
ETNA
Kent State University and

Johann Radon Institute (RICAM)

Electronic Transactions on Numerical Analysis.
Volume 64, pp. 23–44, 2025.
© 2025, the Author(s), licensed via CC BY 4.0.
ISSN 1068–9613.
DOI: 10.1553/etna_vol64s23

SPECTRAL FUNCTION SPACE LEARNING AND NUMERICAL LINEAR
ALGEBRA NETWORKS FOR SOLVING LINEAR INVERSE PROBLEMS∗

ANDREA ASPRI†, LEON FRISCHAUF‡, AND OTMAR SCHERZER‡§¶

Abstract. We consider solving an ill-conditioned linear operator equation, where the operator is not modeled
by physical laws but is specified via training pairs (consisting of images and data) of the input–output relation of
the operator. The proposed method for computing the operator from training pairs consists of a Gram–Schmidt
orthonormalization of images and a principal component analysis of data. Interestingly, this two-step algorithm
provides us with a spectral decomposition of the linear operator, without explicit knowledge of it. Moreover, we
indicate that both Gram–Schmidt and principal component analyses can be expressed as a deep neural network which
delivers orthonormalized vectors from a set of vectors. This relates the algorithm to decoder and encoder networks.
Therefore, we call the two-step algorithm a linear algebra network. Finally, we provide numerical simulations
showing that the strategy is feasible for reconstructing spectral functions and for solving operator equations without
explicitly making use of a physical model.
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1. Introduction. We consider solving an ill-conditioned linear operator equation

(1.1) Fx = y,

where x ∈ Rm and y ∈ Rm. We call Rm the image and Rm the data space following the
terminology of [3, 4]. The main assumption of this work is that the operator F is not modeled
mathematically by physical laws but indirectly via training pairs,

P := {(xi,yi) : i = 1, . . . , N},

which satisfy

Fxi = yi, i = 1, . . . , N.

Here N is called the sampling size, and we denote the span of the training images and data by

XN := span{xi : i = 1, . . . , N} ⊆ Rm ≡ Rm×1,

YN := span{yi : i = 1, . . . , N} ⊆ Rm ≡ Rm×1,

and

X =
(
x1 · · · xN

)
∈ Rm×N , Y =

(
y1 · · · yN

)
∈ Rm×N .

Without further notice, we always assume that the training images xi are linearly indepen-
dent and that F has trivial nullspace, such that the training data yi are also linearly independent.
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Operator learning focuses on identifying or approximating the unknown transformation F .
The problem involves finding a mapping between input functions xi and corresponding outputs
yi, for i = 1, . . . , N , that can also accurately predict outputs for unseen inputs. That is, we
study learning the operator F and its inverse through an encoding–decoding strategy, where
both steps are based solely on the available training data. After learning the operator F , we can
solve (1.1) for arbitrary data y ∈ Rm. This is different from the strategy proposed in [4, 19],
where the operator equation is solved directly without learning the operator in a first step.

Operator learning is a very active field of research. There exist a variety of such methods,
such as very established ones, like black box strategies (see, for instance, [32]) for linear
operator learning. We remark that, in the literature, the term operator learning is most
commonly associated with the approximation of infinite-dimensional operators, one of its
main advantages being the independence from discretization [22]. However, this is only
possible when the number of training samples N → ∞. In other words the approach is
discretization-independent but sampling-dependent.

Our setting here is more restricted: we directly approximate a linear discrete inverse
problem in a finite-dimensional framework. Nevertheless, via regularization by projection,
this finite-dimensional operator can be understood as the restriction of an infinite-dimensional
operator to a finite-dimensional subspace (see [4, 19]). In this sense, our methodology should
be regarded as a finite-dimensional learning strategy, conceptually closer to end-to-end methods
in inverse problems [1]. Moreover, we note that the term operator learning is also frequently
employed when referring to discretized realizations of infinite-dimensional operators [26],
which is the context here and therefore justifies the used terminology.

For nonlinear operator learning, it is popular to use deep neural networks (see [21, 23, 24,
25]). This is typically realized using neural operators, which extend neural networks to handle
function-based inputs and outputs. By discretizing functions at specific sensor locations, the
model is parameterized and trained through an optimization process that minimizes the error
between predicted and actual outputs. Key challenges include selecting a suitable model
structure, managing computational costs, and ensuring strong generalization capabilities. For
applications in inverse problems, see [1, 18].

Coding is a term used in manifold learning, which, in turn, is a basic tool in machine
learning. The basic assumption there is that all potentially measured y’s are elements of a
low-dimensional manifold (see, for instance, [9, 13]). The setting of manifold learning (no
operator connecting data) is represented in Figure 1.1.

N−1
Y NX

Decoder Encoder

Image
representation

Principal
geodesic analysis,

compression

Feature
representation

Image
representation via
neural networks

FIG. 1.1. Variational encoding and decoding with neural networks. The image data are represented via a
neural network. After representation they are transformed into a feature space (with the operator NX ). The features
are compressed by a principal geodesic analysis. The decoder N−1

Y (we assume for the sake of simplicity that the
operator is invertible) transforms features into images.

