ), off(Ã

[2]
1 ), off(Ã

[2]
2 ), off(Ã

[2]
3 ), off(Ã

[3]
1 ), off(Ã

[3]
2 ), off(Ã

[3]
3 ), . . .

This is obvious since S2 is the 3-tail of S1.
To simplify notation for the subsequent analysis, let the sequence (H(k), k ≥ 1) be the

(M1 +M2)-tail of (Ã(k), k ≥ 1), that is,

(3.5) H(k) = Ã(k+M1+M2), k ≥ 1, H = H(1) = Ã
[1]
2 .

The sequence S2 is linked to the J-Jacobi method applied to H under the pivot strategy
defined by the rule:
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(1) it uses the de Rijk strategy for the block H22,
(2) it uses the de Rijk strategy for the block H11,
(3) it nullifies the elements of the block H12 using the row-cyclic strategy,

and it repeats this pattern in all subsequent steps.
We use the notation

H =

[
H11 H12

H21 H22

]
, H(k) =

[
H

(k)
11 H

(k)
12

H
(k)
21 H

(k)
22

]
m
n−m , k ≥ 1.

For t ≥ 1, we have H [t] = H((t−1)N+1), and H
[t]
11 , H [t]

12 , H [t]
21 , H [t]

22 are the blocks of
H [t]. Similar as before, the matrices H [t]

1 , H [t]
2 , H [t]

3 are obtained after completing certain
batches of transformations. We have H [t]

1 = H((t−1)N+M3+1), H [t]
2 = H((t−1)N+M3+M1+1),

H
[t]
3 = H [t+1]. With this notation, the sequence S2 takes the form

S2 = off(H
[1]
1 ), off(H

[1]
2 ), off(H

[1]
3 ), off(H

[2]
1 ), off(H

[2]
2 ), off(H

[2]
3 ), off(H

[3]
1 ), . . .

To prove that S2 converges to zero, we use several lemmas.
LEMMA 3.6. We have

(3.6) lim
k→∞

off(H
(k)
11 ) = 0 and lim

k→∞
off(H

(k)
22 ) = 0.

Proof. The matrix H((t−1)N+M3+1)
22 is a result of applying one cycle of the elementwise

Jacobi method for Hermitian matrices to H [t]
22 under the de Rijk pivot strategy. Using [19,

Theorem 5.4], we have

off(H
((t−1)N+M3+1)
22 ) ≤

1−
(t−1)N+M3∏

k = (t− 1)N + 1
i(k) 6= j(k)− 1

cos2(θk)


1/2

off(H
((t−1)N+1)
22 )

≤ µ2off(H
[t]
22),

where

µ2 =

√
1− 2−

M3−(n−m−1)
2 < 1.

Here, we used the fact that the angles θk are in the interval [−π/4, π/4].
In a similar way, we conclude that

off(H
((t−1)N+M3+M1+1)
11 ) ≤

1−
(t−1)N+M3+M1∏

k = (t− 1)N +M3 + 1
i(k) 6= j(k)− 1

cos2(θk)


1/2

off(H
((t−1)N+M3+1)
11 )

≤ µ1off(H
((t−1)N+M3+1)
11 ),

where

µ1 =

√
1− 2−

M1−(m−1)
2 < 1.
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Note that the Jacobi steps nullifying the elements of H((t−1)N+1)
22 (H((t−1)N+M3+1)

11 ) do not
change the elements of H((t−1)N+1)

11 (H((t−1)N+M3+1)
22 ). The same holds for the permuta-

tional transformations using Irr′ . Therefore, we have

H
((t−1)N+M3+1)
11 = H

((t−1)N+1)
11 = H

[t]
11 , H

((t−1)N+M3+M1+1)
22 = H

((t−1)N+M3+1)
22 .

Combining the above relations, we obtain

off(H
((t−1)N+M3+M1+1)
22 ) ≤ µ2 off(H

[t]
22), t ≥ 0,(3.7)

off(H
((t−1)N+M3+M1+1)
11 ) ≤ µ1 off(H

[t]
11), t ≥ 0.(3.8)

Let us consider the impact of the batch of M2-hyperbolic transformations on the values of
off(H

((t−1)N+M3+M1+1)
11 ) and off(H

((t−1)N+M3+M1+1)
22 ). We first consider the case when

U (k) is as in relation (2.21), that is, U (k) = V (k).
From relation (2.19) or (2.20), we conclude that each hyperbolic plane transformation

U (k) tends to the identity matrix In as k increases. Since the hyperbolic transformations
appear one after another, we can write

(3.9) Wt = U
[t]
1,m+1:nU

[t]
2,m+1:n · · ·U

[t]
m,m+1:n = In + Et, t ≥ 1, lim

t→∞
Et = 0.

Here, Wt is J-unitary, and Et can be viewed as a perturbation matrix. We easily obtain

(3.10) H [t+1] = W ∗t H
((t−1)N+M3+M1+1))Wt = H((t−1)N+M3+M1+1)) + Ft, t ≥ 1,

where

Ft = H((t−1)N+M3+M1+1)Et + E∗tH
((t−1)N+M3+M1+1)

+ E∗tH
((t−1)N+M3+M1+1)Et, t ≥ 1.(3.11)

To bound ‖H(k)‖F , we use relation (2.16), which holds for any J-Jacobi process, and the fact
that trace(H(k)) is non-increasing with k. We obtain

‖H(k)‖F ≤ trace(H(k)) + (n− 2m)µ+ ‖µJ‖F
≤ trace(H) + (n+

√
n− 2m)|µ|, k ≥ 1.(3.12)

Combining (3.11), (3.12), and (3.9), one obtains

(3.13) lim
t→∞

Ft = 0.

The relations (3.8), (3.7), (3.10), and (3.13) imply

off(H
[t+1]
11 ) ≤ µ1 off(H

[t]
11) + ν

[t]
1 , t ≥ 0, lim

t→∞
ν

[t]
1 = 0,(3.14)

off(H
[t+1]
22 ) ≤ µ2 off(H

[t]
22) + ν

[t]
2 , t ≥ 0, lim

t→∞
ν

[t]
2 = 0.(3.15)

Now, applying [14, Lemma 2.2] to the sequences generated by (3.14) and (3.15), we obtain

(3.16) lim
t→∞

off(H
[t]
11) = 0 and lim

t→∞
off(H

[t]
22) = 0.

To prove (3.16) for the case when U (k) has the form (2.6), with Φ̂(k) from (2.7), we
note that the changes occur in relations (3.9), (3.10), and (3.11). In (3.9) we have a unitary
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diagonal matrix Φt instead of In. In (3.10) we have Φ∗tH
((t−1)N+M3+M1+1)Φt instead of

H((t−1)N+M3+M1+1). In (3.11) the first (second) term on the right-hand side has the factor
Φ∗t (Φt). In any case, the relations (3.13), (3.14), (3.15), and consequently the relation (3.16),
hold.

To prove assertion (3.6) of the lemma, it is sufficient to show that

(3.17) off(H
(k)
11 ) ≤ 1.1 off(H

[t]
11), off(H

(k)
22 ) ≤ 1.1 off(H

[t]
22), k ∈ Ct,

holds for a sufficiently large t. For k, (t− 1)N + 1 ≤ k ≤ (t− 1)N +M3 +M1 + 1, we have
off(H

(k+1)
11 ) ≤ off(H

(k)
11 ) and off(H

(k+1)
22 ) ≤ off(H

(k)
22 ). Thus, we consider k ∈ C′t, where

(3.18) C′t = {k; (t− 1)N +M3 +M1 + 1 ≤ k ≤ tN}, t ≥ 1.

The set C′t ⊂ Ct consists of hyperbolic steps in cycle t. Let

W
(k)
t = U ((t−1)N+M3+M1+1)U ((t−1)N+M3+M1+2) · · ·U (k), k ∈ C′t.

