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OPERATOR ORDERING BY ILL-POSEDNESS IN
HILBERT AND BANACH SPACES∗

STEFAN KINDERMANN† AND BERND HOFMANN‡

Abstract. For operators representing ill-posed problems, an ordering by ill-posedness is proposed, where one
operator is considered more ill-posed than another one if the former can be expressed as a concatenation of bounded
operators involving the latter. This definition is motivated by a recent one introduced by Mathé and Hofmann [Adv.
Oper. Theory, 10 (2025), Paper No. 36] that utilizes bounded and orthogonal operators, and we show the equivalence
of our new definition with this one for the case of compact and non-compact linear operators in Hilbert spaces. We
compare our ordering with other measures of ill-posedness such as the decay of the singular values, norm estimates,
and range inclusions. Furthermore, as the new definition does not depend on the notion of orthogonal operators,
it can be extended to the case of linear operators in Banach spaces, and it also provides ideas for applications to
nonlinear problems in Hilbert spaces. In the latter context, certain nonlinearity conditions can be interpreted as
ordering relations between a nonlinear operator and its linearization.

Key words. ill-posed problem, measures of ill-posedness, singular values, degree of ill-posedness, range
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1. Introduction. When studying ill-posed and inverse problems, quite frequently one
encounters the situation that one problem might be “more difficult” to solve than another, and,
with respect to regularization theory, this problem is often called “more ill-posed” than the
other. Usually, in the case of linear compact operators in Hilbert spaces, the decay rate of the
singular values is used as the indicator for such discrimination.

In this article we define an abstract general concept of when one problem is more ill-posed
than another by using an ordering relation based on connecting operators. This is motivated by
a recent definition introduced by Mathé and Hofmann in [28], where bounded and orthogonal
operators are used.

The main point of this article is to define a more general ordering than that in [28]. While
the latter hinges on the notion of unitary or orthogonal operators, our new definition is based
only on bounded operators, and thus it enables extensions to the Banach space case and even
to the nonlinear case. One of the main theoretical results is that the ordering defined here is
equivalent to that in [28], namely in both the compact and non-compact cases; in the compact
case it is also equivalent to the more classical approach of comparing the decay rates of the
singular values.

After defining the ordering in Section 2, we prove the mentioned equivalence in Section 3
in the compact case and in Section 6 for the non-compact case. Section 4 is devoted to
alternative orderings and the relation to regularization. Following this, Section 5 recalls the
Douglas range inclusion theorem in light of our suggested ordering approach. A generalization
to the Banach space case is done in Section 7. Furthermore, in Section 8 we extend the ordering
ideas to nonlinear operator equations in Hilbert spaces, interpreting certain nonlinearity
conditions as an ordering relation between an operator and its linearization.
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2. Orderings by ill-posedness. Let A and A′ be bounded linear operators between
Banach spaces, A : X → Y and A′ : X ′ → Y ′. We use the following definitions: N (A)
denotes the nullspace of A andR(A) its range. B(X,Y ) denotes the set of bounded operators
between Banach spaces X and Y . If the spaces are clear from the context, then we simply
write B. O(X,Y ) denotes the set of isometric operators between Hilbert spaces X and Y .
If the spaces are clear from the context, then we simply write O. Moreover, we denote by
PO(X,Y ) the set of partial isometries. For consistency of notation, we also use I for the set
consisting of only the identity operator I = {I}.

Note that an isometric operator U satisfies UTU = I . If it is additionally surjective,
R(U) = Y , then we speak of an orthogonal (in real spaces) or unitary (in complex spaces)
operator. An operator U that has a nullspace but is an isometry when restricted to N (U)⊥ is a
partial isometry.

In the sequel, we denote by A∗ the adjoint/dual operator of A both in the Hilbert and in
the Banach space cases, while A′ simply means a generic operator that is compared with A.
(Later, for nonlinear problems, F ′ also denotes the Fréchet derivative of an operator F .)

An ordering of inverse problems by ill-posedness was proposed in [18], where a measure
of ill-posedness was abstractly defined as an ordering of operators. In this article, motivated
by [28], the following ordering is the main tool that we work with.

DEFINITION 2.1. Let X , Y , X ′, and Y ′ be Banach spaces. Let A : X → Y and
A′ : X ′ → Y ′ be bounded linear operators. The operator A′ is said to be more ill-posed than
the operator A if there applies an ordering defined as follows:

A′ ≤B,B A

⇐⇒ ∃T ∈ B(R(A), Y ′) and ∃S ∈ B(X ′, X) such that A′ = TAS.
(2.1)

If

A′ ≤B,B A and A ≤B,B A′,

then both operators are equivalent with respect to ill-posedness, and we write

A′ ∼B,B A.

If either A′ is more ill-posed than A or A is more ill-posed than A′, then A and A′ are said to
be comparable, otherwise non-comparable. If A′ is more ill-posed than A, but A fails to be
more ill-posed than A′, then A′ is said to be strictly more ill-posed than A. The operators T
and S in (2.1) are referred to as connecting operators in the ordering.

As we will see, in many cases this definition reflects most of the established notions of A′

is “more ill-posed” than A.

3. Compact operators in Hilbert spaces.

3.1. General assertions. Let us specialize the definition to the simplest situation when
all spaces are Hilbertian and the operators A and A′ are compact. In Sections 3–5 we assume
throughout that

X, Y, X ′, and Y ′ are Hilbert spaces

representing the domain and image spaces of operators A and A′, i.e., A′ : X ′ → Y ′ and
A : X → Y .

PROPOSITION 3.1. A simple consequence of Definition 2.1 is the adjoint invariance of
the ordering:

A′ ≤B,B A ⇐⇒ A′∗ ≤B,B A∗.
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This is an immediate consequence of the definition: A′ ≤B,B A holds if and only ifA′ = TAS.
Hence A′∗ = S∗A∗T ∗, which means by definition that A′∗ ≤B,B A∗.

Under the stated assumption, we may consider seemingly (stronger) alternative definitions
of an ordering that use isometric operators instead of bounded ones, as was done in [28].

DEFINITION 3.2. Define the following orderings:

A′ ≤O,B A ⇐⇒ ∃O ∈ O(R(A), Y ′), S ∈ B(X ′, X) with A′ = OAS,

A′ ≤B,O A ⇐⇒ ∃T ∈ B(Y, Y ′), U ∈ O(X ′,N (A)⊥) with A′ = TAU.

If the operators in O can be chosen as the identity, then we write ≤I,B or ≤B,I . Analogously,
if O is out of the set of partial isometries, we write ≤PO,B or ≤B,PO.

Moreover, in the case that A and A′ are both compact, we may define an ordering by the
singular values

A′ ≤σ A ⇐⇒ ∀n ∈ N : σn(A′) ≤ σn(A),

and similarly

A′ /σ,C A ⇐⇒ ∃C > 0 such that ∀n ∈ N : σn(A′) ≤ Cσn(A).

Clearly, A′ ≤O,B A or A′ ≤B,O A imply that A′ ≤B,B A. But we will show below that
all three orderings are in fact equivalent. For this we need the results of the following lemma,
and we refer in this context also to [28, Prop. 3].

