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SPECTRAL FUNCTION SPACE LEARNING AND NUMERICAL LINEAR
ALGEBRA NETWORKS FOR SOLVING LINEAR INVERSE PROBLEMS*
ANDREA ASPRIf, LEON FRISCHAUF%, AND OTMAR SCHERZER¥$1

Abstract. We consider solving an ill-conditioned linear operator equation, where the operator is not modeled
by physical laws but is specified via training pairs (consisting of images and data) of the input—output relation of
the operator. The proposed method for computing the operator from training pairs consists of a Gram—Schmidt
orthonormalization of images and a principal component analysis of data. Interestingly, this two-step algorithm
provides us with a spectral decomposition of the linear operator, without explicit knowledge of it. Moreover, we
indicate that both Gram—Schmidt and principal component analyses can be expressed as a deep neural network which
delivers orthonormalized vectors from a set of vectors. This relates the algorithm to decoder and encoder networks.
Therefore, we call the two-step algorithm a linear algebra network. Finally, we provide numerical simulations

showing that the strategy is feasible for reconstructing spectral functions and for solving operator equations without
explicitly making use of a physical model.
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1. Introduction. We consider solving an ill-conditioned linear operator equation
(1.1) Fx=y,

where x € R™ and y € R™. We call R the image and R™ the data space following the
terminology of [3, 4]. The main assumption of this work is that the operator F' is not modeled
mathematically by physical laws but indirectly via training pairs,

P ={(xi,y:):it=1,...,N},
which satisfy
Fx;=y;, i=1,...,N.
Here N is called the sampling size, and we denote the span of the training images and data by

Xy :=span{x;:i=1,..., N} C R = R},
Yy :=span{y; :i=1,...,N} CR™ = R™*!,

and
X=(x1 - xy)eRPN Y=(y; - yn)eR™WV

Without further notice, we always assume that the training images x; are linearly indepen-
dent and that F has trivial nullspace, such that the training data y; are also linearly independent.
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Operator learning focuses on identifying or approximating the unknown transformation F'.
The problem involves finding a mapping between input functions x; and corresponding outputs
yi, fori =1,..., N, that can also accurately predict outputs for unseen inputs. That is, we
study learning the operator F' and its inverse through an encoding—decoding strategy, where
both steps are based solely on the available training data. After learning the operator F', we can
solve (1.1) for arbitrary data y € R™. This is different from the strategy proposed in [4, 19],
where the operator equation is solved directly without learning the operator in a first step.

Operator learning is a very active field of research. There exist a variety of such methods,
such as very established ones, like black box strategies (see, for instance, [32]) for linear
operator learning. We remark that, in the literature, the term operator learning is most
commonly associated with the approximation of infinite-dimensional operators, one of its
main advantages being the independence from discretization [22]. However, this is only
possible when the number of training samples N — oco. In other words the approach is
discretization-independent but sampling-dependent.

Our setting here is more restricted: we directly approximate a linear discrete inverse
problem in a finite-dimensional framework. Nevertheless, via regularization by projection,
this finite-dimensional operator can be understood as the restriction of an infinite-dimensional
operator to a finite-dimensional subspace (see [4, 19]). In this sense, our methodology should
be regarded as a finite-dimensional learning strategy, conceptually closer to end-to-end methods
in inverse problems [1]. Moreover, we note that the term operator learning is also frequently
employed when referring to discretized realizations of infinite-dimensional operators [26],
which is the context here and therefore justifies the used terminology.

For nonlinear operator learning, it is popular to use deep neural networks (see [21, 23, 24,
25]). This is typically realized using neural operators, which extend neural networks to handle
function-based inputs and outputs. By discretizing functions at specific sensor locations, the
model is parameterized and trained through an optimization process that minimizes the error
between predicted and actual outputs. Key challenges include selecting a suitable model
structure, managing computational costs, and ensuring strong generalization capabilities. For
applications in inverse problems, see [1, 18].

Coding is a term used in manifold learning, which, in turn, is a basic tool in machine
learning. The basic assumption there is that all potentially measured y’s are elements of a
low-dimensional manifold (see, for instance, [9, 13]). The setting of manifold learning (no
operator connecting data) is represented in Figure 1.1.

Decoder Encoder
—1 . Image
Ny Principal Nx g. .
Image ) ; q Feature representation via
. geodesic analysis, .
representation . representation neural networks
compression

FI1G. 1.1. Variational encoding and decoding with neural networks. The image data are represented via a
neural network. After representation they are transformed into a feature space (with the operator N'x ). The features
are compressed by a principal geodesic analysis. The decoder Ny, L (we assume for the sake of simplicity that the
operator is invertible) transforms features into images.

Our approach for operator learning is conceptually akin to manifold learning, yet method-
ologically different (compare Figure 1.1 and Figure 1.2). We note that the relation between
autoencoders and classical linear algebra methods has been studied in the literature before.
In particular, it has been shown that linear autoencoders essentially perform principal com-
ponent analysis (PCA). In [5] the authors demonstrated that a linear autoencoder trained to


http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA

Kent State University and
Johann Radon Institute (RICAM)

SPECTRAL FUNCTION LEARNING IN LINEAR INVERSE PROBLEMS 25

reproduce its inputs learns to span the subspace of the leading principal components and
that the associated optimization problem is free from spurious local minima. Independently,
the authors of [8] established a connection between auto-associative multilayer perceptrons
and the singular value decomposition (SVD), showing that hidden representations align with
the principal components of the data. More recently, others [20] revisited autoencoder for-
mulations in the context of inverse problems, proposing a paired autoencoder framework
based on Bayes risk minimization. This approach illustrates how classical insights on the link
between autoencoders, PCA, and SVD can be systematically extended to modern data-driven
methodologies for inverse problems.