If all U (k) have the form (2.6), with Φ̂(k) from (2.7), then using (2.19) we obtain

W
(k)
t = Φ

(k)
t + E

(k)
t , lim

t→∞
E

(k)
t = 0,

where each Φ
(k)
t is unitary and diagonal. Then we have

H(k+1) = [W
(k)
t ]∗H((t−1)N+1)W

(k)
t = [Φ

(k)
t ]∗H [t]Φ

(k)
t + F

(k)
t , lim

t→∞
F

(k)
t = 0,

and the assertion related to relation (3.17) is implied by the last relation.
If all U (k) have the form (2.21), then the proof is even simpler because the matrix Φ

(k)
t is

replaced by the identity.

LEMMA 3.7. We have

lim
k→∞

‖H(k)
12 ‖F = 0.

Proof. We consider cycle t, t ≥ 1, of the J-Jacobi process for H . The value of t will be
specified later. In the first part of the proof, we consider the first cycle, i.e., we assume t = 1.

Note that the unitary transformations U (k) and the transpositions Irr′ do not change the
Frobenius norm of H12. Therefore, we have ‖H(M3+M1+1)

12 ‖F = ‖H12‖F . We consider the
evolution of an element of H(M3+M1+1)

12 from the moment when it becomes zero up to the
end of the cycle. To this end, we use the notation

Uij = U
(kij)
ij , 1 ≤ i ≤ m, m+ 1 ≤ j ≤ n,

kij = M3 +M1 + (i− 1)(n−m) + j −m,

and

Û
(kij)
ij =

[
u

(kij)
ii u

(kij)
ij

u
(kij)
ji u

(kij)
jj

]
, 1 ≤ i ≤ m, m+ 1 ≤ j ≤ n.

One can verify that h(kij)
ij is the pivot element at the (i, j)-position. Let us consider the

evolution of the element at the (p, q)-position, 1 ≤ p ≤ m, m+ 1 ≤ q ≤ n. Set npq = kpq ,

npq = M3 +M1 + (p− 1)(n−m) + q −m.
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Thus, h(npq)
pq is the pivot element in step npq. If (p, q) = (m,n), then we have the equality

h
(nmn+1)
pq = h

[1]
mn = 0.

If q < n, then the left-hand transformations defined by the pivot positions (p, q + 1), . . .,
(p, n) affect the element at the (p, q)-position. We have h(npq+1)

pq = 0, and

h(npq+2)
pq = ū(kp,q+1)

pp h(npq+1)
pq + ū

(kp,q+1)
q+1,p h

(npq+1)
q+1,q ,

· · ·
h(npq+n−q)
pq = ū(kp,n−1)

pp h(npq+n−q−1)
pq + ū

(kp,n−1)
n−1,p h

(npq+n−q−1)
n−1,q ,

h(npq+n−q+1)
pq = ū(kpn)

pp h(npq+n−q)
pq + ū(kpn)

np h(npq+n−q)
nq .

Here, for a complex number x the complex conjugate is denoted by x̄. One can easily verify
that h(npq+r−q)

rq = h
(npq+1)
rq , for all q + 1 ≤ r ≤ n. Hence, we obtain

h(npq+2)
pq = 0 · ū(kp,q+1)

pp + h
(npq+1)
q+1,q ū

(kp,q+1)
q+1,p ,

h(npq+3)
pq = h(npq+2)

pq ū(kp,q+2)
pp + h

(npq+1)
q+2,q ū

(kp,q+2)
q+2,p ,

· · ·
h(npq+n−q)
pq = h(npq+n−q−1)

pq ū(kp,n−1)
pp + h

(npq+1)
n−1,q ū

(kp,n−1)
n−1,p ,

h(npq+n−q+1)
pq = h(npq+n−q)

pq ū(kpn)
pp + h(npq+1)

nq ū(kpn)
np .

If p < m, then we also have the right-hand side transformations defined by the pivot
pairs (p + 1, q), . . . , (m, q) that change the element at position (p, q). From the equality
h

(npq+n−m)
pq = h

(npq+n−q+1)
pq , we obtain in a similar way as above that

h(npq+n−m+1)
pq = h(npq+n−q+1)

pq u(kp+1,q)
qq + h

(npq+n−m)
p,p+1 u

(kp+1,q)
p+1,q ,

h(npq+2(n−m)+1)
pq = h(npq+n−m+1)

pq u(kp+2,q)
qq + h

(npq+2(n−m))
p,p+2 u

(kp+2,q)
p+2,q ,

· · ·
h(npq+(m−p)(n−m)+1)
pq = h(npq+(m−p−1)(n−m)+1)

pq u(kmq)
qq + h(npq+(m−p)(n−m))

pm u(kmq)
mq .

Note that h(N+1)
pq = h

(npq+(m−p)(n−m)+1)
pq . Combining the two sets of equations above, we

obtain

h(N+1)
pq = h(npq+(m−p)(n−m))

pm u(kmq)
mq + h

(npq+(m−p−1)(n−m))
p,m−1 u

(km−1,q)
m−1,q u(kmq)

qq + · · ·
+ h

(npq+n−m)
p,p+1 u

(kp+1,q)
p+1,q u(kp+2,q)

qq · · ·u(kmq)
qq

+ h(npq+1)
nq ū(kpn)

np u(kp+1,q)
qq · · ·u(kmq)

qq + · · ·
+ h

(npq+1)
q+1,q ū

(kp,q+1)
q+1,p ū(kp,q+2)

pp · · · ū(kpn)
pp u(kp+1,q)

qq · · ·u(kmq)
qq .

Let

(3.19) c[1] = max
M3+M1+1≤k≤N

cosh(θk), s[1] = max
M3+M1+1≤k≤N

| sinh(θk)|.
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Using the Cauchy-Schwarz inequality twice and relation (3.19), we obtain, for 1 ≤ p ≤ m,
m+ 1 ≤ q ≤ n,

|h(N+1)
pq | ≤

[
|h(npq+n−m)
p,p+1 |2+ · · ·+ |h(npq+(m−p)(n−m))

pm |2
] 1

2

×
[
|u(kp+1,q)
p+1,q |2+ · · ·+ u(kmq)

mq |2
] 1

2

[c[1]]
m−p−1

2

+
[
|h(npq+1)
q+1,q |2 + · · ·+ |h(npq+1)

nq |2
] 1

2

×
[
|ū(kp,q+1)
q+1,p |2 + · · · + |ū(kpn)

np |2
] 1

2

[c[1]]
n−3
2

≤ [c[1]]
m−p−1

2

√
m− p

2
max

1≤k≤N
off(H

(k)
11 ) · √m− p max

p+1≤i≤m
|u(kiq)
iq |

+ [c[1]]
n−3
2

√
n− q

2
off(H

(npq+1)
22 ) · √n− q max

q+1≤i≤n
|u(kpi)
ip |

≤ [c[1]]
m−2

2
m− p√

2
max

1≤k≤N
off(H

(k)
11 ) max

p+1≤i≤m
|u(kiq)
iq |

+ [c[1]]
n−3
2
n− q√

2
off(H

(npq+1)
22 ) max

q+1≤i≤n
|u(kpi)
ip |.

Here, we also used cosh(θk) ≥ 1 and

m− p+ n− (q + 2) + 1 ≤ m− p+ n− q − 1 ≤ m− 1 + n− (m+ 1)− 1 ≤ n− 3.

To bound ‖H(N+1)
12 ‖2F we use the inequality (a + b)2 ≤ 2a2 + 2b2, a ≥ 0, b ≥ 0, and

apply some rough estimates. Let a and b equal the final terms containing off(H
(k)
11 ) and

off(H
(npq+1)
22 ), respectively. We obtain

‖H(N+1)
12 ‖2F ≤ m(n−m)

[
(m− 1)2 max

1≤k≤N
off2(H

(k)
11 ) + (n−m− 1)2 max

1≤k≤N
off2(H

(k)
22 )

]
× [c[1]]n−3[s[1]]2

≤ m(n−m)(n− 2)2 max
1≤r≤2

{
max

1≤k≤N
off2(H(k)

rr )

}
[c[1]]n−3[s[1]]2.

