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Abstract. We present a dimension-incremental method for function approximation in bounded orthonormal
product bases to learn the solutions of various differential equations. Therefore, we decompose the source function of
the differential equation using parameters like Fourier or spline coefficients and treat the solution of the differential
equation as a high-dimensional function with respect to the spatial variables, to these parameters, and also to further
possible parameters from the differential equation itself. Finally, we learn this function in the sense of sparse
approximation in a suitable function space by detecting coefficients of the basis expansion with the largest absolute
values. Investigating the corresponding indices of the basis coefficients yields further insights into the structure of the
solution as well as its dependency on the parameters and their interactions. This allows a reasonable generalization to
even higher dimensions and therefore better resolutions of the decomposed source function.
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1. Introduction. In mathematical analysis, partial differential equations (PDEs) stand
as formidable tools when it comes to modeling diverse phenomena across various scien-
tific disciplines from fluid dynamics to quantum mechanics. Unfortunately, solving PDEs
analytically as well as numerically can be quite difficult and thus becomes a challenging
task. The numerical solution of PDEs is investigated thoroughly already since the mid-20th
century until today by various well-known methods like finite difference methods [30], spec-
tral methods [6, 37], or finite element methods (FEMs) [40]. On the other hand, with the
advance in artificial intelligence (AI), several new methods using machine learning techniques
are currently arising and are investigated for finding solutions of PDEs, including physics-
informed neural networks (PINNs) [12, 26, 34, 35], convolutional neural networks [14],
deep operator networks [8, 13, 32], multilevel Picard approximations [9, 19], and neural
operators [20, 27, 29, 31, 33], among numerous others.

It is not necessary to emphasize that both the classic and the AI methods have various
advantages and disadvantages, which are being increasingly studied in the last few years [3, 16].
Especially for high-dimensional PDEs and for many-query settings, where multiple solutions
of the PDE with respect to varying parameters, initial or boundary conditions are needed,
machine learning algorithms have proven to outperform classical methods significantly. One
of the main reasons for this is the great performance of neural networks in the framework of
operator learning on PDEs, i.e., learning the underlying solution operator of a PDE that maps
initial and/or boundary conditions as well as other parameters of the PDE to the solution. For
a comprehensive overview of operator learning theories, algorithms, and applications, we refer
the readers to the recent surveys [5, 28].

However, with respect to operator learning of simpler differential equations, classical
methods can still compete with machine learning. As an example, consider the one-dimensional
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differential equation

Lu = f,(1.1)

with the differential operator L = d
dx and initial condition u(0) = 0. Assume the right-hand

side function f to be given (or at least be well approximated) by a partial Fourier sum

f(x) =

N−1∑
`=0

f`e2πi`x.

If we denote the vector of Fourier coefficients f = (f0, . . . , fN−1) ∈ CN , we now aim for a
solution u of the form

u(x,f) =
∑
k∈I

ukTk(x,f),(1.2)

with unknown coefficients uk ∈ C and an unknown and sparse index set I ⊂ NN+1, where

Tk(z) :=

d∏
j=1

Tkj (zj), with Tkj (zj) =

{
1 kj = 0,√

2 cos(kj arccos(zj)) kj 6= 0,

are multivariate Chebyshev polynomials of dimension d = N + 1. Note that sparsity is a
crucial requirement here since a high-dimensional approximation of such form for non-sparse
index sets I is almost always computationally unfeasible due to the curse of dimensionality.
On the other hand, sparsity occurs naturally, based on the way we discretize the function f ,
as we show below. The behavior that the solution is dominated by main effects and some
low-order interactions will reappear in our numerical experiments as a result of our general
approach. A similar effect is known as the sparsity-of-effects principle in other fields of
analysis; cf. [17, 38].

Due to the simple structure of L and the initial condition, we know that

u(x,f) = f0x+

N−1∑
`=1

f`
2πi`

e2πi`x,

which can be rewritten using the univariate Chebyshev polynomials T0(z) = 1 and
T1(z) =

√
2z as

u(x,f) =
1

2
T1(x)T1(f0)

N−1∏
j=1

T0(fj) +

N−1∑
`=1

e2πi`x T1(f`)

2
√

2πi`

N−1∏
j=0
j 6=`

T0(fj)

since all the f` appear only linearly and decoupled. From this formula, we can directly find
the structure of the index set I as

I =




1
1
0
...
0

 ,


0
0
1
...
0

 , . . . ,


0
0
0
...
1

 ,


1
0
1
...
0

 , . . . ,


1
0
0
...
1

 ,


2
0
1
...
0

 , . . . ,


2
0
0
...
1

 ,


3
0
1
...
0

 , . . .

,
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with the first row corresponding to the spatial dimension x and the remaining rows correspond-
ing to the coefficient dimensions f0, . . . , f9, following the order.

Therefore, we in fact know the index set I , and it can be used to compute the corre-
sponding basis coefficients uk simply by using, e.g., Chebyshev rank-1 lattices [22]. So
if the structure of a suitable index set I in (1.2) can be computed exactly, then the hardest
part of the approximation problem is already done, and it allows us to use high-dimensional
cubature methods like Monte Carlo (MC) or Quasi-Monte Carlo (QMC) methods to derive the
coefficients uk. A similar approach in the Fourier setting for a more complicated differential
equation was investigated in [15] and showed great results, even for very high dimensions.
Further, the parameterization of the right-hand side function f as well as the representation of
the solution u by its basis coefficients uk is closely related to the concept of so-called encoder
and decoder mappings, as for example used in [18]. There, the existence of reasonable neural
and spectral operators wrapped by such encoder and decoder mappings as well as their error
bounds were studied. The fundamental difference of our approach is the missing decoder since
we use the Fourier coefficients f as the encoding of the function f directly to compute the
solution u via (1.2).

Unfortunately, a direct analysis of the structure of the a priori unknown index set I is often
extremely difficult or simply impossible due to the complexity of the considered differential
problem. Thus, instead we use a dimension-incremental algorithm presented in [24], using
point samples to detect a suitable index set I adaptively. More precisely, our general aim is
to solve the high-dimensional approximation problem of approximating (1.2) by detecting a
reasonable and sparse index set I containing the indices k corresponding to the largest (in
absolute value) coefficients uk. Thus, we are using samples u(x(j),f (j)) of the solution u,
which we obtain by solving the differential equation (1.1) for the fixed parameters f (j). The
adaptive detection of a good index set I is made possible by the usage of adaptively chosen
sampling points (x(j),f (j)), and hence adaptive training data in the algorithm, which is one
of the biggest differences of this approach compared with several deep learning techniques for
operator learning associated with PDEs, where random training data are assumed.

The dimension-incremental algorithm in [24], based on the method from [25], works in
arbitrary bounded orthonormal product bases (BOPB) and is capable of computing proper
approximations with satisfying error bounds based on the underlying cubature method, as
shown for the Fourier case in [2]. To generate the necessary point samples of the solution
u, we will utilize classical differential equation solvers like the FEM. Once we detect the
index set I , we can analyze its structure to gain insight into the interactions between the
different parameters and variables and also on their influence on the solution u. Further,
we can generalize the structure of the index set I to proceed to even higher-dimensional or
more detailed versions of the differential problem with a reasonable a priori guess, whose
coefficients uk will be important therein.

This leads to an efficient and interpretable approximation of the solution u, expressed
similarly as in (1.2), allowing direct evaluations of u for any right-hand side f that is either of
the same form or can be well approximated by it—without repeatedly solving the PDE. This
operator-based perspective on PDE solvers offers an appealing alternative to classical model-
based approaches, in which the structure of the differential operator is explicitly exploited to
construct efficient solution algorithms. Our method can be seen as a synthesis of model-based
and data-driven approaches: although we rely on sample-based recovery, the use of a structured
index set and the decomposition into interpretable basis functions connect our framework
closely to analytical PDE solvers, where solution structures are derived symbolically or semi-
analytically. As such, it provides both interpretability and generalizability, thereby addressing
one of the major limitations of many purely machine learning-based methods. In contrast to
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neural operator approaches or physics-informed neural networks (PINNs), which often operate
as black-box models with limited insight into the underlying solution structures, our method
maintains a clear connection to the analytical properties of the PDE and offers explicit control
over the approximation process through the choice of a basis and index sets.

The remainder of this paper is organized as follows: In Section 2, we properly introduce
our notations and the theoretical framework for the application of the dimension-incremental
algorithm from [24], which is also briefly explained there. Section 3 then investigates several
test examples to present the application of our method. These examples include the Poisson and
heat equations, where we have their analytical solutions at hand to compare with our results,
and several more advanced differential problems like parametric diffusion equations with
random coefficients and the nonlinear Burgers’ equation. Finally, we give a brief conclusion
in Section 4.

