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REVISITING THE NOTION OF APPROXIMATING CLASS OF SEQUENCES FOR
HANDLING APPROXIMATED PDES ON MOVING OR UNBOUNDED DOMAINS∗

ANDREA ADRIANI†, ALEC JACOPO ALMO SCHIAVONI-PIAZZA‡, STEFANO SERRA-CAPIZZANO§,
AND CRISTINA TABLINO-POSSIO¶

Abstract. In the current work we consider matrix sequences {Bn,t}n, with matrices of increasing sizes,
depending on n, and equipped with a parameter t > 0. For every fixed t > 0, we assume that each {Bn,t}n
possesses a canonical spectral/singular values symbol ft, defined on Dt ⊂ Rd, which are sets of finite measure,
for d ≥ 1. Furthermore, we assume that {{Bn,t}n : t > 0} is an approximating class of sequences (a.c.s.) for
{An}n and that

⋃
t>0Dt = D with Dt+1 ⊃ Dt. Under such assumptions and via the notion of a.c.s, we prove

results on the canonical distributions of {An}n, whose symbol, when it exists, can be defined on the, possibly
unbounded, domain D of finite or even infinite measure. We then extend the concept of a.c.s. to the case where the
approximating sequence {Bn,t}n has possibly a different dimension than the one of {An}n. This concept seems to
be particularly natural when dealing, e.g., with the approximation both of a partial differential equation (PDE) and of
its (possibly unbounded or moving) domain D, using an exhausting sequence of domains {Dt}. Examples coming
from approximated PDEs with either moving or unbounded domains are presented in connection with the classical
and the new notion of a.c.s., while numerical tests and a list of open questions conclude the present work.

Key words. discretization of PDEs, moving/unbounded domains, spectral distribution of matrix sequences,
(generalized) approximating class of sequences, generalized locally Toeplitz (GLT) matrix sequences, GLT theory
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1. Introduction. Partial differential equations (PDEs) and more recently fractional
differential equations (FDEs) represent standard tools employed for modeling real-world
problems in applied sciences and engineering. In particular, the notion of FDE can be
considered a generalization of that of an PDE, in which fractional-order derivatives are used
describing anomalous diffusion processes stemming from concrete applications. The price to
pay is the nonlocal nature of the underlying operators, which implies the dense character of
the approximated equations and hence a higher computational cost.

In general, when considering either PDEs or FDEs, analytical solutions are not generally
known in closed form, and when they are known via proper representation formulae, it happens
that the related computation is costly. Indeed, while the analysis plays a fundamental role
in establishing the well-posedness of a given PDE/FDE, numerical methods are crucial for
an efficient computation of a numerical solution approximating the solution to the infinite-
dimensional problem within a certain error.
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When using a linear numerical method and the given PDE/FDE is of linear type Lu = g
on some domain Ω ⊂ Rd, d ≥ 1, we end up with a usually large linear system

(1.1) Anun = gn,

where gn incorporate the approximation of the right-hand side terms and the given boundary
conditions and An is a square matrix of size dn, dk < dk+1, k ∈ N. In this way, as n tends to
infinity, i.e., the matrix size dn tends to infinity, the approximated solution un converges to the
solution of the continuous problem Lu = g in a given topology, depending on the continuous
problem and on the given numerical method.

Looking at (1.1) collectively for every n, we observe that we are considering a whole
sequence of linear systems with increasing matrix size dn. Hence, it becomes useful to study
the collective behavior of the sequence {An}n of coefficient matrices.

What is often observed in practice is that the sequence of matrices {An}n enjoys an
asymptotic spectral distribution, which is somehow connected to the spectrum of the linear
differential operator L associated either with the given PDE or with the given FDE. More in
detail, for a large set of test functions F , usually for all continuous functions with bounded
support or just continuous functions if the spectral norm of An is uniformly bounded by a
constant independent of n, a weak-∗ convergence stands. More specifically, for every test
function F , we have

(1.2) lim
n→∞

1

dn

dn∑
j=1

F (λj(An)) =
1

µ(D)

∫
D

∑p
i=1 F (λi(f(y)))

p
dy,

where λj(An), j = 1, . . . , dn, are the eigenvalues of An, µ(·) is the Lebesgue measure in Rd,
and λi(f(y)), i = 1, . . . , p, are the eigenvalues of a certain matrix-valued function

f : D ⊂ Rd → Cp×p,

with µ(D) ∈ (0,∞). The function f is referred to as the spectral symbol of the sequence of
matrices {An}n.