Since m(n−m) ≤ n2/4, we obtain

‖H(N+1)
12 ‖F ≤

n(n− 2)

2
max

{
max

1≤k≤N
off(H

(k)
11 ) , max

1≤k≤N
off(H

(k)
22 )

}
[c[1]]

n−3
2 [s[1]].

Now consider cycle t, t ≥ 1. Instead of the last inequality, we have

(3.20) ‖H [t]
12‖F ≤

n(n− 2)

2
max

{
max
k∈Ct

off(H
(k)
11 ) , max

k∈Ct
off(H

(k)
22 )

}
[c[t]]

n−3
2 [s[t]], t ≥ 1,

where

c[t] = max
k∈C′t

cosh(θk), s[t] = max
k∈C′t
| sinh(θk)|.

Here, C′t is defined in (3.18). By (2.19) we have s[t] → 0, c[t] ↘ 1, and consequently,
[c[t]]

n−2
2 [s[t]]→ 0, as t→∞. Hence, from (3.20) and Lemma 3.6 we get lim

t→∞
‖H [t]

12‖F = 0.
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The rest of the proof uses the last lines in the proof of Lemma 3.6, in particular, starting
from relation (3.18) until the end of the proof.

THEOREM 3.8. Let A be a Hermitian matrix of order n such that the matrix pair
(A, J), J = diag(Im,−In−m), 1 ≤ m ≤ n − 1, is positive definite. Let the sequence
of matrices (A(k), k ≥ 1) be obtained by applying the J-Jacobi method to A under the
de Rijk pivot strategy. Then the sequence (A(k), k ≥ 1) converges to a diagonal matrix
Λ = diag(λ1, . . . , λn), where λ1, . . ., λm, −λm+1, . . . ,−λn are the eigenvalues of JA. The
same is true provided that A is real symmetric.

Proof. Let the sequence of matrices (Ã(k), k ≥ 1) be obtained by applying the J-Jacobi
method to A under the pivot strategy ĨR. Let the sequence (H(k), k ≥ 1) be defined by
relation (3.5). Then the Lemmas 3.6 and 3.7 imply

(3.21) lim
k→∞

off(H(k)) = 0.

Relation (3.21) is equivalent to limk→∞ off(Ã(k)) = 0. Thus, relation (3.4) is proven. From
relation (3.3) we have A[t] = Ã[t], t ≥ 1. In this way we have shown

(3.22) lim
t→∞

off(A[t]) = 0.

If we show that

(3.23) off(A(k)) ≤ 1.1 off(A[t]), k ∈ Ct,

holds for a sufficiently large t and for off(A[t]) > 0, then relation (3.22) implies

(3.24) lim
k→∞

off(A(k)) = 0.

The unitary transformations cannot increase off(A(k)). Hence, to prove (3.23), it is sufficient to
consider only the hyperbolic steps under the pivot strategy IR. We show that inequality (3.23)
holds for k ∈ C′′t , where

C′′t = {k ∈ Ct; k counts hyperbolic steps}, t ≥ 1,

when t is sufficiently large.
For a given t and k ∈ C′′t , we have A(k+1) = [U (k)]∗A(k)U (k). We can write

off(A(k+1)) = off(A(k)) + ε(k) = off(A((t−1)N+M1+1)) + ε
(k)
t , k ∈ C′′t .

Since the hyperbolic angle θk tends to zero as k increases, we have, for k ∈ C′′t ,

ε
(k)
t = ε((t−1)N+M1+1) + ε((t−1)N+M1+2) + · · ·+ ε(k) → 0, as t→∞.

This proves that (3.23) holds for a sufficiently large t. Thus, (3.24) holds.
It remains to show that the diagonal elements of A(k) converge. Although the matrix A

here is not positive definite as it is in [21], the proof is identical to the corresponding part of
the proof of [21, Theorem 3.7]. For the sake of completeness, we provide the details.

Note that JA and each JA(k), k ≥ 1, have the same eigenvalues as the problem
Ax = λJx. Let us arrange the eigenvalues of JA non-increasingly:

λ1 = λ2 = · · · = λs1 > λs1+1 = · · · = λs2 > · · · > λsp−1+1 = · · · = λsp

> −λsp+1 = · · · = −λsp+1 > · · · > −λsω−1+1 = · · · = −λsω .
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Here, sp = m. Obviously, nr = sr − sr−1 is the multiplicity of λsr , 1 ≤ r ≤ ω. Let us
denote the minimum gap between two different eigenvalues by 3δ,

(3.25) 3δ = min

{
min

1≤r≤p−1
(λsr − λsr+1

), λsp + λsp+1
, min
p+1≤r≤ω−1

(λsr+1
− λsr )

}
.

For each r, 1 ≤ r ≤ p (p + 1 ≤ r ≤ ω), let Dr be the disk of radius δ with center at λsr
(−λsr ). Relation (3.25) implies that the disks are disjoint and that the minimum distance
between two disks equals δ.

Since (3.24) holds, there exists a k0 ≥ 1 such that

(3.26) ‖A(k) − diag(A(k))‖∞ ≤
δ

2n
, k ≥ k0.

This condition means that all Geršgorin disks of JA(k) have radii not larger than δ/(2n). Now,
the theory of Geršgorin disks then implies that each disk Dr contains exactly nr Geršgorin
disks of JA(k) forming one connected component of the union of all Geršgorin disks. In
particular, each Dr contains exactly nr diagonal elements. Since the radii of the Geršgorin
disks tend to 0 as k increases, the diagonal elements of JA(k) approach the eigenvalues of
JA. Hence, it remains to show that at step k, k ≥ k0, the diagonal elements of JA(k) cannot
jump from one disk Dr to another.

To prove this, note that (3.26) implies |a(k)
i(k)j(k)| ≤ δ/(2n), k ≥ k0. Since | tanh(θk)| < 1

(| tan(θk)| ≤ 1), the formulas (2.11) and (2.12) ((2.14) and (2.15)) imply that neither a(k)
i(k)i(k)

nor −a(k)
j(k)j(k) (neither ρka

(k)
i(k)i(k) nor ρka

(k)
j(k)j(k), ρk ∈ {−1, 1}) can move to another disk.

This completes the proof in the case of a complex Hermitian matrix A.
If A is real, then the simpler, real J-Jacobi method [49] is employed. It is easy to verify

that all the lemmas and the theorem hold as well for the real method.

3.3. Global convergence of the stable J-Jacobi method. The stable method was
investigated for the case of a real symmetric matrix A by Veselić in [49]. Here, we briefly
consider the complex method.

For the stable method, we denote the iterated matrix, the transformation matrix, the angle
θk, and the phase φk by A(k) = (a

(k)
rs ), U(k), ϑk and ϕk, respectively. The stable method is

defined as follows:
If for a given k we have 1 ≤ i(k) ≤ m < j(k) ≤ n and | tanh(θk)| ≤ tmax, then set

ϕk = φk and ϑk = θk. Otherwise, set ϕk = φk, ϑk = − tanh−1(tmax).
If k is such that 1 ≤ i(k) < j(k) ≤ m or m + 1 ≤ i(k) < j(k) ≤ n, then we have a

unitary plane rotation U(k) with ϑk = θk and ϕk = φk, i.e., U(k) = U (k).
In [49] the value tmax = 0.5 has been suggested as a good choice for practical computation.

In Section 4 we use tmax = 0.8. However, the convergence proof below does not assume any
specific value of tmax.

The convergence of the stable method is implied by combining Theorem 3.8 with [49,
Lemma 2.2].

COROLLARY 3.9. Let the eigenvalue problem Ax = λJx be positive definite. Then the
stable J-Jacobi method is globally convergent under the de Rijk pivot strategy. The same is
true for the real stable method.

Proof. We first show that the sequence (trace(A(k)), k ≥ 1) is non-increasing and
convergent. The proof is a slight modification of [49, Lemma 2.2].