Decoder Encoder
—1 S g g
Imase F Principal Data of F | Orthonormalization
& . component analysis,| | orthonormalized of images
representation . q
compression images

FIG. 1.2. Encoding and decoding scheme for linear operators. First the image data are orthonormalized and
the corresponding data are computed by applying F—this is done by explicit calculations without making use of any
physical model describing the forward operator (see Section 2 for details). On the orthonormalized data, a principal
component analysis (PCA) is applied, which allows the data space to be compressed. The decoder calculates the
inverse of some given data in the compressed space.

In this paper, we investigate a new coding scheme for solving linear ill-conditioned
problems, as outlined in Figure 1.2. The standard linear algebra approach for linear operator
learning consists of computing the linear least-squares problem for (see [35])

Y — FX|Zmxn-

argminp ¢ o (gm gm)=gmxm
For this linear optimization problem, the minimizing operator F' is given by
Fis = YXT(XXT)T,

where (XXT)T denotes the Moore—Penrose inverse (see [28]) of XX 7. In general the matrices
XX7 are huge, and more memory-efficient techniques can be implemented, which are based
on orthonormalization; we use orthonormalization as a key tool for operator learning (see, for
instance, [37]). This paper is based on the following two interesting observations and results:

1. The algorithm shown in Figure 1.2 allows one to determine the singular vectors and
values of F' (see Theorem 2.6); note that the operator is not physically modeled but
computed through its input—output relations (training pairs). In other words, the
choice of the training pairs only influences which spectral vectors and values can be
computed. While the result follows from elementary linear algebra considerations,
to the best of our knowledge it has not yet been observed in the context of operator
learning. One can therefore say that the singular value decomposition is invariant
with respect to the choice of training pairs.

2. Related to operator learning are regularization issues. In [3, 4], we showed that
orthonormalization of training data or training images (in a separate manner) can be
used to stably determine an operator if the orthonormalization produces a basis that is
close to the singular vectors. There is an antisymmetry in the two approaches, which
is overcome in this paper. In this context, regularization and stability analysis of the
implementation should not be confused. For instance, as used here, Gram—Schmidt
orthonormalization is unstable with an increased number of expert images and data,
respectively. However, regularization results apply if pre-processing orthonormaliza-
tion methods (like Gram—Schmidt) have been implemented in a stable manner—this
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is what we discuss here. In view of this, the numerical results need to be evaluated
(see Section 4.2). The inaccuracies are due to numerical instabilities of orthonormal-
ization algorithms and not because of regularization by truncated SVD. We need to
further analyze whether the combined strategy of Gram—Schmidt orthonormalization
and PCA offers practical benefits versus orthonormalization of either training images
or data.

3. Moreover, we show that each building block of the proposed algorithm, represented
in Figure 1.2 (in particular, orthonormalization) can be expressed via a customized
linear algebra network (see Figure 2.1 in Section 2.1). The term customized refers
to the fact that the parameters in the neural network are given by the algorithm
(specifically, Gram—Schmidt orthonormalization and PCA) and do not need to be
optimized from the training data.

4. Finally, we present some numerical experiments on learning the Radon operator
(the source code is referenced and available in [2]). For this operator, the singular
values are explicitly known (see [12, 29]). Therefore, we can compare the computed
singular values from training data with the analytical ones (see Section 4). Although
it is theoretically possible to recover singular vectors, practical handicaps are due to
instabilities of the orthonormalization algorithms, as discussed already above.

We summarize the main objectives of this paper: We show that finite-dimensional linear
operators can be learned with the proposed hybrid orthonormalization strategy. In contrast,
several methods for operator learning based on decode and encoder networks have been
developed recently. We show that our hybrid linear algebra technology can indeed be written
as a decoder and encoder network. In view of this, our paper provides a systematic link
between these two areas of research. Moreover, our analysis provides an insight into the
efficiency and stability of neural network coders.

2. Encoding of linear operators. The encoder from Figure 1.2 consists of two steps:
1. Calculating orthonormalized images.

2. Computing a principal component of data of orthonormalized images

yJ:F(iJ), _jzl,,N

We recall that, according to our general assumptions on training images and data, we have
N < {m,m}. The assumption can be neglected at several places, but we leave it for the sake
of simplicity.

2.1. Pre-processing—orthonormalization. We review the Gram—Schmidt orthonormal-
ization method (see, for instance, [17]) and show that it can be expressed as a deep neural
network (NN). In a second step, we show that also the Q R decomposition (see [10]), real-
izing PCA, is representable as a deep NN. In other words, they are customized because the
parameters of the network do not need to be optimized. This motivates our terminology linear
algebra networks.

2.1.1. Gram-Schmidt as a deep network. We start with the training images
Xi,...,Xy € R™ and orthonormalize them iteratively. Let

o : RN {0} - R™,

X
X

<[l
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where || - || and (-, -) denote the Euclidean norm and inner product in R™ and R™, respectively.
Then Gram—Schmidt orthonormalization can be written as follows:

j—1
(2.1) X =0 x, —Z<Xj,ii>ii forallj=1,...,N.
i=1
=:p(x;)
For each vector j = 1,..., N, we treat x; as the input to the jth layer of a neural network.