Our approach for operator learning is conceptually akin to manifold learning, yet method-
ologically different (compare Figure 1.1 and Figure 1.2). We note that the relation between
autoencoders and classical linear algebra methods has been studied in the literature before.
In particular, it has been shown that linear autoencoders essentially perform principal com-
ponent analysis (PCA). In [5] the authors demonstrated that a linear autoencoder trained to
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reproduce its inputs learns to span the subspace of the leading principal components and
that the associated optimization problem is free from spurious local minima. Independently,
the authors of [8] established a connection between auto-associative multilayer perceptrons
and the singular value decomposition (SVD), showing that hidden representations align with
the principal components of the data. More recently, others [20] revisited autoencoder for-
mulations in the context of inverse problems, proposing a paired autoencoder framework
based on Bayes risk minimization. This approach illustrates how classical insights on the link
between autoencoders, PCA, and SVD can be systematically extended to modern data-driven
methodologies for inverse problems.

F−1 F

Decoder Encoder

Image
representation

Principal
component analysis,

compression

Data of
orthonormalized

images

Orthonormalization
of images

FIG. 1.2. Encoding and decoding scheme for linear operators. First the image data are orthonormalized and
the corresponding data are computed by applying F—this is done by explicit calculations without making use of any
physical model describing the forward operator (see Section 2 for details). On the orthonormalized data, a principal
component analysis (PCA) is applied, which allows the data space to be compressed. The decoder calculates the
inverse of some given data in the compressed space.

In this paper, we investigate a new coding scheme for solving linear ill-conditioned
problems, as outlined in Figure 1.2. The standard linear algebra approach for linear operator
learning consists of computing the linear least-squares problem for (see [35])

argminF∈L(Rm,Rm)≡Rm×m‖Y − FX‖2Rm×N .

For this linear optimization problem, the minimizing operator F is given by

Fls = YXT (XXT )†,

where (XXT )† denotes the Moore–Penrose inverse (see [28]) of XXT . In general the matrices
XXT are huge, and more memory-efficient techniques can be implemented, which are based
on orthonormalization; we use orthonormalization as a key tool for operator learning (see, for
instance, [37]). This paper is based on the following two interesting observations and results:

1. The algorithm shown in Figure 1.2 allows one to determine the singular vectors and
values of F (see Theorem 2.6); note that the operator is not physically modeled but
computed through its input–output relations (training pairs). In other words, the
choice of the training pairs only influences which spectral vectors and values can be
computed. While the result follows from elementary linear algebra considerations,
to the best of our knowledge it has not yet been observed in the context of operator
learning. One can therefore say that the singular value decomposition is invariant
with respect to the choice of training pairs.

2. Related to operator learning are regularization issues. In [3, 4], we showed that
orthonormalization of training data or training images (in a separate manner) can be
used to stably determine an operator if the orthonormalization produces a basis that is
close to the singular vectors. There is an antisymmetry in the two approaches, which
is overcome in this paper. In this context, regularization and stability analysis of the
implementation should not be confused. For instance, as used here, Gram–Schmidt
orthonormalization is unstable with an increased number of expert images and data,
respectively. However, regularization results apply if pre-processing orthonormaliza-
tion methods (like Gram–Schmidt) have been implemented in a stable manner—this
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is what we discuss here. In view of this, the numerical results need to be evaluated
(see Section 4.2). The inaccuracies are due to numerical instabilities of orthonormal-
ization algorithms and not because of regularization by truncated SVD. We need to
further analyze whether the combined strategy of Gram–Schmidt orthonormalization
and PCA offers practical benefits versus orthonormalization of either training images
or data.

3. Moreover, we show that each building block of the proposed algorithm, represented
in Figure 1.2 (in particular, orthonormalization) can be expressed via a customized
linear algebra network (see Figure 2.1 in Section 2.1). The term customized refers
to the fact that the parameters in the neural network are given by the algorithm
(specifically, Gram–Schmidt orthonormalization and PCA) and do not need to be
optimized from the training data.

4. Finally, we present some numerical experiments on learning the Radon operator
(the source code is referenced and available in [2]). For this operator, the singular
values are explicitly known (see [12, 29]). Therefore, we can compare the computed
singular values from training data with the analytical ones (see Section 4). Although
it is theoretically possible to recover singular vectors, practical handicaps are due to
instabilities of the orthonormalization algorithms, as discussed already above.

We summarize the main objectives of this paper: We show that finite-dimensional linear
operators can be learned with the proposed hybrid orthonormalization strategy. In contrast,
several methods for operator learning based on decode and encoder networks have been
developed recently. We show that our hybrid linear algebra technology can indeed be written
as a decoder and encoder network. In view of this, our paper provides a systematic link
between these two areas of research. Moreover, our analysis provides an insight into the
efficiency and stability of neural network coders.

2. Encoding of linear operators. The encoder from Figure 1.2 consists of two steps:
1. Calculating orthonormalized images.
2. Computing a principal component of data of orthonormalized images

yj := F (xj), j = 1, . . . , N.

We recall that, according to our general assumptions on training images and data, we have
N ≤ {m,m}. The assumption can be neglected at several places, but we leave it for the sake
of simplicity.

2.1. Pre-processing—orthonormalization. We review the Gram–Schmidt orthonormal-
ization method (see, for instance, [17]) and show that it can be expressed as a deep neural
network (NN). In a second step, we show that also the QR decomposition (see [10]), real-
izing PCA, is representable as a deep NN. In other words, they are customized because the
parameters of the network do not need to be optimized. This motivates our terminology linear
algebra networks.

2.1.1. Gram–Schmidt as a deep network. We start with the training images
x1, . . . ,xN ∈ Rm and orthonormalize them iteratively. Let

σ : Rm r {0} → Rm ,

x 7→ x

‖x‖ ,
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where ‖ · ‖ and 〈·, ·〉 denote the Euclidean norm and inner product in Rm and Rm, respectively.
Then Gram–Schmidt orthonormalization can be written as follows:

(2.1) xj := σ

(
xj −

j−1∑
i=1

〈xj ,xi〉xi︸ ︷︷ ︸
=:ρ(xj)

)
for all j = 1, . . . , N.