LEMMA 3.3. Let A : X → Y and A′ : X ′ → Y ′ be compact operators acting between
Hilbert spaces.

• In the case that dim(R(A′)) = dim(R(A)) (finite or not), we have

A′ /σ,C A =⇒ A′ ≤O,B A,

with a connecting operator O : R(A)→ R(A′) ∈ O unitary. Also, we have

A′ /σ,C A =⇒ A′ ≤B,O A,

with a connecting operator O : N (A′)⊥ → N (A)⊥ ∈ O unitary.
• In the case that R(A′) is finite-dimensional and dim(R(A′)) < dim(R(A)), we

have

A′ /σ,C A =⇒ A′ = OAS,

where S is bounded and O : R(A)→ R(A′) is a partial isometry.
Proof. Recall the singular-value decomposition of compact operators:

A′ =
∑
i∈I′

σ′i(·, φ′i)ψ′i and A =
∑
i∈I

σi(·, φi)ψi.

Here, σi, σ′i > 0 are the positive singular values of A and A′, respectively. The functions ψi
and ψ′i are orthogonal bases of R(A) and R(A′), respectively, and φi and φ′i are orthogonal
bases of N (A)⊥ and N (A′)⊥, respectively. The index sets I and I ′ are either countably
infinite or finite depending on the dimension of the ranges, or, equivalently, on the number of
non-zero singular values. In any case by A′ /σ,C A we can assume that I ′ ⊂ I .

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

4 S. KINDERMANN AND B. HOFMANN

Define the following operators:

(3.1)

Sf :=
∑
i∈I′

σ′i
σi

(f, φ′i)φi,

Of :=
∑
i∈I′

(f, ψi)ψ
′
i.

Then, inserting the definitions, this yields (the indices i, j, and k correspond to O, A, and S,
respectively)

OASf =
∑
i∈I′

∑
j∈I

∑
k∈I′

σj
σ′k
σk

(f, φ′k)(φk, φj)(ψj , ψi)ψ
′
i.

By orthogonality (φk, φj) = δk,j and (ψj , ψi) = δi,j , and thus two summations drop out:

OASf =
∑
i∈I′

σi
σ′i
σi

(f, φ′i)ψ
′
i =

∑
i∈I′

σ′i(f, φ
′
i)ψ
′
i = A′f.

By A′ /σ,C A it is easy to show that S is bounded by maxi |σ′i/σi| ≤ C.
In the case that dim(R(A′)) = dim(R(A)), we have that I ′ = I , and then it follows

easily that O is an isometry, R(A) → R(A′) ⊂ Y ′, and surjective, hence unitary. Since
A′ /σ,C A clearly implies A′∗ /σ,C A∗, applying the previous results gives A′∗ = OA∗S,
hence A′ = S∗AO∗, where O∗ : R(A′) = N (A′)⊥ → R(A) = N (A)⊥ is again unitary.

In the other case, dim(R(A′)) < dim(R(A)), we have I ′ < I , and O is only a partial
isometry since the elements ψi, i ∈ I \ I ′, are in its nullspace.

REMARK 3.4. The case that dim(R(A′)) < dim(R(A)) cannot appear if A and A′ are
both ill-posed operators in the sense of Nashed [29]. Since we are mostly interested in the
ill-posed situation, we do not consider it in detail.

A simple corollary of Lemma 3.3 is the following result in the case that the singular values
of A and A′ are comparable.

COROLLARY 3.5. Assume that A and A′ are compact operators between Hilbert spaces
with equivalent decay rates of the singular values, i.e., A ≈σ A′, or, in more detail,

(3.2) ∃ c, C : cσn(A′) ≤ σn(A) ≤ Cσn(A′), ∀n ∈ N.

Then there exists an isomorphism T : R(A)→ R(A′) (i.e., a bounded invertible linear map)
and a unitary operator U : N(A′)⊥ → N(A)⊥ such that

A′ = TAU.

Also, there exists an isomorphism S : N(A′)⊥ → N(A)⊥ and a unitary operator O :
R(A)→ R(A′) such that

A′ = OAS.

In particular, if both operators are injective, then S is an isomorphism X ′ → X; and if both
operators are surjective, then T is an isomorphism Y → Y ′.

Proof. The assumption (3.2) gives that dim(R(A′)) = dim(R(A)); hence by Lemma 3.3
A′ = OAS. From (3.2) it follows that c ≤ σ′i/σi ≤ C, and thus the operator S in (3.1) is
bounded. By interchanging σ′, φ′i and σ, φi in (3.1), we obtain the inverse S−1 : N(A)⊥ →
N(A′)⊥, which is bounded due to (3.2), and thus S is an isomorphism. The result with
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A′ = TAU follows by applying the previous result to A′∗ and A∗, yielding A′∗ = OA∗S,
and then taking adjoints.

Now we are ready to state the first main result of the equivalence between Definition 2.1
and Definition 3.2.

THEOREM 3.6. Let A and A′ be compact operators between Hilbert spaces such that
both of them are ill-posed, which means that dim(R(A)) = dim(R(A′)) =∞.

Then the following statements are equivalent:

1. A′ ≤B,B A ⇐⇒ 2. A′ ≤O,B A ⇐⇒ 3. A′ ≤B,O A ⇐⇒ 4. A′ /σ,C A.

Proof. Assume that item 1. holds. Then, σn(A′) ≤ ‖T‖‖S‖σn(A), ∀n ∈ N, and hence
item 4. is also valid with C = ‖T‖‖S‖. By Lemma 3.3, we have that items 2. and 3. hold,
and this clearly implies item 1. Thus, all four statements are equivalent.

As a corollary, we have a stability result of our ordering.
COROLLARY 3.7. Let An and A′n be sequences of compact operators that converge

in norm to ill-posed limit operators as An → A and A′n → A as n → ∞, and where the
ordering

A′n ≤B,B An, ∀n ∈ N

is satisfied. Then the limits preserve the ordering

A′ ≤B,B A.

Proof. It follows directly that σk(An) ≤ σk(A′n) for all k and n, and, since the singular
values are continuous, we have A′ /σ,C A. Consequently, the result follows by applying
Theorem 3.6.

REMARK 3.8. Let us point out an apparent paradox with our definition of ordering as
“more ill-posed”. TakingA′ = TAS for T an operator with finite-dimensional range, it follows
thatA′ ≤B,B A holds, but sinceA′ has finite-dimensional range, it corresponds to a well-posed
operator. In this sense any such well-posed operator with finite-dimensional range is “more
ill-posed” than an ill-posed operator. The same problem does appear for other orderings like
/σ,C as well. The resolution of the “paradox” is that any such finite-dimensional operator
contains in a neighborhood an ill-posed operator of arbitrary high degree of ill-posedness.
Thus, as soon as we would like to have a certain stability property of the ordering, as in
Corollary 3.7, such a paradox is unavoidable.