Here p(xj) is a linear, vector-valued function, and therefore every one of its components can
be represented by a standard affine linear neural network. Since the vectors X; are provided as
inputs from the previous layers, they do not interfere with the computations in the jth layer.
This is also represented in the sparse graph representing the network in Figure 2.1.

FIG. 2.1. The neural network structure of the Gram—Schmidt orthonormalization. Here w; ; represent
customized weights.

REMARK 2.1. In practical applications the smooth approximation

o, : R™ — R™
X

VIx? +e?’

is used. With this modification, we can avoid the Gram—Schmidt orthonormalization breaking
down with linearly dependent training images x;. In the machine learning context, the
approximations o of the high-dimensional sign function o are called activation functions.
Note, however, that activation functions are typically scalar maps applied component-wise
to vectors (see, for instance, [7]). In contrast, in our setting the activation acts on the entire
vector and is therefore vector-valued; to make this distinction explicit, we denote it in boldface
as o. : R™ — R™, Such a component-wise network cannot be used here because we must
ensure that every p(x;), j = 1,...,N, is a linear combination of x;, ¢ = 1,...,5 — 1.
Replacing o by o. in Figure 2.1, we obtain an N-layer neural network, which we call a
Gram—Schmidt network. There are efficient alternatives to Gram—Schmidt, which are, for
instance, block-based (see, for instance, [11]), which can be reinterpreted again as deep neural
networks.

X =

2.2. Data from orthonormalized images. If the nullspace of F' is trivial, then from (2.1)
it follows immediately that (see Figure 2.1)

_ _ 1 }
2.2) y; = FX; = F(o(p(x;))) = —— F(p(x;)) forallj=1,...,N.
(%)l
This means that the data of orthonormalized images can be computed without explicit knowl-
edge of F. Note that p(x;) is a linear combination of x;, ¢ = 1,. .., j, where the coefficients

of the linear map are given from previous layers.
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With the knowledge of y;, j = 1,..., N, we can compute data for every image x € X .
Since

N
X = Z<X7§i>iia

S
_

it follows that
N

N
y=Fx= Z(X,ii)Fii = Z(X,§i>yi.
i=1 i=1
REMARK 2.2. If, instead of the exact Gram—Schmidt procedure, one considers the
so-called Gram—Schmidt network obtained by replacing o with o in Figure 2.1, then the
approximate relation

(2.3) y; = FX; = F(o:(p(x;))) ! || F(p(x;)), j=1,...,N,

lo=(p(x;))
is made use of. We note, however, that in our numerical simulations we always employ
the classical Gram—Schmidt algorithm, and not the Gram—Schmidt network. The network
formulation is introduced here only to highlight the connection with neural network structures
and to provide a conceptual interpretation of orthonormalization in terms of customized
networks.

2.2.1. Principal component analysis (PCA). In the following, we analyze the stability
of PCA in the regularization context, as mentioned in the introduction. The starting point
of this discussion is Seidman’s veto [33], which states that regularization by projection is in
general not a regularization method. This means that, when projecting onto X g, the inversion
of F restricted to F'(Xg) becomes unstable as S — oco. On the other hand, if F is inverted
on Yg, then it is in fact stable (see again [33]). However, in the context of machine learning,
this requires the collection of training data of F*y;,« = 1,...,S, which in general is not
available. Note that F'* denotes the adjoint of F'. As a conclusion from [33] we find that F'
can be stably inverted by projection if X is the space of the singular vectors corresponding to
the largest .S singular values (see, for instance, [14]). Now, we show how these singular values
can be calculated with machine learning techniques.

THEOREM 2.3 (Spectral theory: see [17, Theorem 2.5.2]). Let the operator F' : R™ —
R™ be linear. Then for every x € R™

min{m,m}
2.4) Fx = Z ’yj<x, uj)vj and FTvi =~iw/, Fu =~9v7,
j=1

wherew! € R™, j =1,...,m, and vl € R™, j =1,...,m, are orthonormal, respectively,
and

0< A <A%< < ymin{m}
In matrix form, this identity becomes more compact:
(2.5) F=VDUT with UeRZ*Z VYV cR™™,
where U and V are orthonormal and

D = diag(~", v ,’ymi“{m’ﬁ}, 0,...,0) € R™*m,
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In the following, we group the spectral values:
DEFINITION 2.4. Let F' be linear with trivial nullspace with spectral decomposition as
in (2.4). We denote by

(2.6) Fi={y :j=1,....min{m,m}} ={#*:k=1,...,m}

the set of distinct singular values. Because F is assumed to have trivial nullspace, 77 > 0
forall j =1,... ,min{m,m}. Moreover, we associate to each multiple singular value the
associated singular vectors: For every k = {1,...,1m} let

2.7) E* :=span{v’ : 49 = 4% j =1,... min{m,m}}.

Now, we apply the spectral theory to show that the proposed decoding algorithm is stable.
There, we adopt some general notation:

DEFINITION 2.5. Let X;, i = 1,..., N, be the orthonormalized training images and'y;,
i =1,..., N, be the corresponding images as defined in (2.1) and (2.2), respectively. We
denote

X :=(Xy,...,Xy) ERPN Y = (§,,...,5y) ER™N and

(2.8) e
A:=YY eR™™
Note that, by our general assumptions, the rank of each of the three matrices is always N < .
With this result, we can state the main result of this paper:
THEOREM 2.6. Let1p; € R™, j =1,..., N, be a non-zero eigenvector of A. Then
1. there exists k € {1,...,17m} such that 1; € E*, and thus
2. in particular, this means that, if a non-zero eigenvector of A has multiplicity one,
then it equals a spectral vector of F.
Proof. The PCA in image space calculates the eigenvalue decomposition of the covariance
matrix

o o NxN . o
(2.9 A=YY =W {A < Hf; 8} W' e R7XT
[
=A

where W € R"™*™ is an orthonormal matrix, W describes the principal directions of the data
Y, and the corresponding entries of A describe the elongation of the data in this direction.
Now, since Y = F'X, we get from (2.9)

(2.10) FXX' FT =YY =A=WAW .