A Python code is available at https://github.com/fabiantaubert/nabopb.
It contains the dimension-incremental algorithm, the necessary rank-1 lattice cubature methods,
and the differential equation applications.

2. Theory.

2.1. Setting. We investigate differential equations of the general form

Lu = f,(2.1)

with a differential operator L : U → F , a right-hand side f ∈ F , and the corresponding
solution u ∈ U . Here, U and F are suitable function spaces defined on the Lipschitz smooth
d-dimensional spatial domain Ω ⊂ Rd. A typical example for the spaces U and F , which will
also appear in our numerical experiments in Section 3, are the Sobolev space H1(Ω) and its
dual H−1(Ω). Furthermore, together with boundary conditions like Dirichlet or Neumann
conditions, the solution u can be defined even on the closure Ω.

To ensure that the differential problem (2.1) is well-posed, we require certain conditions
for the existence and uniqueness of the solution. A problem is said to be well-posed if there is
a solution, the solution is unique, and the solution depends continuously on the data. These
conditions are typically guaranteed through appropriate assumptions on the operator L, the
function spaces U and F , and the boundary conditions.

For example, in the case where U = H1(Ω) and F = H−1(Ω), the Lax-Milgram
theorem can be applied for elliptic problems to guarantee the existence and uniqueness of
the solution under suitable conditions on the bilinear form associated with L. In other cases,
the Fredholm alternative or other functional analysis results may be used to establish these
properties. Additionally, the regularity of the solution often depends on the smoothness of
the data and the boundary conditions, which in turn influences the choice of suitable function
spaces for the approximation.

2.2. Sparse approximation. Assuming that (2.1) has a unique solution for each right-
hand side function f ∈ F , our goal is to learn the solution mapping G : F → U , ending up
with an approximation G̃ of G.

In order to do, so we start by approximating the function f by

f(x) ≈
n∑
j=1

ajAj(x), x ∈ Ω,(2.2)

with some fixed functions Aj , j = 1, . . . , n, and coefficients a = (a1, . . . , an) ∈ Cn. Fa-
vorable approximative parameterizations of the function f by the coefficients a should be
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accurate and efficient, i.e., the possible error should be reasonably bounded, and there exist
fast methods to compute the coefficients a for a given function f and vice versa.

Further, we assume that the solution u : D → C has a basis expansion of the form

u(x,a) :=
∑

k∈Nd+n
ckΦk(x,a), (x,a) ∈ D,(2.3)

with {Φk : k ∈ Nd+n} a bounded orthonormal product basis (BOPB) in the separable Hilbert
space H = L2(D, µ) on the Cartesian product-type domain D and the basis coefficients
ck ∈ C,k ∈ Nd+n. See [24, Sec. 1.1] for more details on the notion of a BOPB and the
corresponding domains and spaces. Further, see Remark 2.1 for the relation between the
domains D and Ω×Cn, which would be the canonical domain for u since x ∈ Ω and a ∈ Cn.

Having (2.3), we aim to approximate u by a truncated series

SIu(x,a) :=
∑
k∈I

ckΦk(x,a),

with some a priori unknown index set I ⊂ Nd+n, |I| <∞, followed by an approximation

SAI u(x,a) :=
∑
k∈I

ûkΦk(x,a),(2.4)

where ûk ∈ C,k ∈ I, are approximations of the true coefficients ck. Note that the detection
of a “good” index set I in general leads to a nonlinear approximation problem. With (2.4)
we then have an approximation of the solution mapping: For every right-hand side f , we
determine the coefficients a and plug them into SAI u, which yields us an explicit representation
of an approximation of u. So in fact, combining the discretization mapping f 7→ a with
the approximation mapping a 7→ SAI u(·,a) yields an approximation G̃ of the solution
map G : F → U . Furthermore, the structure of the index set I as well as the size of the
corresponding approximated coefficients ûk may reveal interesting insights into the structure
of the solution u and its dependence on the coefficients a, i.e., on the right-hand side function
f .

Estimating the error of the approximation in the L∞-norm and using the bound of our
basis functions Φk, we get∥∥u− SAI u∥∥∞ ≤ ‖u− SIu‖∞ +

∥∥SIu− SAI u∥∥∞
=

∥∥∥∥∥∥
∑
k 6∈I

ckΦk

∥∥∥∥∥∥
∞

+

∥∥∥∥∥∑
k∈I

(ck − ûk)Φk

∥∥∥∥∥
∞

≤
∑
k 6∈I

|ck| ‖Φk‖∞ +
∑
k∈I

|ck − ûk| ‖Φk‖∞

≤ B

∑
k 6∈I

|ck|+
∑
k∈I

|ck − ûk|

 .

Note that the bound constant B depends on the BOPB and therefore on the space H of our
approximation. As an example, consider the well-known Fourier system using trigonometric
polynomials exp(2πi〈k, ·〉) as basis functions, which comes with the bound constant B = 1
independent of the dimension d. For the Chebyshev basis introduced in Section 1, the bound
constant is B = 2d/2. If the considered approximation problem has a limited number of
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interacting dimensions ds ≤ d, then the effective bound constant can be replaced with
B = 2ds/2 instead.

The terms inside the brackets, which we will refer to as the truncation error
∑
k 6∈I |ck|,

and the coefficient approximation error
∑
k∈I |ck − ûk| are mainly influenced by the index

set I and the approximated coefficients ûk. Hence, we not only need to compute good
approximations of the coefficients ck but also to detect a “good” index set I , hopefully
containing the largest (in terms of absolute value) coefficients ck, to make (2.4) a reasonable
approximation of the solution u.

2.3. The dimension-incremental method. In the present work, we will use the nonlinear
approximation method for high-dimensional function approximation proposed in [24] in order
to receive the desired approximation (2.4). First, we summarize some main aspects of the
dimension-incremental algorithm here and refer to [24, Sec. 2] for more detailed explanations
and proper definitions of the used notations. A simplified version of the algorithm is also given
in Algorithm 1.

Suppose now for simplicity that we are interested in the approximation of a d-dimensional
target function g : D → C of the form g =

∑
k∈I ĝkΦk with the unknown index set I ⊂ Nd.

Later, the target function g will be the solution u in d + n dimensions. Motivated by the
estimate above, we aim for an s-sparse index set I , i.e., |I| = s, corresponding to basis
coefficients ck with large absolute values.

Roughly, the algorithm uses samples of g to detect reasonable indices kj of k = (kj)
d
j=1,

k ∈ I, in each dimension j = 1, . . . , d and reasonable combinations thereof. In order to do
so, only a search space Γ ⊃ I is needed in advance. Commonly, we choose search spaces like
the full (non-negative) grid Γ = [0, N ]d with some parameter N ∈ N, which we will call an
extension from now on. If there is additional initial knowledge of the structure of the desired
index set I , then the choice of Γ can be improved.

The algorithm starts by investigating the one-dimensional projections given by
P{t}(Γ) := {k ∈ N | ∃k ∈ Γ : kt = k}, for all t = 1, . . . , d, by constructing a suitable
cubature rule for integrals of the form

ĝ{t},kt(x̃) :=

∫
g(ξ, x̃){t}Φ{t},kt(ξ)dξ,(2.5)

with Φ{t},kt the one-dimensional basis function of the t-th dimension of our BOPB. The
notation g(ξ, x̃){t} refers to sampling values of g using ξ in the t-th dimension and x̃ for the
remaining dimensions. The algorithm then computes these so-called projected coefficients
ĝ{t},kt using this cubature rule and the samples of the target function g for a particular random
anchor x̃. The absolute value of these projected coefficients ĝ{t},kt can be seen as an indicator
whether or not kt is important, i.e., if kt should appear in the t-th component of any index
k ∈ I . Hence, the algorithm takes the s (the sparsity) largest projected coefficients fulfilling
|ĝ{t},kt | ≥ δ+ for some initially chosen detection threshold δ+ and adds the corresponding
indices kt to a temporary index set I{t}. Since the computation of the projected coefficients
ĝ{t},kt involves randomness due to the randomly drawn anchor x̃, this computation is re-
peated r times with r being the number of detection iterations with different anchors x̃(j),
j = 1, . . . , r.