3.2. Representation of moderately ill-posed operators. An interesting consequence
of the above results is a characterization of moderately ill-posed operators with the degree of
ill-posedness k ∈ N. By this, we mean a compact operator showing a power-type decay of
the singular values with exponent −k. Basically, the canonical example of such an operator
is k-times integration Ik : L2(0, 1)→ L2(0, 1) with Ik = Jk, where the simple integration
operator J : L2(0, 1) → L2(0, 1) is defined as J : f →

∫ x
0
f(t) dt, which represents an

injective ill-posed operator with dense range. This definition can be extended to non-integer
k by using fractional integration [33]. The moderate ill-posedness of Ik with degree k is a
direct consequence of the well-known decay rate σn(Ik) ∼ n−k of the singular values of Ik
(see, e.g., [22, 31, 33]). Now, by Corollary 3.5, every moderately ill-posed operator with such
singular-value decay is isomorphic to the k-times integration operator.

THEOREM 3.9. LetA be a compact linear operator mapping between infinite-dimensional
Hilbert spaces, and assume that we have, for some k ∈ N,

(3.3) σn(A) ∼ 1

nk
.
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Then there are isomorphic linear operators T : L2(0, 1)→ R(A) and S : N(A)⊥ → L2(0, 1)
such that

A = TJkS.

One of the operators S or T can be chosen unitary.
Thus, the theory of moderately ill-posed problem boils down to understanding differentia-

tion.
This theorem can be extended to more general situations, keeping the main assumptions

on A. With minor modifications, we may consider instead of (3.3) more general decay rates.
For α > β and constants c, C > 0:

(3.4)
c

nα
≤ σn(A) ≤ C

nβ
.

In this case we have

A = TJβS,

with one of the operators S or T being unitary and the other one, for example S, satisfying an
error estimate:

c‖Jα−βx‖ ≤ ‖Sx‖ ≤ C‖x‖, x ∈ N(A)⊥.

This follows, for instance, by using S as in (3.1) from the proof of Lemma 3.3. This immedi-
ately yields A = OJβS, and it can then be verified that

c
1

nα−β
≤ cnβσn(A) ≤ σi(S) ≤ C.

Thus, Jα−β /σ,C S and using Lemma 3.3 then gives the estimate. Note that, instead of J ,
other operators might be used, for example Sobolev scale embeddings.

The estimate (3.4) implies that the interval of ill-posedness for a compact operator
A : X → Y (see [21]), defined as

(3.5) [µ, µ] :=

[
lim inf
n→∞

− log(σn(A))

log(n)
, lim sup

n→∞

− log(σn(A))

log(n)

]
,

satisfies [µ, µ] = [β, α]. Conversely, it has been shown in [21] that a finite interval of ill-
posedness [µ, µ] implies (3.4) with β = µ− ε and α = µ+ ε for all ε > 0. Note that in this
case the lower bound µ characterizes the degree of ill-posedness.

4. Alternative orderings and the relation to regularization. Let us recall some alterna-
tive orderings that were defined in [18]. Consider operators A and A′ having common domain
space X , i.e., A : X → Y and A′ : X → Y ′. Then, define the norm orderings as

A′ ≤norm A ⇐⇒ ‖A′x‖ ≤ ‖Ax‖, ∀x ∈ X,
A′ ≤norm,C A ⇐⇒ ‖A′x‖ ≤ C‖Ax‖, ∀x ∈ X.

Let M ⊂ X be a conical set. Define the modulus of injectivity as

j(A,M) := inf
x∈M,x6=0

‖Ax‖
‖x‖

.
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The modulus of injectivity is related to the modulus of continuity,

ω(δ, A,M) := sup{‖x‖ : x ∈M, ‖Ax‖ ≤ δ}, ∀ δ > 0,

by the identity [18]

j(A,M) =
δ

ω(δ, A,M)
, ∀ δ > 0.

Thus, we may define the ordering by continuity (or injectivity) as follows. Let Mγ be a family
of increasing conical sets with

⋃
γMγ = X . Then,

A′ ≤j,Mγ A ⇐⇒ j(A′,Mγ) ≤ j(A,Mγ), ∀ γ.

It follows immediately that

A′ ≤norm A =⇒ A′ ≤j,Mγ
A for all families Mγ with

⋃
γ

Mγ = X .

Of particular interest in applications and for discretization, we let Mγ = Xn, where
Xn is a strictly increasing sequence of finite-dimensional subspaces with dim(Xn) = n and⋃
nXn = X . We have [18]

A′ ≤norm A =⇒ A′ ≤j,Xn A =⇒ A′ ≤σ A.

The opposite direction is obtained by replacing A by AO:

A′ ≤σ A =⇒ ∃O ∈ O : ∀ (Xn)n : j(A′, Xn) ≤ j(AO,Xn),

or

A′ ≤σ A ⇐⇒ ∀ (Xn)n : ∃Yn : j(A′, Xn) ≤ j(A, Yn).

The last identities are obtained by invoking Lemma 3.3 to get A′ = TAO, yielding the norm
ordering ‖A′x‖ ≤ ‖AOx‖.

One motivation for studying orderings of ill-posed operators comes from comparing
approximation rates for (Tikhonov) regularization schemes. Assume that two linear ill-
posed problems with the same exact solution x† are modeled by the operators A and A′,
respectively. This means that we consider regularized solutions to Ax† = y and A′x† = y′.
For simplicity, we consider exact data y = Ax† and y′ = Ax†. Using Tikhonov regularization
xA,α := (A∗A + αI)−1A∗y and xA′,α := (A′∗A′ + αI)−1A′∗y′, we may compare the
approximation errors between the regularized solutions and x†. It makes sense to define

A′ ≤Tik A ⇐⇒ ‖xA′,α − x†‖ ≥ ‖xA,α − x†‖, ∀x†, ∀α > 0,

which means that A′ is more ill-posed in this ordering if the approximation error is always
larger than the “less” ill-posed problem with A.

The following relation for the above ordering was shown in [18]:

A′ ≤Tik A ⇐⇒ A′∗A′ ≤norm A∗A.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

8 S. KINDERMANN AND B. HOFMANN

5. Douglas range inclusion theorem. A quite useful tool for studying operator factor-
ization is the Douglas range inclusion theorem [8], which was employed recently in [28] and
which we recall here in the form of Theorem 5.1 for our concept. Assume that A and A′ have
a common image space Y .

THEOREM 5.1 (Douglas range inclusion theorem). The following statements are equiva-
lent:

1. R(A′) ⊂ R(A).

2. ∃C > 0 : ‖A′∗y‖ ≤ C‖A∗y‖, ∀ y ∈ Y.
3. ∃S ∈ B : A′ = AS.

The operator S can be chosen as

(5.1) S = A†A′.

If we impose thatR(S) ⊂ N (A)⊥, then S is uniquely defined by (5.1). Moreover, under this
condition, S|N (A′)⊥ is injective.

Proof. The proof of the equivalences appeared in [8]. The choice of S is as in (5.1), and it
was shown that S has a closed graph and hence is continuous. We show the uniqueness of S.

Let S be an arbitrary operator with A′ = AS and S mapping intoN (A)⊥. Then by using
A† and considering the Moore–Penrose equation of the form A†A = PN(A)⊥ , with PN(A)⊥

the orthogonal projector onto N(A)⊥, we get A†A′ = A†AS = PN(A)⊥S = S. Thus S must
have the structure (5.1). By applying A to (5.1), it follows easily that N (S) ⊂ N(A′).

We thus can introduce an ordering related to the Douglas theorem defined by a range
inclusion as follows. For operators A′ and A with common image spaces Y = Y ′, we define

A′ ≤R A ⇐⇒ R(A′) ⊂ R(A).