First, note that trace(A(k)) is invariant under a similarity transformation with a diago-
nal unitary matrix. Therefore, it is irrelevant whether we assume the transformation from
relations (2.7), (2.8), or from (2.21). The phase φk will not be present in the analysis.
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We know that the trace function is invariant under unitary transformations. For any
hyperbolic step k, we have (see [49, Lemma 2.2])

trace(A(k))− trace(A(k+1)) = (a
(k)
i(k)i(k) + a

(k)
j(k)j(k))

1− 1− tanh(2θk) tanh(2ϑk)√
1− tanh2(2ϑk)


≥ (a

(k)
i(k)i(k) + a

(k)
j(k)j(k)) tanh(ϑk) tanh(2ϑk).(3.27)

Since the matrix A(k) − µJ is positive definite and since 1 ≤ i(k) ≤ m < j(k) ≤ n, we
obtain from relation (2.2) that a(k)

i(k)i(k) + a
(k)
j(k)j(k) > δ0 > 0. Therefore, (3.27) implies that

the sequence (trace(A(k)), k ≥ 1) is non-increasing. Since it is bounded from below by
(2m− n)µ, it is convergent.

Consequently, we have ϑk → 0 as k increases over the hyperbolic steps. Hence, for
k0 large enough (which may depend on A and tmax), we have ϑk = θk, k ≥ k0. Thus, for
k ≥ k0, the stable method reduces to the standard one, and the assertion of the corollary is
implied by Theorem 3.8. Obviously, the proof holds for the real J-Jacobi method as well.

We end this section by briefly considering the asymptotic convergence.

3.4. A brief analysis concerning asymptotic convergence. We know that for k large
enough, the stable method reduces to the standard one. Hence, we consider only the latter one.

From [19] we know that the permutations and the unitary transformations, under the
de Rijk pivot strategy, gradually order the diagonal elements within the diagonal blocks of
order m and n−m non-increasingly. The hyperbolic J-unitary transformations approach the
set of unitary diagonal matrices. Therefore, for a sufficiently large k, they will not change the
affiliation of the diagonal elements of JA(k) to the eigenvalues of JA. This is shown in the
proof of Theorem 3.8.

In the case of simple eigenvalues of JA, the de Rijk pivot strategy will ultimately be
reduced to the row-cyclic one. Then we can apply [11, Theorem 3.7], which states that for the
J-Jacobi method under the row-cyclic strategy it holds that

off(A(N+1)) ≤ off2(A)

δ
,

provided that off(A) ≤ δ/(m(n−m)).
Now, consider the case of multiple eigenvalues. The de Rijk pivot strategy will ultimately

order the diagonal elements so that those converging to the same eigenvalue will occupy
successive positions on the diagonal. Then the transposition matrices (which are part of the
de Rijk strategy) can swap only those diagonal elements that converge to the same eigenvalue.
We are confident that this fact can be used in the proof of [11, Theorem 3.7], so that after some
adaptation it holds for the de Rijk pivot strategy.

Another important approach to the asymptotic analysis of the J-Jacobi method is the
one of using scaled iteration matrices. It assumes that A is positive definite. Instead of
(off(A(k)), k ≥ 1), this approach considers the sequence (off([D(k)]−1/2A(k)[D(k)]−1/2),
k ≥ 1), where D(k) is the diagonal part of A(k). Since in the later stage of the process, the
de Rijk strategy is reduced (or in the case of multiple eigenvalues, almost reduced) to the
row-cyclic strategy, the quadratic convergence result [28, Theorem 5.2] will hold (following
some adaptation in the proof) for the de Rijk strategy.
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4. The accurate computation of V̂ (k). The relations (2.9) and (2.10), as well as the
form of V̂ (k) from (2.21) that they imply, can be computed using only correctly rounded
arithmetical operations. Along with the basic ones (addition/subtraction, multiplication,
division, and the square root), the set of such operations has been recently expanded2 by the
CORE-MATH project [40] to include, among others, floating-point implementations of the
functions rsqrt(x) = 1/

√
x and hypot(x, y) =

√
x2 + y2.

For the trigonometric case, the relatively accurate computation of tan(θk), cos(θk), and
sin(θk), and thus V̂ (k), barring inexact underflow of any partial result, has been described
in [32]. The hyperbolic case is handled similarly, as discussed in the following, with the
assumption that neither inexact underflow nor overflow occur.

Since we make estimates for a given step k, we can simplify the notation by removing
the subscript k, as in θk, and the superscript (k), as in a(k)

ji or V̂ (k). As before, we use the
notation <(x) and =(x) for the real and imaginary parts of x.

Let φ = arg(aji). If aji 6= 0, then cos(φ) = <(aji)/|aji| and sin(φ) = =(aji)/|aji|
(else, φ = 0). The magnitude of aji is computed with only a single rounding of its exact value
by the correctly rounded cr_hypot function as

(4.1) |aji| = cr_hypot(<(aji),=(aji)) =
√
<(aji)2 + =(aji)2(1 + ε1), |ε1| ≤ ε,

with ε being the machine precision. The underlined expressions here and in the following
represent the computed floating-point values of their exact non-underlined counterparts. The
elements aii, ajj , and aji are considered exact for the purposes of this section, i.e., aii = aii,
ajj = ajj , and aji = aji.

From (2.9), the value tanh(θ) can be obtained as

(4.2) tanh(θ) =
tanh(2θ)

1 +
√

1− tanh2(2θ)
,

where the expression under the square root, instead of treating it traditionally as a difference
of squares, can be computed with a single rounding as

fma(−tanh(2θ), tanh(2θ), 1),

using the standard operation fma(x, y, z) = (x · y + z)(1 + εfma), |εfma| ≤ ε. Here, ε is the
unit roundoff. A similar simplification of the argument of the square root is applicable to the
hyperbolic cosine,

(4.3) cosh(θ) =
1√

1− tanh2(θ)
,

while the square root and the ensuing division can be merged into a single operation. Then we
have cr_rsqrt(x) = (1 + εrsqrt)/

√
x, with |εrsqrt| ≤ ε, and

cosh(θ) = cr_rsqrt(fma(−tanh(θ), tanh(θ), 1)).

With sinh(θ) = tanh(θ) · cosh(θ), the computation of V̂ is now completed.
The relative errors in tanh(θ), cosh(θ), and sinh(θ) computed in this way can only

be bounded by imposing a further assumption on the maximal magnitude of tanh(θ) (or

2See https://gitlab.inria.fr/core-math for the implementation.
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tanh(2θ)). We assume that | tanh(θ)| ≤ 4/5 (or, equivalently, | tanh(2θ)| ≤ 40/41), except
in the following Lemma 4.1, which bounds the relative error in tanh(2θ).

LEMMA 4.1. We have

(4.4) tanh(2θ) =
−2|aji|(1 + ε1)

(aii + ajj)(1 + ε2)
(1 + ε3) = tanh(2θ)(1 + εd),

where max{|ε1|, |ε2|, |ε3|} ≤ ε. The expression 1+εd = (1+ε1)(1+ε3)/(1+ε2) is bounded
as

(4.5)
(1− ε)γ

1 + ε
≤ 1 + εd ≤

(1 + ε)γ

1− ε ,

with γ = 1 if aji ∈ R and γ = 2 otherwise.
Proof. Since scaling of a floating-point value by a power of two is exact unless inexact

underflow or overflow occurs, (4.4) follows directly from (4.1). If aji ∈ R, then its absolute
value is taken exactly, so ε1 = 0. By minimizing the numerator and maximizing the denomi-
nator in the expression for 1 + εd, the first inequality in (4.5) is obtained while the second one
follows by maximizing the numerator and minimizing the denominator.

The next step is to bound the relative error in tanh(θ), what is achieved with the help of
the following sequence of four lemmas:

LEMMA 4.2. We have

1− (tanh(2θ))2 = (1− tanh2(2θ))(1 + ε4),

where, using εd from (4.4),

(4.6) |ε4| ≤
1519

81
|ε′d|, ε′d = (2 + εd)εd.