The temporary index sets I{t} with the reasonable indices for each dimension t = 1, . . . , d
are now combined to proceed in a dimension-incremental way. Starting with t = 2, a new
candidate set K := (I{1,...,t−1} × I{t}) ∩ P{1,...,t}(Γ) is formed, containing now higher-
dimensional indices k ∈ N|{1,...,t}|. Again, a suitable t-dimensional cubature method, e.g.,
multiple rank-1 lattices as in [21], is constructed and evaluated using samples of the target
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function g to compute the projected coefficients

ĝ{1,...,t},k(x̃) :=

∫
g(ξ, x̃)Φ{1,...,t},k(ξ)dξ,

for the indices k ∈ K, which is the natural generalization of (2.5) to multiple dimensions
{1, . . . , t}. As before, the algorithm collects those indices k ∈ Nt with the s largest (in
absolute value) projected coefficients ĝ{1,...,t},k in the temporary index set I{1,...,t}. These
indices are now the tuples that can still appear in the first t components of the indices in the
final index set I . If t < d holds, then this process is again influenced by the randomly chosen
anchor x̃ and therefore repeated r times. This process is then repeated with t + 1 instead
of t until t = d, where the projected coefficients ĝ{1,...,d},k no longer depend on a random
anchor x̃ at all. We finally set I = I{1,...,d} and ĝk = ĝ{1,...,d},k for all k ∈ I{1,...,d}. The
final output of the algorithm includes the desired index set I and the approximations ĝk of the
true basis coefficients for each k ∈ I .

A crucial requirement for this algorithm is the access of the sampling values g(x) for
arbitrary x in the algorithm, e.g., by a black-box function handler of g. This is because the
necessary sampling points x, for which the corresponding sampling values g(x) are needed,
are not known a priori but are computed adaptively during the algorithm based on the current
candidate sets K and the constructed cubature methods, combined with the random anchors x̃.
We again encourage the reader to consult [24] for a more detailed and rigorous explanation
of this concept, the theorem on the theoretical detection guarantee, and simple numerical
examples as well as several comments and discussions on the capabilities and restrictions of
this algorithm. Further, similar approaches as in [39, Sec. 3.1.2] for the selection of the largest
projected coefficients ĝ{1,...,t},k(x̃) of the candidate sets K in each step might speed up these
detections and therefore the whole algorithm if additional information on the behavior of these
projected coefficients is known.

2.4. Black-box sampling of the differential equation. For our application of Algo-
rithm 1, we have u as the target function and hence sampling points of the form (x,a). Each
“sample” u(x,a) is then the value of the solution u of (2.1) for a given parameter a, evaluated
at the spatial point x. In order to receive such samples, we utilize numerical solvers, e.g., the
finite element method. With the given parameter a, we can compute the (fixed) right-hand
side function f , solve the differential equation for this particular f numerically, and evaluate
the approximate solution at x.

Since the algorithm only requires the final sampling value u(x,a), the choice of the
particular method or numerical solver for the differential equation is completely free, as long
as the approximated sampling value that we compute and return to the algorithm is a reasonable
approximation of the true value u(x,a). This non-intrusive behavior of our algorithm is the
reason for its generality. The properties of the differential equation (2.1) as well as possible
difficulties therein are mostly dealt with by the numerical solver. As long as there is any
possibility to obtain reasonable estimates of u(x,a) for a given (x,a), we can plug this
method into our black-box sampling step. Note that while the accuracy and efficiency of the
used numerical solver directly affect the accuracy and efficiency of our dimension-incremental
method, we will not investigate the properties of these solvers in more detail in this work.

REMARK 2.1. Generally, the product-type domain D, where we can apply Algorithm 1,
will not coincide with the domain Ω × Cn of our solution u. Hence, we need to transform
and/or restrict this domain carefully such that the sampling points given by our algorithm are
suitable for the differential operator.

Since Ω will be some compact domain for many applications, it is often enough to apply
a simple transformation T for the spatial variable x, e.g., the continuous and bijective linear
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Algorithm 1 Dimension-incremental algorithm (simplified).
Input: Γ ⊂ Nd search space

g target function g as black box (function handle)
s ∈ N sparsity parameter
δ+ > 0 detection threshold
r ∈ N number of detection iterations

(Step 1) [Single component identification]
for t := 1, . . . , d do

Set I{t} := ∅.
Compute a suitable cubature method for P{t}(Γ).
for i := 1, . . . , r do

Draw a random anchor x̃.
Sample g at the necessary sampling points (the cubature nodes combined with x̃).
Compute the projected coefficients ĝ{t},kt(x̃) for kt ∈ P{t}(Γ).
Add the (up to) s indices kt with the largest proj. coef. |ĝ{t},kt(x̃)| ≥ δ+ to I{t}.

end for i
end for t

(Step 2) [Coupled component identification]
for t := 2, . . . , d do

If t < d, set r̃ := r and otherwise r̃ := 1.
Set I{1,...,t} := ∅.
Construct the index set K := (I{1,...,t−1} × I{t}) ∩ P{1,...,t}(Γ).
Compute a suitable cubature method for K.
for i := 1, . . . , r̃ do

Draw a random anchor x̃.
Sample g at the necessary sampling points (the cubature nodes combined with x̃ if t < d).
Compute the projected coefficients ĝ{1,...,t},k(x̃) for k ∈ K.
Add the (up to) s indices k with the largest proj. coef. |ĝ{1,...,t},k(x̃)| ≥ δ+ to I{1,...,t}.

end for i
end for t

(Step 3)
Set I := I{1,...,d} and ĝk := ĝ{1,...,d},k for all k ∈ I{1,...,d}.

Output: I ⊂ Γ ⊂ Nd detected index set
(ĝk)k∈I ∈ C|I| approximated coefficients with |ĝk| ≥ δ+

transformation T x = m1x+m21 with two constants m1,m2 ∈ R, mapping x to the desired
domain Ω.

On the other hand, the parameters a ∈ Cn are more difficult to handle. In this case,
we will often have to restrict the domain of a to, e.g., some compact interval again, before
thinking about possible transformations as we did for the spatial part. This is obviously a loss
of generality, and the restriction needs to be performed carefully such that the most reasonable
source functions f can still be approximated well enough using the restricted a.

For examples of such transformations and restrictions, we refer to the particular examples
in the following section.

REMARK 2.2. While we stick to the mentioned setting (2.1) for the theoretical part of
this paper to preserve clarity in the notations, our numerical experiments in Section 3 also
include some further variations, which we will only briefly mention in the following.

First, we can also consider parameterized differential operators Lθ with some parameter
θ ∈ Rnθ , nθ ∈ N, and the corresponding solution mapping G : F × Rn → U . Correspond-
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ingly, (2.3) then becomes

u(x,a,θ) :=
∑

k∈Nd+n+nθ

ckΦk(x,a,θ),(2.6)

with another separable Hilbert space H and corresponding BOPB {Φk : k ∈ Nd+n+nθ}.
The truncated and approximated version (2.4) is then modified in the same way, now with an
unknown index set I ⊂ Nd+n+nθ . An example of this variation can be found in Section 3.4.

Similarly, we can consider time-dependent differential operators L with respect to some
time variable τ ∈ [0, T ] and their corresponding solution mapping G : F × [0, T ]→ U . As
before, we end up with the representation

u(x, τ,a) :=
∑

k∈Nd+1+nθ

ckΦk(x, τ,a)

and proceed similarly as above, now with the (d+ 1 + n)-dimensional separable Hilbert space
H and an unknown index set I ⊂ Nd+1+n.

In each case, we proceed to the approximation SAI u from (2.4). This time, the analysis of
the index set I and the coefficients ûk can give additional information about the dependence
and interaction of the spatial variable x and the right-hand side f , not only with each other but
also with the parameters θ or the time variable t.

Obviously, a combination of these two variations, i.e., a parameter- and time-dependent
differential equation, can be treated in an analogous way; cf. Section 3.5 with the one-
dimensional heat equation.

3. Numerics. In this section, we test our approach on several test problems, such as
multiple diffusion equations and the Burgers’ equation, and discuss the results. We show that
our approach leads to sparse index sets I that can be used directly for the high-dimensional
approximation of the solution u or further generalized to even higher-dimensional problems.
We will briefly investigate such a generalization for the first model example at the end of
Section 3.1.1. For the other examples, we focus on the detection of a suitable index set
I and omit the generalization to higher dimensions since the first part is the main goal of
Algorithm 1.

As mentioned in Section 2, we need to choose a suitable BOPB for the solution u to
achieve the basis expansion (2.3). In all of the following examples, we will work with the
tensorized Chebyshev polynomials

Tk(z) :=

d+n∏
j=1

Tkj (zj), with Tkj (zj) =

{
1 kj = 0,√

2 cos(kj arccos(zj)) kj 6= 0,

on the domain D = [−1, 1]d+n as used in [24]. Hence, the approximation (2.4), inserting
z := (x,a) with x ∈ Rd and a ∈ Cn, becomes

SAI u(x,a) =
∑
k∈I

ûkTk(x,a),(3.1)

where I ⊂ Nd+n is the detected index set and ûk are the approximations of the corresponding
exact basis coefficients ck from (2.3).
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To investigate the accuracy of our method, we consider, for a fixed coefficient a ∈ Cn,
the relative `2-error

err(a) :=

∥∥SAI u(x,a)− u(x,a)
∥∥
`2

‖u(x,a)‖`2
=

(∑G
j=1

∣∣SAI u(x(j),a)− u(x(j),a)
∣∣2) 1

2

(∑G
j=1

∣∣u(x(j),a)
∣∣2) 1

2

,(3.2)

where x(j), for j = 1, . . . , G, are equidistant grid points in the spatial domain Ω. We then
proceed by computing this error for numerous, randomly drawn coefficients a and investigating
the corresponding range as well as the first quartile, the median, and the second quartile of this
statistical test (dividing the results into four equal parts).

