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BAYESIAN IDENTIFICATION OF MATERIAL PARAMETERS IN VISCOELASTIC
STRUCTURES AS AN INVERSE PROBLEM IN A SEMIGROUP SETTING*
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Abstract. This paper considers the nonlinear inverse problem of identifying the material parameters in viscoelastic
structures based on a generalized Maxwell model. The aim is to reconstruct the model parameters from stress data
acquired from a relaxation experiment, where the number of Maxwell elements, and thus the number of material
parameters themselves, is assumed to be unknown. This implies that the forward operator acts on a Cartesian product
of a semigroup (of integers) and a Hilbert space, and thus demands an extension of existing regularization theory.
We develop a stable reconstruction procedure by applying Bayesian inversion to this setting. We use an appropriate
binomial prior that takes the integer setting for the number of Maxwell elements into account, and at the same
time computes the underlying material parameters. We extend the regularization theory for inverse problems to this
special setup, and prove the existence, stability, and convergence of the computed solution. The theoretical results are
evaluated by extensive numerical tests.
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1. Introduction. We consider the problem of identifying material parameters in visco-
elastic structures. Parameter identification represents a challenging class of inverse problems
having important and demanding real-world applications. These include, for example, the
identification of the distortion energy density of hyperelastic materials [2, 19, 30, 49, 50, 57],
the surface-enthalpy-dependent heat fluxes of steel plates [43, 44], inverse scattering prob-
lems [7], the estimation of parameters from waveform information [10], the inverse kinematic
problem [31], electrical impedance tomography [4], or terahertz tomography [55] to name
only a few. All these problems have in common that they are usually nonlinear and (locally) ill-
posed. This means that even small errors in the measured data lead to large inaccuracies in the
computed solution, if no regularization is applied. There exists a vast amount of literature for
solving inverse problems in Hilbert and Banach spaces, such as, e.g., [12, 27, 29, 33, 40, 48].
The problem that is considered in the present paper needs an extension of the existing theory
to spaces that show only the structure of a semigroup.

Understanding how a material deforms when a force is applied is essential for many
industrial applications, ranging from food processing, additive manufacturing, structural health
monitoring [15], seismics [41], to product design [3].

There are several publications dealing with the identification of viscoelastic parameters.
However, these differ from the present work by several features. In [11, 52] viscoelastic
structures are considered and their material parameters identified, but instead of the generalized
Maxwell model they use different modeling. A comparable model is used in [9]. There,
however, only the stiffness of a viscoelastic material is reconstructed. The relaxation times as
well as the number of Maxwell elements are assumed to be known. Relaxation experiments in
combination with cyclic tests are used in [46] to determine the basic stiffness and the material
parameters of four Maxwell elements. There, the number of Maxwell elements is known a
priori; see also [14, 37, 51]. Babaei et al. [1] propose two methods for solving the underlying
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inverse problem. The so-called ad hoc method first guesses the number of Maxwell elements
n and subsequently reconstructs the material parameters for fixed n. Our approach differs
from this procedure, since the computation of n is part of the algorithm and the computation
of the parameters is done simultaneously. Their second approach [1], the discrete spectral
approach, distributes about 1000 relaxation times equidistantly in a logarithmic scale over the
interval [10~1, 103]. This drastically simplifies the reconstruction and only requires solving
a system of linear equations to calculate the stiffnesses. Then, the dominant parameters are
identified and the correct number of Maxwell elements is found, although this process and the
handling of the remaining parameters are not described in more detail.

We use a generalized Maxwell model, which is characterized by an unknown number of
Maxwell elements n and material parameters (relaxation times 7; and stiffnesses f, 11;). This
means that the exact solution determines at the same time the number of parameters to be
determined, a feature that has to be included in the modeling process. The forward operator,
whose construction is outlined in Section 2.2, maps the material parameters and the number
of Maxwell elements to the stress function. This function describes the time history of stress
in the material during a relaxation experiment, where a strain is applied to the material and
kept constant. The forward operator acts on a Cartesian product of a semigroup (the integers
N) and a Hilbert space (¢?(N)). In Section 2.3 we define the inverse problem of determining
the number of Maxwell elements and simultaneously the material parameters from the stress
function.

Unfortunately, the use of a large number of parameters often leads to overfitting a noisy
data term and thus to unavoidable errors in the parameters. In a previous paper [45], the
authors developed a clustering algorithm adapted to this problem. But it shows a strong
error susceptibility to noisy data. As a solution, we propose in Section 3 a novel method
using statistical Bayesian inversion theory. This uses a binomial prior to estimate the number
of Maxwell elements. The developed algorithm alternately searches for a suitable solution
for n and the material parameters by minimizing an appropriate Tikhonov functional. The
minimization is done in N x ¢?(N) and, hence, the standard theory for regularizing Tikhonov
functionals does not apply, since it uses Hilbert and Banach space settings (cf. [12, 20, 22, 48]).
To this end we extend the regularization theory for Tikhonov functionals to this particular
setting, where we consider the integers N as a topological semigroup endowed with the discrete
topology. Proofs for the convergence and stability of our proposed algorithm is the subject of
Section 4.

Numerical validation of the theoretical framework is done in Section 5. For this purpose,
we introduce the clustering algorithm from [45] in order to compare the reconstruction results
of the different algorithms. We perform experiments using different exact and noise-perturbed
data sets. We analyze different displacement rates of the strain function in the relaxation
experiment, and consider the effect of the success probability associated with the binomial
distribution of the prior. Additionally, we introduce different penalty terms with respect to the
material parameters and analyze their influence on the reconstruction results.

Summarizing, the paper contains the following innovations:

o extending regularization theory to forward operators acting on the Cartesian product
N x £2(N), where the integers form a topological semigroup,

e dependence of the number of material parameters on the number of Maxwell elements
n, and thus on part of the inverse problem solution itself,

e Bayesian inversion approach using a binomial prior, and

e proof of regularization property (existence, stability, and convergence of solutions)
for our approach.
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2. A rheological model for viscoelastic material behavior.

2.1. Viscoelastic materials. We introduce the rheological model of a viscoelastic mate-
rial, which we use as the starting point. For comprehensive introductions to the phenomenolog-
ical behavior and modeling of viscoelasticity, we refer to textbooks such as [53, 56]. Figure 2.1
shows the typical shape of a standard specimen that is clamped at the thick ends and loaded in
the direction of the arrows. According to Saint Venant’s principle (see [54]), the disturbances
caused by the clamping at the ends of the specimen decay after a short distance. Therefore, we
can assume that the strain and stress state at the center of the specimen is homogeneous and
we can use a one-dimensional model.

FIG. 2.1. Standard specimen and generalized Maxwell model with unknown number of Maxwell elements n and
2n + 1 material parameters.

The force and extension of the specimen are measured and can be used to make direct
calculations from the strain and stress. We consider the following relaxation experiment: For
a given strain rate ¢ and a maximum strain value &, the strain in a time interval ¢ € [0, 7] is
given as

e(t) = .
g, E&le<t<T.

{s'u 0<t<e/e,

The function is plotted in Figure 2.2 and describes the following procedure: The material
is stretched until a maximum strain value € is reached at a strain rate €. The strain rate is
¢ = &,/lo with the displacement rate ¢,,, given by the testing device, and specimen length [g.
Thus, the maximum strain is reached at time ¢ = &/¢. After that, the applied strain is kept
constant.

The simplest model of a viscoelastic solid is a three-parameter model consisting of a
parallel combination of a Maxwell element with a spring (compare [17, 25, 46]). If one applies
a strain to such a solid model, both springs will stretch. If the strain is then kept constant during
the rest of the experiment, the damper expands according to its relaxation time. To incorporate
this behavior into our model, we will use an arbitrary, unknown number of Maxwell elements
instead of a single one. This leads us to the generalized Maxwell model, also known as the
Maxwell-Wiechert model (compare Figure 2.1). The number of Maxwell elements can be
expanded to any number n, with the relaxation time 7; in each of the dampers and the stiffness
of the spring y1; in each of the Maxwell elements. The stiffness of the individual spring is
denoted by u. If all Maxwell elements relax to zero stress value, the equilibrium position is
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FIG. 2.2. Strain curve £(t) with strain rate &€ and maximum strain value E.

reached, and the single spring with stiffness p represents the basic stiffness of the material,
which ensures that the material does not behave like a liquid.

