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ASYMPTOTIC ESTIMATES OF THE ERROR BOUND FOR
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Abstract. This paper deals with the derivation of asymptotic expressions for the quadrature error of Gauss—Radau—
Jacobi and Gauss—Radau—Laguerre formulas. Starting from the contour integral representation of the remainder term,
the analysis is derivative-free and based on the theory of analytic functions. The final error estimates allow to select
a-priori the number of quadrature points necessary to achieve a prescribed accuracy. Several numerical examples are
reported.
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1. Introduction. Letw be a positive weight function on [a, b], with a a finite real number,
such that all the moments exist and are finite. The (n + 1)-point Gauss—Radau rule with
preassigned node a and relative to the weight w is given by (see, e.g., [5, 9])

b n
(L0 | HOw(od = of(@) + 3" A (0) + Ralh),
a k=1

in which the interior nodes t, k = 1,...,n, are the zeros of the polynomial 7 of degree
n that is orthogonal with respect to the modified weight wft(t) = (t — a)w(t). The weights
Ao and A\, for k = 1,..., n, are obtainable by interpolating at the nodes a and t, for
k =1,...,n. The remainder term in the above formula is such that

Rn(f) :Oa vf 6]P)2na

where Py, is the space of polynomials of degree at most 2n. Denoting by J,, the Jacobi matrix
associated to the weight function w, that is,

o VP 0
VB a1 VB2

Jn — \/E Q9 GR”XH,

0 anl [e77s}

in which oy, € R, 8 > 0 are the recursion coefficients of the monic orthogonal polynomials
{7k} 1> relative to w, the Gauss—Radau rule can be associated to the symmetric tridiagonal
matrix (see again [9])

)
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where e, = (0,...,0,1)7 € R™. The nodes of formula (1.1), including a, are the eigenvalues
of J[ |, and the weights can be written as

)\j:ﬁov?m j:0,1,...,n7

in which 3y = f;’ w(t)dt and v; 1 is the first component of the associated normalized vector
v; [11]. In particular, for the Gauss—Radau—Jacobi and Gauss—Radau—Laguerre rules, explicit
expressions for af in (1.2) and all the weights in equation (1.1) are given in terms of n and
the parameters of the quadrature formulas in [8].

As for the error analysis, in general, it is known that, by means of the Cauchy formula,
the remainder term R,, in (1.1) can be written as the contour integral

(1.3) Ro(f) = 5z [ K
where the kernel K, (z) is defined as

e
with
(1.4) $(z) = (z — a)my (2),
(1.5) W) = /ab %dt

(see [3]). In formula (1.3), the contour C contains the interval [a, b] in its interior, but no
singularity of the function f(z) lies on or within the contour.

In this work, assuming that the function f in (1.1) is analytic in the interior of C, we
develop a-priori and derivative-free error estimates for the Gauss—Radau—Jacobi and Gauss—
Radau-Laguerre rules. In particular, the idea is to first consider asymptotic estimates of the
kernels for growing number of quadrature points n; see, e.g., [3]. Then, we suitably choose
the contour C in order to exploit these asymptotics and also, in the case of meromorphic
functions, the position of the poles (cf. [1]). We remark that derivative-free error estimates for
Gauss—Radau rules have been developed, amongst others, in [6, 7, 10, 13].

In this work, by characterizing the type of singularity of the function f that defines the
problem, we present explicit approximations of the remainder in terms of the number of
interior nodes n (cf. (1.1)). In this setting, it is possible to have a quite reliable estimate of the
number of quadrature points necessary to achieve a prescribed accuracy. The analysis reveals
the typical observed rate of convergence, that is, linear for the Jacobi case and sublinear for
the Laguerre one.

Throughout this work we use the symbols ~ and ~ to denote an asymptotic equivalence
and a generic approximation, respectively. The symbol < stands for less than or asymptotically
equal to.