Proof. Let y = 1 − tanh2(2θ). Then 1 ≥ y ≥ 1 − (40/41)2 = 81/1681. From
Lemma 4.1, we obtain

1− (tanh(2θ))2 = 1− tanh2(2θ)(1 + εd)
2 = y − tanh2(2θ)ε′d,

since (1 + εd)
2 = 1 + ε′d, with ε′d from (4.6).

Using the definition of y, we find an ε4 such that

y(1 + ε4) = y − tanh2(2θ)ε′d = y + (y − 1)ε′d.

Subtracting y > 0 from these equalities gives yε4 = (y − 1)ε′d. This implies

ε4 =
y − 1

y
ε′d = −

(
1

y
− 1

)
ε′d.

By taking the absolute value of ε4 and the lower bound for y, we obtain

|ε4| ≤
(

1681

81
− 1

)
|ε′d| =

1600

81
|ε′d|,

which was to be proven.
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LEMMA 4.3. We have

sqrt(fma(−tanh(2θ), tanh(2θ), 1)) =

√
1− tanh2(2θ)(1 + ε7),

where

1 + ε7 =
√

(1 + ε4)(1 + ε5)(1 + ε6), max{|ε5|, |ε6|} ≤ ε.

Proof. From the definition of fma and Lemma 4.2, it follows that

(4.7)
fma(−tanh(2θ), tanh(2θ), 1) = (1− (tanh(2θ))2)(1 + ε5)

= (1− tanh2(2θ))(1 + ε4)(1 + ε5).

Taking the floating-point square root, sqrt, of (4.7) concludes the proof.

LEMMA 4.4. Let x = 1 +
√

1− tanh2(2θ). Then,

1 + sqrt(fma(−tanh(2θ), tanh(2θ), 1)) = x(1 + ε8),

where

9

50
|ε7| ≤ |ε8| ≤

1

2
|ε7|.

Proof. From Lemma 4.3 it follows that

1 + sqrt(fma(−tanh(2θ), tanh(2θ), 1)) = 1 + (x− 1)(1 + ε7) = x+ ε7(x− 1).

Now, ε8 has to be found such that

x(1 + ε8) = x+ ε7(x− 1).

Subtraction of x > 0 from the left- and right-hand sides gives

(4.8) ε8 =

(
1− 1

x

)
ε7.

From 1 ≥ 1− tanh2(2θ) ≥ 81/1681 = 92/412, it follows that 50/41 ≤ x ≤ 2. Substituting
these bounds for x in (4.8) and taking the absolute value of ε8 completes the proof.

LEMMA 4.5. For the denominator in (4.2) we have

1 +

√
1− tanh2(2θ) = (1 +

√
1− tanh2(2θ))(1 + ε10),

1 + ε10 = (1 + ε8)(1 + ε9),

|ε9| ≤ ε.

Proof. The proof follows from Lemma 4.4. The factor 1 + ε9 comes from rounding the
final addition of unity.

Theorem 4.6 gives the relative error in tanh(θ).
THEOREM 4.6. We have

tanh(θ) = tanh(θ)(1 + εt), 1 + εt =
1 + εd
1 + ε10

(1 + ε11), |ε11| ≤ ε.

Proof. The proof is implied by the Lemmas 4.2, 4.3, 4.4, and 4.5.
Now we can determine the relative errors in cosh(θ) and sinh(θ). Recall that we assume

| tanh(θ)| ≤ 4/5.
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LEMMA 4.7. We have

1− (tanh(θ))2 = (1− tanh2(θ))(1 + ε12), |ε12| ≤
16

9
|ε′t|, ε′t = (2 + εt)εt.

Proof. This is proven similarly to Lemma 4.2, using z = 1− tanh2(θ) ≥ 9/25 instead
of y.

THEOREM 4.8. We have

cosh θ = cosh θ(1 + εc), 1 + εc =
1 + ε14√

(1 + ε12)(1 + ε13)
, max{|ε13|, |ε14|} ≤ ε.

Proof. From (4.3), Lemma 4.7, and the definition of fma, it follows that

(4.9)
fma(−tanh(θ), tanh(θ), 1) = (1− (tanh(θ))2)(1 + ε13)

= (1− tanh2(θ))(1 + ε12)(1 + ε13).

Note that cr_rsqrt is correctly rounded. Taking cr_rsqrt of (4.9) concludes the proof, similarly
to Lemma 4.3.

It remains to bound the relative error in sinh(θ). In computing sinh(θ), we use the
formula sinh(θ) = tanh(θ) · cosh(θ).

THEOREM 4.9. We have

sinh θ = sinh θ(1 + εs), 1 + εs = (1 + εt)(1 + εc)(1 + ε15), |ε15| ≤ ε.

Proof. The proof is implied by Theorem 4.6 and Theorem 4.8.
This completes the error analysis if aji is real. Otherwise, for some ε16 and ε17 such that

max{|ε16|, |ε17|} ≤ ε, it holds that

(4.10)
<(eıφ) =

<(aji)(1 + ε16)

|aji|(1 + ε1)
= <(eıφ)(1 + ε′<), 1 + ε′< =

1 + ε16

1 + ε1
,

=(eıφ) =
=(aji)(1 + ε17)

|aji|(1 + ε1)
= =(eıφ)(1 + ε′=), 1 + ε′= =

1 + ε17

1 + ε1
.

THEOREM 4.10. We have

<(eıφ) sinh θ = <(eıφ) sinh θ(1 + ε<), =(eıφ) sinh θ = =(eıφ) sinh θ(1 + ε=),

where

1 + ε< = (1 + ε′<)(1 + εs)(1 + ε18), 1 + ε= = (1 + ε′=)(1 + εs)(1 + ε19),

with max{|ε18|, |ε19|} ≤ ε.
Proof. The proof follows from (4.10) and Theorem 4.9.
Upper bounds for |εd|, |εt|, |εc|, |εs|, |ε<|, and |ε=| can be obtained using symbolic

computation in terms of ε and γ for a set of floating-point datatypes of interest.
Alongside double precision, implementations of cr_hypot and cr_rsqrt exist in half,

single, and quadruple precisions, and for the Intel’s 80-bit extended type [8]. The 32-bit,
64-bit, and 80-bit data types, natively supported on the testing hardware, are represented by
their precisions ε32 = 2−24, ε64 = 2−53, and ε80 = 2−64, assuming rounding to the nearest.

Table 4.1 provides the upper bounds, ub, for the relative errors in the complex and the real
cases, computed using a Wolfram Language script3 with Wolfram Engine 14.2.1 on Linux and
113 digits of precision and rounded upwards to nine digits after the decimal point on output,
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TABLE 4.1
Precision-dependent upper bounds for the relative errors (with ub |ε=| = ub |ε<|).

precision (C) precision (R)

single double, extended single double, extended

ub |εd| 3.000000239 3.000000001 2.000000120 2.000000001
ub |εt| 35.379749082 35.379629630 24.503140676 24.503086420
ub |εc| 64.397757398 64.397119342 45.061344394 45.061042525
ub |εs| 100.777648228 100.776748972 70.564555029 70.564128944
ub |ε<| 103.777666487 103.776748972 = ub |εs|

similarly to the method for computing the bounds in the trigonometric case in [32]. All values
in Table 4.1 are multiples of the respective machine precisions (ε32, ε64, and ε80).

We note that by using a special (and pretty complicated) rounding error analysis from [29],
almost all bounds from Table 4.1 can be further reduced.

Table 4.2 can be consulted for a comparison of the theoretical upper bounds for the relative
errors with the maximal relative errors observed for 31 · 230 single precision positive definite
2× 2 real and complex matrices defined by pseudorandom values of aii, aji, and ajj , sampled
from the interval [0, 1]. The relative errors, computed in extended precision, expressed in
multiples of ε32, and rounded upwards, also contain |εdet|, the maximal observed departure of
det(V̂ ) from unity.