The deformation of the material represented by the strain value ¢ is divided into an elastic
component 5 and an inelastic component s} in each of the Maxwell elements. The elastic
component corresponds to the strain of the spring and the inelastic component to the strain
of the damper. Since the strain of the damper depends on its relaxation time, an evolution
equation based on the entropy principle is used to model the change of the inelastic strain with
time [24, 39]. For small deformations, the evolution equation is given as

. e(t) —ei(t)

2.1 et(t) = ——L~,
@ =""""73
where 5; represents the time derivative. The total stress generated in the system is then given
by the sum of the stresses induced in each of the springs. Assuming linear elastic behavior of
the springs, this results in

2.2) ot) = pe(t) + Z 1 (e(t) — i(t)).

The total stress (2.2) is the sum of the stress of the individual spring, as well as the stresses in
the various Maxwell elements. The latter depend on the inelastic components of the strain,
which are determined by the evolution equation (2.1).

Apart from mechanics [39], the evolution equation (2.1) has also been used in other
applications such as magnetic particle imaging [8] to model relaxation. Its solution can be
formulated analytically as

t —t ~
e;i(t)z/ (D)2 exp <—2t t) di.
0 Tj Tj

If we use this solution, we can also represent the total stress analytically (cf. [45]). The stress
o; of the jth Maxwell element with j > 1 and the corresponding stiffness y; and relaxation
time 7; at time ¢ € [0, T'] is then represented as

(2.3) oj(t) = “JTTJE n(t, 7;),
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with

” seeree (oo (2o 2] ) e (-20))

where [z]T := max{0, z}. The function (¢, 7) has properties that will prove useful later on
and are summarized in the following lemma.

LEMMA 2.1. The function n(t,T) is bounded on [0,T] x (0,400), with |n(t,7)| < 7.
For fixed t € [0,T), it is uniformly continuous on all closed intervals [y1,v2] with
0 < 71 < 72 < 400 and differentiable on (0,400). Furthermore, n(-,T) is continuous
on [0, T) for all 7 € (0, +00).

The stress of the single spring, denoted by o, can be specified with the corresponding
stiffness p as
pét, 0<t<z/e,

(2.5) oo(t)=49 .
ué, /e <t<T.

According to these calculations, the total stress can be written as the sum of the stresses of the
single spring and of the Maxwell elements, i.e.,

(2.6) o(t) = Z a;(t).

In view of Lemma 2.1, o(¢) is continuous on [0, T']. The inverse problem, finally, consists
of identifying the material parameters from the measured stress using equation (2.2). The
material parameters include the stiffness of the individual spring u, as well as the stiffnesses
W1, - - .,y and relaxation times 7y, . . ., 7, of the Maxwell elements. We emphasize that in
our problem setting the number of Maxwell elements 7 is assumed to be unknown and has to
be computed as part of the solution, which, on the other hand, affects the number of material
parameters to be determined. In this view the investigated inverse problem goes beyond
existing approaches. The strain € is known and the inelastic strain e§- must be determined for
all Maxwell elements ¢ = 1, ..., n from equation (2.1).

REMARK 2.2. We note that existing and well-established methods for parameter identifi-
cation in exponential sums such as Prony’s method, MUSIC, or ESPRIT (see, e.g., [21, 38, 42])
cannot be extended to our situation in a straightforward way, since o (¢) in (2.6) is not a pure
exponential sum. Moreover, the mentioned methods need a known number of Maxwell
elements n. Hence, our method goes beyond the setting used in these methods.

2.2. The forward operator. The forward mapping associated with the inverse problem
described in Section 2.1 is given by

F:D(F) CNx *(N) — L*([0,T]), (n,z)+ F(n,z):=o,

where the sequence & = (i, i1, 1, - - -, fhn, T, 0,0, ...) € £2(N) contains the material pa-
rameters. Hence, F' maps n € N and z € (%(N) to the stress o(t) from (2.3)—~(2.6) with the
number of Maxwell elements n. Since the number of material parameters depends on n, we
cannot predict a priori how many unknowns have to be determined. This is why we choose
x € (?(N) allowing for a variable number of material parameters.
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We fix a finite, physically reasonable subset I C N representing the number of Maxwell
elements, and set

D(F) ={(n,x) € I x *(N): z:= {Zm}men, Tm € RT, m € N;
Tm =0, m>2n+1; zo;41 >7y,i=1,...,n}

with an arbitrarily small but fixed number v > 0. The stiffnesses p, j41, . . ., tt, are nonnegative.
From (2.3) it follows that 7; > 0 for¢ = 1,...,n. So, there exists an (artificial) parameter
~ > 0 with 7; > ~ implying that D(F) is closed. This will be relevant in Section 4. Without
loss of generality, we stick to the convention 73 < 75 < --- < 7,. For fixed n, we denote by
F, : D(F,) C £*(N) — L*([0,T]) the mapping F),(z) := F(n, z). Then, we have

2.7  D(F,) ={r:={xm}tmeny € F(N): z,, €R}, meN;
Ty =0, m>2n+1; Toiy1 27, 1:177’”}

2.3. The inverse problem. The inverse problem is formulated as computing n and x as
the solution of

(2.8) F(n,z) =0°

from given, maybe noise-contaminated, stress measurements o with ||o® — o|| < §. Note
that I’ depends on the discrete variable n as well as on the sequence x, where n especially
represents the number of material parameters to be determined corresponding to the nonzero
elements in z € ¢?(N). Thus the number of material parameters depends on parts of the
solution. This is an unusual situation in the field of inverse problems and differs from the theory
in classical textbooks [12, 27, 33, 40]. We develop an iterative solver relying on statistical
inversion theory leading to the minimization of a Tikhonov functional

To(n,z) = %HF(n,z) - 575||2 + aQ(n,x),

where o > 0 is a regularization parameter and {2 represents an appropriate penalty term.

3. A regularization method based on Bayes inversion. In this section we use Bayes in-
version theory to develop a regularization method for (2.8). We first focus on the reconstruction
of n, the number of Maxwell elements.

Let ¥, N, X, and E be random variables, where the stress o is interpreted as the
realization > = o, the random variable N attains integer values and describes the number
of Maxwell elements, X are the material parameters, and F is the additive noise.! Thus, the
inverse problem (2.8) can then be written as

Y =F(N,X)+E.

We determine the maximum a posteriori (MAP) estimator using the Bayes theorem and
obtain

nmap = argmax po(n)p(c|n)
neN
or, equivalently,

maap = arg min{ — log(p(o]n)) — log(po(n))}-

'We emphasize that in Section 3 the variable o denotes the stress and not variance.
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We introduce the notation ®(n|o) := —log(p(n|o)), p(o|n) := —log(p(c|n)), and ¢pg(n) :=
—log(po(n)), turning the minimization problem into

nvap = arg min &(nfo) = arg min{é(o|n) + do(n)}-

We assume that N and F as well as X and F are stochastically independent. Let ppoise (€)
be the probability density of the noise. Then,
p(0|n) = pnoise(U - F(n; 37))

In our application, we suppose E ~ N(0, a?), that is,

PN P —
noise 27ra2 20,2 b
whence

1
+ 5 lell?

1
— log(pnoise(e)) = —log (\/W) 2a?

follows. Thus, the likelihood function reads as

$(0|n) = Guise (0 — F(n,2)) = —10g(puoise(0 — F(1,2))) o< [lo — F(n, z)]|*.
Minimizing ¢(c|n) for n is, thus, equivalent to minimizing ||o — F(n, z)]|?.

As prior, we use the binomial distribution. It describes the number of successes in a series

of independent trials that have two possible outcomes. Let M be the number of trials and

0 < ¢ < 1 be the probability of success in a single trial. Then,

B(nlq, M) = (f) g"(1— g™

is the probability of achieving n successes. The usage of a binomial distribution for n
is motivated by the common strategy of subdividing the interval of relaxation times into
subintervals of different decades and assuming that each decade contains a Maxwell element;
see [46]. In our approach, the probability of every one of the M intervals containing an element
is given by g, yielding more flexibility in the model. So, the approach can be described as
guessing the number of Maxwell elements in a clever way and subsequently determining the
material parameter by minimizing ¢(o|n) for z.