See also [3] for range inclusions with index functions.
By Theorem 5.1 we obtain

A′ ≤R A ⇐⇒ A′∗ ≤norm,C A∗ ⇐⇒ A′ = AS =⇒ A′ ≤O,B A,

as well as

A′∗ ≤R A∗ ⇐⇒ A′ ≤norm,C A ⇐⇒ A′ = TA =⇒ A′ ≤B,O A.

The opposite direction is immediate:

A′ ≤B,B A ⇐⇒ ∃Q ∈ O : A′ ≤norm,C AQ ⇐⇒ R(A′∗) ⊂ R(Q∗A∗).

Here, the first equivalence comes from Theorem 3.6, according to which A′ = TAO, hence
the norm ordering follows. Vice versa, the norm ordering implies by the Douglas range
theorem the existence of a connecting operator A′ = TAO. The last equivalence comes from
item 2. in Theorem 5.1, yieldingR(A′∗) ⊂ R(Q∗A∗).

A schematic description of the different relations is given in Table 5.1.
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TABLE 5.1
Relation between different orderings.

∃Q ∈ O : A′ ≤norm,C AQ ⇐⇒
A′ ≤B,B A
A′ ≤B,O A
A′ ≤O,B A

⇐⇒ A′ /σ,C A

⇑

⇑ ⇑ ∀ (Xn)n : A′ ≤j,Xn A

A′ ≤norm,C A
A′∗ ≤R A∗

⇐⇒ A′ ≤B,I A =⇒

⇑ ⇑

A′∗A′ ≤norm A∗A ⇐⇒ A′ ≤Tik A

6. Ordering in the non-compact case.

6.1. General assertions. The previous results for compact operators made heavy use
of the singular-value decomposition. We next address the question as to how far they can be
generalized to the non-compact case. It turns out that our main theorem, Theorem 3.6, is still
valid.

First, we state the following well-known results [10, Prop. 2.18].
PROPOSITION 6.1. Let A be bounded between Hilbert spaces. Then,

R(A∗) = R(
√
A∗A).

A consequence is the polar decomposition; see [32, p. 323] and the remark therein.
PROPOSITION 6.2. Let A be bounded. Then there exists a U which is a partial isometry

such that

A = U
√
A∗A,

where

U : R(A∗)→ R(A)

is an isometry. If there is an isometry from N(A) onto N(A∗), then U is unitary.
We have the following lemma.
LEMMA 6.3. Let A,D ∈ B. Then there exists a partial isometry Q : R(A)→ R(DA),

and an S ∈ B with

DA = QAS.

If

(6.1) R(A∗) = R(A∗D∗),

then Q is an isometry.
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Proof. By the polar decomposition, we have an isometry U fromR(A∗D∗)→ R(DA)
with

DA = U
√
A∗D∗DA.

Let Z :=
√
A∗D∗DA. Thus,

R(Z) = R(A∗D∗) ⊂ R(A∗) = R(
√
A∗A).

By the Douglas range inclusion theorem, it follows that there exists an S ∈ B with

Z =
√
A∗AS.

Again, by the polar decomposition, we have an isometry W : R(A∗) → R(A) with
A = W

√
A∗A. Now W ∗W = I when restricted toR(A∗). Thus,

W ∗A =
√
A∗A and DA = U

√
A∗AS = UW ∗AS,

and UW ∗ is a partial isometry fromR(A)→ R(DA) as claimed.
Assume that (6.1) holds, and let x ∈ N (UW ∗), i.e., UW ∗x = 0. Then we have

R(W ∗) = R(A∗) = R(A∗D∗). Since N (U) = R(A∗D∗)⊥, it follows that W ∗x = 0.
Since N (W ∗) = R(A)⊥, the result follows.

The condition (6.1) can equally be written as

N (A) = N (DA).

Recall the set of partial isometries PO and its use in orderings in Definition 3.2. We have
the following result.

THEOREM 6.4. Let A and A′ be bounded operators between Hilbert spaces. Then the
following statements are equivalent:

1. A′ ≤B,B A ⇐⇒ 2. A′ ≤PO,B A ⇐⇒ 3. A′ ≤B,PO A.

If the connecting operator T in item 1. is injective on R(A), then we have

A′ ≤B,B A ⇐⇒ A′ ≤O,B A.

IfR(S) in item 1. is dense in N (A)⊥, then

A′ ≤B,B A ⇐⇒ A′ ≤B,O A.

Proof. Assume that item 1. holds. Then A′ = TAS, and by Lemma 6.3 applied to TA
we have TAS = QAS̃S, where Q is a partial isometry. Since S̃S is bounded, item 2. follows.
The same with A′∗, A∗ in place of A′, A yields item 3. The implication 3. ⇒ 1. holds clearly.

If T is injective, then N (TA) = N (A), and by Lemma 6.3, Q is an isometry. The same
argument with adjoints and S yields the second statement.

6.2. Composition of Hausdorff and Cesàro operators. In [27], we have considered
compositions of the non-compact Hausdorff operator H : L2(0, 1)→ `2(N) with non-closed
range defined as

[Hx]j :=

∫ 1

0

x(t)tj−1 dt (j = 1, 2, . . . , x ∈ L2(0, 1)),
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possessing the corresponding adjoint operator H∗ : `2(N)→ L2(0, 1) of the form

[H∗y](t) :=

∞∑
j=1

yjt
j−1 (0 ≤ t ≤ 1, y ∈ `2(N)),

and the non-compact Cesàro operator C : L2(0, 1)→ L2(0, 1) with non-closed range defined
as

[Cx](s) :=
1

s

∫ s

0

x(t) dt (0 ≤ s ≤ 1, x ∈ L2(0, 1)),

having C∗ : L2(0, 1)→ L2(0, 1) of the form

[C∗x](t) :=

∫ 1

t

x(s)

s
ds (0 ≤ t ≤ 1, x ∈ L2(0, 1))

as adjoint operator. Generalizations of these operators in weighted spaces and their ill-
posedness are discussed in [26].

There is a connection with the compact self-adjoint diagonal operator D : `2(N)→ `2(N)
defined as

[Dy]j :=
yj
j

(j = 1, 2, . . . , y ∈ `2(N))

of the form DH = HC∗ (see [27, Prop. 2]), but our focus here is on the adjoint version with
the composition H∗D : `2(N)→ L2(0, 1) leading to the equality

(6.2) H∗D = CH∗.

Also here, the composition H∗D is a compact operator even though both factors C and H∗

are non-compact operators.
We mention two facts in this context. On the one hand, equation (6.2) expresses some

kind of similarity between the operators D and C, even if one cannot simply write D =
(H∗)−1CH∗, because (H∗)−1 is an unbounded operator. For the factorization (6.2), rela-
tion (2.1) applies with A := C, A′ = H∗D, X = L2(0, 1), X ′ = `2(N), and
Y = Y ′ = L2(0, 1) as

H∗D ≤I,B C,

with the identity operator I in L2(0, 1) and the connecting operator in B(X ′, X) is S := H∗.
In the sense of Definition 2.1, the compact operator H∗D is strictly more ill-posed than the
non-compact Cesàro operator C because non-compact operators can never be more ill-posed
than compact operators. This is a consequence of the factorization in (2.1), where a compact
operator A on the right-hand side always implies compactness of A′.