The paper is organized as follows. In Sections 2 and 3 we introduce the Gauss—Radau—
Jacobi and Gauss—Radau—Laguerre formulas, respectively, and develop the derivative-free
error analysis. In Section 4 we present several numerical experiments to test the reliability of
the previously obtained error estimates. In Section 5 we conclude by giving some additional
remarks.
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2. Gauss-Radau-Jacobi formula. In the case of the Gauss—Jacobi weight function
w @A (t) = (1 —1)*(1 + )%, a > —1, > —1, formula (1.1) becomes

1
2.1 / FOWOP ()dt = AP f(—1) + Z)\(a,ﬂ)f ( ,B)) + R@A(f),
-1

and the modified weight is given by
w®P () = (1+ Ow @A (t) = (1 — (1 + )P+ = w0 ()

(see [8]). Hence, denoting by P(o‘ #) the Jacobi polynomial of degree k orthogonal with respect

to w(®A) | the interior nodes t( @f) are the zeros of P,S“’B H). As said in the introduction,

explicit expressions for the welghts in terms of «, 8 and n can be found in [8]. By (1.4)—(1.5),
we have that

§ () = (= + DR ),

and
1 o O‘7ﬂ+1)
1—#)2(1+ )1 P t
Ry UK ®,
1 z—t
e,
1 z—t
= 70 (),
where H;“’B *1) is known as the associated Jacobi function (see [2, Sect. 1.12]). In this setting,

the kernel is given by

H%a’ﬁ+1)(2)
(z + )PP (z)

(2.2) KR (2) =

As for the choice of the contour in the integral representation of the remainder
23 RiA)( K d
3 e =5 | (2)dz,

we consider the family of confocal ellipses

1 1
2.4) Ep:{z€C|z:2( pei0>70<9<27r}7 p>1,

having foci at -1 and the sum of the semiaxes equal to p. Before going on, we first need an

asymptotic estimate of the kernel K. ,(LQ’B ),

PROPOSITION 2.1. For n — 400 and z not in the neighborhood of [—1, 1], it holds

—2n—a—[B-2

25  K@P(z) ~ 220428 05 _1)0(5 4 1) [z + (22— 1)12
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Proof. From [4], when z is not in the neighborhood of [—1, 1] and for large n, we have
the following asymptotic expansions:

(atp+2) L(n+a+1DI'(n+ B8 +2)
F(zn Ta+B+3)

(z = D" 4+ )™
[+ (22 — 1)1/2)"""

Plaf+1) () o g-2n—(atprn/z__ L@t at §+2)
" Fn+1)I(n+a+8+2)

[ 4 (22 — 1)1/
X )
(z = 1) (z 4+ 1)¥5

where I'(-) denotes the Gamma function. Now, by using the above formulas and the identity
I'(x + 1) = aT'(x), for n — +00, we obtain

H;Q’BJFI) (Z) ~ 22n+%

atBt2 )
2

2cx+1

H%a,ﬁ-;-l)(z) -~ 24n+2a+25+4 n2 (F(n + 1))4
(z + 1)P,§oz,ﬁ+1)(z) (2n)3 (0(2n + 1))2
X (z=1)*(z+ 1) [z + (22 - 1)1/2]

By employing Stirling’s formula for the Gamma function

—2n—a—p3-2

Mx+1) ~ 27T$(£), T — +o0,
e

and after some computations, we obtain the result. a

REMARK 2.2. The choice made in (2.4) for the contour in formula (2.3) is justified by
the following observation: The quantity |z + (22 - 1)V 2‘ (cf. (2.5)) is constant and equal to
p on any particular ellipse of type (2.4).

At this point, having at disposal the asymptotic (2.5), we can proceed by assuming f to
be analytic inside a generic ellipse €,., 7 > 1, of type (2.4) and continuous on the boundary.
Moreover, let R > 1 be the smallest real number such that, on the corresponding ellipse € g of
type (2.4), the function f has a singularity. It follows that » must be such that 1 < r < R (we
will see that in some cases one can take » = R). Then, for the remainder term R%a'ﬂ ) we can
write (cf. (2.3))

R < 5o maxl ) [ 1K

2T z€e
(2.6) < 92af2fp—In—a=f-2 max \f(z)|/ |z — 1%z +1/°|dz|, 1<7r<R,
where we have used the asymptotic (2.5) and Remark 2.2. At this point, setting
2.7 T =71+ %

and since z € e, iff z = % ( W0 Telig ) with 0 < 0 < 27 (cf. (2.4)), the above integral
becomes
oty B+3
:/ ——COSG) 2(%—1—0059) * do

at+i B+%
= / (%—cos@) 2(%r+cosﬁ) * de.
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By means of the midpoint rule, we can write