To do this, let I C N be a finite set of integers and M := max I the maximum possible
number of Maxwell elements. Then, the prior is given as po(n) = B(n|g, M) and ¢o(n) =
—log(po(n)). Thus, minimizing

M

. ) 2 n M—n

n —areminXk |lc® — F €T —lo 1-—

MAP rgnel {” (”» )H g((ﬂ)‘l( Q) >}

with 0 < ¢ < 1 results in finding the maximum a posteriori distribution nyap. To evaluate
this functional,  must be calculated for each considered n. Section 3.2 explains this step in
more detail. To control the influence of the penalty term, we use a regularization parameter
a > 0 and change the minimization finally to

M
60 e = argmin {10° = Pl - atog (2 )ara -9 |

REMARK 3.1. It might be confusing that we define the prior for arbitrary I and, thus,
M. But the consideration of different materials can lead to different intervals I in D(F'), and
the developed framework has to be applicable for all these choices. Another interpretation
of setting the prior to B(n|g, M) is that this is the distribution conditioned to the specific
definition of D(F).
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FIG. 3.1. The binomial distribution po(n) and ¢o(n) for ¢ = 0.1 (left) and q¢ = 0.5 (right).

3.1. Impact of g on the minimization. The probability density of the prior py depends
on the choice of success probability ¢ € (0,1). We briefly investigate how different values
of q affect the prior py and, thus, ¢. For this purpose, we assume a maximum number of
M = 10 Maxwell elements. On the left-hand side of Figure 3.1 one can see the binomial
distribution po(n) = B(n|g = 0.1, M = 10) (blue bars), and ¢o(n) = —log(B(n|0.1,10))
(red line) for n = 0, ..., M. The right-hand side of the figure shows the corresponding plots
for ¢ = 0.5.

Since ¢g(n) increases with n, a large number of Maxwell elements are penalized in (3.1).
Figure 3.1 shows the priors pg(n) and the corresponding penalties ¢o(n) for different values
of ¢ = 0.1 and ¢ = 0.5. Obviously small success probabilities ¢ penalize a large number of
Maxwell elements significantly, whereas larger ¢ favor larger n. So, in order to get a good fit
of the measured data with only a small number of elements, it is recommended to keep g small.
The numerical results in Section 5.5 will confirm that. In this view ¢ acts as an additional
regularization parameter enforcing sparsity with respect to  for small gq.

3.2. The Bayes algorithm. In this section we develop an alternating iterative algorithm
for the stable approximate solution of (2.8). The idea is as follows: For fixed n € I compute a
minimizer 2 € D(F,,) of the Tikhonov functional
3.2 in Tsn(z):= min {i|F(n,z)-0o°]>+aQ
(3.2 oo, T, (x) xeggn)b [F(n,z) — 0| + a(z)}
with a penalty term 2 : EQ(N) — R, which serves as an additional stabilizer, and a corre-
sponding regularization parameter 5 > 0. The existence of a unique minimizer is dealt with in

Section 4.2.
Numerically, we use an iterative solution method with several initial values for

(M(O),Mgo),ﬁ(o),...,u%o),T,(LO),O,O,...).

The initial values are distributed over the possible range of parameter values. The use of multi-
ple initial values is necessary because of the nonlinearity of the problem causing the existence
of multiple local minima. For each of these initial values, the Tikhonov functional (3.2) is
minimized using the functions Isgnonlin and MultiStart from the MATLAB Optimization
Toolbox [34]. The function Isgnonlin is a subspace trust-region method and is based on the
interior-reflective Newton method described in [5, 6]. In this way, we define a mapping

R:1— |JD(F,) c #(N)
nel
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by n + z. After the computation of =}, we minimize

min @(nlo) =iy {|F(n. ) — o* P~ atog ()1 = ) |

i
neN neN

Note that such a minimizer exists since I is finite. Denoting the minimizer by n, we start the
procedure again with n replaced by n.
The algorithm needs the following input values:
e the success probability 0 < ¢ < 1, where ¢ — 1 favors a large number of Maxwell

elements n,
e measured data o, and
e [ :={ny,...,np} C Nwithn; < --- < n,,, where n,, = maxI =: M is the

pre-selected maximum number of elements.
As initialization of the algorithm, we choose & = 1 and ny := ny, which correspond to
the smallest possible number of Maxwell elements. Subsequently, we compute = = R(nq)

and calculate ®(n|o). In the next step, we want to determine [ € {1,...,m — k} satisfying
(3.3) D (ngpi]o) < ®(nglo).

This means that we have to compute Ty = R(ng+1) and ny4y from (3.1) for each ! to
evaluate the expressions ®(ny;|o). If an appropriate [ € {1,...,m — k} satisfying (3.3) is

not found, then we stop the iteration, accepting (ng, ) as the result. Otherwise we replace
k := k + [ and repeat the procedure to find [ with (3.3) until the stopping criterion is achieved.
Summarizing, the algorithm reads as follows:

ALGORITHM 3.1.
Input: 0 < ¢ < 1, M := max I := max{ny,...,nn,}, o € L?([0,T]), a, 3 >0
1) Let k = 1 and ny, := nq, compute xf = R(ng).
2) Forl=1,...,m — k and while ®(nyy;|0) > ®(nk|o) calculate x/,jH = R(ng+1)
to evaluate ®(nj11|0).
3) If no such l exists, then STOP. Otherwise proceed with step 2).

Output: (nk,xf)

Algorithm 3.1 is an iteration scheme minimizing alternately ®(n|o) by (3.1) and T, ,,
with respect to . Since [ is finite, the existence of a minimizing ny is guaranteed and we
obtain that Algorithm 3.1, if we set & = S, iteratively computes a minimizer of the Tikhonov
functional

34 in T (n,
©h (n.a)ED(F) a(n,2)

O T N 1 W

with a (possible generic) regularization parameter o > 0.

4. Convergence, stability, and regularization in N x £2(N). This section is devoted to
prove the convergence, stability, and regularization properties of Algorithm 3.1. We extend the
well-established regularization theory to N x ¢?(N), which is necessary since it does not apply
to discrete semigroups as N. Using the new framework, we are able to prove the convergence,
stability, and regularization properties for Algorithm 3.1.

A comprehensive treatise of regularization methods can be found in the textbooks [12,
33, 40]. Nonlinear inverse problems in particular are the subject of [27]. In this paper we
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focus on Tikhonov regularization; see, e.g., [13, 27, 36, 47]. Other well-known regularization
methods are the Landweber method [18, 26, 28], Newton-type methods [28], or the method
of approximate inverse [32]. We follow the lines in [48, Chap. 4.1] to prove the convergence,
stability, and regularization properties for Algorithm 3.1. Before that, we show that (2.8) is
locally ill-posed.

4.1. Local ill-posedness of (2.8). We consider N x ¢2(N) with the product topologies
(74, 70) and (74, T, ). Here, 7o represents the strong topology in ¢2(N) induced by the #2>-norm

oo

1/2
%2y == <Z xi) for x € £*(N)

n=1

and 7, denotes the weak topology in #2(N). Furthermore, 7; denotes the discrete topology
induced by the discrete metric

d(z,y) = {(1)’ i ; z’ forz,y € N.

A sequence {(n,, Z,)} in N x £2(N) converges if and only if {n,,} converges in N and
{,,,} converges in ¢?(N). A sequence {n,,} C N converges with respect to 74 if and only if
it is constant starting from a certain element, i.e., there exists an my € N with n,,, = const
for all m > my.

By

Umn):={n—-—m,....,n+1}

for some m, [ € Ny we denote a 75-neighborhood of n € Nin N.

DEFINITION 4.1. The mapping F(n,z) = o is called locally well-posed in
(nt,z%) € D(F) if F,(x) = o is locally well-posed for all n € U(n*) N I and all
neighborhoods U(n™) of n™. The mapping F(n,z) = o is called locally ill-posed in
(nT,2%) € D(F) if there exists a neighborhood U(n™) such that F,(x) = o is locally
ill-posed for some n. € U(n) in the sense that, for arbitrarily small radii v > 0, there exists
a sequence {xy} C B,(xo) N D(F,) such that

Fo(xy) — F(x) inL*([0,T)) but x1, A x9 inNx3(N), forn— occ.

THEOREM 4.1. There exists a neighborhood U(n™) of n'* such that F,,(x) = o is locally
ill-posed for some n € U(nt) N 1.

Proof. Letr > 0and o™ = (u*,pf, 7", ..., b, ,75,0,0,...) be fixed. Choose
U(nT) suchthatn =nt +1 € U(n"), and

xz = (M+7MT77-1+7'--7lul:lr+a7-:+,7'/2k/’,7"/2,0,0,...).