All tests are performed in Python and can be found together with the algorithm in [36].
The overall runtime depends significantly on the specific problem, the desired accuracy, the
chosen parameters, and the available computational resources. Therefore, the runtime for each
example is briefly discussed in the corresponding sections. To accelerate the sampling process,
we used parallelization with up to 180 separate cores but no GPU computing. If not stated
otherwise, the dimension-incremental algorithm uses the following parameters and settings:

• the cubature method: Chebyshev multiple rank-1 lattices as described in [24, Sec. 4.2],
• the search space Γ: (non-negative) full grid [0, N ]d+n in d + n dimensions with

extension N and no superposition assumption,
• the detection threshold δ+ = 10−12,
• the number of detection iterations r = 5.

The sparsity s will be given for each test separately. See [24] for more detailed information on
these parameters and settings and how they affect the behavior of the algorithm.

3.1. The one-dimensional Poisson equation. The following example considers a rather
simple differential equation in order to first demonstrate the application of our proposed
method.

Given a source function f : (0, 1) → C, the one-dimensional Poisson equation with
homogeneous Dirichlet boundary conditions reads as

(3.3)
− d2

dx2
u(x) = f(x), x ∈ (0, 1),

u(0) = u(1) = 0.

For this differential operator L = − d2

dx2 and these particular boundary conditions, we take
the usual choice of function spaces U = H1

0 ((0, 1)) and F = H−1((0, 1)), the dual of
H1

0 ((0, 1)). As described in Section 2, our first step is to find a suitable parameterization (2.2)
of the function f . For this first example, we will consider two different approaches here:

• a parameterization of the source function f by its first Fourier coefficients,
• a parameterization of the source function f by a B-spline approximation.

In all of these cases we restrict ourselves to a discretization of f using only n parameters.
Together with the spatial dimension d = 1, it results in an (n+ 1)-dimensional approximation
problem. While choosing a larger n should lead to more accurate approximations of f and
thus to a better quality of the approximation SAI u for general f , the additional dimensions will
also result in higher sampling and computational complexities. Therefore, we have to choose
reasonable limits for n in the upcoming examples.
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3.1.1. Fourier series parameterization. We consider a parameterization of the source
function f by its first n ∈ 2N + 1 Fourier coefficients a = (a−n−1

2
, . . . , an−1

2
) ∈ Cn, i.e.,

f(x) ≈

n−1
2∑

`=−n−1
2

a`e2πi`x.(3.4)

These Fourier coefficients a can be computed efficiently for reasonable functions f using the
well-known FFT. Note that this approximation of f will always be 1-periodic, forcing the
implicit assumption that the function f is either a 1-periodic function itself or can be fairly
well approximated by such a function.

Using this truncated Fourier series as the right-hand side of the differential equation (3.3),
the solution u of the one-dimensional Poisson equation is then given analytically by

u(x,a) =
a0
2
x(1− x) +

n−1
2∑

`=−n−1
2

` 6=0

a`
4π2`2

(e2πi`x − 1).(3.5)

This formula can be used directly as the black-box sampling strategy necessary for our
algorithm (see Section 2.4) to generate the necessary sampling values u(x∗,a∗) for any
sampling point (x∗,a∗). To demonstrate the general application of Algorithm 1, we use this
direct method to avoid errors made when solving the differential equation numerically and
focus on the approximation of the solution u directly.

As mentioned in Remark 2.1, we need to pay attention since the original domain [0, 1]×Cn
does not match our function approximation domain D = [−1, 1]n+1. For the spatial part, we
apply the transformation T x = 1

2 (x+ 1) to perform the shift between [−1, 1] and [0, 1]. For
simplicity, we directly assume the restriction a ∈ [−1, 1]n for the Fourier coefficients a such
that we can omit further transformations. Note that this implies that we are only interested in
right-hand side functions f that can be well approximated by using such Fourier coefficients a
in this artificial example. Overall, the final function that we are going to approximate here is
now

ũ(x̃,a) := u(T x̃,a) = u

(
1

2
(x̃+ 1),a

)
, x̃ ∈ [−1, 1], a ∈ [−1, 1]n.

Using the explicit formula (3.5), we get

ũ(x̃,a) =
a0
8

(1− x̃2) +

n−1
2∑

`=−n−1
2

6̀=0

a`
4π2`2

((−1)`eπi`x̃ − 1).(3.6)

REMARK 3.1. Note that the particular choice of the domain D and the corresponding
basis of H are not unique. Since we are only restricting the Fourier coefficients a and not
transforming them, the solution u is obviously not periodic with respect to these variables, so
our decision to use the tensorized Chebyshev polynomials for the approximation is reasonable
here. However, we could have applied various transformations T to a, including those that
force a periodic dependence of u on a such as the tent-transform; cf. [7]. Then, together with
the periodicity in x ∈ [0, 1] due to the boundary conditions u(0) = u(1) = 0, the solution u
would be periodic (but not smooth) in all n+ 1 dimensions. In such a scenario, we could use
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FIG. 3.1. The relative approximation error err(a) for 10000 randomly drawn a when using the Fourier series
parameterization. The box-and-whisker plots show the median, the first and the second quartile, as well as the
maximal and minimal error observed. The five plots indicate different choices for the range of the Fourier coefficient
a, including two cases with complex-valued Fourier coefficients. The range [−1, 1] coincides with the training data
used.

the high-dimensional torus domain D = Tn+1 as well as a Fourier basis for the approximation
spaceH. We use n = 9 as the number of Fourier coefficients a` for our tests, which results in
the overall dimension d+n = 10. Further, we choose the sparsity s = 1000 and the extension
N = 64 of the search space Γ. Since we do not use a numerical solver but the exact solution,
each solution sample can be generated in about 10−4 seconds, resulting in an overall runtime
of our algorithm of about 2 minutes.

The accuracy of our approximation is shown in Figure 3.1. Therein, we used 10000 ran-
domly drawn Fourier coefficients a and computed the relative `2-error err(a) using G = 1000
equidistant grid points in the spatial domain. We use box-and-whisker plots to illustrate the
statistical distribution here, where the central line inside the box indicates the median. On each
side of the median, the box contains 25% of the data. Outside the box, the whiskers indicate
the maximal and minimal error observed. Since we did not specify outliers in our data, the
box-and-whisker plot truly covers the full range of observed errors.

The first plot with the range [−1, 1] is the true approximation error since the same range
for the entries of a is used as we did during our approximation. Although the computed
coefficients ûk from (3.1) smaller than 10−7 are not necessarily true basis coefficients but
mainly artifacts because of numerical errors, the overall approximation accuracy is still
satisfactory. The other plots in Figure 3.1 show results with larger or even complex domains
for the test Fourier coefficients a. For this transfer learning scenario, it shows that our
approximation is also applicable for slightly larger domains of a, and therefore for more
source functions f , than the restricted ones from the training setting. However, the further
the test cases are from the training setting, the larger our relative approximation error err(a)
grows. Thus, we strongly recommend using another restriction a ∈ [−α, α]n, α > 1, and
transform the domain similarly to the spatial variable x already in the training process, if the
desired functions f require such Fourier coefficients a.