4 oty B+3 aty B+3
2/ (Ti—cose) ’ (Ti—l—cose) “df =2n (Ti) ’ (Ti) ’ +Rum
o \2 2 2 2

= 2—@—677(7«2 + 1)(”’6'*'17“0‘_/3_1 + R

(see (2.7)), where R s denotes the error of the midpoint rule. Therefore, by inserting the
above formula in (2.6), we obtain

‘R;aﬁ)(f)’ 5 22a+2ﬂ (270175,”(7,.2 + 1)a+,3+1rfa7,871 + RM)

x 2B 2 max | f(2)] .
ZEEy

(2.8)

At this point, in order to employ formula (2.8) one need to be able to compute or approximate
the value of f(z) on the ellipse ,.. Even if this obviously depends on the particular function
f involved in the problem, it is possible to give some general hints on how to proceed by
characterizing the type of singularity of f along £ z. Suppose, for example, that f(¢) ~ (t—c)?,
with ¢ < —1 and 7 ¢ Z, in a neighborhood of ¢. In this case ¢ is a branch point, and € g, with
R = —c+ V2 — 1, is the ellipse passing through c. As for the choice of r in formula (2.6),
we have to distinguish two cases, depending on the sign of ~.
e Case v < 0.

In this situation, since f is unbounded on € r, we want to optimize the choice of r < R in (2.6).
We first observe that, by definition of €, it holds

1 1
Then, we have (cf. formula (2.6))
max |f(2)] = ‘f (—; <r+ i))‘ = —% (r—l— i) —c
2.9 1 1 1 7_ 1 1 v
‘2<R+R—T—T) |:2(R—7“)(]__Rr):|

< 2‘”7"‘"*1%‘"*(7‘2 - D7"(R—7r).

Y

By inserting (2.9) in (2.8) we obtain

’R(aﬁ)(f)‘ < 9204+28—7 p—v (Q—Q—ﬁﬂ(TQ + 1)a+ﬁ+1T—a—ﬁ—1 + RM)

n

(2.10)
x (r? — 1)7p=@ntetbtat2 (g v,

At this point, we look for the minimum with respect to r. In order to simplify the computations,
we first consider the following further approximations:

(P2 +1)~r? and (r2—1)~r?
and neglect the term R j;. This leads to
(RO ()~ 2w R T (R = ) e ) ),
Defining, for n large enough,

* : J
r* =arg min & (r
g1<7“<R n( )7
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we find

—7)R
= m=7R , with m=2n+1.
m — 2y

By inserting the above value in (2.10), for m — +o00, we obtain
@.11) [REO(f)] 220028 TRy (270 An(R2 4+ ) PH R AL 4 Ryy)
| X (=) (R? = 1)V R~ (mHetftrt) =y,

e Case v > 0.
In this situation the function is continuous on € g, and hence, we can take r = R. From (2.8),
we have

’R%a,ﬁ)(f)‘ < grat2p (2—047,8%(}%2 I Rav)

x R™(MFetBH max | £(2)].

ZEER

(2.12)

REMARK 2.3. In the numerical experiments of Section 4 we will consider the case
f(t) = (t — ¢)". In this situation, the maximum of f(z) with z € g is reached at the point
z = % (R + %), hence,

max |f(z)| = R™7(R* +1)7,

ZEER

and the estimate (2.12) becomes

R (f)| S 220428 (2707 Fn(R2 4 1)t AR A1 L Ry )

‘ n

(2.13)
« R—(7n+a+,3+v+1)(R2 +1).

REMARK 2.4. We point out that the above analysis can be exploited also for functions
having other types of singularities. Denoting by w € C a generic singularity of f on the
boundary €, the procedure described for the case v < 0 can be followed also if w represents
a cluster singularity or if w belongs to the natural boundary of f and is such that f(w) = occ.
On the other hand, the case v > 0 applies also if w belongs to a cut of the function or the
natural boundary of f with | f(w)| < oo. Clearly, v needs to be explicitly known.

In the following section we show that, if f is meromorphic, the position of the poles can
be exploited in the error analysis by using the residue theorem (see [1]).