For each vector j = 1, . . . , N , we treat xj as the input to the jth layer of a neural network.
Here ρ(xj) is a linear, vector-valued function, and therefore every one of its components can
be represented by a standard affine linear neural network. Since the vectors xi are provided as
inputs from the previous layers, they do not interfere with the computations in the jth layer.
This is also represented in the sparse graph representing the network in Figure 2.1.

x1

x2

x3

xN

x1 = σ(x1)

ρ(x2) = x2 − w1,2x1 x2 = σ(ρ(x2))

ρ(x3) = x3 − w1,3x1 − w2,3x2 x3 = σ(ρ(x3))

1

1

1

w1,2 := −〈x2,x1〉
w1,3

w2,3

····· ·····

····· ·····

FIG. 2.1. The neural network structure of the Gram–Schmidt orthonormalization. Here wi,j represent
customized weights.

REMARK 2.1. In practical applications the smooth approximation

σε : Rm → Rm,

x 7→ x√
‖x‖2 + ε2

,

is used. With this modification, we can avoid the Gram–Schmidt orthonormalization breaking
down with linearly dependent training images xi. In the machine learning context, the
approximations σε of the high-dimensional sign function σ are called activation functions.
Note, however, that activation functions are typically scalar maps applied component-wise
to vectors (see, for instance, [7]). In contrast, in our setting the activation acts on the entire
vector and is therefore vector-valued; to make this distinction explicit, we denote it in boldface
as σε : Rm → Rm. Such a component-wise network cannot be used here because we must
ensure that every ρ(xj), j = 1, . . . , N , is a linear combination of xi, i = 1, . . . , j − 1.
Replacing σ by σε in Figure 2.1, we obtain an N -layer neural network, which we call a
Gram–Schmidt network. There are efficient alternatives to Gram–Schmidt, which are, for
instance, block-based (see, for instance, [11]), which can be reinterpreted again as deep neural
networks.

2.2. Data from orthonormalized images. If the nullspace of F is trivial, then from (2.1)
it follows immediately that (see Figure 2.1)

(2.2) yj := F xj := F (σ(ρ(xj))) =
1

‖ρ(xj)‖
F (ρ(xj)) for all j = 1, . . . , N.

This means that the data of orthonormalized images can be computed without explicit knowl-
edge of F . Note that ρ(xj) is a linear combination of xi, i = 1, . . . , j, where the coefficients
of the linear map are given from previous layers.
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With the knowledge of yj , j = 1, . . . , N , we can compute data for every image x ∈ XN .
Since

x =

N∑
i=1

〈x,xi〉xi,

it follows that

y = Fx =

N∑
i=1

〈x,xi〉F xi =

N∑
i=1

〈x,xi〉yi.

REMARK 2.2. If, instead of the exact Gram–Schmidt procedure, one considers the
so-called Gram–Schmidt network obtained by replacing σ with σε in Figure 2.1, then the
approximate relation

(2.3) yj := F xj ≈ F (σε(ρ(xj))) =:
1

‖σε(ρ(xj))‖
F (ρ(xj)), j = 1, . . . , N,

is made use of. We note, however, that in our numerical simulations we always employ
the classical Gram–Schmidt algorithm, and not the Gram–Schmidt network. The network
formulation is introduced here only to highlight the connection with neural network structures
and to provide a conceptual interpretation of orthonormalization in terms of customized
networks.

2.2.1. Principal component analysis (PCA). In the following, we analyze the stability
of PCA in the regularization context, as mentioned in the introduction. The starting point
of this discussion is Seidman’s veto [33], which states that regularization by projection is in
general not a regularization method. This means that, when projecting onto XS , the inversion
of F restricted to F (XS) becomes unstable as S →∞. On the other hand, if F is inverted
on YS , then it is in fact stable (see again [33]). However, in the context of machine learning,
this requires the collection of training data of F ∗yi, i = 1, . . . , S, which in general is not
available. Note that F ∗ denotes the adjoint of F . As a conclusion from [33] we find that F
can be stably inverted by projection if XS is the space of the singular vectors corresponding to
the largest S singular values (see, for instance, [14]). Now, we show how these singular values
can be calculated with machine learning techniques.

THEOREM 2.3 (Spectral theory: see [17, Theorem 2.5.2]). Let the operator F : Rm →
Rm be linear. Then for every x ∈ Rm

(2.4) Fx =

min{m,m}∑
j=1

γj〈x,uj〉vj and FTvj = γjuj , Fuj = γjvj ,

where uj ∈ Rm, j = 1, . . . ,m, and vj ∈ Rm, j = 1, . . . ,m, are orthonormal, respectively,
and

0 ≤ γ1 ≤ γ2 ≤ · · · ≤ γmin{m,m}.

In matrix form, this identity becomes more compact:

(2.5) F = VDUT with U ∈ Rm×m, V ∈ Rm×m,

where U and V are orthonormal and

D = diag(γ1, γ2, . . . , γmin{m,m}, 0, . . . , 0) ∈ Rm×m.
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In the following, we group the spectral values:
DEFINITION 2.4. Let F be linear with trivial nullspace with spectral decomposition as

in (2.4). We denote by

(2.6) Γ := {γj : j = 1, . . . ,min{m,m}} = {γ̂k : k = 1, . . . , m̂}

the set of distinct singular values. Because F is assumed to have trivial nullspace, γj > 0
for all j = 1, . . . ,min{m,m}. Moreover, we associate to each multiple singular value the
associated singular vectors: For every k = {1, . . . , m̂} let

(2.7) Ek := span{vj : γj = γ̂k, j = 1, . . . ,min{m,m}}.