TABLE 4.2
Maximal observed relative errors for a set of single precision positive definite 2× 2 matrices.

maximal observed relative errors in multiples of ε32

max |εCdet| max |εCc | max |εC<| max |εC=| max |εRdet| max |εRc | max |εRs |
11.96683 21.98160 33.25813 33.99575 4.48249 14.99693 23.56537

Let ν be the largest finite positive floating-point value. If

â = max{|aii|, |aji|, |ajj |} ≤ ν/2,

then neither the numerator nor the denominator in the expression (2.9) defining tanh(2θ)
can overflow. As in [32], if the pivot submatrix is scaled by the largest power of two for
which it still holds that blg âc < blg νc (where lg = log2), then no overflow can occur in
the computation of V̂ , and the possibility of inexact underflows is diminished. Observe that
the left-hand side of (4.9) is a normal floating-point value since tanh(2θ), and thus also
tanh θ, must be a value strictly less than unity for the computation to proceed. The largest
floating-point value below unity is the immediate floating-point predecessor of 1 (let it be
called 1− here), and the rounded value of 1− (1−)2 is normal, as well as its inverse square
root. Even if tanh θ is bounded above only by unity (not by 4/5), the computation of cosh θ
cannot suffer from overflow.

At present, cr_hypot and cr_rsqrt in all precisions, as well as fma in extended, consist
of a non-trivial series of processor instructions. It might be argued that the older formulas for

3Available at https://github.com/venovako/AccJac/blob/master/var/rejv2.wls.
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tanh(θ) and cosh(θ), using only the basic operations, as in

(4.11)
tanh θ = tanh(2θ)/ sqrt((1− tanh(2θ)) · (1 + tanh(2θ))),

cosh θ = 1/ sqrt((1− tanh θ) · (1 + tanh θ))

are faster to evaluate. However, the new formulas are generally more accurate in the worst
case than the old ones. This is shown to hold in single precision for all interesting | tanh(2θ)|
by the following test procedure that would be almost intractable in higher precisions (e.g.,
double) but is efficient in single.

Let t2 = |tanh(2θ)| be considered given (and thus exact) in single precision. Then,
t = tanh(θ), c = cosh(θ), and s = sinh(θ) can be computed from t2 using the old formulas,
while the results of the new ones are denoted by t′, c′, and s′, respectively. Starting from
t2, the computations can be repeated in a higher precision, with the results t, c, and s
representing more accurate approximations of the exact values of tanh(θ), cosh(θ), and
sinh(θ), respectively. For this, the new formulas using the MPFR library [12] with 1024 bits
of precision are chosen.

All single precision values of t2 that are large enough to make t and t′ different from t2/2
are iterated over. Given the exponent of t2, i.e., blg t2c, all significands for that exponent are
taken one after the other, unless blg t2c = −1, which is when the iteration stops below the
cutoff of 40/41 since otherwise tanh(θ), cosh(θ), and sinh(θ) are to be set to the rounded
values of 4/5, 5/3, and 4/3, respectively. Figure 4.1 below displays the results, where
ρold(x) = |x− x|/|xε| and ρnew(x) = |x− x′|/|xε|, for x ∈ {t, c, s}.
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FIG. 4.1. The maximal relative errors as multiples of ε32 in tanh(θ), cosh(θ), and sinh(θ), as computed from
a given | tanh(2θ)|, by the old and the new formulas in single precision.

The new formulas are clearly more accurate in the worst case than the old ones. Specif-
ically, for a small | tanh(2θ)|, such that ε ≤ | tanh(2θ)| < √ε, the differences of squares
in (4.11) induce a perturbation of unity that is more inaccurate than the result of the corre-
sponding fma operations (i.e., the exact unity). In higher precisions, a random sampling of
| tanh(2θ)| with a given exponent should be used instead of the described procedure to get a
comparable picture.
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For completeness, (4.12) summarizes the method from [32] for computing V̂ in the
trigonometric case more accurately than the traditional way as

(4.12)
tan(θ) = tan(2θ)/(1 + cr_hypot(1, tan(2θ))),

cos(θ) = 1/ cr_hypot(1, tan(θ)).

In certain cases, a possibly faster and/or more accurate computation might be

cos(θ) = cr_rsqrt(fma(tan(θ), tan(θ), 1)),

but (4.12) suggests the most accurate calculation possible for cos(θ) to be given by

cos(θ) = cr_rhypot(tan(θ), 1),

where, for a correctly rounded reciprocal hypotenuse function, it should hold that

cr_rhypot(x, y) = (1 + ε−1/2)/
√
x2 + y2,

with |ε−1/2| ≤ ε, if such a function can be implemented performantly in the future.

5. Numerical experiments. The numerical experiments were performed using the
GNU Fortran and C compilers, version 13.4, on an Intel Xeon Phi 7210 CPU, running
at 1.30 GHz. The source code is available at the Github repositories https://github.
com/venovako/AccJac and https://github.com/venovako/libpvn4. Since
the algorithms under test are sequential by nature, a subset of the tests was repeated on an
Intel Core i7-4770K CPU, running at 3.50 GHz, using the GNU compilers, version 15.2, to
collect a realistic timing, marked by (B) below. All algorithms have been designed to give
unconditionally reproducible outputs in single and double precision on modern architectures,
although the relative errors computed from those results in parallel might subtly differ from
one system to another, depending on the maturity of quadruple precision support and on the
OpenMP implementation.

First we look at the rate of the reduction of off(A) throughout the J-Jacobi process,
using the modified de Rijk and the row-cyclic serial strategies, alongside the Mantharam–
Eberlein [26] parallel strategy (ME), for a matrix A = GTG with n = 512 and m = 256,
where G has pseudorandom entries in the interval [0, 1]. Figure 5.1 shows that the modified
de Rijk strategy in this (but not necessarily every) case exhibits a faster rate than the row-cyclic
one, which is similar to ME.

Since the (modified) de Rijk strategy differs from the row-cyclic one in the gradual
ordering of diag(A) such that the diagonals of the diagonal m×m and (n−m)× (n−m)
blocks are eventually sorted non-increasingly, we introduce the full non-increasing sorting of
those diagonals before each cycle. As Figure 5.2 shows, this speeds up the convergence with
all three strategies and makes the off-norm reduction rate of the row-cyclic one more similar
to that of the modified de Rijk one. Such sorting is beneficial enough to be included in all the
following tests. Also, the (modified) de Rijk strategy is applicable to all matrix orders, while
for ME it is required that n = 2l for some l (or, for the generalization [30] of ME, without a
proof of convergence, it has to hold that n = o · 2l for an odd o ≤ 21).

Next, we shift our attention from the two-sided J-Jacobi generalized Hermitian eigen-
solver to the implicit, one-sided J-Jacobi HSVD. Let a Hermitian indefinite non-singular
matrix H be given in a factored form, as GJG∗, where G is of full column rank, and let its

4The tests were performed using the code from the “testing3” tags in both repositories, but the latest development
sources are otherwise recommended for a practical application.
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FIG. 5.1. Reduction of off(A) for a real double precision matrix A with n = 512 and m = 256, throughout
the J-Jacobi process, using three strategies without ordering of the diagonal before each cycle. The first data point is
the initial off-norm. In each cycle, off(A) was computed after every n/2 steps and after the first and the last step.
The stopping of the longest-running case is denoted by→.
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FIG. 5.2. Reduction of off(A) for the same matrix A and with the same frequency of the off-norm computation
as in Figure 5.1, throughout the J-Jacobi process, using the same strategies alongside the ordering of the diagonal
non-increasingly in the m×m and (n−m)× (n−m) diagonal blocks before each cycle.