For ill-posedness degree discussions of compositions for the Hausdorff operator, the
Cesàro operator, and multiplication operators with the integration operator J , we refer the
reader to [6, 12, 19] and [22, 23], respectively.

6.3. Non-compact multiplication operators mimicking compact operators. As out-
lined in [34], the Halmos spectral theorem can be helpful for measuring and comparing the
ill-posedness of classes of injective, positive semi-definite, self-adjoint, and bounded linear
operators with non-closed range by using orthogonal transformations leading to bounded linear
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multiplication operators Mλ mapping in the real Hilbert space L2([0,∞)) with non-closed
range defined as

(6.3) [Mλ, x](ω) := λ(ω)x(ω) (0 ≤ ω <∞, x ∈ L2([0,∞))),

for real multiplier functions λ ∈ L∞([0,∞)). Note that, in general, the Halmos spectral
theorem gives a multiplication operator Mλ on the space L2(Ω, µ) with a general semi-finite
measure µ on a locally compact space Ω. For simplicity only, we consider the special case that
µ is the Lebesque measure on Ω = [0,∞) leading to the Hilbert space L2([0,∞)) as basis
space for Mλ as stated. Using the Lebesgue measure seems to be reasonable, and we refer to
discussions and examples in [34] in this context.

Using multiplication operators, the point of this section is the observation that, in contrast
to the compact case, cf. Theorem 3.6, the spectrum of, say, A∗A alone does not contain enough
information to conclude about equivalences with respect to the ordering≤B,B. Specifically, we
construct operators A′ and A, where A is compact and A′ not, which have the same spectrum
but are not equivalent with respect to ≤B,B.

For that purpose, we consider the diagonalized injective self-adjoint compact operator
A′ : `2(N)→ `2(N) with non-increasingly ordered singular values σ2

n (n = 1, 2, . . .) tending
to zeros as n→∞, which will be introduced as

[A′z]n := σ2
n zn (n = 1, 2, . . . , z = (z1, z2, . . .)

T ∈ `2(N)).

Its mimicking multiplication operator counterpart is the operator

[Ax](ω) :=

∞∑
n=1

σ2
nχ[n−1,n)(ω)x(ω) (0 ≤ ω <∞, x ∈ L2([0,∞)),

defined as a sum of characteristic functions over sets of Lebesgue measure one.
The spectrum σ(A) of the operator A equals the essential range of the multiplier function

λ (see [14, Thm. 2.1(g)]), and this gives

σ(A) = {0} ∪
∞⋃
n=1

{σ2
n} = σ(A′).

One could conjecture then that A is also a compact operator, but this is not true, because all
eigenvalues σ2

n of A possess infinite-dimensional eigenspaces; we refer to [34, Prop. 2] for the
following proposition.

PROPOSITION 6.5. All injective, positive semi-definite, self-adjoint, bounded linear
multiplication operators Mλ of type (6.3) are non-compact.

As a consequence

A 6≤B,B A′.

It is easy to see that there is a bounded linear operator S : `2(N)→ L2([0,∞)) defined as

[Sz](ω) :=

∞∑
n=1

znχ[n−1,n)(ω) (ω ∈ [0,∞), z = (z1, z2, . . .)
T ∈ `2(N)),

such that, with AS : `2(N)→ L2([0,∞)),

SA′ = AS.
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Again, we observe some kind of similarity between the operators A′ and A, even if one cannot
simply write A′ = S−1AS. But the situation here is different from the situation in Section 6.2,
because ‖Sz‖2L2([0,∞)) = ‖z‖2`2(N) for all z ∈ `2(N) and S has a closed range in L2([0,∞))

such that the Moore–Penrose pseudo-inverse operator S† is bounded and A′ = S†AS holds
true. Hence, we have as main conclusion

A′ ≤B,B A, A′ 6∼B,B A but σ(A′) = σ(A).

Thus, in the non-compact case, a result analogous to Corollary 3.5 cannot hold.

7. Banach space case. In this section, we extend some results to the Banach space case.
Since orthogonality does not make sense there, we only use the ordering ≤B,B. We denote by
a superscript ∗ the topological dual operator.

THEOREM 7.1. Let A : X → Y and A′ : X ′ → Y ′ be bounded operators between
Banach spaces. Then

A′ ≤B,B A ⇐⇒ A′∗ ≤B,B A∗.

For compact operators mapping between Banach spaces, we can replace singular values
by s-numbers.

DEFINITION 7.2. LetA andA′ be compact operators as above. Let s be an s-number [30].
Define the ordering

A′ ≤s,C A ⇐⇒ ∃C > 0 such that ∀n : sn(A′) ≤ Csn(A).

Directly from the axioms of s-numbers we have the following result.
LEMMA 7.3. The following holds:

A′ ≤B,B A =⇒ A′ ≤s,C A.

It is unknown to the authors if and under what conditions a reverse implication could hold true.
The Douglas range inclusion theorem does not hold in Banach spaces without additional

assumptions. The following results are due to [1, 9].
THEOREM 7.4. Let A : X → Y andA′ : X → Y ′ be bounded linear operators mapping

between the Banach spaces X , Y , and Y ′.
1. The following statements are equivalent:

• R(A′∗) ⊂ R(A∗).

• A′ = TA, T ∈ B(R(A), X).

• ∃C > 0 : ‖A′x‖ ≤ C‖Ax‖, ∀x ∈ X.

2. Let Y ′ = Y . Moreover, assume that

R(A′) ⊂ R(A)

and that N (A) has a closed complemented subspace X = N (A)⊕W . Then

A′ = AS, S ∈ B(X,X).

As a consequence, we have the following implication.
THEOREM 7.5. Let A,A′ : X → Y and A be injective (or have finite-dimensional

nullspace). Then

A′ ≤B,B A ⇐⇒ ∃T ∈ B : A′∗T ∗ ≤norm A∗.

Proof. The implication “⇒” follows easily with A′ = TAS from the boundedness of S∗.
For the opposite direction “⇐”, use Theorem 7.4, item 1. with A′ := A∗T ∗ and A∗ in place
of A.
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8. Nonlinear case studies.

8.1. General assertions. In this section, we discuss and extend the concept of ordering
by ill-posedness for the case of nonlinear operator equations

(8.1) F (x) = y,

modeling nonlinear ill-posed problems, where the nonlinear operator F with
F :D(F ) ⊂ X → Y is weakly sequentially closed with non-compact, convex, and closed
domain D(F ), and X and Y are Hilbert spaces. Unless stated otherwise, we also assume that
F has a Fréchet derivative as well.

We usually assume that F is locally ill-posed at a point x† ∈ D(F ) in the sense that
there exists a closed ball Bρ(x†) around x† with radius ρ > 0 and a sequence (xn)∞n=1 ∈
D(F ) ∩Bρ(x†) with

lim
n→∞

‖F (xn)− F (x†)‖Y = 0, but ‖xn − x†‖X 6→ 0 as n→∞.