Now, we apply the spectral theory to show that the proposed decoding algorithm is stable.
There, we adopt some general notation:

DEFINITION 2.5. Let xi, i = 1, . . . , N , be the orthonormalized training images and yi,
i = 1, . . . , N , be the corresponding images as defined in (2.1) and (2.2), respectively. We
denote

X := (x1, . . . ,xN ) ∈ Rm×N , Y := (y1, . . . ,yN ) ∈ Rm×N , and

A := YY
T ∈ Rm×m.

(2.8)

Note that, by our general assumptions, the rank of each of the three matrices is always N ≤ m.
With this result, we can state the main result of this paper:
THEOREM 2.6. Let ψj ∈ Rm, j = 1, . . . , N , be a non-zero eigenvector of A. Then

1. there exists k ∈ {1, . . . , m̂} such that ψj ∈ Ek, and thus
2. in particular, this means that, if a non-zero eigenvector of A has multiplicity one,

then it equals a spectral vector of F .
Proof. The PCA in image space calculates the eigenvalue decomposition of the covariance

matrix

(2.9) A := YY
T

= W

[
Λ ∈ RN×N 0

0 0

]
︸ ︷︷ ︸

=: Λ

W
T ∈ Rm×m,

where W ∈ Rm×m is an orthonormal matrix, W describes the principal directions of the data
Y, and the corresponding entries of Λ describe the elongation of the data in this direction.
Now, since Y = FX, we get from (2.9)

(2.10) FXX
T
FT = YY

T
= A = WΛW

T
.

Since X consists of orthonormal vectors and has rank N , we have

XX
T

=

[
I ∈ RN×N 0

0 0

]
=: I ∈ Rm×m,

where I is the identity matrix. Let U ∈ Rm×m be the orthonormal matrix from (2.5). Then,
after reordering of columns of X,

UTX
T
XU = UTIU ∈ Rm×m.

The matrix IU projects onto the first basis vectors ui (after potential reordering of the vectors).
Then we get from (2.10) and (2.5) the identity

WΛW
T

= YY
T

= FXX
T
FT = VDIDTVT .

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

30 A. ASPRI, L. FRISCHAUF, AND O. SCHERZER

This means that we have found two singular value decompositions of YY
T

. We know
that the matrices on the left and right have the same eigenspaces. This means, in particular,
that if an eigenvalue has multiplicity one, then the corresponding eigenspaces of V and W
match, and the representing eigenvectors of the eigenspace are identical up to the sign. This
proves the second item. For eigenvalues of multiplicity higher than one, the corresponding
columns of V are rotations and mirrors of W, which proves the first item.

REMARK 2.7. Theorem 2.6 tells us the following:
1. Orthonormalization of the training images is the basis of stable decoding. The

difficulty, however, is that orthonormalization may not provide us with an ordering of
the singular vectors by absolute magnitude. For instance, there is no guarantee that
singular vectors belonging to the absolutely largest singular values, which usually
carry most of the information, can be recovered. See Table 4.1, which shows this
issue for an example related to the Radon transform: The choice of the training data
does not allow one to reconstruct some low-frequency components.

2. Orthonormalization is unstable. Thus,N must be chosen small to guarantee numerical
stability. We emphasize again that we do not discuss the instability of orthonormal-
ization algorithms. Instead we discuss regularization aspects related to the truncated
singular value decomposition, which is determined via hybrid orthonormalization.

Last, we also verify that PCA, which is implemented via QR decomposition, can be ap-
proximately rewritten as a network, analogously to the Gram–Schmidt algorithm in Figure 2.1.

2.3. PCA expressed as a deep network. This section shows that spectral value decom-
position can be expressed as a customized deep network. Thereby, we make use of the fact that
singular value decomposition (SVD) applied to the covariance matrix A = YY

T ∈ Rm×m

from (2.4) gives the principal components. The SVD can be implemented by iteratively
applying the QR algorithm, which is the famous Francis algorithm [16] (see also [17, 39]).
Now, we show that the QR algorithm can be approximated by a deep linear algebra network.
Therefore, approximating the QR decomposition in the Francis algorithm with linear algebra
networks gives a “deep–deep” linear algebra network realizing the PCA. The terminology
deep–deep refers to the implementation of the Francis algorithm, which is iterative, and in
each iteration step of the Francis algorithm a QR decomposition is implemented, which is
represented as a deep neural network. When the single iterates of the Francis algorithm are
represented with a neural network graph structure, we have one level of deepness more (for
the iterates of the Francis algorithm).

Let us denote the column vectors of the matrix A, defined in (2.8), by ai, i = 1, . . . ,m,
and denote the orthonormalized vectors by ai, i = 1, . . . ,m. Moreover, let

ρ(aj) := aj −
j−1∑
i=1

〈aj ,ai〉ai.

Then it follows (see [34], which is the textbook where the formulas are written precisely in the
same way as they are used here) that:

(2.11) aj = ‖ρ(aj)‖aj +

j−1∑
i=1

〈aj ,ai〉ai, j = 1, . . . ,m.