The detected indices show a clear structure as can be seen for the first indices in Figure 3.2.
For all dimensions corresponding to an entry of the Fourier coefficient vector a, there exists
no other entry than 0 or 1. This effect is not caused by the particular sparsity s that we have
chosen since the algorithm already neglects every other possible entry (the numbers from 2 to
64 for our choice of N ) in the single component identification step (cf. Step 1 in Algorithm 1)
such that they can not appear at all in these dimensions. This result is exactly what we expected
knowing the explicit formula (3.6) since therein all the Fourier coefficients a−4, . . . , a4 appear
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FIG. 3.2. An abstract visualization of the first 40 indices k detected when using the Fourier series parameteri-
zation. The leftmost column contains the index k corresponding to the largest (in absolute value) basis coefficient ûk,
the second column the index for the second largest, and so on. The rows identify the 10 dimensions corresponding to
the variables x and a−4, . . . , a4 from top to bottom in this order. Zeros are neglected to preserve clarity.

only linearly. Additionally, the only indices where the entry corresponding to a0 is non-zero
are the first and second ones, which can be seen in Figure 3.2 as the first and second columns.
Again, this matches our expectations since a0 only appears in the first term of (3.6), which can
be rewritten in terms of the Chebyshev polynomials as

a0
8

(1− x̃2) =
1

8
√

2
T1(a0)

(
1

2
T0(x)− 1

2
√

2
T2(x)

) n−1
2∏

`=−n−1
2

6̀=0

T0(a`)

=
1

16
√

2
Tk(1)(x,a)− 1

32
Tk(2)(x,a),

with

k(1) = [ 0︸︷︷︸
T0(x)

, 0, 0, 0, 0︸ ︷︷ ︸
T0(a`)

, 1︸︷︷︸
T1(a0)

, 0, 0, 0, 0︸ ︷︷ ︸
T0(a`)

]T

and

k(2) = [ 2︸︷︷︸
T2(x)

, 0, 0, 0, 0︸ ︷︷ ︸
T0(a`)

, 1︸︷︷︸
T1(a0)

, 0, 0, 0, 0︸ ︷︷ ︸
T0(a`)

]T

being the indices mentioned above. Finally, we would expect no couplings between the
different Fourier coefficients a−4, . . . , a4 since they never appear together in the parts of the
sum in the right-hand side of (3.6). While this behavior can be observed for the first detected
indices in Figure 3.2, this does not hold for all of our detected indices. At some point, the
values of the remaining true Chebyshev coefficients become so small that the algorithm can not
distinguish their corresponding indices from false ones like [2, 1, 0, 1, 1, 1, 0, 1, 0, 1]T , which
seems to produce similar coefficient values due to small numerical errors. However, since the
size of the coefficients where this effect happens is already very small, i.e., about 10−8, this
does not harm the overall approximation. Obviously, this minor problem is simply caused by
the large sparsity s = 1000 and could also be prevented up to some extent by using a search
space Γ that does not contain indices k with so many non-zero entries.

EXAMPLE 3.2 (High-dimensional extension of the detected index set I ). As stated already
in Section 1, we can use the structure of the detected index set I to extend our approach to even
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higher dimensions. We demonstrate this approach here for the current differential equation
with the Fourier series parameterization due to its simple structure and our explicit knowledge
of the true solution (3.6).

We increase n, the number of Fourier coefficients a` used, to 99 in order to achieve a
better resolution of the right-hand side function f than before. Obviously, this leads us to the
approximation of the now 100-dimensional function u(x,a). However, analyzing the detected
index set I from our 10-dimensional test above, we can construct a good index set I directly
by generalizing the main structural features of I . In detail, we will construct our new index set
I in the following way:

• The first dimension (corresponding to the spatial variable x) may contain any number
from 0 to Nx.

• The entries of the dimensions 2 to 100 are either all zero or contain at most one
non-zero entry. This non-zero entry, if existing, must be 1.

This index set I then contains (Nx + 1) · 100 indices of a similar structure as in Figure 3.2.
Note that we did not include the fact that there were only two indices k(1) and k(2) with a
non-zero entry in the dimension corresponding to a0.

We perform our test using Nx = 999, so we are using an index set I containing 105

indices k. We compute the corresponding basis coefficients uk by the same Chebyshev
multiple rank-1 lattice approach from [22] as before in Algorithm 1. Our full dimension-
incremental algorithm in just 10 dimensions already needed around 400000 samples for this
simple example. Now we only need about 300000 samples to approximate all the basis
coefficients ûk,k ∈ I , in this 100-dimensional example. This would be an impossible goal
when applying Algorithm 1 directly to the 100-dimensional approximation problem instead.
Especially for real applications, where the sampling values are not generated by an explicit
formula but by a differential equation solver (like the FEM), the reduction of the amount of
samples needed is an important tool since the corresponding calls of the differential equation
solver will be the dominating part of the computational complexity of the whole algorithm.
The same problem appeared in [23] and was the main motivation for the method proposed
there. The relative approximation errors range from 10−8 to at most 10−6, which is a further
improvement compared to the relative errors for the range [−1, 1] in Figure 3.1. Note that all
these tests were performed with right-hand side functions f of the form (3.4), so as before
there was no error in the discretization of this function. However, the higher resolution of this
approach with n = 99 allows for a much better discretization error (of the function f ) if we
work with more general right-hand side functions f .

3.1.2. B-spline parameterization. We approximate the right-hand side f by a sum of n
B-splines, i.e.,

f(x) ≈
n−1∑
`=0

a`B
(m)
` (x),

where B(m)
` are versions of the cardinal B-spline B(m) of order m. Originally, they are

recursively defined via

B(1)(x) :=

{
1 − 1

2 < x < 1
2 ,

0 otherwise,
and B(m)(x) :=

∫ x+ 1
2

x− 1
2

B(m−1)(y)dy.

We use the additional index ` to indicate that we scaled and shifted them with respect to the
interval [0, 1] and the desired number of B-splines n, such that their peaks are equidistantly
spaced along the interval and each spline overlaps m− 1 neighboring splines in each direction.
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(a) Varying the spline order m for a fixed relative tolerance 10−6 (default).
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(b) Varying the relative tolerance for a fixed spline order m = 3.

FIG. 3.3. The relative approximation error err(a) for 10000 randomly drawn a for different choices of the
spline order m and the relative tolerance of the solver function solve_bvp. The box-and-whisker plots show the
median, the first and the second quartile, as well as the maximal and minimal error observed.

This time, we use a classical differential equation solver to acquire the sample val-
ues u(x∗,a∗) for any sampling point (x∗,a∗). In particular, we will apply the function
solve_bvp from the submodule scipy.integrate here, which is capable of solving
first-order systems of ODEs with two-point boundary conditions. As mentioned in Remark 2.1,
we need to transform the points (x,a) such that they fit in the domain D = [−1, 1]n+1. We
perform the same steps as in the previous example by transforming T x = 1

2 (x + 1) and
restricting a ∈ [−1, 1]n throughout this example. Hence, once again the final function that we
are going to approximate is ũ(x̃,a) := u(T x̃,a) = u( 1

2 (x̃+ 1),a).

Additionally, we also use the same number n = 9 of spline coefficients a`, again resulting
in a 10-dimensional approximation problem. The sparsity s = 1000 and the extensionN = 64
of the search space Γ also remain the same. With the differential equation solver needing
roughly 0.1 seconds per call, we ended up with an overall runtime of our method of almost 6
hours.

The approximation error shown in Figure 3.3 is derived by evaluating our approximation
as well as the solution given by the function solve_bvp on 1000 equidistant spatial points
and considering the respective `2-error err(a). The reference solution for the error estimation
was obtained by using a relative tolerance of 10−9 in solve_bvp. As in the previous
example, we use box-and-whisker plots to visualize the statistical distribution of the results,
i.e., the range and the median of the observed errors as well as their quartiles.

Figure 3.3a illustrates the results for different choices of the spline order m when parame-
terizing the right-hand side function f . The piecewise linear splines (m = 2) result in rather
unsatisfying errors, probably caused by the lack of smoothness. Higher-order splines with
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(a) The detected indices from number 1 to number 40.
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(b) The detected indices from number 201 to number 240.

FIG. 3.4. Abstract visualizations of 40 detected indices k (from left to right) for Example 3.1.2. The indices k
are sorted in descending order according to the size of the corresponding approximated coefficient ûk. The rows
identify the 10 dimensions corresponding to the variables x and a−4, . . . , a4 from top to bottom in this order. Zeros
are neglected to preserve clarity.

m = 3 and m = 4 provide better results, especially when investigating the range and the worst
case of the possible errors err(a). Although the overall error size in Figure 3.3a might seem
a bit large, it is matching the default relative tolerance 10−6 of the function solve_bvp,
which we used for these tests. A lower accuracy of the underlying differential equation solver
leads to a lower accuracy of our method, which can be observed in Figure 3.3b. Here, we
fixed the spline order m = 3 and varied the relative tolerance of the function solve_bvp.
As mentioned before, we will not go into further detail about the properties of the differential
equation solvers used. However, we wanted to briefly mention the influence of the accuracy of
the underlying solver at least for this first example.

Figure 3.4a displays two parts of the detected index set I for the spline order m = 3. As
in Example 3.1.1, we notice a sparse structure of the first detected indices. This time we do
not have an explicit representation of the true solution u and only use approximations of the
solution given by the differential equation solver as our samples. Hence, we are not capable of
comparing these indices and the corresponding values to the true ones as before. However, the
structure, which can be observed in Figure 3.4a, is still highly reasonable. It shows that the
algorithm is prioritizing two-dimensional couplings with small entries in the first dimension
corresponding to the spatial variable x. For later indices as shown for example in Figure 3.4b,
there appear some higher-dimensional couplings and even some values greater than 1 outside
the spatial dimension. The coupling B-spline coefficients a` are always adjacent. This is
caused by the overlapping nature of the B-splines. Even for later indices (apart from numerical
errors as described below) this behavior will continue.