Then, (n,z},) € D(F) for all k € N. Furthermore, it follows that

HLL’T—-TJFHQ _i_’_ﬁ_ i_’.l r2<7‘2 forall k € N
k M) T g2 T4 T \4k2 T g .

This yields {2} }xen C By(x™) and from

™)

r

H.’I}}; — .TL'+||%2(N) — Z as k — oo
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we deduce that 2}, /4 =t as k — co. We compute

IFa(ah) = Far oy = [ ' (2 o g))th

rie (T m\?
— t, = t
SkQA 77(,2)d—>0

as k — oo since (-, 7) is continuous and bounded (Lemma 2.1). a

4.2. Algorithm 3.1 as a regularization method. As outlined in Section 3.2, we solve
the inverse problem by minimizing (3.4), where 0 < g < 1 is the success probability, M is the
maximum number of Maxwell elements, « is a regularization parameter, and {2 is a penalty
term satisfying Assumption 4.2. For simplicity, we define

logg(n) := — log (<An4> q"(1— q)M”> :

For fixed n € I we consider the problem
4.1 Fo(z) =0, xeD(F,) CN), oecF,(D(F,))CL*|0,T]),
with D(F,,) the domain of F,, and
F.(D(F,)) = {6 € L*([0,T]) : F.(&) = 6 for ¥ € D(F,)}

the image of F,. The inverse problem (4.1) is solved by minimizing the Tikhonov func-
tional (3.2). As already mentioned, we follow the lines in [48, Chap. 4.1]. For the sake of
better readability, here we repeat two assumption blocks taken from [48] (reproduced as As-
sumptions 4.1 and 4.2), which are essential for turning the minimization of general Tikhonov
functionals

1
4.2) To(z) = ];||F(x) —°||P + aQ(z)

into a regularization method. The first block makes general assumptions about the Banach
spaces X and Y, as well as the operator F' : D(F') C X — Y and its domain D(F).

ASSUMPTION 4.1.

(a) X andY are infinite-dimensional reflexive Banach spaces.

(b) D(F) is a closed and convex subset of X.

(c) Forz, = xgin X, x, € D(F), n € N, and xy € D(F), it follows that F(x,) —
F(xzg)inY,ie, F:D(F) C X —Y is weak-to-weak sequentially continuous.

The next block of assumptions are associated with the penalty term Q(x) of the Tikhonov
functional T, («) and the Q2-minimizing solution z* of the operator equation.

ASSUMPTION 4.2.

(a) For the exponent p in (4.2), it holds that 1 < p < <.

(b) Q is a proper, convex, and lower semicontinuous functional, where “proper” means
that the domain of ) is nonempty. Furthermore

D := D(F) N D(Q) # 0.
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(c) It is assumed that ) is a stabilizing functional in the sense that the subsets
Ma(c) ={z e X :Qz) <c}

in X for all c > 0 are weakly sequentially precompact.
(d) There exists a Q-minimizing solution x+ of the equation F () = vy, which belongs to
the so-called Bregman domain

Dp(Q) :={z €D C X : 0Q(z) # 0},
where 0Q(z) C X* denotes the subdifferential of ) at point .

Penalty terms of the form
1
4.3) Qx) = fell}, 1<q<oo,

are always stabilizing functionals, if X is a reflexive Banach space, as postulated by Assump-
tion 4.1(a). The proof of this result can be found in [48] or [35, p. 251].

We show that Assumptions 4.1 and 4.2 are satisfied for (3.2) by proving that a regularized
solution x‘; exists, that it is stable with respect to the data, and that, given certain conditions,

the regularized solution converges weakly.
Let us start by proving Assumption 4.1 for F), : D(F,,) C ¢*(N) — L?([0,T)):

(@) X = (?(N) and Y = L?([0, 7)) are infinite-dimensional Hilbert spaces and, thus,
reflexive.

(b) The domain D(F},) is closed and convex. Let {z(*)},.cx be a sequence in D(F},) C
¢%(N). Hence, 2% .= {:rm}g:)eN for k € N. Moreover, let z(*) — z* with z* € (?(N)
as k — +oco. But convergence in /2(N) implies componentwise convergence. Thus, it
immediately follows that D(F},) is closed from its definition (2.7).

Let {an}, {bm} € D(F,) and A € [0, 1]. We prove that

{em} = Mam} + (1 = N {bm} € D(F,).

Since a,, = b,, = 0, it follows that ¢, = 0 for m > 2n + 1. Considering c,, for fixed
m < 2n + 1 as a function of A, we get dc,,, /d\ = a,,, — by,. For a,;, > by, the smallest value
for A = 0 can be found with ¢,,, = b,,,. For a,, < b,,, the minimum is ¢,, = a,, with A\ = 1.
In both cases, ¢,;, > 0 holds forall m < 2n + 1 and ¢c9;41 > yforalli = 1,...,n. Thus,
{em} € D(F,), proving the convexity of D(F,).

(c) We show that F), is weak-to-weak sequentially continuous. Let {x(k)} be a sequence
in D(F,,) with z*) — 2* in ¢?(N) and 2* € D(F). Our aim is to prove the convergence

Fo(z®) = 6™ ~ F, (2*) ;=0 in L?([0,T)).

By the uniform boundedness principle, every weakly convergent sequence is bounded. More-
over, in £?(N), it holds that a sequence is weakly convergent if and only if it is bounded
and converges component-by-component. In L2([0,T]) a sequence converges weakly, if it is
bounded and converges pointwise (see [23]). We apply this in the following steps:
1. We show that F}, maps a bounded sequence {z(*)}  D(F,,) C ¢*(N) to a bounded
sequence.
2. We show that from weak convergence in ¢?(N), and thus the boundedness and
component-by-component convergence of xgi) — z, the pointwise convergence of
(k) PAIIEC s i L2([0, T)) follows.

From 1 and 2, we obtain the weak convergence ok o,
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Proofs of 1 and 2.

1. We have 2% = {z{¥)},, . for all k € N. Moreover, {z()} is bounded as a weakly
convergent sequence, that is, there exists S € R, such that [|z(®)|| 2y = (32 sﬁle\xgi)ﬁ)lm <
S holds for all k£ € N. Since (%) € D(F,) we have x,gf) =0form > 2n + 1 and ng) >0
for m < 2n + 1. Tt follows that 2*) < S for all m, k € N. Let k € N. Then,

(k) (k) - 2
(k) |2 [ Laj xz]HE (k) d
o N 22 o,) = ; )+ Z n(t, x5;50,) | dt

j=1
g2z \2
T<S§+n2€77> < 00,

where we used (2.4) and Lemma 2.1. Thus, ¢(¥) is bounded for all & € N, implying that the
sequence { F,,(z*))} is bounded.

2. We have component-by-component convergence xg,]f) LR xy, for all m € N, which
means Vm € N, V¢ > 0, 3K(m) € N, such that Vk > K(m), the following holds:
|xm — x| < ¢. Since z¥) € D(F,), k € N, z* € D(F), and thus k) = xf, = 0 for
m > 2n+ 1, k € N, we can choose K := max{K(m) : m = 1,...,2n + 1}, such that
V¢>0,dK € NwithVm € N, Vk > K, the following holds: \xﬁ,’f) —z} | < ¢. We want
to show that ¢(¥) — o* pointwise, which means V¢ € [0, 7], Yw > 0, 3M € N, such that
Yk > M, the following holds: |¢(¥) (t) — o*(t)| < w.
Lett € [0,T],w < O arbitrarily, and k¥ > K. We estimate

o™ () — o™ (1))

< ‘xg —x1|5T+Z

(k) (k) % 2
Z‘zj ]"2]4’15 (t (k) ) B xsz2j+1€ (t . )
2 2j+1 2 » V2541

< CaT—i— Z ’77 t, xé’jll (taijJrl)"

Since 7(t, -) is uniformly continuous on the closed interval [y, max{7;}] (Lemma 2.1), we
obtain

o™ () = o* ()] < w,

only if K is sufficiently large. This shows the pointwise convergence of o(*) — o* as
k — oo. a

This completes the proofs of 1 and 2, and thus of all three parts of Assumption 4.1.