Writing this in matrix notation reads as follows:

A = QR with Q = (a1, . . . ,an) and Ri,j =


〈aj ,ai〉 for i = 1, . . . , j − 1,

‖ρ(aj)‖ for i = j,

0 for i = j + 1, . . . ,m.
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In fact, it follows from (2.11) that

aj =
1

‖ρ(aj)‖

(
aj −

j−1∑
i=1

〈aj ,ai〉ai
)

= σ(ρ(aj)), j = 1, . . . ,m,

Figure 2.1 with x replaced by a is the net that determines Q. This shows that the matrix Q
from the QR algorithm can be determined with a linear algebra network. Moreover, it has
been recently observed that matrix multiplication can be implemented very efficiently via
reinforcement learning or, in other words, via neural networks (see [15]). We remark here
that [38, Section 35] have already mentioned that the QR algorithm based on Gram–Schmidt
orthonormalization may lead to unstable implementations. Thus, the exposition above is only
used for theoretical purposes.

REMARK 2.8. In recent years PCA networks have become popular in the machine
learning community (see [6, 31, 36]). The goal there is somewhat different and consists
of minimizing the parameters of a network. While such networks would be worthwhile to
investigate in this context, a detailed analysis falls outside the scope of this work.

3. Image representation and decoder. We consider the decoder as represented in
Figure 1.2. We calculate the least-squares approximation of y with respect to the basis
{ψl : l = 1, . . . , N} (see Theorem 2.6) of the eigenvectors of A. This is given by

yls =

N∑
l=1

〈y,ψl〉ψl.

The goal is to find an explicit representation of the decoding function xls, that is, a function
with minimum norm, which satisfies

(3.1) Fxls = yls

and which can be represented by the training pairs alone.
From Theorem 2.6 it follows that, for every ψl, there exists k(l) ∈ N such that

ψl ∈ Ek(l).

We denote the dimension of Ek(l) by m(l). In other words, the multiplicity of γl is m(l).
From (2.7) we know that

ψl ∈ span{vl(j) : j = 1, . . . ,m(l)} = Ek(l),

and thus

ψl =

m(l)∑
j=1

νjv
l(j) ,

where vl(j) denotes the l(j)th row of the matrix V of the singular value decomposition of F
(see (2.5)). Applying (2.4) and (2.7) then implies that

ψl =

m(l)∑
j=1

νjv
l(j) =

1

γ̂k(l)
F

(
m(l)∑
j=1

νju
l(j)

)
.

We summarize the calculations now in the following lemma:
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LEMMA 3.1 (Decoder). The minimum-norm solution of (3.1) is given by the decoder

(3.2)

xls =

N∑
l=1

〈y,ψl〉
(

1

γ̂k(l)

m(l)∑
j=1

νju
l(j)

)
=

N∑
l=1

〈y,ψl〉
(γ̂k(l))2

F ∗

(
m(l)∑
j=1

νjv
l(j)

)

=

N∑
l=1

〈y,ψl〉
(γ̂k(l))2

F ∗ψl .

In summary, the necessary implementation steps to compute the least-squares solution xls

are: First, QR decomposition is implemented to get the eigenfunctions {ψl : l = 1, . . . , N}.
Second, the decoder is implemented via (3.2).

4. Numerical simulations. We consider two simulation scenarios: First, we show that
the singular value decomposition can indeed be computed from training pairs without knowing
the forward operator explicitly. Second, we study a reconstruction test with a learned operator.
In both cases, we use the Radon transform for two-dimensional images as the physical model
for the forward operator, leveraging its analytically known singular value decomposition
(see [12, 29]).

4.1. SVD from training pairs. We verify numerically that orthonormalization of data
(xi → xi, i = 1, . . . , N ) and a principal component analysis of the covariance matrix A,
defined in (2.8) obtained from the images of the orthonormalized data,

{yi = F xi : i = 1, . . . , N},

see (2.2) and (2.3), provides us with the singular value decomposition of the discrete operator
F (see Figure 1.2).

We take as a prototype example for F the Radon transform in two dimensions (see
Definition 4.1 below). The singular value decomposition of the Radon transform has been
computed in [12] (see also [29]) for the general case of images of n variables. In our example
n = 2, and we consider the Radon transform as an operator fromL2(B(0, 1)) intoL2(Z,w−1),
where B(0, 1) is the unit disk in R2 centered at the origin, where

Z = S1 × [−1, 1] and w(s) = (1− s2)1/2

is a weight function. This means that L2(Z,w−1) is the weighted L2-space with norm

‖g‖2L2(Z,w−1) =

∫
S1

∫ 1

−1

|g(ω, s)|2w(s)−1 ds dω

for g ∈ L2(Z,w−1). Before going into the numerical details, we provide the necessary
notation and summarize well-known results on the Radon transform to facilitate the analysis.

4.1.1. Convention. Given ~ω = (ω1, ω2)T ∈ S1 we have

ω1 = cos(φ) and ω2 = sin(φ), φ ∈ [0, 2π).

Moreover, the orthogonal vector related to ~ω is given by ~ω⊥ = (−sin(φ), cos(φ))T .
For the reader’s convenience, we recall the definition of the Radon transform for functions

on the unit disk in R2:
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DEFINITION 4.1 (Radon transform on the unit disk). Let Z := S1 × [−1, 1]. We define
the Radon transform as

R : L2(B(0, 1))→ L2(Z,w−1),

f 7→ R[f ](~ω, s) =

∫ √1−s2

−
√

1−s2
f(s~ω + t~ω⊥) dt.

One can show that this operator is continuous and satisfies (see [12]):

‖R[f ]‖L2(Z,w−1) ≤
√

4π ‖f‖L2(B(0,1)).