HSVD be G = UΣV −1, where U is unitary, Σ is diagonal with positive diagonal elements,
and V is J-unitary (so V −1 = JV ∗J). Then,

H = UΣ2JU∗, HU = UΛ, Λ = Σ2J,

i.e., λii = σ2
iijii are the eigenvalues, while the ui are the corresponding eigenvectors of H , for

1 ≤ i ≤ n. Thus, the HSVD of G solves the associated Hermitian indefinite eigenproblem for
H . The one-sided J-Jacobi HSVD mutually orthogonalizes the columns of G by implicitly
annihilating the off-diagonal elements of G∗G with respect to J , leaving at the point of
convergence a matrix G[K] with nearly orthogonal columns that approximates UΣ. The
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stopping criterion [10] is taken to be

(5.1) |g∗j gi| = |g∗i gj | < ‖gi‖F ‖gj‖F · e for all (i, j), 1 ≤ i < j ≤ n, e = ε
√
n,

which has also been backported to the two-sided J-Jacobi method as

(5.2) |aij | <
√
aii
√
ajj · e,

i.e., the transformation defined by the pivot pair (i, j) is not applied if (5.1) (respectively, (5.2))
holds for that (i, j). The process is terminated when an empty cycle is reached.

The transformation matrices have the form (2.22), i.e., V̌ (k) is used. The norms of the
columns of G(k) are kept in a vector Σ(k) that is sorted as described before each cycle. This
sorting induces a permutation of the columns of the iteration matrix, which is not applied,
but instead the columns are addressed via a permutation vector. The column swaps in the
(modified) de Rijk strategy are realized by updating the same indirect indexing vector. The
column norms are updated [10] with fma as

(5.3)
‖g(k+1)
i ‖F =

√
‖g(k)
i ‖+ t

(k)
i (|s(k)|‖g(k)

j ‖F )

√
‖g(k)
i ‖F ,

‖g(k+1)
j ‖F =

√
‖g(k)
j ‖+ t

(k)
j (|s(k)|‖g(k)

i ‖F )

√
‖g(k)
j ‖F

after each transformation and recomputed anew before the sorting that precedes each cycle
using the cr_hypot function as described in [33, Algorithm A]. In the trigonometric case,
t
(k)
i = tan(θk) = −t(k)

j , while in the hyperbolic one, t(k)
i = tanh(θk) = t

(k)
j in (5.3),

where s(k) stands for the scaled [10] dot product (gj/‖gj‖F )∗(gi/‖gi‖F ). The elements of
G(k) are throughout the process rescaled by a power of two, as needed, to ensure that the
subsequent transformation (a hyperbolic one being more dangerous) cannot cause overflow,
while simultaneously avoiding underflows when possible, in the spirit of [31]. For the stable
J-Jacobi method, the maximal growth of any element’s magnitude is at most threefold since

|(x± y · e±ıφ tanh(θ)) cosh θ| ≤ (|x|+ |y| · | tanh(θ)|) cosh(θ)

≤ max{|x|, |y|}(1 + 4/5) · (5/3) = 3 max{|x|, |y|}.

The norms are rescaled if the iteration matrix has been rescaled. To avoid their overflow, no
element should have its absolute value larger than ν/

√
n. Combining these two bounds and

adding a measure of safety due to roundings, the elements of the iteration matrix should be kept
below ν/(3n) in magnitude (or, similarly, maxi,j{|<(gij)|, |=(gij)|} ≤ ν/(5n) < ν/(3

√
2n)

to avoid computing the magnitude of complex numbers). No input matrix with finite elements
can therefore cause overflow at any point in the process. If the number of rows of G is n > n,
then (5.1) and the bounds there have to be adjusted accordingly. Thus, Σ[K] approximates the
scaled singular values, g[K]

i /σ
[K]
ii approximates ui, and the columns of V [K] approximate the

right singular vectors.
Real and complex double precision test matrices of orders n = 2l, l ≤ 12, were prepared

as follows. First, Λ{l} was set as λ{l}ii = 1 − (i − 1)2/(n − 1), where 1 ≤ i ≤ n, so
−1 ≤ λ{l}ii ≤ 1, using the same eigenvalues in the real and in the complex case. Then, Her-
mitian (symmetric) indefinite matrices H{l} = U{l}Λ{l}U{l}∗ were computed in quadruple
precision, with pseudorandom unitary (orthogonal) matrices U{l} as in LAPACK [2] and
factored as H{l} = G{l}J{l}G{l}∗ using the Slapničar’s algorithm [43] for the Hermitian
(symmetric) indefinite factorization. The factors G{l} were rounded to double precision, and
m = n/2 by construction.
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Each test produced the following datapoints: the number of cycles before convergence
(cFs ), the number of rotations performed (tFs ), the execution’s wall-time (sFs ), and the relative
errors (residuals, computed in quadruple precision),

(5.4)

ρFU [s] = ‖U∗sUs − I‖F ,
ρFV [s] = ‖V ∗s JVs − J‖F ,
ρFG[s] = ‖G− UsΣsV

−1
s ‖F /‖G‖F ,

ρFσ[s] = max
1≤i≤n

(‖Gvi − uiσii‖F /σii),

ρFΛ[s] = max
1≤i≤n

(|λii − (Σs)
2
iijii|/|λii|),

where F ∈ {C,R} and s ∈ {dR, rc}, with dR denoting the modified de Rijk strategy and rc

the row-cyclic strategy. Only ρFΛ cannot be easily computed for an arbitrary input when Λ,
unlike here, is not known in advance. We show the residuals mostly in the complex case and
only illustrate that they are similar in the real case.

Figure 5.3 demonstrates that the right singular vectors suffer a higher loss of their J-
unitarity than the left ones of their unitarity, in both the complex and the real case. The choice
of strategy does not affect the results much here.
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FIG. 5.3. Departure from (J-)unitarity for the test matrices with the notation from (5.4).

The other residuals are displayed in Figure 5.4. Note that ρCσ > ρCG for l large enough, i.e.,
some singular triplets (ui, σii, vi) might be somewhat inaccurate even if ρCG is still acceptable.
This is more evident with the triplets when i approaches m and n from below if the tests are
run for, e.g., the Cholesky factor of a large enough Pascal matrix S. The singular values are
relatively accurate here with respect to Λ. The modified de Rijk strategy is, overall, slightly
more accurate here, according to the considered measures, than the row-cyclic one.

The most prominent advantage of the modified de Rijk strategy over the row-cyclic one
for this test set is its speed of convergence as shown in Table 5.1. It is obvious that tFdR < tFrc,
for both F when n is sufficiently large. In these rotations, the column transpositions due
to the de Rijk’s diagonal ordering are not included, but they are of constant complexity as
explained in the context of the indirect column addressing, and they do not effectively change
the iteration matrix.
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FIG. 5.4. Various relative residuals for the complex test set with the notation from (5.4).

TABLE 5.1
The number of cycles and rotations for the modified de Rijk and the row-cyclic strategies.

n cCdR cCrc tCdR tCrc cRdR cRrc tRdR tRrc

4 5 5 19 19 5 5 20 20
8 6 6 122 122 6 6 120 120

16 7 7 608 636 7 7 573 579
32 8 8 2856 2931 8 8 2755 2861
64 10 9 12938 13850 9 9 12482 13474

128 11 10 57246 63235 10 11 56251 58908
256 12 12 256006 265876 12 12 243525 260808
512 13 13 1088631 1137491 12 13 1054765 1099070

1024 13 14 4713456 4848262 14 14 4469830 4739832
2048 15 17 19632623 20449091 15 16 19099857 19691953
4096 18 17 83016895 86164705 17 16 78953756 82110484

The number of cycles is more erratic since even a single transformation in a later cycle
causes another, probably empty, cycle. Yet, when looking at the executions’ wall-times, it
mostly holds sFdR < sFrc for n ≥ 32. Table 5.2 provides the ratio of the wall-times as well as
the actual wall-times for the modified de Rijk strategy on the machine (B).

The execution times can be improved by turning off the dynamic scaling of the iteration
matrix when input matrices are not expected to be badly scaled and by a further manual
vectorization [31]. Here, the Intel’s FMA and AVX2 instruction sets with 256-bit vectors are
requested from the compiler’s autovectorizer.