Next, we turn to Assumption 4.2 (applied to (3.2)). The exponent in (3.2) is p = 2 and,
thus, Assumption 4.2(a) is satisfied. Assumptions 4.2(b) and (c) depend on the used penalty
term (). For the numerical evaluations in Section 5.6 we apply the penalties

Qi(z) = &[jz]® and Qy(z) = 123
forz € /2(N)and 0 < v < z3 € R. Both penalties, 2; as well as 25, have a nonempty
domain and D := D(F) N D(€;) # 0 holds true for i = 1,2. Both functionals are convex
and continuous, which also implies the lower semicontinuity. Thus, Assumption 4.2(b) is
satisfied for 2, and §25. As already mentioned, penalty terms {2(x) of the form (4.3) satisfy
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Assumption 4.2(c). So, Assumption 4.2(c) is fulfilled for €21, but not for {25. Nevertheless, we
use {25 in the numerical experiments in Section 5.6, since investigations in [9] have shown that
the reconstruction of the smallest relaxation time is always ill-conditioned and numerical tests
show that such a penalty, indeed, stabilizes this process. The existence of a {2-minimizing
solution 2 to the problem (4.1) which belongs to the Bregman domain Dy (1) is postulated
such that Assumption 4.2(d) is also satisfied.

In the following we aim to prove the regularization property of Algorithm 3.1. To this end
we need the concept of a {2-minimizing solution.

DEFINITION 4.2. We call (n™,27) € D(F) C N x (?(N) a logg-Q-minimizing solution
of 2.8)if

Fint,zt) =0
and
logg(n™) + Q(z™) = inf{logg(7) + Q%) : (i, %) € D(F), F(R,i) =0}
holds true for exact data o € L*([0,T)) in (2.8).

Since N x £2(N) is a Cartesian product of a semigroup and a Hilbert space, we extend the
definition of a regularization method to such structures.

DEFINITION 4.3 (Regularization in N x ¢2(N)). A mapping that assigns each pair
(00, 0) € L2([0,T]) x (0, &) with0 < & < +00 to well-defined elements (n%,, z°) € D(F) is
called regularization (regularization method) for (2.8) if there is a suitable choice o = a(y‘s, J)
of the regularization parameter, such that for any sequence {0, }5°_, C L?([0,T)) with

lom — ol <0 and 6, — 0 form — oo,

the corresponding regularized solutions (ni?y 5)? :ci?y s )) converge in a well-defined

sense to a solution (n™,x) of (2.8). Since the latter is in general not unique, regularized
solutions must converge to logg-Q-minimizing solutions of (2.8). In the case of nonuniqueness,
different subsequences of regularized solutions may converge to different logg-Q)-minimizing
solutions of (2.8).

For convergence, we consider primarily the product topologies (74, 79) and (74, 7, ). We
have shown that for all & > 0, n € I, and 0° € L%([0, T)), there exists a regularized solution
2% € D(F,) minimizing the functional T,, ,,() (3.2) in D(F,,). Since [ is finite, there exists
a solution (n? , 2% ) that minimizes the functional T, (n, z) (3.4) in (n,z) € D(F).

(a2 «
THEOREM 4.2 (Stability). For all o > 0, the minimizers of (3.4) are stable with respect
to the data o°. Let {0,,} be a sequence of data with lim,, ;. ||, — 00 |2 (f0,77) = 0 and let
{(Mm, Tm )} be the corresponding sequence of minimizers of

i 1 F y —O0Om 2 1 Q :
o min A5 IF(,2) = onl* + allogg(n) + Q(x)]}

Then, {(Nm, Tm)} has a (T4, Tw)-convergent subsequence { (N, , Tm,, )} The limit of each
such subsequence is a minimizer (n%,, x°) of (3.4). Moreover, for any such (74, T, )-convergent

[eRade
subsequence

(logg(1m,) + Qzm, ) = logg(ng) + N(a2)

lim
k—oo

holds true.
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Proof. Since {n,, } C I and I is finite, there must be a 74-convergent subsequence {7, },
which means that there exists a kg € N such that for all £ > ko we have n,,,, = n. For k > ko,
Zm, can be considered as the minimizer of

3l1Fa () = omll* + af(z)

for fixed 2. Then, by [48, Prop. 4.2], there exists a subsequence {z,, } with ,,,, — Z, where
Z is a minimizer of

T i(2) = 3| Fa(z) — 0% + af)(z)
and

lim Q(x,, ) = Q(x‘S ).

el
k—o0

Moreover, F(nm, , Tm,) = Fa(tm,) — Fa(Z) as k — oo, since Fj is weak-to-weak
sequentially continuous, and hence it follows that F(n,,, , Ty, ) — O, — F (7, &) — o® for
k — oo. Since the L?-norm and €2 are weakly lower semicontinuous, we deduce

LIE (L 2) — 00 < laninf §|[F(nn. 201,) — |
Q(2) < liminf Q(ap,, ).
k—o0
Since for k& > ko we have logg(n,, ) = logg(n), it furthermore follows that
logg(n) < lim inf logg(nm,,, )
k—o0
and thus
5|1F (7, 7) — || + allogg(R) + ()]
< hkrggf(%HF(nmmxmk) — Omy, ||2 + allogg(nm,,) + Qzm, )])
< I 3|F(n,2) ~ o, | + aflogs(n) + ()
= 3I1F(n,2) = o°||* + aflogg(n) + Q(x)],

where (n,z) € D(F) is arbitrary. This shows that (72, Z) is a minimizer of (3.4). If we choose
x = & and n = n on the right-hand side, it follows that

sIE (7, 2) = o°|* + aflogg(n) + Q()]
- klingo(%”F(nmkaxmk) - Umk ”2 + O‘[logg(nmk) + Q(xmk)])'

Moreover, limy o0 (21, ) = Q) and limy, o logg(n,,, ) = logg(n?) hold. Thus, we
finally get

Jim (logg(nm, ) + Q(xm,)) = logg(ny) + Q(x7),
completing the proof. O

We finally prove convergence of the method and, in this way, the regularization property.
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THEOREM 4.3 (Convergence). Let {o,, := o°»} C L*([0,T]) be a sequence of
perturbed data, and o € F(D(F)) be exact data with |0 — o, || < O, for a sequence {0,, >
0} of noise levels converging monotonically to zero. Moreover, consider a sequence {c,,, > 0}
of regularization parameters and an associated sequence {(n, = nd" | x,, = %)} of
regularized solutions which are minimizers of

%HF(n, x) — UmH2 + apllogg(n) + Q(x)]  for (n,x) € D(F).
Under the conditions

4.4) lim sup(logg(nm,) + Q(2,,)) < logg(ng) + Q(xo)
YV (ng,x0) €{ne€l, x € D:=D(F,)ND(Q): F(n,z) =0},
and

4.5) lim ||F(nm,Zm) — om| =0,

m—r oo

the sequence {(ny,, m)} has a (14, T, )-convergent subsequence, where each limit is a logg-
Q-minimizing solution (n*,x%) € D(F) of (2.8). Additionally, if the logg-Q2-minimizing
solution (n, ) is unique, we obtain the (74, T, )-convergence

(Mmy Tm) = (nt,27) in N x 2(N).

Proof. As in the proof of Theorem 4.2, we can conclude for the sequence {n,, } that it
has a convergent subsequence {7, } with n,,, — 7. That is, there exists a ko € N such that
for all k > ko we have n,,,, = n. From (4.5) it follows from 6,,, — 0 for m — +o0 that

(4.6) lim ||F(nm,zm) — o < li_r>n | F (N, ®m) — omll + lom — o] = 0.
m— o0 m oo
Additionally
1E (e, @) | < Nloml| + [1F (2m; 2m) — om|

holds for all m € N. Since lim;, 00 0y, = 0 and limy, oo || F (N, Zm) — om]] = 0
according to (4.5), both ||y, || and || F (N, ) — 04, || are bounded. Thus {F(ny,, m )} is
bounded and there exists a weakly convergent subsequence {F' (1., , Tm, )} in L?([0,T]). So
we can choose a subsequence {(7m, , Tm, )} such that n,,, = 7 is constant for all k£ € N.
yielding

{F (g, ©my )} = {F (7, 2my. ) }-
By [48, Theorem 4.3] there exists a subsequence {z,,, } with z,,, — Z, and (4.6) leads to
F(n,z) =o.
From condition (4.4) we deduce that
logg(n) + (&) < lim inf(logg(nm,.) + Qwm,)) < lim sip(logg(nmk) + Q(@m,.))
< logg(n™) + Q(a™) < logg(no) + (o)

for all (ng, zo) € D(F) with F'(ng, zo9) = o. If we set (ng, xo) = (71, &) this leads to

logg (i) + Q(&) = logg(n™t) + Q(z™)
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and thus (7, Z) is a logg-Q2-minimizing solution. Moreover,
lim_(logg(ms,) + Rz)) = logg(n®) + Qa).