In the following, we recall the expression of the adjoint operator of the Radon transform R
defined on the unit disk. This is the operator R∗ : L2(Z,w−1)→ L2(B(0, 1)), which satisfies

〈R[f ], g〉L2(Z,w−1) = 〈f,R∗[g]〉L2(B(0,1)).

DEFINITION 4.2 (Adjoint). For every g ∈ L2(Z,w−1) and almost all ~x = (x1, x2)T ∈
R2, the adjoint of the Radon transform R∗ is given by

R∗[g](~x) =

∫
S1

g(~ω, ~x · ~ω)

w(~x · ~ω)
d~ω.

In the following we give a survey on the singular value decomposition of the Radon
transform for functions on the unit disk. The results are essentially taken from [29], with the
main difference being that we consider the adjoint R∗ restricted to the range of R (in contrast
to Definition 4.2).

Before recalling the spectral decomposition of the Radon transform, we review the general
definition of a spectral decomposition:

DEFINITION 4.3 (Spectral decomposition, [14]). Let K : X → Y be a compact linear
operator. A singular system (uk, vk; γk) is defined as follows:

1. γ2
k , k ∈ N0, are the non-zero eigenvalues of the self-adjoint operator K∗K (and also
KK∗) written in decreasing order (we always take γk > 0);

2. uk, k ∈ N0, are a complete orthonormal system of eigenvectors of K∗K (on the
spaceR(K∗) = R(K∗K));

3. vk := (1/‖Kuk‖)Kuk, k ∈ N0.
The set {vk : k ∈ N0} is a complete orthonormal system of eigenvectors of KK∗ which spans
R(K) = R(KK∗). Moreover, the following formulas hold:

Kuk = γkvk, K∗uk = γkvk,

Kx =

∞∑
k=0

γk〈x, uk〉vk for all x ∈ X,

K∗y =

∞∑
k=0

γk〈y, vk〉uk for all y ∈ Y.

Note that here x, y, uk, and vk are functions, while in our discrete setting we consider vectors
x, y, uk, and vk.

THEOREM 4.4 ([29, p. 99]). The spectral decomposition of the Radon transform is given
by {(uk,l,vk,l; γk,l) : (k, l) ∈ I} where the following hold:

1. I = {(k, l) : k ∈ N0, l ∈ {0, 1, . . . , k}, satisfying l + k is even}.
2. γ2

k = γ2
k,l = 4π/(k + 1) > 0 is independent of l.
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3. Let Ys be the spherical harmonics in R2 (which in n = 2 are just sin and cos
functions, with specified frequencies) and let

s 7→ Ck(s) =
sin((k + 1) arccos(s))

sin(arccos(s))

denote the Chebyshev polynomials of the second kind. Moreover, let

1

ck
= ‖wCkYk−2l‖L2(Z,w−1) = ‖√wCk‖L2(−1,1).

Then the normalized eigenfunctions of RR∗ on the orthogonal complement of the
nullspace of R∗, N⊥, are given by

(4.1) (s, ω)→ vk,l(s, ω) := ckw(s)Ck(s)Yk−2l(ω) and uk,l =
1

γk
R∗[vk,l] .

The singular value decomposition of the Radon transform has been computed in several
works (see, for instance, [12, 27, 29] and [30, Theorem 6.4] to mention but a few).

REMARK 4.5.
1. The existence of a singular value decomposition with γk → 0 in particular shows

that the Radon transform is compact.
2. From Theorem 4.4, item 1 and item 2, we see that, in general, γk has multiplicity

higher than one. The sets Ek associated to a spectral value γk are spanned by the
spectral functions vk,l with l such that (k, l) ∈ I. For example, taking k = 0, . . . , 7,
and l = 0, . . . , k, with k + l even (meaning that (k, l) ∈ I), we have

E1 = span{v0,0}, E2 = span{v1,1},
E3 = span{v2,0, v2,2}, E4 = span{v3,1, v3,3},
E5 = span{v4,0, v4,2, v4,4}, E6 = span{v5,1, v5,3, v5,5},
E7 = span{v6,0, v6,2, v6,4, v6,6}, E8 = span{v7,1, v7,3, v7,5, v7,7}.

It is an interesting fact stated in [29] that the adjoint of the Radon transform R∗ has a
nullspace. In fact, the nullspace of R∗ is given by

N = {vk,l : k ∈ N0, l ∈ {0, 1, . . . , k}, satisfying l + k is odd}.

Moreover, RR∗ has the same nullspace as R∗, which is shown for instance in
[29, p. 99].

4.2. Numerical simulations. In this section, we present two numerical experiments:
1. The first tests concern computing the SVD of the Radon transform in two test

scenarios:
(a) Learning spectral functions from analytical spectral functions. We use as

training data (xi,yi), i = 1, . . . , 49, the first 49 analytical, given, spectral
functions (uk,l, vk,l), defined in (4.1). We compare the outcome with our
orthonormalization approach. We recall that (xi,yi) are vectors, which are
considered discretized functions/images, and then compared with functions
(uk,l, vk,l).

(b) Learning spectral functions from arbitrary test functions. Here we use annota-
tions of images, which are orthonormalized. This is of course a much harder
problem.
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2. We are concerned with decoding by making use of (3.2). Here we use both singular
value decompositions obtained in the first step.

All codes are publicly available at the following link:
https://gitlab.com/csc1/learning-op.

4.2.1. Singular value decomposition. We visualize the first 20 benchmark images,
which are the singular functions uk,l and vk,l with (l, k) ∈ I of the Radon transform outlined
in Theorem 4.4. These plots are used to visualize (in Figures 4.1 and 4.2) the difference
between some of the benchmark data and the learned singular functions. We emphasize
that in the learned approaches we reconstruct vectors uk,l ∈ Rm and vk,l ∈ Rm, with
m = m = 2500.