Since X consists of orthonormal vectors and has rank N, we have

where 7 is the identity matrix. Let U € R™®X1 he the orthonormal matrix from (2.5). Then,
after reordering of columns of X,

UTX' XU = UTTU € Rm¥m,|

The matrix Z U projects onto the first basis vectors u; (after potential reordering of the vectors).
Then we get from (2.10) and (2.5) the identity

WAW =YY =FXX FT =VDIDTVT.
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This means that we have found two singular value decompositions of ??T. We know
that the matrices on the left and right have the same eigenspaces. This means, in particular,
that if an eigenvalue has multiplicity one, then the corresponding eigenspaces of V and W
match, and the representing eigenvectors of the eigenspace are identical up to the sign. This
proves the second item. For eigenvalues of multiplicity higher than one, the corresponding
columns of V are rotations and mirrors of W, which proves the first item. a

REMARK 2.7. Theorem 2.6 tells us the following:

1. Orthonormalization of the training images is the basis of stable decoding. The
difficulty, however, is that orthonormalization may not provide us with an ordering of
the singular vectors by absolute magnitude. For instance, there is no guarantee that
singular vectors belonging to the absolutely largest singular values, which usually
carry most of the information, can be recovered. See Table 4.1, which shows this
issue for an example related to the Radon transform: The choice of the training data
does not allow one to reconstruct some low-frequency components.

2. Orthonormalization is unstable. Thus, N must be chosen small to guarantee numerical
stability. We emphasize again that we do not discuss the instability of orthonormal-
ization algorithms. Instead we discuss regularization aspects related to the truncated
singular value decomposition, which is determined via hybrid orthonormalization.

Last, we also verify that PCA, which is implemented via () R decomposition, can be ap-
proximately rewritten as a network, analogously to the Gram—Schmidt algorithm in Figure 2.1.

2.3. PCA expressed as a deep network. This section shows that spectral value decom-
position can be expressed as a customized deep network. Thereby, we make use of the fact that

singular value decomposition (SVD) applied to the covariance matrix A = YY ' € R™*7
from (2.4) gives the principal components. The SVD can be implemented by iteratively
applying the QR algorithm, which is the famous Francis algorithm [16] (see also [17, 39]).
Now, we show that the QR algorithm can be approximated by a deep linear algebra network.
Therefore, approximating the () R decomposition in the Francis algorithm with linear algebra
networks gives a “deep—deep” linear algebra network realizing the PCA. The terminology
deep—deep refers to the implementation of the Francis algorithm, which is iterative, and in
each iteration step of the Francis algorithm a () R decomposition is implemented, which is
represented as a deep neural network. When the single iterates of the Francis algorithm are
represented with a neural network graph structure, we have one level of deepness more (for
the iterates of the Francis algorithm).

Let us denote the column vectors of the matrix A, defined in (2.8), by a;,i=1,...,m,
and denote the orthonormalized vectors by a;, ¢ = 1, ..., m. Moreover, let
j—1

plaj) =a; — ) (aja)a;.

i=1
Then it follows (see [34], which is the textbook where the formulas are written precisely in the
same way as they are used here) that:
j—1

211 a; = |p(ay)a; + > (aj @)@, j=1,....m
=1

Writing this in matrix notation reads as follows:
(aj,a;) fori=1,...,57—1,
A=QR withQ = (a;,...,a,)and R; ; = { ||p(a;)|| fori=j,
0 fortr=454+1,...,m.
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In fact, it follows from (2.11) that

ﬁj = |p(;)||<aj—z<aj,ai>ai> :U(p(aj)), j:].,...,m,
J i=1

Figure 2.1 with x replaced by a is the net that determines (). This shows that the matrix Q)
from the QR algorithm can be determined with a linear algebra network. Moreover, it has
been recently observed that matrix multiplication can be implemented very efficiently via
reinforcement learning or, in other words, via neural networks (see [15]). We remark here
that [38, Section 35] have already mentioned that the () R algorithm based on Gram—Schmidt
orthonormalization may lead to unstable implementations. Thus, the exposition above is only
used for theoretical purposes.

REMARK 2.8. In recent years PCA networks have become popular in the machine
learning community (see [0, 31, 36]). The goal there is somewhat different and consists
of minimizing the parameters of a network. While such networks would be worthwhile to
investigate in this context, a detailed analysis falls outside the scope of this work.

3. Image representation and decoder. We consider the decoder as represented in
Figure 1.2. We calculate the least-squares approximation of y with respect to the basis
{¢ :1=1,..., N} (see Theorem 2.6) of the eigenvectors of A. This is given by

N

Yis = Y _{y, ).