If (n, ™) is unique, then we have (74, 7, )-convergence to (n™, 2") for every subsequence

of (ny, ) and, thus, (74, 7, )-convergence

(s @) = (nF,27),
which completes the proof. 0

The following corollary states the regularization property under an a priori parameter
choice rule:

COROLLARY 4.4 (Convergence under a priori parameter choice). For an a priori param-
eter choice oy, := a0y, based on a function «(0) satisfying
52
a(d) >0 and —= —0 asd—0

a(9)

and associated regularized solutions (n,, := nm | x,, = x‘gj;l ), Theorem 4.3 applies and

Qg ?

yields (74, T, )-convergent subsequences, where each limit is a logg-Q-minimizing solution
(nT,2%) € D(F) of (2.8).

Proof. The proof follows the lines in [48, Corollary 4.6] and is adapted to the current
setting. From the definition of (7, x,,) as a minimizer of (3.4), it follows that

%HF(”TM Tpm) — Um||2 + am[logg(nm,) + Q(z,)] < %57%1 + am[logg(nJr) + Q(I+)]

This implies
62
logg(nm) + Qam) < 5= + an[logg(n™) + Qa7)]

m

and, with 5,2n /o, — 0asm — oo, that (4.4) is fulfilled. On the other hand, we deduce that

lim |[F(nm, 2n) = ol < (67, + 20 (logg(n®) + Q(z*)))/* = 0

m—o0
for m — oo. This yields (4.5) and Theorem 4.3 applies. a

Applying Morozov’s discrepancy principle, we also obtain convergence under an a
posteriori parameter choice.

COROLLARY 4.5 (Convergence under a posteriori parameter choice). For an a pos-

teriori parameter choice oy, := &(0m, dm) and associated regularized solutions (n,, :=
ni’fﬂ y Ly = :L'gz; ) satisfying the discrepancy principle

7-l(sm S HF(nm;mm) - Um” S 7-26771

Sfor some 1 < 11 < To, Theorem 4.3 applies and yields (74, T, )-convergent subsequences,
where each limit is a logg-Q-minimizing solution (n™,z) € D(F') of (2.8).

Proof. Following the lines in the proof of Corollary 4.4 we estimate

L 2 + +
logg(nm) + Q(zm) < H((;m — | E(nm, 2m) — omll” + (logg(n™) + Q(z™T)))
< logg(n™) + Q(z™),

whence, taking the discrepancy principle into account, (4.4) as well as (4.5) follow. This
completes the proof. a
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5. Numerical validation. In this section, we validate Algorithm 3.1 by checking its
performance and comparing it with the cluster algorithm published in [45] and a simple
least-squares method. Note that the experiments of Sections 5.2-5.5 are performed without
a penalty term in T}, ,,, i.e., we choose £ = 0 in (3.2) such that R(n) just solves a nonlinear
least-squares problem. The application of penalties (2 # 0 is the subject of Section 5.6. The
choice of regularization parameters o was done by trial and error. First we briefly recall and
sketch the cluster algorithm.

5.1. The cluster algorithm. Note that the forward operator of the underlying inverse
problem is not injective, that is, there exist parameters (n1, z1) and (ne, x2) with (nq, 1) #
(ng, z2) and

F(nl,ml) = F(TLQ,IQ).

We refer to [45, Example 1] regarding an example of such pairs (n1, z1) and (ne, z2).

We overcome this nonuniqueness by the following requirement. Assume that the relax-
ation times are located in different decades (cf. [16]). For example, if 7; € [10, 100] for some
le{1,...,n}, then 7; ¢ [10,100] must hold true forall j € {1,...,1 — 1,1 +1,...,n}.
This information is essential for the development of the cluster algorithm.

Let us fix a maximum number of Maxwell elements N € N such that the unknown
number of Maxwell elements n* satisfies n* < IN. Thus, the set of possible numbers
of Maxwell elements is represented by I := {1,..., N}. The material parameters z =
(u, W1y T1ye ey N, TN, 0,0, ... ) are then computed by a minimization algorithm that works
in the same way as the minimization process R : I C N — D(F,) C (*(N), n — =,
described in Section 3.2, with the difference that the number of Maxwell elements is now
known and given by N. In this way we obtain a minimizer x*.

After the minimization process we apply an algorithm to

* * k% * *
z :(u’ ’:u’177_1)"'?MN?TN?O)()?"')

that clusters the relaxation times (77, ..., 7 ) according to the decade condition. The cluster
algorithm consists of two parts:

1. minimization with N Maxwell elements, output: 2*, and
2. clustering of relaxation times (77, ..., 74) which reduces N Maxwell elements to
n* < N elements.

Let us consider the clustering step 2 in more detail. For a decade [10%, 10¥*+1] with some
k € Ny, we arrange the Maxwell elements by defining index sets

Jy={je{l,...,N}:71; € [10F, 10"},

where k € Ny denotes the decade in which the relaxation time is classified. For the choice
of decades, it is useful to take into account the physical conditions of the experiment and the
material under consideration. The maximum number of Maxwell elements N should not be
larger than the number of available decades. Accordingly, it makes sense to set [V equal to the
number of decades.

As the next step, the pairs (u;,7;), j € Ji, must be assigned to a Maxwell element.
Collecting the relaxation times and thus the Maxwell elements in index sets, the number of
nonempty index sets yields the current number n of elements in the material. To cut down
multiple Maxwell elements to a single one, we use the following approximate calculation for
the new material parameters (jix, 7) with 7 € [10%, 10**1] from the already reconstructed
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material parameters:

(5.1) = S, A= Y e

J€Jk JE€Jk
In this way, we get the following algorithm:

ALGORITHM 5.1.
Input: N, o € L*([0,T])
1) Compute x* by the minimization procedure R(N) = x*.
2) Determine the index sets Jy, # () for k € No with Jy, := {j € {1,...,N}: 7} €
[10%, 10%*1]} and set v as the number of nonempty index sets.
3) Foreach k € Ny with Ji, # 0 compute

[]’k = Z M;a T i= Z @T;

Jj€Jk jeJk

and set T := (u*, fix, T1, - - - foi, Tr, 0,0, ... ).
Output: (7, Z)

In the cluster algorithm, the set of possible numbers of Maxwell elements is fixed by the
maximum number N and is not a free parameter to be computed additionally and allowing a
specific choice adapted to the given experiment. Furthermore, the cluster algorithm requires
the classification of relaxation times in decades. This assumption is not necessary for the
Bayes algorithm. On the other hand, the Bayes algorithm allows a simple control of the
preferred number of Maxwell elements via the success probability ¢ in the prior. Thus, the
Bayes algorithm has a more significant regularizing effect, since its penalty term is physically
meaningful and derived by statistical inversion theory. This will be evident in the following
reconstruction results that use perturbed data.

5.2. Reconstructions from exact data. We generate simulated data for given material
parameters that serve as the basis of our experiments. In Figure 5.1 strains for two different
displacement rates £, and the maximum strain € = 20% are depicted. The fast displacement
rate is 10 mm/s, with the maximum strain reached after 2 seconds. At the slow displacement
rate of 1 mm/s, the strain of 20% is achieved only after 20 seconds. Here, we set T =
100 seconds. For the first experiment we choose a material that is characterized by n* = 3
Maxwell elements and parameters z* as given in Table 5.1.

TABLE 5.1
Exact material parameters x* in experiment 1 to simulate data.
j o 1 2 3
pilMPa] 10 4 7 1
77 [s] - 02 37 25

The stress o(t) can be computed exactly using (2.6) and is illustrated in Figure 5.1. The
goal is to reconstruct the material parameters from Table 5.1 from given data o (¢). All tables
present the stiffnesses in megapascals [MPa] and the relaxation times in seconds [s].

First, we consider the reconstruction corresponding to the displacement rate of £, =
10 mm/s. The possible number of Maxwell elements is determined by I := {1,...,5}.
Furthermore, we assume, for the relaxation times, 7; > « := 0.01. Table 5.2 shows the
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FIG. 5.1. Strain and stress data for different displacement rates €.

results of the cluster algorithm. While the minimization algorithm determines stiffnesses ji;
and relaxation times 7; for the given maximum number of Maxwell elements (here N = 5),
the cluster algorithm is able to combine them accordingly and results in the correct number
n* = 3.