On the other hand, each of the 1000 detected indices contains at least one non-zero entry
in the dimensions 2 to 10, i.e., the corresponding Chebyshev series does not contain a single
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term that depends only on x. Unfortunately, there are again some artifact indices as well,
which do not contain a single zero entry but unreasonably large numbers (≥ 10) in these
dimensions. As before, these are mainly caused by numerical errors and could be reduced by
choosing the search space Γ more restrictively.

Finally, all the computed coefficients are real valued this time. While the domain of the
coefficients a is the same as before, multiplying them with the cardinal B-splines instead of
the Fourier terms causes the source function f and therefore also the solution u to be real
valued for each possible coefficient a.

3.2. A piecewise continuous differential equation. As a second one-dimensional exam-
ple, we consider the ordinary differential equation

(3.7)
− d

dx

(
a(x)

d

dx
u(x)

)
= f(x), x ∈ (−1, 1),

u(−1) = u(1) = 0,

with the piecewise constant coefficient function

a(x) =

{
1
2 x ∈ (−1, 0),

1 x ∈ [0, 1).

This example was investigated in [34, Sec. 2.3] and caused tremendous problems when using
physics-informed neural networks (PINNs) since it has no classical but only a weak solution u
for the given right-hand side function f

f(x) =

{
0 x ∈ (−1, 0),

−2 x ∈ [0, 1).
(3.8)

Therefore, we are interested in solving (3.7) using our approach and comparing the result for
this particular right-hand side function f . The exact solution for this scenario is also given
in [34] as

u(x) =

{
− 2

3x−
2
3 x ∈ (−1, 0),

x2 − 1
3x−

2
3 x ∈ [0, 1).

(3.9)

The differential operator for this ODE is L = − d
dxa(x) d

dx . We choose U = H1
0 ((−1, 1))

and F = H−1((−1, 1)) as the function spaces, the approximation domain D = [−1, 1]n+1,
and the tensorized Chebyshev polynomials as the BOPB. In order to resolve (3.8) properly,
we choose a discretization of f similar to Section 3.1.2 using B-splines of order m = 1 and
characteristic functions on non-overlapping intervals. Precisely, we resolve the right-hand side
f as

f(x) =

7∑
`=0

b`1[−1+ `
4 ,−1+

`+1
4 ](x),

such that the particular function f given in (3.8) is obtained exactly for the spline coefficients
b = [0, 0, 0, 0,−2,−2,−2,−2]T . Then, the general exact solution reads as

u(x, b) =

{∑7
`=0−2b`W`(x) + 2C1x+ C2 x ∈ (−1, 0),∑7
`=0−b`W`(x) + C1x+ C2 x ∈ [0, 1),

(3.10)
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FIG. 3.5. The absolute pointwise approximation error of our approximation when using the right-hand side (3.8)
compared to the exact solution (3.9).

with

W`(x) :=


0 x ∈ (−1,−1 + `

4 ),
1
2x

2 + (1− `
4 )x+ 1

2 (−1 + `
4 )2 x ∈ [−1 + `

4 ,−1 + `+1
4 ),

1
4x+ 7

32 −
`
16 , x ∈ [−1 + `+1

4 , 1)

being the second anti-derivative of the characteristic function 1[−1+ `
4 ,−1+

`+1
4 ](x). The bound-

ary conditions from (3.7) yield C2 = 2C1 and C1 =
∑7
`=0 b`

15−2`
96 .

To obtain the necessary samples of the (weak) solution of (3.7), we utilize the popular
open-source computing platform FEniCS and its Python interface. The underlying finite
element method is very well capable of computing the weak solution of (3.7), making it a
perfect tool for our black-box sampling step. We use a rather coarse mesh with only 100 nodes.
Note that the domain of the spatial variable x is this time already [−1, 1] and thus needs no
further transformation. On the other hand, we scale the spline coefficients b` with a factor of 2
(or 1

2 , respectively) to cover the range [−2, 2]8, such that the particular right-hand side f given
in (3.8) can be resolved exactly as described above.

The number n = 8 of spline coefficients b` is already fixed such that we have the overall
dimension d = 9 for this problem. We use the sparsity s = 4000 with the extension N = 256
for this test example. The dimension-incremental method needed about 75 minutes for this
approach. FEniCS itself computes one solution sample for this problem in about 10−2 seconds.

Figure 3.5 illustrates the pointwise error of our approximation for the particular function
f given in (3.8) when compared to the true solution (3.9). We note that the kink of the exact
solution u at the point x = 0 leads to larger pointwise errors in this region, which is not
surprising given our smooth basis functions and hence the smoothness of our approximation.
Further, it appears that in the right half of the domain, the pointwise errors are no longer
unbiased but oscillate around some constant greater than zero.

The detected index set, partially illustrated in Figure 3.6, shows the usual structure from
the previous example. The linear dependence of the spline coefficients b in the analytical
solution (3.10) is detected perfectly, neglecting any entries larger than 1 in these dimensions
already in Step 1 of Algorithm 1. This is highly remarkable when compared to our first
example in Section 3.1.1 since we are using a numerical solver instead of an analytical solution
this time. So while the samples of the solution u contain small numerical errors, our algorithm
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FIG. 3.6. An abstract visualization of the first 40 indices k detected for the piecewise continuous differential
equation example. The indices k are ordered by the absolute values of their corresponding approximated coefficients
ûk in descending order from left to right. The rows identify the 9 dimensions corresponding to the spatial variable x
and the n = 8 spline coefficients b used. Zeros are neglected to preserve clarity.

still successfully neglects the unnecessary values in Step 1. The first dimension, corresponding
to the spatial variable x, contains again larger values, caused by the highly piecewise structure
of the solution (3.10).

3.3. The multi-dimensional Poisson equation. While in the previous examples we have
considered ordinary differential equations, we now proceed to partial differential equations
with the two-dimensional version of (3.3). The general Poisson equation with homogeneous
Dirichlet boundary conditions is given by

(3.11)
−∆u(x) = f(x), x ∈ Ω,

u(x) = 0, x ∈ δΩ,

with the spatial domain Ω = (0, 1)d. We restrict ourselves to the two-dimensional version
d = 2 in this work, while d = 3 is also a common setting in applications. With the differential
operator L = −∆ and the homogeneous Dirichlet boundary conditions, we use the common
function spaces U = H1

0 (Ω) and F = H−1(Ω), which is the direct generalization of the
function spaces used in Section 3.1. Also, the approximation space H = L2(D) is again
equipped with the tensorized Chebyshev polynomials on the now (n+ 2)-dimensional domain
D = [−1, 1]n+2.

Motivated by the example from Section 3.1, we use a two-dimensional Fourier series to
parameterize the right-hand side function f in this example. In detail, we parameterize f by

f(x) ≈
∑
`∈J

a`e2πi`x,

with the index set J , again containing a total of n indices. As in the one-dimensional case, this
choice should result in a rather simple detected index set I when applying our algorithm.

As in Section 3.2, we use FEniCS to solve the PDE (3.11) with the finite element method
for a given a. For the finite element mesh, we used a uniform unit square mesh with 51
equidistant points in each direction. Since each square cell is split into two triangular elements,
we thus end up with 5000 elements for our approximation. As in the ODE examples, we still
need to transform the sampling points (x,a). Hence, we proceed similarly as in Section 3.1.1
by using the transformation T x = 1

2 (x+ 1) and simply restricting a ∈ [−1, 1]n.
We set J = {−1, 0, 1}2 in order to have n = 9 Fourier coefficients. Combined with

the spatial dimension d = 2, this time we end up with an 11-dimensional approximation
problem. Further, we choose the sparsity s = 1000 and the extension N = 64 of the
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FIG. 3.7. The relative approximation error err(a) for 10000 randomly drawn a for the two-dimensional
Poisson equation example. The box-and-whisker plots show the median, the first and the second quartile, as well as
the maximal and minimal error observed.
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FIG. 3.8. An abstract visualization of the first 40 indices k detected for the two-dimensional Poisson equation
example. The indices k are ordered by the absolute values of their corresponding approximated coefficients ûk in
descending order from left to right. The rows identify the 11 dimensions corresponding to the two spatial variables
x = (x1, x2)T and the n = 9 Fourier coefficients a used. Zeros are neglected to preserve clarity.

search space Γ. FEniCS needs up to 3 seconds for each single solution this time, leaving our
dimension-incremental method with a total runtime of roughly 100 minutes.

Figure 3.7 illustrates the relative approximation error err(a), as before in the one-dimen-
sional case, using 10000 randomly drawn coefficients a. Note that this error is computed
by comparing our approximation to the solution that the FEM solver produces for the given
coefficients a on the nodes of the FE mesh using the same parameters as we did during the
execution of our algorithm. We observe errors of sizes around 10−3, which are obviously
larger than before in Section 3.1.1. However, this effect is primarily caused by the fact that we
are no longer using a direct representation of the analytic solution as for the one-dimensional
example to generate our sampling points. The error sizes are still reasonable and can compete
with the used PDE solver, taking into account the sparsity s and the extension N used here.