2.1. Meromorphic functions. Suppose that f has no singularities within or on a par-
ticular ellipse ¢ of type (2.4), except for a pair of simple poles zg and Zy. Denoting by C;
and Co two arbitrary small circles surrounding the two poles, we take as contour in (2.3)
C = g7 U(Cy U Cy. By running through C in the counterclockwise direction, we obtain

R (f) = = ( / K@) () f(2)dz — /

271 C1UCo

KB (2) f(z)dz> .

By using, for n — 400, the asymptotic (2.5), and Remark 2.2, the contribution on the ellipse
ey is given by

~ 22(a+ﬂ) (f)*2n7a7ﬁ72

1
o / KN

/ (2 = (= + 1P f(2)dz

Er

< 22((1%)(7:),2%&%—2/ w @D (2) f(2)

|dz].

€7
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Then, by means of the residue theorem, we have
1

— K,(La’ﬁ) z2)f(z)dz
i oo KD EIE)

= Res(f, 20) K1 (20) + Res(f, 20) K7 (20)

= 2R {Res(f7 zo)Kfl“’B)(zo)}

=40t R {Res(f, 20)w'®?) (20) (20 + (25 1)%)7(2“0‘””2)} )
where the symbol R(-) denotes the real part and Res(f, zo) is the residue of f at z;. Denot-
ing by er the ellipse of the type given in (2.4) passing through 2, and Z; and noting that

|20 + (28 — 1)%| = R < 7, we neglect the contribution on the ellipse 7. Therefore, we
consider the estimate (n — +00)

REP(f) ~ a2t ¥ iR {Res(f, 20)w @) (20) (20 + (22 — 1)%)~ (2"“‘*5*2)} ,
which leads to
2.14) RGO (£)] 4749507 [Res(f, z0)w(@ ) (z0)| R 1727,

with m = 2n + 1 (see also [1]).

3. Gauss-Laguerre-Radau formula. In the case of the Gauss—Laguerre weight function
w® (t) = t*e~t, a > —1, formula (1.1) becomes

CHI T RO (e = X £0) + Z N (87 + BO():

0

As before, explicit expressions for the weights in terms of n and « can be found in [8]. For
this rule, the modified weight function is given by

Wi (1) = 1o+ let = wlet (1)

3

so that, denoting by L( ) the generalized Laguerre polynomial of degree n orthogonal with
respect to w(a), the interior nodes t,(ca) are the zeros of L%O‘H). As for the kernel

(@) (5
K = S5

by (1.4)—(1.5) we have that
#)(2) = 2L (2)

and
00 yatl —tL£?+1) ¢ 400 (a+1)L51a+1) t
B (2) :/ e ( )dt :/ w ( )dt — gl (),
0 z—1 0 z—1
where q,(, 1) s the associated Laguerre function (see [2, Sect. 1.12]). Regarding the choice

of the contour in the integral representation of the remainder (cf. (1.3))

(32) RO =5 /c K2 (2)f (2)dz
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we consider the family of parabolas of the complex plane
(3.3) I,={2€C|RW=2)=Inp}, p>1,

symmetric with respect to the real axis having their vertices in —(In p)? and their convexity
oriented towards the positive real axis. The following proposition describes the asymptotic
behavior of K% for n — +oc0:

PROPOSITION 3.1. For z bounded and n — +o0, it holds

) —2v7
(3.4) K (z) ~ —2memimlatl) jap=2 (e\/jz> ,
with
3.5) n=4n+4+ 2a.

Proof. By using the asymptotic [3, formula (A.6)] for n — 400, it follows immediately
that

Kas1 [2((n+1+ ) ze7) "]

(3.6) K@ (z) ~ —2¢im(atl) jap=z 1/2} ,

n

Toia {2 ((n + 1+ %) ze—”)

where I, and K, 1 are the modified Bessel functions of order (« + 1) of the first and
second kind, respectively. Then, from [14, Sect.10.40], for |w| — +oo, it holds that

T . e’
KQH(w)N,/%e and  In41(w) ~ Nz

By substituting the above expressions in (3.6) and after some computations one obtains the
result. 0

REMARK 3.2. For any z € T, (cf. (3.3)), it holds
exp(R(V=2)) = p.