TABLE 5.2
Reconstructed material parameters before and after clustering.
j 0 1 2 3 4 )

Reconstructed values
w; 10.000 4.000 3.685 1.621 1.694 1.000
Tj - 0.200 3.695 3.706 3.706 25.000

After clustering
p; 10.000  4.000 7.000 1.000
Tj - 0.200 3.700 25.000

While there is only one Maxwell element with 7 € [0,1) and 7 € [10,100) after the
minimization process, we have three elements in the decade [1, 10). The cluster algorithm
then combines these elements. Note that the parameters of Table 5.1 are reconstructed exactly.
The relaxation time 75 = 3.695 is closest to the correct value of 3.7 before clustering and
L2 > pa > p3 holds. The weighting (5.1) then results in these excellent results.

We compare the results of the cluster algorithm with the developed Bayes approach. As
mentioned, an advantage of the Bayes algorithm is that it does not require a priori information
about the different decades of relaxation times. We choose ¢ = 0.1 and M := max [ = 5.
Then, similar to the cluster algorithm, we can reconstruct the parameters exactly. The results
are listed in Table 5.3.

TABLE 5.3
Reconstructed material parameters by Algorithm 3.1.
j 0 1 2 3

i 10.000 4.000 7.000 1.000
Tj - 0.200 3.700 25.000
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5.3. Reconstructions from noisy data. We continue by performing reconstructions
from noise-contaminated data. We add normally distributed noise to the discretized stress o
such that ||c — ¢°|| < 6 holds with a noise level § > 0. Furthermore, by
lo — o]

Opel 1= —————
rel ||0_5|| )

we denote the relative data error. In the following experiments, the noise level is such that
Orel ~ 1% holds.

In Figure 5.2 both strain and stress are plotted. The red line represents the strain curve
with a displacement rate of £, = 10 mm/s and a maximum strain of € = 20%. The black line
is the associated stress with the material parameters from Table 5.1. For reconstruction, we
will use only the noisy stress, which is represented by the blue line.

22 350
20+
18! 1300
16} 1250
141 <
12 200 S
g 7 2
10 4
k=] 1150 &
6 1100
4 —
5 o 50
R—
0 s ‘ . s s s . . . 0
0 10 20 30 40 50 60 70 80 90 100
Time [s]

FIG. 5.2. Strain and stress versus time curves with and without noise for a displacement rate of €,, = 10 mm/s.

In Table 5.4 we see the output of the clustering algorithm. Here, first, the functional
Ty (z) = [lo° — Fy ()|

is minimized with N = 5. We realize that the reconstruction results differ significantly from
the exact values. However, it is obvious that the reconstruction of (11, 71) is the one that is
most strongly affected by noise, while the other parameters are calculated quite stably. This
confirms the considerations of the authors in [9], where it was shown that the reconstruction
of small relaxation times is extremely ill-conditioned and this behavior worsens as 7 — 0.
Since stiffness and relaxation time are always to be considered in pairs, the deviations in 71
also affect the corresponding stiffness p;. Since each Maxwell element provides a certain
contribution to the total stress, too small values of one parameter are compensated by higher
values of the other parameters to match the total stress.

Again, we compare the reconstructions with those from the Bayes method. The results
are presented in Table 5.5. Here, in (3.4) we choose ¢ = 0.1 and o = 1. We can see that the
results are significantly better than the outcome of the cluster algorithm. The basic stiffness
and parameters of the second and third Maxwell elements are reconstructed equally well.
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TABLE 5.4
Reconstructed parameters by the cluster algorithm for the data from Figure 5.2.
i 0 1 2 3
wi 9.997 57376  7.028  0.995
T - 0.013 3.703 25.356

However, here we have good approximations of the exact parameters (4, 0.2) by the values
(4.4238,0.1617) for the first Maxwell element as well.

TABLE 5.5
Reconstructed parameters by Algorithm 3.1 for data from Figure 5.2.
j 0 1 2 3
iy 9.9997 4424 7.046  0.998
Tj - 0.162 3.693 25.307

The question arises whether this result can also be achieved by simply minimizing the
residual with different numbers n. To check this, we implement a third reconstruction method.
We set I = {n1,...,ny,} and minimize subsequently the residuals

(5.2) |o® — F(nj,2)|?, j=1,...,m,

to determine the parameters x. Finally, we choose (n, 2) with the minimal residual. Since the
penalty term, given by the prior, is omitted, the entire statistical inversion aspect is neglected.

As we can see in Table 5.6, this reconstruction is very inaccurate. We obtain the maximum
possible number of Maxwell elements, however, with 71 = 75. This shows that, without
additional a priori information on different decades for 7; or statistical prior, a reliable
reconstruction seems impossible.

TABLE 5.6
Reconstructed parameters by minimizing the residual for the data from Figure 5.2.
j 0 1 2 3 4 5
i 9.9997 4366 0.100 0.876 7.030 0.996
T - 0.100 0.100 0.339 3.701 25.347

We want to perform another experiment applying the three methods. To this end, we use
the same setting with a maximum strain of & = 20%, a displacement rate of £, = 10 mm/s,
and a relative noise level of 6, ~ 1%. However, we change the material parameters, as listed
in Table 5.7. Here, the material under consideration has only two Maxwell elements.

The results of the different algorithms are shown in Table 5.8. As in the last experiment,
the basic stiffness as well as the parameters of the Maxwell element with longer relaxation
time are reconstructed by all algorithms with a reasonable accuracy. However, the cluster
algorithm as well as the minimization of the residual results in too many Maxwell elements.
The cluster algorithm leads to another Maxwell element with very large relaxation time, but
very low stiffness, that has little influence on the total stress. However, again, the first Maxwell
element (3, 71) = (8,0.5) is reconstructed accurately. Minimizing the residual causes four
Maxwell elements where there should be only the first one. Thus, a total of five elements are
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TABLE 5.7
Second set of material parameters x* to simulate data.
j 0 1 2
u;f [MPa] 5 8 0.5
sl - 08 50

reconstructed. Only the Bayes algorithm succeeds in producing a suitable reconstruction of
the parameters.

TABLE 5.8
Reconstructed parameters by the three algorithms to the exact parameters from Table 5.7.

Cluster algorithm

i 0 1 2 3
@; 4998 29740 0.502 8.053x101°
7 - 0215 50309  576.988

Bayes algorithm

i 0 1 2
@ 4998 7.923  0.502
7 - 0502 50241

Residual minimization (5.2)

j 0 1 2 3 4 5
@ 4998 0.130 0.130 4.161 3.698 0.502
7 — 0100 0.100 0811 0812 50270

5.4. Analysis of different displacement rates €,,. In the following, we consider different
displacement rates and how they affect the outcome of the reconstructions. For this purpose,
we return to our first experiment corresponding to the parameters from Table 5.1. The
experimental setup remains the same: the sample is stretched to a maximum of € = 20%,
and the additive noise has a relative noise level of d,o] = 1%. We already know the result of
this experiment for a displacement rate of £, = 10 mm/s from Table 5.5. Table 5.9 shows
the reconstructions for the Bayes algorithm for this experiment with a displacement rate of
€, = 1 mm/s, probability ¢ = 0.1, and regularization parameter o = 1.

TABLE 5.9
Reconstructed parameters using Algorithm 3.1 with ¢ = 0.1 for €, = 1 mm/s.
j 0 1 2
i 9.997 7450  1.007
T, — 3576 25.100

As we can see, the Bayes algorithm cannot reconstruct all Maxwell elements reliably,
because the first Maxwell element is missing. This is why we want to check whether the Bayes
algorithm is able to find this Maxwell element if we weaken the strong weighting to a small
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FI1G. 5.3. Individual stress components for a displacement rates of 1 mm/s (left) and 10 mm/s (right).

number of Maxwell elements. For this purpose, Table 5.10 shows the reconstruction of the
Bayes algorithm with ¢ = 0.3.

TABLE 5.10
Reconstructed parameters by Algorithm 3.1 with ¢ = 0.3 for €, = 1 mm/s.
i 0 1 2 3
wi 9.996 7411 0299  0.796
T - 3.500 15369 27.100

In fact, three Maxwell elements are reconstructed this time, but the first Maxwell element
(u3, ) = (4,0.2) is not determined. Moreover, the third Maxwell element (u%, 75) = (1, 25)
is split into two Maxwell elements (0.2988, 15.3686) and (0.7955, 27.1003).