=1

The goal is to find an explicit representation of the decoding function x;, that is, a function
with minimum norm, which satisfies

(3.1) Fxis = yis

and which can be represented by the training pairs alone.
From Theorem 2.6 it follows that, for every 1);, there exists k() € N such that

Y € EFO,

We denote the dimension of E*() by m(l). In other words, the multiplicity of +; is m(l).
From (2.7) we know that

by € span{v!V) . j =1,... m(l)} = E*V,

and thus

m(l)

Y= Z vl
j=1

where v!(9) denotes the I()th row of the matrix V of the singular value decomposition of F
(see (2.5)). Applying (2.4) and (2.7) then implies that

m(l)

m(l)
. 1 .
b = Z Vjvz(ﬂ) - &k(l)F<§ :Vjul(J)>_
j=1 j=1

We summarize the calculations now in the following lemma:
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LEMMA 3.1 (Decoder). The minimum-norm solution of (3.1) is given by the decoder
m(l)

m(l) N
1 i ) =3 ¥, %) o S i)
(y, ) TR0 2 Vit = 2. (3402 ViV
J=1 =1 j=1

v, 1) ..
fyk(l)l)2F Yi -

Xis =

M=

l

(3.2) !

Eﬂz

Il
-

In summary, the necessary implementation steps to compute the least-squares solution x;
are: First, QR decomposition is implemented to get the eigenfunctions {¢; : I =1,..., N}.
Second, the decoder is implemented via (3.2).

4. Numerical simulations. We consider two simulation scenarios: First, we show that
the singular value decomposition can indeed be computed from training pairs without knowing
the forward operator explicitly. Second, we study a reconstruction test with a learned operator.
In both cases, we use the Radon transform for two-dimensional images as the physical model
for the forward operator, leveraging its analytically known singular value decomposition
(see [12, 29]).

4.1. SVD from training pairs. We verify numerically that orthonormalization of data
(x; — X;,¢ = 1,...,N) and a principal component analysis of the covariance matrix A,
defined in (2.8) obtained from the images of the orthonormalized data,

{y,=F%;:i=1,...,N},

see (2.2) and (2.3), provides us with the singular value decomposition of the discrete operator
F (see Figure 1.2).

We take as a prototype example for F' the Radon transform in two dimensions (see
Definition 4.1 below). The singular value decomposition of the Radon transform has been
computed in [12] (see also [29]) for the general case of images of n variables. In our example
n = 2, and we consider the Radon transform as an operator from L?(3(0, 1)) into L?(Z, w™1!),
where B(0, 1) is the unit disk in R? centered at the origin, where

Z=S"x[-1,1] and w(s)= (1 —s?)/?

is a weight function. This means that L?(Z, w~!) is the weighted L?-space with norm

1
2 2 -1
912y = [ [ lateos)Puts) dsds
for g € L*(Z,w™'). Before going into the numerical details, we provide the necessary
notation and summarize well-known results on the Radon transform to facilitate the analysis.

4.1.1. Convention. Given & = (w1, wq)” € S! we have
w1 =cos(¢) and wy =sin(¢), ¢ € [0,27).

Moreover, the orthogonal vector related to & is given by i+ = (—sin(¢), cos(¢))T.
For the reader’s convenience, we recall the definition of the Radon transform for functions
on the unit disk in R2:
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DEFINITION 4.1 (Radon transform on the unit disk). Let Z := S x [—1,1]. We define
the Radon transform as

R:L*(B(0,1)) — L*(Z,w™"),
Vier
f = R[f](c,s) :/ f(s@ +t&h)dt.
—Vi=s?

One can show that this operator is continuous and satisfies (see [12]):

IR[flz2(zw-1) < VAT (| fllL2(500,1))-

In the following, we recall the expression of the adjoint operator of the Radon transform R
defined on the unit disk. This is the operator R* : L?(Z,w~') — L*(B(0,1)), which satisfies

(Rf],9)r2(zw-1) = ([, R*[g]) L2 (B0,1))-

DEFINITION 4.2 (Adjoint). For every g € L*(Z,w™') and almost all & = (x1,z2)T €
R2, the adjoint of the Radon transform R* is given by

1 10 9(&,7-d)
Rl@ = [ Lo
In the following we give a survey on the singular value decomposition of the Radon
transform for functions on the unit disk. The results are essentially taken from [29], with the
main difference being that we consider the adjoint R* restricted to the range of R (in contrast
to Definition 4.2).
Before recalling the spectral decomposition of the Radon transform, we review the general
definition of a spectral decomposition:
DEFINITION 4.3 (Spectral decomposition, [14]). Let K : X — Y be a compact linear
operator. A singular system (ug, vx; Vi) is defined as follows:
1. ~%, k € Ny, are the non-zero eigenvalues of the self-adjoint operator K* K (and also
K K*) written in decreasing order (we always take ~y, > 0);
2. ug, k € Ny, are a complete orthonormal system of eigenvectors of K*K (on the
space R(K*) = R(K*K));
3. v = (1/||KukH)Kuk, k € Ng.
The set {vy, : k € No} is a complete orthonormal system of eigenvectors of K K* which spans
R(K) = R(KK*). Moreover, the following formulas hold:

Kup = ypve, K up = o,

Kr = Z’Yk<$,uk>vk forallx € X,
k=0

K*y = Zyk@mk}uk forally €Y.
k=0

Note that here x, y, ug, and vy are functions, while in our discrete setting we consider vectors
X, y, Uk, and v.
THEOREM 4.4 ([29, p. 99]). The spectral decomposition of the Radon transform is given
by {(wg,1, Vi i;vk,1) : (k, 1) € L} where the following hold:
1. T={(k1): keNoy, 1 €{0,1,...,k}, satisfying | + k is even}.
2. 4= ’71%,1 =4n/(k + 1) > 0 is independent of l.
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Let Y, be the spherical harmonics in R? (which in n = 2 are just sin and cos
functions, with specified frequencies) and let

sin((k + 1) arccos(s))
sin(arccos(s))

s Ci(s) =
denote the Chebyshev polynomials of the second kind. Moreover, let

1
o |wCxYr—2llL2(z,w-1) = IWwCk | L2(~1,1)-

Then the normalized eigenfunctions of RR* on the orthogonal complement of the
nullspace of R*, N'*, are given by

1
4.1) (s,w) = v (s,w) == crw(8s)Cr(8)Yi—au(w) and wup; = ’TkR* [vg] -

The singular value decomposition of the Radon transform has been computed in several
works (see, for instance, [12, 27, 29] and [30, Theorem 6.4] to mention but a few).
REMARK 4.5.

1.

2.

The existence of a singular value decomposition with v, — 0 in particular shows
that the Radon transform is compact.

From Theorem 4.4, item | and item 2, we see that, in general, v has multiplicity
higher than one. The sets E* associated to a spectral value 7, are spanned by the
spectral functions vy ; with [ such that (k, 1) € Z. For example, taking k = 0, ..., 7,
and! =0, ..., k, with k£ + [ even (meaning that (k,[) € Z), we have

E' = span{vo}, E? = spanfuy 1},

E3 = span{vg’()’vg,g}, E4

span{vs,1,v33},
E® = span{vy,0,v4,2,V4,4}, E® = span{vs 1, v5.3,v5 5},

7 3
E :Span{“6707U6,27U6747U676}7 E :Span{’U7,17U7,37U7,57U7,7}-

It is an interesting fact stated in [29] that the adjoint of the Radon transform R* has a
nullspace. In fact, the nullspace of R* is given by

N ={uvg;: k €Ny, 1 €{0,1,...,k}, satisfying [ + k is odd}.

Moreover, RR* has the same nullspace as R*, which is shown for instance in
[29, p. 99].

. Numerical simulations. In this section, we present two numerical experiments:
. The first tests concern computing the SVD of the Radon transform in two test

scenarios:

(a) Learning spectral functions from analytical spectral functions. We use as
training data (x;,y;), ¢ = 1,...,49, the first 49 analytical, given, spectral
functions (., Ug,1), defined in (4.1). We compare the outcome with our
orthonormalization approach. We recall that (x;,y;) are vectors, which are
considered discretized functions/images, and then compared with functions
(Wko > Vi 1)

(b) Learning spectral functions from arbitrary test functions. Here we use annota-
tions of images, which are orthonormalized. This is of course a much harder
problem.
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2. We are concerned with decoding by making use of (3.2). Here we use both singular
value decompositions obtained in the first step.
All codes are publicly available at the following link:
https://gitlab.com/cscl/learning-op.

4.2.1. Singular value decomposition. We visualize the first 20 benchmark images,
which are the singular functions ug, ; and vy ; with (I, k) € Z of the Radon transform outlined
in Theorem 4.4. These plots are used to visualize (in Figures 4.1 and 4.2) the difference
between some of the benchmark data and the learned singular functions. We emphasize
that in the learned approaches we reconstruct vectors u,; € R™ and vy ; € R™, with
m =m = 2500.

V0,0 Vi1 V2.0 V2.2 V31
1 ! 1 ‘ ;5 05 s ! § 05 1 A 05
08 05 0.\" 0 0 ’ 0 0 &» 4 0 0 ',,. " 0
4 v . 05 i R VA |
? 5 . , 1 5 . 7?5 1 A S s i 0' v '5 05 1 ) v 5 05
g ° d) s 40 5 40 d) s 40 s 40
V33 ~ V4o d) \ZB N C Va4 d) V5.1 d)

1 05 04 1 J 05 1 05 1 A 05
N \\\‘ . g% 4 zz N Q‘;} Il . 0 \\\\"A . . ‘.' .: Py .
! 02 A" ‘ VX *
ERALAN T SRR LA/ PIEEA VAV R e

0 5 0 5 0.4 0 5 0 5 0 5
10 10 10 10 10
S S S S S (f)
V5.3 ¢ 5 s ¢ ~ V6,0 ¢ 5 Vo ¢ Vo4
! rv oy 08 05 \\ o8 YR 05 05 ( o8
o't““{}l , o‘l‘\ ) , \ / , : M }
P\ \ 05 05
} 0' 'I(‘Is o° ' ‘1‘1‘1"5‘ 05 o ' 5 05
10 10 10
S Voo ¢ 5 vrg o S vo - ¢
i A A . e us
0 | 0 oy - 0 0 0 %‘ 0
05 ] L 4 A p 0.5 v!
' ”W‘“s 05 } 0 J 5 M 05 ' 5 05
s 10 d) s 10 (j) s 10 d)

F1G. 4.1. This plot visualizes the first 20 normalized singular functions vy, ;, defined in (4.1), for k =
0,1,...,7,1=0,1,...,k andl + k even in the discretized setting.