The structure of the detected index set I , where the first part is shown in Figure 3.8, is
pretty similar to the one seen in Section 3.1.1. Even though we are not using the exact solution
for our training samples anymore, our algorithm is still able to identify that, for the dimensions
corresponding to the Fourier coefficients a, the only necessary entries are 0 and 1. The entries
of the first two dimensions, corresponding to the spatial dimensions x, also contain larger
numbers but are growing significantly slower than in the one-dimensional example. This is
due to the fact that in this two-dimensional case all possible combinations of the entries in
these two dimensions have to be exploited. Overall, the discovered structure resembles that
one from our first example quite nicely and seems like the kind of structure of such an index
set that we would expect as the canonical generalization to multi-dimensional examples even
without examining an analytical solution.

3.4. A diffusion equation with an affine random coefficient. The differential equa-
tion (3.7) is also a one-dimensional diffusion equation where the coefficient a could be called
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diffusion coefficient as well. Now, we investigate a two-dimensional diffusion equation on
Ω = [0, 1]2 with a randomized diffusion coefficient a, which is not only a PDE instead of an
ODE but also a parameterized differential equation, i.e.,

−∇ · (a(x,y)∇u(x,y)) = f(x), x ∈ Ω, y ∈ Ωy,

u(x,y) = 0, x ∈ ∂Ω, y ∈ Ωy.

Here, the differential operator ∇ is always applied to the spatial variable x. While there exist
multiple kinds of randomized diffusion coefficients a, as can be seen for example in [23],
we will only work with an affine random coefficient a here. In more detail, we consider the
particular example from [10, Sec. 11], where we have, for ny = 20, the affine coefficient

a(x,y) := 1 +

ny∑
j=1

yjψj(x), x ∈ Ω, y ∈ [−1, 1]20

with the random variables y ∼ U([−1, 1]ny ) and

ψj(x) := cj−µ cos(2πm1(j)x1) cos(2πm2(j)x2), x ∈ Ω, j ≥ 1.

Here, c > 0 is a constant and µ > 1 the decay rate. In our numerical example below, we use
the values c = 0.9/ζ(2) and µ = 2 also used in [10]. Further, m1(j) and m2(j) are defined as

m1(j) := j − k(j)(k(j) + 1)

2
and m2(j) := k(j)−m1(j),

with k(j) := b−1/2 +
√

1/4 + 2jc. For some explicit values of m1(j),m2(j), and k(j) as
well as for more details on this differential problem, see [10]. As before, we consider the
common function spaces U = H1

0 (Ω) and F = H−1(Ω) for this differential operator.
REMARK 3.3. We have already considered the numerical solution of this problem in

[23, Sec. 4.3] using a slightly different approach. Therein, we discretize the spatial domain
Ω = [0, 1]2 and compute approximations like (2.6) with θ = y in the Fourier setting for every
fixed node xg, g = 1, . . . , G. The key ingredient there is that the a priori unknown index set I
is chosen similarly for each of the G approximations SAI u(xg, ·), which allows us to compute
all these approximations using only a single call of a modification of the sparse approximation
algorithm with slightly more samples and computation time needed. For a given random
coefficient y∗, we then compute the values of SAI u(xg,y

∗) at all the nodes xg and interpolate
between them to receive a solution on the complete domain Ω.

In contrast to all other examples considered in this work, we decided to use the fixed right-
hand side f ≡ 1 without parameterization since we are mainly interested in a comparison with
the results from [23]. Hence, we neglect the space F for this example and proceed with the
solution operator G : Ωy → U this time. The approximation space is stillH = L2(D), again
using the tensorized Chebyshev polynomials and D = [−1, 1]ny+2. The random variables y
already match with that domain, so we only transform x as usual using the transformation
T x = 1

2 (x+ 1). Note that one could still use a similar approach as in the previous examples
to easily parameterize the right-hand side f as well in this example. As in Section 3.3, we
utilize FEniCS to solve the differential equation using 5000 elements.

Since there is no parameterization of the right-hand side f but two spatial dimensions,
as well as ny = 20 dimensions for the random variable y, we still end up with a total of
22 dimensions for our approximation problem. Unfortunately, the sampling complexity as
well as the computational complexity of our approach using the Chebyshev basis include an
exponential factor for the maximal number of non-zero entries of the indices k appearing in
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FIG. 3.9. The relative approximation error err(y) for 10000 randomly drawn variables y for the diffusion
equation example for different sparsities s. The box-and-whisker plots show the median, the first and the second
quartile, as well as the maximal and minimal error observed.

the candidate sets K during Step 2 of Algorithm 1. In order to prevent cases where numerical
errors cause candidates k with (almost) all entries non-zero in any dimensions, we impose a
superposition dimension ds = 7 on our 22-dimensional search space Γ with extensionN = 64
for this example. Unfortunately, the more difficult structure of the differential equation lead to
a FEniCS computation time of up to 14 seconds per call, resulting in a total runtime of about
60 hours (for sparsity s = 1000).

Figure 3.9 illustrates the relative approximation error err(y) for different sparsities s, this
time with respect to the random variable y. As in the previous example, for getting comparison
values, the error is computed using the solution of the FEM with the same settings. The
error is again of reasonable size, even though this differential problem is significantly more
difficult than the previous two-dimensional example in Section 3.3. Further, the largest nodal
error as considered in [23, Sec. 4, Fig. 6], i.e., the largest error at any of the nodes of the FE
mesh when evaluating the approximation for 10000 randomly drawn y and considering the
respective `2-norm, is just slightly larger than for the uniform sparse FFT from [23]. This
small increase is probably caused by the fact that we are no longer focusing on particular
nodes and basis expansions of the solution u at these nodes but using a full basis expansion of
u, also considering the spatial variable.

The structure of the 22-dimensional index set is pretty similar to the previous examples
and not illustrated here due to the high number of dimensions. Surprisingly, the range of
the entries in the dimensions corresponding to the random variables y is rather restricted.
Even in the one-dimensional detections (Step 1 in Algorithm 1), the algorithm cannot detect a
full range of 65 possible entries (from 0 to N = 64) and only detects less than 20 possible
entries for y1, which decay rapidly down to only 4 possible entries (so 0, 1, 2, and 3) for the
later dimensions like y15. While we already saw the extreme version of this behavior for the
Poisson equation using the Fourier series parameterization, where the only possible entries
were 0 and 1, we did not observe anything similar for the other examples like in Section 3.1.2.

3.5. Heat equation. Our next example is the heat equation in one dimension with
homogeneous boundary conditions on the domain Ω = (0, L), i.e.,

(3.12)
∂τu− α2∂xxu = 0, x ∈ (0, L), τ ∈ (0, T ),

u(x, 0) = f(x), x ∈ (0, L),

u(0, τ) = u(L, τ) = 0, τ ∈ (0, T ).

In this time-dependent differential equation, the source term on the right-hand side is zero and
therefore does not require parameterization. Instead, our focus lies on the initial condition
u(x, 0) = f(x), which characterizes the system’s state at the initial time τ = 0. Consequently,
we aim to parameterize the function f .
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FIG. 3.10. The relative approximation error err(a) for 10000 randomly drawn a for the heat equation example.
The box-and-whisker plots show the median, the first and the second quartile, as well as the maximal and minimal
error observed.

We are interested in the well-known solution of the heat equation

u(x, τ) =

∞∑
`=1

a` sin

(
`πx

L

)
exp

(
−`2π2α2τ

L2

)
, x ∈ [0, L], τ ∈ [0, T ],(3.13)

which can be derived analytically for the initial condition

u(x, 0) = f(x) =

∞∑
`=1

a` sin
`πx

L
, x ∈ [0, L],(3.14)

with a` ∈ C, ` ∈ N, using Fourier’s approach.
While this solution holds for arbitrary τ ≥ 0, we set the final time T = 1. Further, we

set the length L = 1 and the diffusivity constant α = 0.25. Due to the time-dependence
of the differential equation (3.12), the function space U is a little more complicated than
in the previous examples. We need to ensure spatial regularity, meaning that u should be
square-integrable in time and satisfy u(τ) ∈ H1

0 (Ω) for almost every time τ since the term
∂xxu and homogeneous boundary conditions are present. Additionally, we require a notion of
time regularity: the weak time derivative of u should exist and take values in the dual space
H−1(Ω). A formal and compact way to express this space uses so-called Bochner spaces
(see, e.g., [11, Sec. 5.9.2] or [1]), which we omit here for simplicity. Accordingly, we have
F = L2(Ω) to ensure that the initial state u(x, 0) is square-integrable over the spatial domain
Ω. Due to the time dependence, the solution operator we are analyzing this time is of the form
G : F × [0, T ]→ U ; cf. Remark 2.2.