The displacement rate seems somehow to affect the reconstruction outcome. To this
end, we consider the different stress—time curves generated by a displacement rate of 1 mm/s
and 10 mm/s (Figure 5.3). For each of these curves, the contribution of each element is
demonstrated separately. That is, oy is the stress generated by the single spring, while o1 2 3
are the stresses of the three Maxwell elements. The sum of these individual stresses yields
the total stress (2.6). The maximum strain is 20%, which is achieved at a displacement rate
of 1 mm/s and 10 mm/s after 20 seconds and 2 seconds, left and right panels, respectively.
This represents a significant difference for the individual stresses of the Maxwell elements. In
both cases, the maximum stress of the single spring is 200 MPa, but at different time instants.
However, the maximum stress values of the Maxwell elements are much lower at the slower
displacement rate of 1 mm/s than at a higher rate. In both cases, the maximum is achieved at

t=¢/e
TABLE 5.11
Maximum values of individual stress components with slow and fast displacement rates at time t = £/¢.
| j= 1 2 3
=1 |oj(g/¢) 04 1294 99
e.=10 | 0;(g/2) 4 8557 1848

Table 5.11 lists the different values. For a slower displacement rate, the stress values of
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the Maxwell elements are nonzero over a longer period of time, recognizable by the second
Maxwell element in Figure 5.3. However, since the values, especially for the first Maxwell
element, are much smaller than at a higher displacement rate, these small values are much
more affected by noise. Therefore, it is advisable to use higher shift rates. For this reason, we
confine ourselves to a displacement rate of 10 mm/s in the next examples.

5.5. Effect of g on the reconstruction results. As already deduced from Table 5.10,
increasing ¢ causes the algorithm to favor a higher number of Maxwell elements, as intended
by the prior (cf. Section 3.1). In this section we investigate the sensitivity of the results
regarding q.

We consider again the second experiment as already described in Section 5.3, with the
material parameters as listed in Table 5.7. We already know that the Bayes algorithm for
q = 0.1 reconstructs the parameters very well. We now change the value of g to ¢ = 0.9. The
prior po(n) thus favors a higher number of Maxwell elements, that is, the penalty term ¢g(n)
is monotonically decreasing and attains its maximum for n = 1.

TABLE 5.12
Reconstructed parameters of the second experiment by Algorithm 3.1 with ¢ = 0.9.
j 0 1 2 3 4 5
pui o 4998 0.130 0.130 4.161 3.698  0.502
T; - 0.100 0.100 0.811 0.812 50.270

Table 5.12 shows the reconstructed parameters for this experiment. As we can see, the
Bayes algorithm reconstructs five elements instead of two. This is consistent with the prior. A
test series using different values of success probability ¢ increasing with step size 0.1 reveals
that only for ¢ = 0.4 is the correct number of Maxwell elements reconstructed; see Table 5.13.
Further tests prove that for 0 < ¢ < 0.4 the material parameters are reliably reconstructed.
This includes the parameters that we obtained for ¢ = 0.1 (cf. Table 5.8).

TABLE 5.13
Reconstructed parameters of the second experiment by Algorithm 3.1 with ¢ = 0.4.
i 0 1 2
w4998 7923 0.502
7, - 0807 50241

A third trial uses the same setting with & = 20%, &, = 10 mm/s, and 0,1 =~ 1%.
The parameters are modified according to Table 5.14. The experiment is extended to T =
10000 seconds, since the largest relaxation time is 75 = 1200 s. It is worth mentioning that in
the previous experiments we used a temporal sampling rate of A¢ = 0.01 seconds. That is,
t; =1 At fori =0,...,m. In the third experiment, we choose the same At = 0.1 s to obtain
a sampling rate that is small enough to catch the influence of the first Maxwell element having
a relaxation time of 7 = 0.8 s. Moreover, we choose a probability of ¢ = 0.1, which favors a
small number of elements. Table 5.15 presents the reconstruction result.

Although the algorithm prefers small numbers of Maxwell elements, all elements and the
corresponding parameters are reconstructed sufficiently accurately. This results suggests the
use of a small g, like, e.g., ¢ = 0.1, if the number of Maxwell elements is unknown, since the
algorithm is able to deliver the correct number as output.
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TABLE 5.14
Exact parameters x* for the third experiment.

i 0 1 2 3 4 5
pwio10 08 7 1 4 05

77— 08 37 25 500 1200
TABLE 5.15
Reconstructed parameters of the third experiment by the Bayes algorithm with ¢ = 0.1.
j 0 1 2 3 4 5
wy 10.000 8427 7.011 0893 4.077 0.419
Tj - 0.763 3.846 27.47 505.8 12825

5.6. Regularization by an additional penalty term. As outlined in Section 3, penalty
terms are necessary for a stable reconstruction of the parameters. Regularization was also
applied to the clustering algorithm in the presence of noise in the data; cf. [45]. The
numerical results emphasize that the penalty term leads to more accurate results than the
cluster algorithm without penalty. The only data sets that are not recovered accurately
are those with a displacement rate of €, = 1 mm/s. Although this can be avoided by a
corresponding experimental setup, we investigate whether an additional penalty term leads to
better reconstruction results. As penalty term, we use

(5.3) O (z) = %||a;||2

For a fixed number of Maxwell elements n, this leads to a classical Tikhonov—Phillips
regularization of the form

min T, ,(x) = min {i|F,(z) — || + aQ(z ;
in Tan(@)i= min {17 (2) — o' + af(@))

see, e.g., [13, 27, 36, 47]. The parameter o > 0 acts as a regularization parameter and balances
the influence of the data term and the penalty term on the minimizer.

Table 5.16 shows the result of the Bayes algorithm with penalty (5.3) and regularization
parameter o« = 0.5. We see that the algorithm now reconstructs three Maxwell elements.
However, the values of the first and second Maxwell elements are identical, and the correct
first Maxwell element (u, 75) = (4,0.2) is not recovered at all. As expected, the penalty
term here ensures that large values are penalized. This also explains the reduction of the
stiffness value 3. As a remedy, we apply a further penalty term of the form

5.4 Qo(x) =
to penalize large values 7. The regularization parameter is increased to a = 100.

TABLE 5.16
Reconstructed parameters of the first experiment for a displacement rate €,, = 1 mm/s by the Bayes algorithm
with additional penalty term (5.3) and o« = 0.5.

j 0 1 2 3

u; 10.000 3.765 3.765 1.117
T - 3376 3.376 23.238
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Table 5.17 shows the corresponding outcome of this experiment. We see a significant
improvement compared to the results of Tables 5.9 and 5.16. All three Maxwell elements are
reconstructed accurately, and the third Maxwell element is no longer negatively affected by
9, though it does only take 7; into account. We admit that the first Maxwell element still
shows some error sensitivity, even though the reconstruction means a significant improvement.

TABLE 5.17
Reconstructed parameters of the first experiment for a displacement rate €,, = 1 mm/s by the Bayes algorithm
with additional penalty term (5.4) and o = 100.

i 0 1 2 3
p; 9997 2015 7327 1.001
7, — 0100 3.621 25.190

We conclude that the recommendation to use a higher displacement rate, such as €, =
10 mm/s, remains valid even with an additional penalty term.

6. Conclusion. In this paper, we have considered the inverse problem of identifying
material parameters in a viscoelastic structure using a generalized Maxwell model. One major
challenge is the fact that the number of Maxwell elements in this model, and thus the number
of material parameters, is unknown. Based on statistical inversion using a binomial prior, we
developed a novel reconstruction method which is able to compute the number of elements
along with the corresponding material parameters in a stable way.

Since the forward operator acts on N x ¢2(N), it was as a further novelty necessary to
extend the existing regularization theory to semigroups, where we equipped N with the discrete
topology.

The influence of the success probability ¢ has been studied and the method is compared to
the cluster algorithm through the use of extensive numerical tests. While the cluster algorithm
is very sensitive with respect to noise in the data, the Bayes algorithm proves to be stable,
where in case of low displacement rates additional penalty terms improve the reconstruction
results. Using statistical inversion theory yields a penalty term that is tailored to the problem
and does not demand any a priori information on relaxation times and number of Maxwell
elements.

Controlling the success probability ¢ allows the reconstruction to be adapted according
to any prior information on different structures. In general, it is advisable to choose a small
value of ¢ in order to favor a small number of Maxwell elements, whereas larger n can also be
reconstructed reliably. The numerical evaluation proved the stability of the new method for
different parameter settings as well as its superiority with respect to the cluster algorithm.
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