For characterizing the strength and nature of local ill-posedness at x† ∈ D(F ), ideas have
been outlined in [13, 16, 17, 20] to use the ill-posedness nature of linearizations to F at x†

and in particular the decay rate of singular values of the compact Fréchet derivative F ′[x†].
This leads to the following definition.

DEFINITION 8.1 (Local degree of ill-posedness). Let the local degree of ill-posedness
of the nonlinear operator F : D(F ) ⊂ X → Y at the point x† ∈ D(F ) be the degree of
ill-posedness of the compact Fréchet derivative F ′[x†] at this point. Then the moderate and
severe ill-posedness of F ′[x†] and the associated interval of ill-posedness (see (3.5)) transfer
to the local nature of ill-posedness of the nonlinear operator F at x†.

Generic examples of locally ill-posed operators are the completely continuous (compact)
operators F that transform weak convergence sequences into norm convergence ones.

PROPOSITION 8.2. If F : D(F ) ⊂ X → Y is completely continuous, then the nonlinear
equation (8.1) is locally ill-posed everywhere on the interior int(D(F )) of the domain D(F ).

Proof. Choose x† ∈ int(D(F )) arbitrarily. Then, for a sufficiently small radius ρ > 0,
we have that Bρ(x†) ⊂ D(F ), and, for any orthonormal system {en}∞n=1 in X , we have weak
convergence as en ⇀ 0 and x† + ρen ⇀ x† for n → ∞ with xn := x† + ρen ∈ Bρ(x†)
and ‖xn − x†‖X = ρ > 0. Then the assumed weak continuity yields the assertion of the
proposition.

Moreover, for completely continuous (compact) operators, the Fréchet derivative is
compact as well, hence the linearization is also ill-posed. As Example 8.9 below will show,
the converse assertion is not true. There exist non-compact nonlinear operators F such that the
Fréchet derivatives F ′[·] are compact linear operators. This illustrates the problem that, even
for differentiable operators and with regard to ill-posedness, the nonlinear operator can behave
completely differently than its linearization, and in particular Definition 8.1 might become
useless in certain situations.

Another example illustrating this appeared in [11, A.1], where a nonlinear operator is
everywhere ill-posed, but its linearization is well-posed on a dense set! This shows that,
without additional conditions, linear concepts of ill-posedness, as we used in the previous
sections, are not appropriate in the nonlinear case.

The additional condition that we need here is that all linearizations locally behave in a
similar way.
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DEFINITION 8.3. Let F be a Fréchet-differentiable operator that is locally ill-posed at
x† ∈ D(F ). We say that it is stably ill-posed if there exists a ball Bρ(x†) around x† with
radius ρ such that

F ′(x) ∼B,B F ′(x†) for all x ∈ Bρ(x†) ∩D(F ).

As a consequence of Theorem 3.6, in the case that F ′(x) is compact for all x ∈ Bρ(x†), a
necessary and sufficient condition for stable ill-posedness is that there exist constants c and c
such that

(8.2) cσn(F ′[x]) ≤ σn(F ′[x†]) ≤ cσn(F ′[x]), ∀x ∈ Bρ(x†) ∩D(F ).

Conditions sufficient for (8.2) are given by certain nonlinearity conditions. Assume that, for a
linear bounded operator Rx,x̃ ∈ B(Y, Y ) depending on x, x̃ ∈ Bρ(x†) and for some exponent
0 < κ ≤ 1 with the constant CR > 0, it holds that

F ′[x] = Rx,x̃F
′[x̃], ∀x, x̃ ∈ Bρ(x†) ∩D(F ),(8.3)

‖Rx,x̃ − I‖B(Y,Y ) ≤ CR‖x− x̃‖κX , ∀x, x̃ ∈ Bρ(x†) ∩D(F ).(8.4)

We refer to [24] for consequences and to [15] for applications. A similar, slightly more general,
condition was also used in [2].

In the notation of the previous sections, condition (8.3) means that

F ′[x] ∼B,I F ′[x̃], ∀x, x̃ ∈ Bρ(x†) ∩D(F ),

where the operator Rx,x̃ constitutes the connecting operator in B.
A direct consequence of the previous results (see Table 5.1) is the following.
PROPOSITION 8.4. The condition (8.3) implies stable ill-posedness. Moreover, we have

(8.3) ⇐⇒ (F ′[x] ∼norm,C F ′[x̃], ∀x, x̃ ∈ Bρ(x†) ∩D(F )) =⇒ (8.2).

We are now in the position to state different concepts of ordering in the nonlinear case.
DEFINITION 8.5. Let F and G be nonlinear Fréchet-differentiable operators, and let

Bρ(x
†) be a ball around x† with radius ρ > 0. Denote by NB the set of continuous possibly

nonlinear operators defined on a ball Bρ (with possibly additional properties stated when
required).

Define

F ≤NB,NB G ⇐⇒

{
Ψ ∈ NB, Φ ∈ NB : with
F (x) = Ψ ◦G ◦ Φ(x),

}
∀x ∈ Bρ(x†) ∩D(F ).

Moreover, for fixed x† and for F and G defined on Bρ(x†), we define the linearized ordering
as

F ≤Lin
B,B G ⇐⇒ F ′[x†] ≤B,B G′[x†]

and the uniform linearized ordering as

F ≤UniLin
B,B G ⇐⇒ F ′[x] ≤B,B G′[x], ∀x ∈ Bρ(x†) ∩D(F ).

Here the nonlinear ordering ≤NB,NB reflects the idea that the information transfer in F from
input to output is passed though G and hence any “information” lost in G will also be lost in
F . Thus, F is considered more ill-posed.
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Clearly, by the chain rule, we have

F ≤NB,NB G =⇒ F ≤UniLin
B,B G =⇒ F ≤Lin

B,B G.

Moreover, if F and G are stably ill-posed, then

F ≤Lin
B,B =⇒ F ≤UniLin

B,B G.

As the nonlinear ordering is difficult to prove, the linearized orderings serve as practical
computable conditions to verify it. Thus, it is of interest to consider conditions when the
linearized orderings imply the nonlinear one.

In Section 8.4 we further state such conditions. For this we have to take into account the
degree of nonlinearity.

8.2. Degree of nonlinearity. The nonlinearity conditions (8.2) or (8.3) constitute a
class of restrictions on the nonlinearity. Yet another (weaker) class of conditions are the
conditions of tangential cone type. A parametric class of such conditions were postulated
in [20, Definition 1] by introducing the concept of a local degree of nonlinearity at x† with the
exponent triple (γ1, γ2, γ3) ∈ [0, 1]× [0, 1]× [0, 2] as follows.

DEFINITION 8.6 (Local degree of nonlinearity). We call the operator F : D(F )⊂X→Y
locally nonlinear at x† ∈ D(F ) of degree (γ1, γ2, γ3) ∈ [0, 1] × [0, 1] × [0, 2] if there is a
radius ρ > 0 and a constant q > 0 such that the estimate

(8.5)

‖F (x)− F (x†)− F ′[x†](x− x†)‖Y
≤ q‖F ′[x†](x− x†)‖γ1Y ‖F (x)− F (x†)‖γ2Y ‖x− x

†‖γ3X ,
∀x ∈ Bρ(x†) ∩D(F )

holds true.
The inequality in (8.5) is not scaling-invariant in F (i.e., invariant when F is replaced

by λF for any λ ∈ R). This is, however, achieved when we restrict our considerations to the
degree triple (1 − γ, γ, 0) for γ ∈ [0, 1] with constants q = qγ > 0 (subsuming the γ3 part
into the constants) such that

(8.6)

‖F (x)− F (x†)− F ′[x†](x− x†)‖Y
≤ qγ‖F ′[x†](x− x†)‖1−γY ‖F (x)− F (x†)‖γY ,

∀x ∈ Bρ(x†) ∩D(F ).