Similarly to the diagonal updates in [37], the updates of any column i < n, in a fixed
cycle, can be delayed and accumulated for all (i, j), where j > i, and applied to the column i
after processing the pivot (i, n)5. Formally, let at the start of each cycle ci = 1, and let zi be
set to a zero vector of the same length as gi. Then, for a pivot pair (i, j) in some step k with

5With the (modified) de Rijk and row-cyclic strategies, (i, n) is the last pivot (i, j) in a cycle to be transformed
with the given i. Otherwise, the last such j should be substituted for n here.
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TABLE 5.2
The execution wall-times and their ratios for the modified de Rijk and the row-cyclic strategies.

n sCrc/s
C
dR sRrc/s

R
dR sCdR (B) sRdR (B)

32 1.01926 1.02540 0.009 s 0.008 s
64 0.99564 1.05020 0.035 s 0.026 s

128 1.01857 1.06272 0.172 s 0.112 s
256 1.03750 1.06311 1.044 s 0.605 s
512 1.02906 1.07713 7.093 s 3.321 s

1024 1.04928 1.03172 55.954 s 23.121 s
2048 1.08360 1.05188 458.906 s 185.698 s
4096 0.99161 0.98110 4008.359 s 1481.609 s

c = cos(θ) or c = cosh(θ),

(5.5)

xi = zi + ci · gi,
z′i = (zi + eıφti · gj) · c,
g′j = (gj + e−ıφtj · xi) · c,
c′i = ci · c,

where the primed quantities are updated in-place, i.e., overwritten, while ti and tj are as
in (5.3). The validity of (5.5) can be shown by induction on j = i+ 1, . . . , n.

In (5.5), xi is a temporary vector that holds the up-to-date “view” of gi as it would have
been at the start of the (i, j)-step without the delayed updates, while zi and ci have to be
preserved throughout the cycle. From c ≥ 2−1/2 it follows that ci ≥ 2−(n−i)/2, which might
lead to underflow if n is large, but the hyperbolic cosines are likely to prevent this in realistic
scenarios. Finally, at the end of the (i, n)-step, the column i is updated as g′i = zi + ci · gi.
Thus, zi accumulates the updates of gi, each of which might separately affect gi little to none.
On our test set we have not observed a significant improvement with the delayed updates in
any accuracy measure, so more targeted test inputs should be generated for that purpose.

Finding the optimal upper bound tmax for the magnitude of the hyperbolic tangents
remains an open and vaguely defined problem since a trade-off is involved between increasing
the total number of transformations required for convergence and decreasing the departure
from J-unitarity of the accumulated transformations. For the test matrices of larger orders,
even the bound tmax = 0.8 is reached, and this happens not in the first but in the third or the
fourth cycle. Before that point, the extremal hyperbolic tangents grow slightly in magnitude
and fall afterwards.

Another problem with combating the departure from J-unitarity of the hyperbolic rotations
is that it is not monotone with respect to | tanh(θ)|, where tanh(θ) takes only floating-point
values. As a test, the relative error in det(V̂ (θ)) for a real hyperbolic V̂ from (2.21), i.e.,
|1− (cosh2(θ)− sinh2(θ))|, can be computed accurately (e.g., using 1024 bits of precision)
from cosh(θ) and sinh(θ), obtained in single precision for all tanh(θ) in a certain interval.

Figure 5.5 shows that the relative error given in multiples of ε32 behaves monotonically
for particular subsequences of the single precision values of | tanh(θ)| when approaching
tmax from below. The maximal attained error of < 4.5 ε32 is also the maximum when all
non-negligible tanh θ are considered.

Finally, let us consider the behavior of the HSVD algorithm with the modified de Rijk
strategy, when n and G are fixed while m varies. By taking n = 4096 and letting m range
from 0 to 3584 in increments of 512, we observe and summarize in Table 5.3 that, when m
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FIG. 5.5. The relative error in det(V̂ ) for the last 1352 single precision values not over tmax.

gets near n/2 either from below or from above, i.e., when the total number of hyperbolic
transformations to be performed in a cycle grows, it induces a drop in the J-orthogonality of
the final V and a slower convergence. Similar conclusions can be drawn with the row-cyclic
strategy. In this sense, the choice of m = n/2 for the rest of the tests is justified.

TABLE 5.3
The HSVD results obtained with the modified de Rijk strategy, n = 4096, and G fixed, for various m.

m cCdR tCdR ρCV [dR] cRdR tRdR ρRV [dR]

0 16 74702603 3.01958 · 10−12 16 72576954 2.80047 · 10−12

512 17 79529392 6.20928 · 10−11 16 75784726 2.51998 · 10−11

1024 18 84337990 1.14484 · 10−10 16 79848476 7.18952 · 10−11

1536 18 91804903 2.31207 · 10−10 17 85805074 1.18419 · 10−10

2048 18 83016895 4.60046 · 10−10 17 78953756 1.30368 · 10−10

2560 18 92829473 2.11188 · 10−10 19 88212777 9.28746 · 10−11

3072 18 87312434 9.61531 · 10−11 16 83928167 6.75265 · 10−11

3584 16 79426059 6.37419 · 10−11 15 77184610 2.46849 · 10−11

6. Conclusions and future work. In this paper, the global convergence of the J-Jacobi
method under the de Rijk pivot strategy is proven, and its asymptotic quadratic convergence is
discussed. Alongside the improvements of accuracy of the trigonometric and the hyperbolic
rotations, this opens the way for applications of the method in real-world scenarios, where
the generalized Hermitian eigendecomposition (i.e., the two-sided variant) or the hyperbolic
singular value decomposition (i.e., the one-sided variant) is required, since the numerical
tests suggest that the (modified) de Rijk strategy has a faster convergence rate than the well-
established row-cyclic strategy, with an at least comparable accuracy.

However, similarly to the Jacobi-SVD with the de Rijk strategy from LAPACK (when
J = I), the proposed elementwise J-Jacobi method is inherently sequential, and the possibili-
ties for improving its performance are limited. Thus, for larger problems, a careful blocking
and parallelization of the blocked method is essential.
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As suggested in Section 5, the departure from J-unitarity of the accumulated transforma-
tion matrices grows with the number of transformations applied. Therefore, the block size
should not be too large, i.e., it should correspond to the size of the lower levels of the cache
memory, and a consideration in this context whether to employ the block-oriented [21] or the
full block [22] method is warranted.

No serial strategy adequately maps to the massive parallelism of modern accelerators
such as GPUs. In the CPU world, however, the de Rijk strategy has its place at the innermost
level of blocking. It might be argued that even there, a parallel strategy can be taken for the
J-Jacobi method since the long vector data types make computing several rotations at the
same time possible [31]. This is true for the standard formulas for both the hyperbolic and the
trigonometric Jacobi rotations, but the more accurate ones, as described, require the correctly
rounded functions that, at the time of writing, operate only on scalars and not yet on SIMD
vectors. The serial de Rijk strategy is therefore an excellent choice for the core J-Jacobi
method in an efficient block-parallel CPU algorithm for the generalized Hermitian EVD or the
HSVD, which will be a part of future work.

It is an open problem to see how the de Rijk pivot strategy compares to the classical
optimal pivot strategy in the context of the J-Hermitian eigenvalue problem. The latter
strategy has recently been modified to work with blocks on parallel machines. It is known by
the name dynamic ordering (see [3, 4, 35]).

In [17] it has been shown numerically that the de Rijk pivot strategy stabilizes the process
and reduces number of iteration steps for the complex HZ method for solving the positive
definite generalized eigenvalue problem Ax = λBx with complex Hermitian matrices A and
B. This suggests that further research, which includes proving global convergence of the
real [16] and complex HZ and CJ methods [17, 18] under the de Rijk pivot strategy, would be
needed.

Finally, we note that the modified de Rijk strategy, as described in this paper, can be further
refined to obtain a “quasi-cyclic” pivot strategy that makes the J-Jacobi method cubically
convergent per “quasi-cycle” (cf. [27, 36]). Here, a “quasi-cycle” includes around 1.25N
trigonometric and hyperbolic transformations and at most 2(n− 4) transpositions.
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