We parameterize the function f by truncating the sum (3.14) to n terms. Similar to
Section 3.1.1, we restrict the coefficients a` ∈ [−1, 1], for all ` = 1, . . . , n, and transform
both the spatial and time variable by T x = 1

2 (x+ 1) and T τ = 1
2 (τ + 1). The differential

equation is solved using SciPy’s function solve_ivp. In particular, we use the Radau IIA
implicit Runge-Kutta method of order five, suitable for stiff differential equations with a
desired relative tolerance of 10−8 and absolute tolerance of 10−10. We choose the number
of coefficients n = 9 to end up with an 11-dimensional approximation problem, the sparsity
s = 1000, and the extension N = 64 for our algorithm. Note that using solve_ivp is a
very costly approach for the solution of the heat equation, requiring roughly 20 seconds for a
single sample of the solution. Therefore, the execution of our full algorithm takes around 32
hours.

Figure 3.10 displays the relative approximation error err(a) computed for 10000 randomly
drawn coefficients a. The error is computed similarly to (3.2) for 100 equidistant nodes in
space and time each and using the exact solution (3.13) as comparison. The average error
size is less than 10−4 for this example. Note that the function solve_ivp itself reaches an
accuracy of around 10−6 with the given parameters, which can be seen as the noise in the data
samples that we give to our dimension-incremental method here.
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FIG. 3.11. An abstract visualization of the first 40 indices k detected for the heat equation example. The indices
k are ordered by the absolute values of their corresponding approximated coefficients ûk in descending order from
left to right. The rows identify the 11 dimensions corresponding to the spatial variable x, the time variable τ , and the
n = 9 coefficients a used. Zeros are neglected to preserve clarity.

This time the detected index set I shows several interesting features. As can be seen for
the first 40 indices in Figure 3.11, the dimensions corresponding to the coefficients a` contain
exactly one non-zero entry for each index, which happens to be 1. This remains true for all
the detected indices up to some artifacts again. As in previous examples, this is due to the
fact that the coefficients a` appear only linearly and separated from each other in the sum
in (3.13). Our algorithm once again captures this behavior even for this more complicated
example. The size of the entries in the first dimension, i.e., the dimension corresponding to
the spatial variable x, seems to grow rapidly and much faster than in the second dimension
corresponding to the time variable τ . However, the largest entries in the first dimension is 24
while the largest one in the second dimension is 22. For increased sparsity s, the size of the
entries in the first dimension stays the same while larger entries in the second dimension are
added. This again confirms that the time-dependent exponential term in (3.13) is the main
difficulty in this approximation problem.

3.6. Burgers’ equation. Our final example will be the nonlinear Burgers’ equation in
one dimension with homogeneous boundary conditions, i.e.,

∂τu+ u∂xu = ν∂xxu, x ∈ (0, L), τ ∈ (0, T ),

u(x, 0) = f(x), x ∈ (0, L),

u(0, τ) = u(L, τ) = 0, τ ∈ (0, T ).

We will use the viscosity ν = 0.05 here. As in the previous example, we set the final time
T = 1 and the length L = 1, i.e., Ω = (0, 1). However, this time we are only interested in
the solution u at the final time T = 1, i.e., u(x, 1). This again complicates the notion of our
solution space U a little, which is why we omit it here. The idea, however, is similar to the one
described for the heat equation, adjusted accordingly to the neglection of the time variable τ .

We use the approximation via the sine expansion

f(x) ≈
n∑
`=1

a` sin(`πx), x ∈ [0, 1],(3.15)

for the initial condition f as our parameterization. This approach is similar to the one in
Section 3.5. Analogously, we restrict a ∈ [−1, 1]n, transform T x = 1

2 (x + 1), and set the
number of coefficients n = 9, such that we end up with a 10-dimensional approximation
problem. Further, we use the sparsity s = 500 and the extension N = 32 here. We use the
function solve_ivp with the Radau method again, this time with the relative tolerance
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10−3 10−2 10−1 100

approximation error err(a)

FIG. 3.12. The relative approximation error err(a) for 10000 randomly drawn a for the Burgers’ equation
example. The box-and-whisker plots show the median, the first and the second quartile, as well as the maximal and
minimal error observed.

10−6 and the absolute tolerance 10−8. The solver itself then needs about 6 seconds for each
solution. However, the more difficult structure of the index set that we are detecting due to the
nonlinearity of our problem leaves our full method with a runtime of roughly 114 hours.

In Figure 3.12 we directly observe that the relative approximation error err(a) is way
larger than for the heat equation in Section 3.5. The nonlinearity of the Burgers’ equation
increases the difficulty of this approximation problem significantly, even when neglecting the
time variable τ here. However, the error is of the order of 10−2 most of the times, which is
still reasonable given this difficulty and the smaller sparsity s = 500 used here. Note that
approximation errors err(a) exceeding 10−1 occur only rarely and would be classified as
outliers under the common convention of using 1.5 times the interquartile range.

Next, we are interested in an explicit solution to the Burgers’ equation. If we use the
initial condition

f(x) = 2πν
sin(πx)

α+ cos(πx)
, x ∈ [0, L],(3.16)

then the solution u is given as

u(x, τ) = 2πν
sin(πx) exp(−π2ντ)

α+ cos(πx) exp(−π2ντ)
, x ∈ [0, L], τ ∈ [0, T ].(3.17)

Further details and other explicit solutions to the Burgers’ equation can be found in [4]. We
set α = 2 here and approximate (3.16) by an (n = 9)-term sine expansion of the form (3.15),
which yields a relative error of less than 10−5. Note that the corresponding coefficients a`
have absolute values of less than 0.2, matching our initial restriction a` ∈ [−1, 1].

Although we are starting with just an approximation of the true initial condition (3.16), we
end up with a reasonable solution as shown in Figure 3.13. We notice the smooth oscillations
of our approximation around the true solution, which could of course be further reduced by
increasing the sparsity s and the extension N .

Finally, Figure 3.14 displays some of the detected indices for this example. We observe a
similar behavior in the first dimension corresponding to the spatial dimension x as in previous
examples. However, for the remaining dimensions corresponding to the coefficients a`, two
main differences can be seen: First, the entries in these dimension are not only 0 and 1, i.e.,
the solution does not depend only linearly on the coefficients a`. Second, there are several
noticeable interactions between these dimensions (and the spatial dimension x). While we
saw both effects already in the example in Section 3.1.2, they are much more prominent here,
i.e., occurring way earlier (in the first 10 indices) and stronger (up to six non-zero entries).

4. Conclusion. We have presented an adaptive approach that uses the dimension-incre-
mental algorithm from [24] in combination with classical differential equation solvers like the
FEM to approximate solution operators of differential equations. We transform the problem
of operator learning for differential equations by parameterizing, e.g., the source function f ,
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FIG. 3.13. Comparison between the exact solution (3.17) and the approximate solution at τ = 1 and the
corresponding (absolute) pointwise approximation error.
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(b) The detected indices from number 201 to number 240.

FIG. 3.14. Abstract visualizations of 40 detected indices k (from left to right) for Example 3.6. The indices k
are sorted in descending order according to the size of the corresponding approximated coefficient ûk. The rows
identify the 10 dimensions corresponding to the variables x and a1, . . . , a9 from top to bottom in this order. Zeros
are neglected to preserve clarity.

which leads to a high-dimensional approximation problem for a function with an unknown
structure. Algorithm 1 detects a reasonable index set I by using samples of the solution u
computed by the differential equation solver mentioned above. This index set I not only allows
for a good approximation of the respective solution u for any source function f suitable to this
parameterization but also gives us important information about the structure of the solution and
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its dependence on the spatial variable x, the discretization parameters of the source function f ,
and possible other variables and parameters such as the time t. Such information can then be
used to manually generalize the index set I to even higher dimensions that arise when refining
the resolution of the source function f .

We have studied the behavior of our proposed methods for several examples. These
numerical tests yield reasonable approximations to the solutions of the PDEs. Especially
for the easier examples, the structure of the obtained index sets I matches our general ex-
pectations and (if available) the structure of the underlying analytical solution. Our brief
test of generalization of the index set I to even higher dimensions for the one-dimensional
Poisson equation also shows promising results. The more advanced examples demonstrate
the applicability of our approach to more difficult settings and problems. Our numerical tests
are available at https://github.com/fabiantaubert/nabopb together with the
dimension-incremental algorithm itself.

Overall, the presented algorithm performs satisfactorily and provides useful details about
the structure of the solutions to the differential equations. Thus, while the field of operator
learning is strongly dominated by machine learning algorithms such as PINNs, more classical
approaches such as our proposed method can open new perspectives, especially to overcome
still existing drawbacks of neural networks like the lack of interpretability.
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