Similarly to the previous section, we assume f to be analytic inside a generic parabola
I, » > 1, of type (3.3) and continuous on the boundary. Then, let R > 1 be the smallest
real number such that, on the corresponding parabola I"p of type (3.3), the function f has a
singularity. Hence, » must be such that 1 < r < R. In order to derive an estimate for the

remainder term RS"), we define

+o0 B2 aty 2
3.7 I(r,a) = / (4(2 + (In r)2> e HnZdh
0

Inr)

and state the following preliminary result:
LEMMA 3.3. For r > 1 it holds

InrT(a+1) for —1<a<—%7
I(T, )S 1
A

Proof. If =1 < a < —3, then (cf. (3.7))
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hence,

+00 b2 oty b2
I(r.a) < _r ~Tn? b,
(r,a) < /0 (4(1nr)2) e db

By means of the change of variable y = ﬁ and by definition of the Gamma function [12,

8.310],
—+oo
I(r,a) < lnr/ y*e Ydy = Inrl(a +1).
0

For v > —1, we can write

2(Inr)? atl __#? +o0 b2 ati 2
I(T, Oé) S / (2(ln ’I")Q) 2 e 4nnZdp + / <2()2) e 4nnZdp
0

2(Inr)? Inr

. 2(Inr)? b2 L [T b2 ats b2
< 2a+§(ln T)2a+1 / e T b+ 9otz / () e AnnZ Jp.
0 0 4(Inr)2

. . . . 2
For the first integral in the above formula, we consider the change of variable 22 = 4(1?]7”2,

while the second one is the same as for the case —1 < a < —%. Therefore, we obtain
5 Inr R )
I(r,a) < 2°F2(Inr)2et? / e dr+2°T2 Inrl(a+ 1)
0

= 203 (In T)QO‘”gerf(ln r)+2°F 5 nrl (o + 1),

where erf(+) is the error function (see [12, 8.250(1)]). By using the simple inequality
erf(lnr) < 1, we obtain the result. O

At this point we have the following result for the remainder term:
PROPOSITION 3.4. For f bounded on I, it holds

R (f)] S max | £ (z) 2V
zel'yr

(3.8) BENCES) for —1<a< 3,
o+ ((In7)20+ /7 + D(ar + 1)) fora > —1,

with n as in (3.5).
Proof. By Remark 3.2 and since

exp(v/—z) = exp(R(v=2)) exp(iS(v/~2)),

where the symbol S(-) denotes the imaginary part, we have
R 57727 [ el @laz]
Fr
< el FNr [zl
zel,. r,

By writing z = a + ib (a, b € R) and using (3.3), we have that z € T',. iff

b? — 4(Inr)?
4(Inr)?

a =
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With this parametrization of the parabola, we obtain

N —oum [T010% —4(Inr)* + 4b(Inr)?i |
[RO(] £ maxlr @7 [ () + i)

4(Inr)2
20+ 4(Inr)%i
4(lnr)?

_ % 2
% e Az glinr) db,

and, after some computations,

() r—2Va+nr +oo ) patl - b2
’Rn (f)‘ Sgé%)§|f(2)|W/;m ((b —1—4(1117“) ) e 4nnZ dp

—2ﬁ+lnr 400 b2 aty 2
= max|f(z )|7/ ( +(ln7")2) e 4nn? dh

z€el, Inr oo \ 4 lnr)
—2ﬁ+lnr +o0 aty 2
_Eé%x| (= )l Inr 2/0 4( lnr lnr)2> ettt
T—Z\f—&-lnr
—fé%ﬂ (2 )|T2](7ﬁ0¢)

(cf. (3.7)). By using Lemma 3.3 we obtain the result. a

As in the previous section, the analysis depends on the particular function f (cf. (3.8)).
In order to characterize the singularity of f on the boundary I", suppose for example that
f(t) ~ (t+ B)¥, with B > 0 and v ¢ Z, in a neighborhood of —B. In this case —B is a
branch point, and I'g, R = e‘/E, is a parabola of type (3.3) with vertex in —B. Moreover,
in order to employ formula (3.8), we need to assume v < 0. As for the choice of r, first, by
using (3.3), we observe that z = 0 eT, iff