FIG. 4.1. This plot visualizes the first 20 normalized singular functions vk,l, defined in (4.1), for k =
0, 1, . . . , 7, l = 0, 1, . . . , k, and l + k even in the discretized setting.

We note that the first 49 non-zero eigenvalues of RR∗ belong to the following 12 distinct
singular values:

Γ = {γ0,0, γ1,1, γ2,0, γ3,1, γ4,0, γ5,1, γ6,0, γ7,1, γ8,0, γ9,1, γ10,0, γ11,1, γ12,0}.

EXAMPLE 4.6 (Learning spectral functions from analytical spectral functions). We start
with a basic test by learning the spectral functions of the Radon transform from the column
vectors ykl, which are discretizations of the spectral functions vk,l of the Radon transform as
written down in (4.1) (some of them are shown in Figure 4.1). To be specific, we want to verify
Theorem 2.6 numerically. For this purpose, we construct the matrix Y consisting of the first 49

singular functions (column vectors) ykl and the corresponding matrices A = YY
T ∈ Rm×m

and Y ∈ Rm×49, with m = 2500.
In Figure 4.3, we show the first 20 singular values of A, graphically representing the

eigenvectors of the matrix W = (ψ1, . . . ,ψ49) as defined in (2.10) in the proof of Theo-
rem 2.6.

EXAMPLE 4.7. Comparing the results from analytical and learned singular value decom-
position reveals what has been stated in Theorem 2.6 that, in the case of eigenvalues of RR∗
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FIG. 4.2. This plot visualizes the first 20 singular functions uk,l, defined in (4.1), for k = 0, 1, . . . , 7,
l = 0, 1, . . . , k, and l + k even.

FIG. 4.3. This plot shows the first 20 functions ψh obtained from the singular value decomposition of the
matrix A, defined in (2.8) with column vectors ykl := vk,l. These results should be compared with the singular
functions of the Radon transform vkl as plotted in Figure 4.1. It is obvious that, if a singular value has multiplicity 1,
then v0,0 is also an eigenfunction, so ψ1 perfectly represents the claim. For higher indices, linear combinations are
reconstructed approximately, which are elements of the set Ek .

with multiplicity higher than one, only the corresponding eigenspace can be reconstructed.
In other words, every ψh should be able to be written as a linear combination of the corre-
sponding functions vk,l with (k, l) ∈ I with some index l, which needs to be identified in
addition. Recall again that vk,l are functions and ψh are vectors, which have to be interpreted
as discretizations.
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Using the eigenspaces Ek, for k = 1, . . . , 13, of the Radon operator R according to the
spectral value γk, as defined in Theorem 2.6, we identify the sets to which the numerically
calculated functions ψh, for h = 1, . . . , 49, most likely belong. This is a two-step process as
discussed below:

1. Identifying the set Ek, to which ψh most likely belongs: We obtained the classifica-
tion shown in Table 4.1 using our MATLAB code.

TABLE 4.1
Set Ek to which ψh most likely belongs.

Set Singular values
E1 ψ1

E2 ψ2

E3 ψ3,ψ4

E4 ψ5,ψ6

E5 ψ7

E6 ψ9

E7 ψ8,ψ10

E8 ψ11,ψ13

E9 ψ12,ψ14,ψ16,ψ17

E10 ψ15,ψ18,ψ20,ψ22,ψ23,ψ45,ψ46

E11 ψ19,ψ21,ψ24,ψ25,ψ26,ψ27,ψ44,ψ47,ψ48,ψ49

E12 ψ28,ψ30,ψ31,ψ33,ψ34,ψ39,ψ41,ψ43

E13 ψ29,ψ32,ψ35,ψ36,ψ37,ψ38,ψ40,ψ42

2. Finding an appropriate linear combination of basis elements of Ek, which optimally
approximates ψh, for h = 1, . . . , 49: For example, applying MATLAB’s linear
regression software, we obtain the following best approximations for the functions
ψh, h = 1, 2, 3, 4, 38, 49, shown in Figure 4.4. Each plot displays: (1) the original
function ψh to be approximated, (2) the approximation using the best set of functions
Ek (see Table 4.1), and (3) the approximation error. The coefficients of the best
approximating linear combinations of the functions ψh, where h = 1, 2, 3, 4, 38, 49,
are shown in Table 4.2.

TABLE 4.2
Functions ψh, for h = 1, 2, 3, 4, 38, 49, as linear combinations of the eigenfunctions vk,l, in the discretized

setting.

Set Linear combination
E1 ψ1 = −0.02188v0,0

E2 ψ2 = 0.03360v1,1

E3 ψ3 = 0.01243v2,0 + 0.03831v2,2, ψ4 = −0.03693v2,0 + 0.01436v2,2

E11 ψ49 = 0.02541v10,0 − 0.01122v10,2 − 0.00060v10,4

− 0.00072v10,6 − 0.00061v10,8 + 0.00003v10,10

E13 ψ38 = 0.04555v12,0 − 0.02561v12,2 − 0.00396v12,4

− 0.00004v12,6 + 0.00012v12,8 + 0.00003v12,10 − 0.00153v12,12
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FIG. 4.4. Results of the linear combinations for ψh, with h = 1, 2, 3, 4, 38, 49.