We note that the first 49 non-zero eigenvalues of RR* belong to the following 12 distinct
singular values:

I = {70,0, 71,15 72,05 3,1, ¥4,0, V5,15 V6,05 V7,1, 8,0, Y9, 15 V10,05 V11,15 V12,0 } -

EXAMPLE 4.6 (Learning spectral functions from analytical spectral functions). We start
with a basic test by learning the spectral functions of the Radon transform from the column
vectors y,;, which are discretizations of the spectral functions vy, ; of the Radon transform as
written down in (4.1) (some of them are shown in Figure 4.1). To be specific, we want to verify

Theorem 2.6 numerically. For this purpose, we construct the matrix Y consisting of the first 49
. . — . . 1 T
singular functions (column vectors) ¥, and the corresponding matrices A =YY & R™*™

and Y € R™*49 with m = 2500.

In Figure 4.3, we show the first 20 singular values of A, graphically representing the
eigenvectors of the matrix W = (t1,...,49) as defined in (2.10) in the proof of Theo-
rem 2.6.

EXAMPLE 4.7. Comparing the results from analytical and learned singular value decom-
position reveals what has been stated in Theorem 2.6 that, in the case of eigenvalues of RR*
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FIG. 4.2. This plot visualizes the first 20 singular functions uy ;, defined in (4.1), for k = 0,1,...,7,

1=0,1,...,k andl + k even.
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FIG. 4.3. This plot shows the first 20 functions 1y, obtained from the singular value decomposition of the
matrix A, defined in (2.8) with column vectors ¥y, := Vi, ;. These results should be compared with the singular
functions of the Radon transform vy as plotted in Figure 4.1. It is obvious that, if a singular value has multiplicity 1,
then vo g is also an eigenfunction, so 11 perfectly represents the claim. For higher indices, linear combinations are
reconstructed approximately, which are elements of the set E*.

with multiplicity higher than one, only the corresponding eigenspace can be reconstructed.
In other words, every 10, should be able to be written as a linear combination of the corre-
sponding functions vy, ; with (k,1) € Z with some index [, which needs to be identified in
addition. Recall again that vy, ; are functions and 1)y, are vectors, which have to be interpreted
as discretizations.
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Using the eigenspaces E*, for k = 1,..., 13, of the Radon operator R according to the
spectral value 7y, as defined in Theorem 2.6, we identify the sets to which the numerically
calculated functions v, for h = 1,. .., 49, most likely belong. This is a two-step process as
discussed below:

1. Identifying the set E*, to which 4, most likely belongs: We obtained the classifica-
tion shown in Table 4.1 using our MATLAB code.

TABLE 4.1
Set E¥ to which 1)y, most likely belongs.

Set Singular values

E! Y1

E? P

E? V3,4

E* ¥s5, e

EP Y7

ES Py

E7 ¥s, P10

E?® P11, P13

B P12, P14, Y16, Y17

E° P15, P18, P20, Pa2, P23, Yas5, Ya6
EY | 4h1g, Y21, You, Y25, Y26, Yor, Yau, Yz, Pas, Pao
E P28, Y30, P31, V33, Y34, V39, Pa1, Pus3
E® V29, Y32, P35, V36, Y37, V38, Ya0, Ya2

2. Finding an appropriate linear combination of basis elements of E*, which optimally
approximates v, for h = 1,...,49: For example, applying MATLAB’s linear
regression software, we obtain the following best approximations for the functions
P, h =1,2,3,4,38,49, shown in Figure 4.4. Each plot displays: (1) the original
function )y, to be approximated, (2) the approximation using the best set of functions
E* (see Table 4.1), and (3) the approximation error. The coefficients of the best
approximating linear combinations of the functions v, where h = 1, 2, 3, 4, 38,49,
are shown in Table 4.2.

TABLE 4.2
Functions 1y, for h = 1,2, 3,4, 38,49, as linear combinations of the eigenfunctions vy, ;, in the discretized
setting.

Set Linear combination
El ’lﬂl = 70.02188V070
E2 ’ng = 0.03360V171
E3 3 = 0.01243v3 ¢ 4+ 0.03831vy 2, P4 = —0.03693v2 o + 0.01436v3 o
pll a9 = 0.02541v10 0 — 0.01122v19 2 — 0.00060v1g 4
— 0.00072V10’6 — 0.00061V10,8 + 0'00003‘/10,10
E13 ’lﬂgg = 0.04555V1270 — 0.02561V1272 — 0.00396V1274

— 0.00004V1276 + 0.00012V1278 + 0.00003V12710 — 0.00153V12712
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Original 4, Approximated with €'~ Error for ¢, Original %, Approximated with E2  Error for 4,

Original 1/;4 B3 Error for ¥,

Approximated with

Original ., Approximated with E'3 Efror for ¢, Original ¥,3  Approximated with E'! Error for o

FIG. 4.4. Results of the linear combinations for 1y, with h = 1,2, 3,4, 38, 49.

The numerical reconstructions of the singular functions is satisfactory for the first 12
(the first four are shown in the first and second rows of Figure 4.4). For higher indices,
the errors are significant, and the error values are of the same order of magnitude as
those of the functions vy, (see, for example, the plots in the last row of Figure 4.4).

The example has shown that reconstruction of the singular functions and values of operators
is possible from training data without knowing the operator explicitly. However, for higher
order of indices, the spectral functions become more oscillatory and the numerical treatment
becomes increasingly complicated.

EXAMPLE 4.8 (Learning spectral functions from arbitrary test functions). In this example,
we consider a dataset, composed of 20 elements, that we have constructed using our own
MATLAB function. Specifically, each discrete image, of numerical dimension 50 x 50, is
composed of 10 ellipses that have been generated randomly. In fact, we want to create several
images that mimic the structure of the Shepp—Logan phantom. Each ellipse is described
by assigning six parameters (intensity, length of the major semi-axis, length of the minor
semi-axis, x coordinate of the center, y coordinate of the center, rotation angle) that vary
within the ranges reported in Table 4.3.