R <\/—z|ei9> =lnr,

from which it follows that

1 2 1 2
|z] = %7 and therefore, z = % 0
sin (5) sin (5)
Then, we have
(Inr)2e? v
max |f(z)] = max |~—5—— ,
z€l, |f( )| 6e[0,27] sin2(0/2)

in which the maximum is reached at § = w. Hence, since by definition of ' it holds that
= (In R)?, we obtain

max |f(2)] = [(InR)* — (In7)?]Y = (InR+1Inr)’(In R —Inr)”

zel,
=(InR+1nr)” {ln (1 + R—r)]
r

T) , T— R

~(InR+1Inr)” <
,

< (2Inr)” (R;T)V.
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By inserting the above result in (3.8), we have that
[RE(S)] S Ex(r)

with

575(70) = (hl T)V(R — T)Ur_Qﬁ—V+lnT

(3.9 21T (a + 1) for —1<a< -1,
200+ ((Inr)20+ /7 + T+ 1)) fora > —1.

In order to optimize the above quantity with respect to r, we search for 7 such that

7 =arg min (R—r)"r 2V,
1<r<R

This leads to

@+VIR - i = 2v.
m

7=
We decided to neglect the terms involving Inr in the minimization (cf (3.9)) in order to

simplify the computations and to obtain an explicit expression for 7. Substituting the value of
7 in (3.9) leads to

Ex () ~ (In R)" (=v)" R™™ (m) ™ (m +v) ™"
(3.10) 2" (a4 1) for —1<a< -1,
gty (In R)>*H1 /7 +T(a+1)) fora > —1,

form — 4o0.

Similar observations made in Remark 2.4 for the Gauss—Radau—Jacobi rule are valid also
in this case. Moreover, if f is meromorphic, as considered in Section 2.1, we show in the next
section how to exploit the position of the poles (see again [1]).

3.1. Meromorphic functions. Similarly to the Jacobi case, suppose that f has no
singularities within or on a particular parabola I'; of type (3.3), except for a pair of simple
poles zg and Zy. Denoting by C; and Cs two arbitrary small circles surrounding the two poles,
the idea is to define C = I'z U C; U C; as for the contour in (3.2). By running through C in the
counterclockwise direction, we obtain

@ L ([ Y VO
RE(f) = 5 ( eErcl /c S )d).

By using, for n — +o0, the asymptotic (3.4) and Remark 3.2, the contribution on the parabola
is given by

1 () Nzl o (7)-2V7
o /F Eoed )d‘ (7)

/F,;, 2% f(2)dz
<O [ w5

|dz] .
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Moreover, by the residue theorem and again formula (3.4), we can write

1 e, B (20)  p(z)
2mi Je,ue, ¢ (2) fz)dz = Res(f, z0) ¢ (20) + Res(f, ) ¢ (%)
¥ (20)

) —2vn
~ —4mR {Res(f, 20)e (@ (@) () (ev *ZO) } .

Denoting by I'p the parabola of type (3.3) passing through z; and Zzy;, we have that
exp(R(y/—z0)) = R. Since 7 > R, we can neglect the contribution on the parabola and
consider the estimate

. 72\/7?7‘
R~ 4m {Res(f’ z0)e” T Dp(®) (z) (e\/:o) } .
This leads to
(3.11) ‘R%O‘)(f)‘ 5 47T‘R6S(f, ZO)w(a)(Zo)‘ R_m7

with @ = 24/7.

4. Numerical experiments. In this section we test the previously derived error approxi-
mations on some examples. As for the Gauss—Radau—Jacobi rule (cf. (2.1)), we consider the
integrals

1

4.1 / (t — ) w P (tydt, c<-1,~v¢7Z,
-1
R e

42 @

(4.2) /_1 T aY (t)dt,

for different values of the parameters. In Figure 4.1 and Figure 4.2 we display the relative
error together with the estimates (2.11) and (2.13), where we neglect the term R j; for the
computation of the integral (4.1) with v < 0 and y > 0, respectively. Here and in all remaining
figures, the errors and the estimates are plotted in a logarithmic scale. We can observe that the
error estimates lose accuracy as ¢ — —1, as a consequence of Proposition 2.1. In Figure 4.3
we display the error and the estimate (2.14) for the evaluation of integral (4.2), in which the
meromorphic function F(z) = 715 has poles +i.