When the symbol is continuous (or more generally Riemann-integrable), relation (1.2)
says that, for n large enough, the spectrum of An can be subdivided into p different subsets (or
“branches”) of approximately the same cardinality dn/p, and the i-th branch is approximately a
uniform sampling over D of the i-th eigenvalue function λi(f(y)), i = 1, . . . , p. In particular,
the number p coincides with the number of “branches” that compose the spectrum of An. For
instance, if d = 1, dn = np, and D = [a, b], then up to o(n) possible outliers, the eigenvalues
of An are approximately equal to

λi

(
f
(
a+ j

b− a
n

))
, j = 1, . . . , n, i = 1, . . . , p.

If d = 2, dn = n2p, and D = [a1, b1]× [a2, b2], then again up to o(n2) possible outliers, the
eigenvalues of An are approximately equal to

λi

(
f
(
a1 + j1

b1 − a1

n
, a2 + j2

b2 − a2

n

))
, j1, j2 = 1, . . . , n, i = 1, . . . , p,

and so on in a d-dimensional setting, with d > 2 integer, dn = ndp, and o(nd−1) possible
outliers.
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A complementary notion is that of the singular values symbol and the singular value
distribution. For this further notion, instead of (1.2), for every test function F , we have

lim
n→∞

1

dn

dn∑
j=1

F (σj(An)) =
1

µ(D)

∫
D

∑p
i=1 F (σi(f(y)))

p
dy,

where σj(An), j = 1, . . . , dn, are the singular values of An, σi(f(y)), i = 1, . . . , p, are the
singular values of a certain matrix-valued function f : D ⊂ Rd → Cp×p, with µ(D) ∈ (0,∞),
and where the informal meaning exactly mirrors that one described above for the spectral
symbol. The function f is referred to as the singular values symbol of the sequence of
matrices {An}n.

It is then clear that the spectral symbol (singular values symbol) f provides a “compact”
and quite accurate description of the spectrum (singular values) of the discretization matrices
An. The identification and the study of the symbol are consequently two important steps in
the analysis of An and, as a consequence, in the analysis and in the design of fast iterative
solvers for the linear systems in (1.1), especially for large matrix sizes dn.

We remind that this type of eigenvalue distribution results are studied since the beginning
of the last century in the context of sequences of Toeplitz matrices generated by real-valued (or
Hermitian-valued) functions, as the reader can verify in the papers [54, 56, 57] or in the books
[10, 28, 29], taking into account related references therein. Indeed, starting from the early
works [50, 51, 53], where also the notion of the approximating class of sequences appeared
for the first time, and after it was formally defined in [49], wide extensions to the ∗-algebras
of generalized locally Toeplitz (GLT) matrix sequences are considered in [5, 6, 27, 28, 29],
where the construction of the GLT ∗-algebras are based on the idea of an approximating class
of sequences. We remind that every d-level p-block GLT matrix sequence is equipped with a
p× p matrix-valued GLT symbol defined on [0, 1]d × [−π, π]d [6], which is also the symbol
in the sense of Definition 1.1: the domain [0, 1]d, possibly after an affine change of variables,
is replaced by the physical domain of the given PDE in the case of the reduced GLT matrix
sequences; see [50, pp. 395–399], [51, Section 3.1.4], [4]. There are several related results and
applications to the approximation via local numerical methods of (systems of) PDEs/FDEs
also with nonsmooth variable coefficients and irregular bounded domains/manifolds; for the
spectral analysis in the case of d-level p-block GLT asymptotic structures, see [5, 6, 22, 24, 25];
for GLT-based fast numerical solvers also on non-Cartesian domains, systems of PDEs, and
variable coefficients, see [8, 19, 20, 21, 37, 38]. While in [26] general domains and trimmed
geometries are considered, the review paper [31] contains an engineering perspective, and the
work [1] includes the GLT analysis in the case of PDEs on manifolds.

As described in Section 1.2, in the current work we generalize the notion of an approxi-
mating class of sequences in order to overcome the limitation of a fixed bounded domain, thus
including both moving and unbounded domains, whose use is briefly recalled at the beginning
of Section 4. Hence, the present work builds the approximation theory foundation for defining
new GLT ∗-algebras including approximations of PDEs, with either moving or unbounded
domains, thus going beyond the recent theoretical setting treated in [4, 5, 6].