In Figures 4.5 and 4.6, we present plots of the images constructed with our MATLAB
routine and their orthonormalized version. In Figure 4.6, we show the projection of the
values onto the xy plane for better visualization of the orthonormalization procedure. The
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Parameters and their corresponding ranges for the ellipses of the dataset described in Example 4.8.

Parameter of ellipse Range
Intensity [0.01, 2]
Length of major semi-axis | [0.1,0.7]
Length of minor semi-axis | [0.1,0.7]

x coordinate of center [—0.6,0.6]

y coordinate of center [—0.6,0.6]
Rotation angle [—45°,134°]

corresponding data (that is, the sinograms) of the orthonormalized images, see (2.2), ¥, =
RX},, are plotted in Figure 4.7. We are switching here between the discrete and the continuous

setting to simplify the presentation.

1 1 1 -1 1 1 0
Y Y
X16 X17 X18
10 10
5

5 5

0 0 [

y 1 -1 1‘ y 1 -1 17 1 -1 x

FIG. 4.5. Training images xy, fork =1, ...

, 20.
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5
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0 B | 0 !
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5
9
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o - 0 1
Y "
X20
10
5
9
1; RER '

As in the previous numerical example, see Example 4.6, we utilize the eigenspaces E*

fork=1,...
h=1,...

, 8, to identify the sets to which the numerically computed functions 1);,, for
, 20, most likely belong. We obtained with our MATLAB code the classification

given in Table 4.4. As before, we identify suitable linear combinations of elements of E*
in order to rewrite the term t),. We present in Figure 4.8 the first four results of the linear
combinations, allowing for a direct comparison with the outcomes previously obtained in
Example 4.6. The reader can observe, as expected, that the approximation results, expressed
as linear combinations, are less precise than those found in Example 4.6.

4.2.2. Decoding. Using the results from the previous section, we implement the recon-

struction formula derived in (3.2).

Test 1. In the first example, the ground truth is given by

4.2)

Xirue = 0.1134115,1 + 0.3984113’1 + 0.8840110)0 + 0.1803116’4.
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X4

FIG. 4.6. Orthonormalized images Xy, for k = 1, ..., 20, projected onto the plane xy.
Ys
004 1 004
002 002
: o @ nc
-0.02 -0.02
B 0 2 4 6
0
002
o
-0.02

002

0.02

F1G. 4.7. Orthonormalized training data 'y, fork = 1,...,20.

In Figure 4.9 we present an example where the ground truth is constructed as a
linear combination of singular functions, see (4.2). This setting represents the
most favorable case for our approach, as the reconstruction essentially relies on
recovering the coefficients of the linear expansion. As expected, the method provides
a reasonable approximation of the profile of the ground truth.

Test 2. We introduce a scenario similar to Test 1, but now involving a nonlinear combination
of functions uy, ;. Specifically, for each function uy, ; in the nonlinear combination, we
apply the operation 0.1u%7 = eur.t/max(ur) scaled by a specific weight. Results and
comparison with ground truth are provided in Figure 4.10. In contrast to Figure 4.9,
Figure 4.10 illustrates a more challenging scenario where the ground truth is generated
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TABLE 4.4
Set E* 1o which ay, most likely belongs in the case of Example 4.8.

Set Singular values
E! Py
2
E 111)27 Q/)S
3
E ¢47 1:[)53 7/’6
E Py
5
E Yo
6
E 1/"77 1#87 ¢187 ¢19
7
E ¢117¢12a¢13a¢14a¢177¢20
8
E P15, Y16
Original ¥y Approximated with ' Error for ¥4 Original (23 Approximated with g2  Errorfor (2
X107 3
0.05
0
003& ooa& -0.05| 05| 001'
50 50
y 0o X y U 0 X y 0 0 X y X y X y X
Original 3 Approximated with E3  Error for ¢ Original Y, Approximated with 2 Error for 4,
0.05 0.05
0 0
-0.05 -0, 05 -0 02 -0.05! -0 05 -0 02
50 50
50
y oo X y 0o X y 00 X y 00 X y 0 X y 0o X

FIG. 4.8. Results of the linear combinations for 1y, with h = 1,2, 3, 4.

from a nonlinear combination of singular functions. This case goes beyond the exact
spectral representation of the operator and is therefore harder to approximate with
our current framework. The reconstructions are not only visibly less accurate but, in
many cases, also fail to faithfully reproduce the ground truth, which demonstrates
the limitations of the method in nonlinear settings. For the nonlinear case, different
techniques are required in order to obtain reasonable results.

5. Conclusion. In this paper we have shown that a double orthonormalization strategy,
consisting first of orthonormalization of training images and second of a principal component
analysis of the training data, theoretically provides us with the singular value decomposition of
a linear operator (without making use of an explicit physical model). Two further interesting
aspects are shown: First, orthonormalization, like Gram—Schmidt, can be expressed as a deep
neural network, and this opens up exploiting synergies with decoder and encoder strategies.
Secondly, not only can the singular value decomposition be implemented purely data-driven,
but also the decoding, meaning that for arbitrary data the minimum-norm solution can be
computed data-driven.
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FIG. 4.9. Decoding, ground truth as represented in (4.2), and ytrye.-
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FIG. 4.10. Decoding, ground truth as represented in (4.2), and y ¢rve in the nonlinear combination setting.
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