The numerical reconstructions of the singular functions is satisfactory for the first 12
(the first four are shown in the first and second rows of Figure 4.4). For higher indices,
the errors are significant, and the error values are of the same order of magnitude as
those of the functions ψh (see, for example, the plots in the last row of Figure 4.4).

The example has shown that reconstruction of the singular functions and values of operators
is possible from training data without knowing the operator explicitly. However, for higher
order of indices, the spectral functions become more oscillatory and the numerical treatment
becomes increasingly complicated.

EXAMPLE 4.8 (Learning spectral functions from arbitrary test functions). In this example,
we consider a dataset, composed of 20 elements, that we have constructed using our own
MATLAB function. Specifically, each discrete image, of numerical dimension 50 × 50, is
composed of 10 ellipses that have been generated randomly. In fact, we want to create several
images that mimic the structure of the Shepp–Logan phantom. Each ellipse is described
by assigning six parameters (intensity, length of the major semi-axis, length of the minor
semi-axis, x coordinate of the center, y coordinate of the center, rotation angle) that vary
within the ranges reported in Table 4.3.

In Figures 4.5 and 4.6, we present plots of the images constructed with our MATLAB
routine and their orthonormalized version. In Figure 4.6, we show the projection of the
values onto the xy plane for better visualization of the orthonormalization procedure. The
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TABLE 4.3
Parameters and their corresponding ranges for the ellipses of the dataset described in Example 4.8.

Parameter of ellipse Range
Intensity [0.01, 2]
Length of major semi-axis [0.1, 0.7]
Length of minor semi-axis [0.1, 0.7]
x coordinate of center [−0.6, 0.6]
y coordinate of center [−0.6, 0.6]
Rotation angle [−45◦, 134◦]

corresponding data (that is, the sinograms) of the orthonormalized images, see (2.2), yk =
Rxk, are plotted in Figure 4.7. We are switching here between the discrete and the continuous
setting to simplify the presentation.

FIG. 4.5. Training images xk , for k = 1, . . . , 20.

As in the previous numerical example, see Example 4.6, we utilize the eigenspaces Ek

for k = 1, . . . , 8, to identify the sets to which the numerically computed functions ψh, for
h = 1, . . . , 20, most likely belong. We obtained with our MATLAB code the classification
given in Table 4.4. As before, we identify suitable linear combinations of elements of Ek

in order to rewrite the term ψh. We present in Figure 4.8 the first four results of the linear
combinations, allowing for a direct comparison with the outcomes previously obtained in
Example 4.6. The reader can observe, as expected, that the approximation results, expressed
as linear combinations, are less precise than those found in Example 4.6.

4.2.2. Decoding. Using the results from the previous section, we implement the recon-
struction formula derived in (3.2).

Test 1. In the first example, the ground truth is given by

(4.2) xtrue = 0.1134u5,1 + 0.3984u3,1 + 0.8840u0,0 + 0.1803u6,4.
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FIG. 4.6. Orthonormalized images xk , for k = 1, . . . , 20, projected onto the plane xy.

FIG. 4.7. Orthonormalized training data yk , for k = 1, . . . , 20.

In Figure 4.9 we present an example where the ground truth is constructed as a
linear combination of singular functions, see (4.2). This setting represents the
most favorable case for our approach, as the reconstruction essentially relies on
recovering the coefficients of the linear expansion. As expected, the method provides
a reasonable approximation of the profile of the ground truth.

Test 2. We introduce a scenario similar to Test 1, but now involving a nonlinear combination
of functions uk,l. Specifically, for each function uk,l in the nonlinear combination, we
apply the operation 0.1u2

k,l +euk,l/max(uk,l), scaled by a specific weight. Results and
comparison with ground truth are provided in Figure 4.10. In contrast to Figure 4.9,
Figure 4.10 illustrates a more challenging scenario where the ground truth is generated
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TABLE 4.4
Set Ek to which ψh most likely belongs in the case of Example 4.8.

Set Singular values
E1 ψ1

E2 ψ2,ψ3

E3 ψ4,ψ5,ψ6

E4 ψ9

E5 ψ10

E6 ψ7,ψ8,ψ18,ψ19

E7 ψ11,ψ12,ψ13,ψ14,ψ17,ψ20

E8 ψ15,ψ16

FIG. 4.8. Results of the linear combinations for ψh, with h = 1, 2, 3, 4.

from a nonlinear combination of singular functions. This case goes beyond the exact
spectral representation of the operator and is therefore harder to approximate with
our current framework. The reconstructions are not only visibly less accurate but, in
many cases, also fail to faithfully reproduce the ground truth, which demonstrates
the limitations of the method in nonlinear settings. For the nonlinear case, different
techniques are required in order to obtain reasonable results.

5. Conclusion. In this paper we have shown that a double orthonormalization strategy,
consisting first of orthonormalization of training images and second of a principal component
analysis of the training data, theoretically provides us with the singular value decomposition of
a linear operator (without making use of an explicit physical model). Two further interesting
aspects are shown: First, orthonormalization, like Gram–Schmidt, can be expressed as a deep
neural network, and this opens up exploiting synergies with decoder and encoder strategies.
Secondly, not only can the singular value decomposition be implemented purely data-driven,
but also the decoding, meaning that for arbitrary data the minimum-norm solution can be
computed data-driven.
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(a) Decoding (b) Ground truth

(c) ytrue

FIG. 4.9. Decoding, ground truth as represented in (4.2), and ytrue.

(a) Decoding (b) Ground truth

(c) ytrue

FIG. 4.10. Decoding, ground truth as represented in (4.2), and ytrue in the nonlinear combination setting.
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