Under the exceptional requirements that the constants qγ must be less than one for γ = 0 and
γ = 1, the conditions in (8.6) are basically equivalent for all γ ∈ [0, 1] in the sense that an
inequality chain

K‖F ′[x†](x− x†)‖Y ≤ ‖F (x)− F (x†)‖Y ≤ K ‖F ′[x†](x− x†)‖Y ,
∀x ∈ Bρ(x†) ∩D(F )

is valid for all such exponents γ with existing constants 0 < K ≤ K <∞. Vice versa, such
a chain implies (8.6) for all γ ∈ [0, 1] and appropriate constants qγ > 0, as the following
Lemma 8.7 shows. We refer also to [20], where the cases γ = 0 and γ = 1 have been
discussed in this context.

We mention that the case γ = 1 in (8.6) corresponds to the well-known strong tangential
cone condition of Hanke, Neubauer, and Scherzer, introduced in [15]. This condition plays a
crucial role in the analysis of nonlinear iterative methods. Note also that, for this purpose, the
constant q1 has to be assumed small, say q1 < 1.
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LEMMA 8.7.
1. Let (8.6) hold for some γ ∈ [0, 1], where, in the case γ = 1, we have to assume that
q1 < 1. Then there exists a constant K > 0 such that

(8.7) ‖F (x)− F (x†)‖Y ≤ K‖F ′[x†](x− x†)‖Y , ∀x ∈ Bρ(x†) ∩D(F ).

2. Let (8.6) hold for some γ ∈ [0, 1], where, in the case γ = 0, we have to assume that
q0 < 1. Then there also exists a constant K > 0 such that

(8.8) K‖F ′[x†](x− x†)‖Y ≤ ‖F (x)− F (x†)‖Y , ∀x ∈ Bρ(x†) ∩D(F ).

Conversely, the conditions (8.7) and (8.8) together imply (8.6) for any γ ∈ [0, 1] and associated
constants 0 < qγ <∞ (although for no γ necessarily connected with a smallness condition
qγ < 1).

Proof. Assuming (8.6), the inequality (8.7) is valid by using first a triangle inequality and
then Young’s inequality

qγ

(
|∆F |
|F ′|

)γ
≤ γ |∆F |

|F ′|
+

1− γ
γ

qγ/(1−γ)γ

with |∆F | = ‖F (x)− F (x†)‖Y and |F ′| = ‖F ′[x†](x− x†)‖Y .
The optimal constants K > 0 can be found as the solutions of z − 1 = qγz

γ , z ≥ 0,
which exist for γ ∈ [0, 1) and for γ = 1 in the case that q1 < 1.

The inequality (8.8) follows from (8.6) in an analog manner. The constants K > 0 can be
chosen as the inverse of the solution to z − 1 = qγz

1−γ .
The opposite direction, starting from (8.7) and (8.8), needs the triangle inequality again.

Then, the inequality (8.6) is obtained for arbitrary γ ∈ [0, 1] with appropriate constants
qγ > 0 by estimating either a ≤ K−1b or b ≤ Ka with a = ‖F ′[x†](x − x†)‖ and
b = ‖F (x)− F (x†)‖ and then using that min{a, b} ≤ aγb1−γ .

It is well known that the conditions stated above in (8.3) and (8.4) imply the tangential
cone conditions (see, e.g., [15]).

PROPOSITION 8.8. Let (8.3) and (8.4) hold. Then (8.6) holds in the form

‖F (x)− F (x†)− F ′[x†](x− x†)‖Y ≤
CR

1 + κ
‖F ′[x†](x− x†)‖Y ‖x− x†‖κX .

8.3. Autoconvolution as counterexample. The autoconvolution problem is an important
practically relevant example, where many nonlinearity conditions fail and in particular where
the definition of the local degree of ill-posedness is hardly meaningful. A comprehensive
analysis of the following autoconvolution operator with respect to ill-posedness and the
properties mentioned below was started with the seminal paper [13]. An interesting deficit
study concerning usual nonlinearity conditions can be found in [5].

EXAMPLE 8.9. Let X = Y = L2(0, 1) and with D(F ) = L2(0, 1) the autoconvolution
operator

(8.9) [F (x)(s) :=

∫ s

0

x(s− t)x(t) dt (0 ≤ s ≤ 1).

The associated nonlinear operator equation (8.1) with the autoconvolution operator from (8.9)
is locally ill-posed everywhere on the whole space L2(0, 1). This autoconvolution operator is
a non-compact nonlinear operator with the Fréchet derivative F ′[x] ∈ B(L2(0, 1), L2(0, 1))
as

(8.10) [F ′[x]v](s) = 2

∫ s

0

x(s− t) v(t) dt (0 ≤ s ≤ 1, v ∈ L2(0, 1)),
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which is a compact linear operator for all x ∈ L2(0, 1) satisfying a Lipschitz condition

‖F ′[x]− F ′[x†]‖B(L2(0,1),L2(0,1)) ≤ L‖x− x†‖L2(0,1), ∀x ∈ L2(0, 1)

with a global Lipschitz constant L = 2. This implies in detail that

‖F (x)− F (x†)− F ′[x†](x− x†)‖L2(0,1) = ‖F (x− x†)‖L2(0,1) ≤ ‖x− x†‖2L2(0,1)

for all x ∈ L2(0, 1) and provides us with a local degree of nonlinearity (0, 0, 2) at x†

everywhere. No tangential cone condition and no degree of nonlinearity (γ1, γ2, γ3) can be
shown, where either γ1 or γ2 is positive for any x† ∈ L2(0, 1). In particular, the nonlinearity
condition (8.3) fails everywhere and for all 0 < κ ≤ 1; see [5, Cor. 2.3].

Indeed, the condition (8.2) for stable ill-posedness cannot hold, and much more is true:
For a fixed asymptotics (local degree of ill-posedness) of the singular values at x†, arbitrarily
changing degrees may occur in any neighborhood of x†. This fact can be seen by inspection
of the linear convolution operator (8.10) and has been outlined in detail in [13, Sec. 5]. This is
an indicator for strong instability, and under such circumstances it does not make sense to use
the Fréchet derivatives as measures for the strength of ill-posedness of F at x†.

8.4. Nonlinearity conditions and stable ill-posedness. We now study the consequences
of the nonlinearity conditions above with respect to the relation between the nonlinear and the
linear ill-posedness.

The main result in this section is that tangential cone conditions (8.6) almost imply a
factorization into “nonlinear well-posed” and “linear ill-posed” problems, while the stronger
conditions (8.3) and (8.4) remove the “almost”.

The next result has already been stated in [20] for the case of injective F ′[x†] and (8.6)
with γ = 0.