As for the Gauss—Radau—Laguerre rule (3.1), we consider the integrals

(4.3) /()+Oo(t + B)'w ™ (t)dt, B>0,v<0,v¢7Z,
@
(4.4) /0 et (t)dt,
@.5) / L@@
o 1+1¢2

In Figure 4.4 we display the relative error and the approximation (3.10) for different values
of the parameters B, v, and « for the computation of the integral (4.3). Finally, in Figure 4.5
we test the estimate (3.11) for the evaluation of the integrals (4.4) and (4.5). As for the
meromorphic function G(z) = we have considered the poles closest to the real axis,
that is, +im.

_1
1+e??
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a=02 =03 y=-25c=-15 a=-09, =01 y=-12¢c=—-12
10° : T T T T 100 T T . T T
—error
—estimate
102§ 1 102¢
104 E ] 104k
100 F ] 105k
108 E E 108 E
1040 L 4 10—|D,
1042 L 4 10'12,
1044 L 4 10'14,
1046 1 1 L L 1 10—16
0 5 10 15 20 25 0

number of points

FIG. 4.1. The relative error of the Gauss—Radau—Jacobi rule and the estimate (2.11) for the computation of the
integral (4.1), with v < 0.

a=-07B=-03,7=05 c=—-15 a=-05 =08 7=03, c=—-12
10° T T T 10° T T T T T T
—error
—estimate
102F 4 102F
104 e 10
100 ¢ 100 ¢
108 ¢ 108k
1040 L 10'10,
10712F 102k
10'14 L 10—14,
10-16 1 L 1 10-16
0 5 10 15 20 0

number of points

FIG. 4.2. The relative error of the Gauss—Radau—Jacobi rule and the estimate (2.13) for the computation of the
integral (4.1), with v > 0.

5. Conclusions. In this work we have developed an a-priori and derivative-free error
analysis for the Gauss—Radau—Jacobi and Gauss—Radau-Laguerre rules for analytic functions.
By considering different types of singularities of the integrand functions, we have presented
some strategies that allow to obtain quite accurate approximations of the error, in which the
dependence on the number of interior points of the quadrature formula is made explicit.
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a=02 f=-02 a=06, B=-0.6
100 T T T 10° T T
—error
—estimate
102§ E 102¢
104 E 104k
100 F 105k
108 ¢ 108
1040 L 10—!0 L
1042 L 10'12 L
1044 L 10'14 L
10'16 1 1 1 L 1 10—16
0 5 10 15 20 25 0

number of points

FIG. 4.3. The relative error of the Gauss—Radau—Jacobi rule and the estimate (2.14) for the computation of the
integral (4.2).

a=0,v=-09, B=11 a=0,v=-03 B=15
T T T T T T 10° T T T T
—error

—estimate

10712 102k

1014k 1014E

10-1 6 L L L L L L 1 1 10-!6
0 10 20 30 40 50 60 70 80 90 0

number of points

FIG. 4.4. The relative error of the Gauss—Radau—Laguerre rule and the estimate (3.10) for the computation of
the integral (4.3).

We want to point out that, in the case of the Jacobi weight function, a similar analysis can
be developed also for the (n + 2)-point Gauss—Lobatto—Jacobi quadrature rule (see [9])

n

/_ 1 FOw D ()dt = N5 f(=1) + D MF (tF) + Ah f(1) + RE(S).

k=1
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10° T T 10° T
—error
—estimate

1040 L 10'10

1072¢ 1012

1014k 10714

107 1016

, ,
0 10 20 30 40 50 60 70 80 0 50 100 150 200
number of points

FIG. 4.5. The relative error of the Gauss—Radau—Laguerre rule and the estimate (3.11) for the computation of
the integral (4.4) (left) and the integral (4.5) (right).

Indeed, the whole analysis presented in Section 2 can be adapted by observing that in the
contour integral representation of the remainder

1
Ru(f) = g7 [ KEG)a:
the kernel is given by (see [3])

Hgla+1’ﬁ+1)(z)
(1—2)1+2) P ()

Ky (2) =

(cf. formula (2.2)). Recently, error bounds for Gauss—Lobatto quadrature of analytic functions
have been derived in [15]. In this work, the authors examine the maximum of the kernel on
an ellipse of type (2.4) and numerically provide the optimal value of 7, i.e., the sum of the
semiaxes of the ellipse. The main difference is that in the present work the asymptotic estimate
of the kernel has been exploited to obtain explicit approximations of the error.
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