THEOREM 8.10. Let x† ∈ D(F ) with ρ > 0 such that Bρ(x†) ⊂ D(F ). Let (8.7)
and (8.8) hold. Then F can be factorized as

(8.11) F (x)− F (x†) = N ◦ (F ′[x†](x− x†)), ∀x ∈ Bρ(x†),

where the nonlinear operator

N : F ′[x†](Bρ(0))→ Y

has the property

N(0) = 0,

K‖z‖Y ≤ ‖N(z)‖Y ≤ K‖z‖Y , ∀ z ∈ F ′[x†](Bρ(0)).
(8.12)

Conversely, if (8.11) holds with such an N satisfying (8.12), then (8.7) and (8.8) are satisfied.
Proof. For simplicity we set A := F ′[x†]. It follows from (8.7) that F (x+ n) = F (x),

when n ∈ N (A). Let z ∈ F ′[x†](x−x†) with x−x† ∈ Bρ(0). We may write z = A(h+n),
where h+ n = x− x† and h ∈ N (A)⊥ ∩Bρ(0) and n ∈ N(A). Note that A†A = PN (A)⊥ ,
i.e., the orthogonal projector onto N (A)⊥ such that A†A(h + n) = h. Let us define the
operator N as

N(z) := F (x† +A†z)− F (x†), ∀ z ∈ F ′[x†](Bρ(0)).

Obviously, N(0) = 0 holds true. Moreover,

N(z) = F (x† +A†z)− F (x†) = F (x† +A†A(h+ n))− F (x†)

= F (x† + h)− F (x†) = F (x† + h+ n)− F (x†),
(8.13)
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since n ∈ N(A). Thus, as we have defined h + n = x − x† and z = F ′[x†](x − x†), the
factorization (8.11) follows.

The properties (8.12) are directly obtained since

‖N(z)‖Y = ‖F (x)− F (x†)‖Y , ‖z‖ = ‖F ′[x†](x− x†)‖,

and taking into account the inequalities (8.7) and (8.8).
Conversely, if (8.11) holds with (8.12), then

‖F (x† + h)− F (x†)‖Y = ‖N ◦ F ′[x†]h‖Y ∼ ‖F ′[x†]h‖Y ,

i.e., (8.7) and (8.8) hold.
The previous theorem indicates that the tangential cone conditions can roughly be stated as

F ∼NB,I F ′[x†], i.e., the nonlinear operator is as ill-posed as its linearization. However, this
interpretation is not completely correct since the mapping N is only defined on the non-closed
setR(F ′[x†]) and, in particular, is not necessarily a continuous mapping. Thus, N does not
satisfy the requirements in Definition 8.5.

However, by using the stronger version (8.3) and (8.4), we can prove that N is continuous
and remove the “roughly” in the previous statement.

THEOREM 8.11. Let F satisfy (8.3) and (8.4). Then, for any x†, the factorization (8.11)
holds with N : F ′[x†](Bρ(0)) → Y a Lipschitz continuous operator that locally has a
Lipschitz continuous inverse.

Proof. Since (8.3) and (8.4) imply the tangential cone condition (see Proposition 8.8),
the factorization exists. We only have to show continuity. Again set A := F ′[x†], and let
z1, z2 ∈ A(Bρ(0)) with z1 = A(x1 − x†), z2 = A(x2 − x†), and x1, x2 ∈ Bρ(x†). Then
using F ′[x] ∼norm F ′[x†], we obtain from (8.13) that

‖N(z1)−N(z2)‖Y = ‖F (x2)− F (x1)‖

=

∥∥∥∥∫ 1

0

F ′[x1 + t(x2 − x1)](x2 − x1) dt

∥∥∥∥
=

∥∥∥∥∫ 1

0

Rx1+t(x2−x1),x1
dt F ′[x1](x2 − x2)

∥∥∥∥
Y

≤ C‖F ′[x1](x2 − x2)‖
≤ ‖F ′[x†](x1 − x2)‖Y = ‖z1 − z2‖Y .

Thus, N is Lipschitz on A(Bρ(0)) and in particular uniformly continuous. It follows that N
can be extended to a Lipschitz continuous operator on A(Bρ(0)) (see, e.g., [4, p. 190]). Now
according to [15, p. 28] conditions (8.3) and (8.4) imply the tangential cone property (8.6) also
with x† replaced there by an arbitrary element x2 ∈ Bρ(x†)∩D(F ) (and a constant qγ < 1 if
ρ is sufficiently small). Thus, we have

‖z1 − z2‖Y = ‖F ′[x†](x1 − x2)‖ ≤(8.3) C‖F ′[x2](x1 − x2)‖
≤(8.8) C‖F (x2)− F (x1)‖ = ‖N(z1)−N(z2)‖Y .

Consequently, N is injective, and the local inverse N−1 exists and is Lipschitz continuous.

This means that (8.3) and (8.4) imply that

F ∼NB,I F ′[x†].
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Finally, under the conditions (8.3) for F and G, we obtain the result that the nonlinear
ordering is equivalent to the linearized ordering.

THEOREM 8.12. Assume that F and G are Fréchet-differentiable and defined on Bρ(x†)
and both satisfy (8.3) and (8.4) with certain operators R1 and R2. Then

F ≤Lin
B,I G =⇒ F ≤NB,I G.

Proof. We have that F (x) = N1 ◦ F ′[x†](x − x†) and G(x) = N2 ◦ G′[x†](x − x†).
Hence, with T ∈ B,

N−11

(
F (x† + h)− F (x†)

)
= F ′[x†]h = TG′[x†]h = TN−12 (G(x† + h)−G(x†)).

Thus,

F (x† + h)− F (x†) = N1(TN−12 (G(x† + h)−G(x†))),

which gives F ≤NB,I G.
REMARK 8.13. The previous results have indicated a relation between nonlinearity

conditions of tangential cone type and an operator factorization of F into a (left) nonlinear
well-posed and a (right) linear ill-posed operator. We leave it to future work to investigate
the analogous case of a factorization with the nonlinear well-posed operator on the right (in
our notation F ∼I,NB F ′[x†]). Possibly in this case alternative nonlinearity conditions, for
instance, range invariance, Newton–Mysovskii, or affine invariance conditions (cf. [7, 25]) are
relevant to characterize this situation. Finally, the case of factorization of a linear operator with
nonlinear well-posed ones from left and right as in Definition 8.5 (i.e., F ∼NB,NB F ′[x†])
could be an interesting piece of future research.

9. Conclusion. We have studied a new definition of ordering by ill-posedness that
generalizes various other orderings. The main result is the equivalence of the new definition
with that in [19], in particular also for the non-compact case. We have compared several
known orderings and have established some equivalences; cf. Table 5.1. Furthermore, we have
extended the definition to the nonlinear case and investigated the relation between linearized
orderings and nonlinearity conditions. From our perspective, we could in particular interpret
nonlinearity conditions of tangential cone type as conditions for factorizing an operator into a
nonlinear well-posed and a linear ill-posed one. Some open questions remain: for instance,
if an equivalent characterization of the operator ordering by s-numbers as in Theorem 3.6
is possible in the Banach space case or if extensions of the results of Section 8 to nonlinear
operator factorizations, as mentioned in Remark 8.13, hold true.
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