1.1. The spectral distribution and the approximating class of sequences. We intro-
duce the notions of distribution for a matrix sequence and that of the approximating class of
sequences, which is a fruitful concept in the theory of numerical approximation and asymptotic
spectral analysis of matrix sequences. We start with the definitions and then recall some useful
results connecting the various concepts. In the following definitions and results and in the rest
of the paper, α ∧ β denotes the minimum between two real numbers α, β, and µ(·) indicates
the d-dimensional Lebesgue measure.
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DEFINITION 1.1. Let {An}n be a matrix sequence, and let f : D → Cp1×p2 be a
measurable matrix-valued function defined on the measurable (bounded) set D ⊂ Rd, with
0 < µ(D) <∞. We write that {An}n is distributed as f in the sense of singular values in D
and we write {An}n ∼σ (f,D), if

lim
n→∞

dn∧d′n∑
j=1

F (σj(An))

dn ∧ d′n
=

1

µ(D)

∫
D

p∑
k=1

F (σk(f(s)))

p
ds, ∀F ∈ Cc(R),

where σ1(f(s)), . . . , σp(f(s)) are the singular values of f(s), p = p1 ∧ p2. Therefore, a
matrix of size dn × d′n has dn ∧ d′n singular values. We call f the singular values symbol of
{An}n.

With the same notation as before, assuming additionally that f is square Hermitian
matrix-valued with p = p1 = p2 and imposing dn = d′n, we write that {An}n is distributed
as f in the sense of eigenvalues in D and we write {An}n ∼λ (f,D), if

lim
n→∞

dn∑
j=1

F (λj(An))

dn
=

1

µ(D)

∫
D

p∑
k=1

F (λk(f(s)))

p
ds, ∀F ∈ Cc(R),

where λ1(f(s)), . . . , λp(f(s)) are the eigenvalues of f(s). We call f the spectral symbol of
{An}n.

Definition 1.1 is very general, and one may think that such a generality is not needed
in applications. However, the truth is the opposite, and all the above generality is required
by the (numerical) applications, studied mainly via the GLT theory. For giving a global
picture, despite the great variety of numerical techniques, the various parameters p, d, f
in Definition 1.1 in the GLT analysis depend on a combination of the given continuous
PDE problem and of the chosen approximation technique. For instance, the typical D is
Ω × [−π, π]d, if Ω is a domain in Rd of positive and finite Lebesgue measure, where the
PDE under consideration is defined. As a consequence, the typical dimensionality equals 2d
while, and this is natural, in the case of a submanifold of codimension c, we have 2(d− c),
1 ≤ c ≤ d−1. The parameter p is usually equal tomα(d−c), wherem is the size of the vector
function g in the continuous equation Lu = g: in the case of a vector PDE, obviously we have
m > 1. More interestingly, α(·) depends very much on the approximation scheme, which
is in general of local type, such as finite elements [12], discontinuous Galerkin [32], finite
differences [52], finite volumes [60], isogeometric analysis [16] etc. More precisely, in the case
of finite differences [50], finite volumes [21], isogeometric analysis of degree k and maximal
regularity k−1 [20], finite elements of degree 1 [7], we have α(d) = 1, while for isogeometric
analysis of intermediate regularity l, with l < k − 1, we observe α(d) = (k − l)d [31]. In the
case of finite elements of higher order k, we have α(d) = kd [30, 42], while when using the
discontinuous Galerkin scheme, α(d) = (k + l)d [25]. Notice that the latter two formulas are
a special instance of α(d) = (k− l)d, since l = 0 for finite elements of high order and l = −1
in the DG setting, because of the global discontinuity.

We also remark that the exponential growth of type α(d) = (k − l)d is a drawback from
a spectral viewpoint, because only one branch of the spectrum is acoustic, that is, related to
the spectrum of the continuous operator, while the remaining very numerous branches are
optical, in the sense that they behave like a pathology introduced by the numerical method (see,
e.g., [17] and the references therein). In addition, the optical branches represent a challenge
for designing fast iterative solvers, due to the very involved structure of the spectrum (see the
applications in [5, 6, 27, 28, 29, 31]). Hence, the case of p > 1 emerges naturally not only in
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the case of d-level p-block Toeplitz structures described in Section 3 but also when dealing
either with high-order finite elements for PDEs or with any approximation of vector PDEs.

DEFINITION 1.2. Let {An}n be a matrix sequence of size dn × d′n, with dn and d′n
monotonically increasing integer sequences, and let {{Bn,t}n}t be a sequence of matrix
sequences of the same size dn × d′n. We say that {{Bn,t}n}t is an approximating class of
sequences (a.c.s.) for {An}n if the following condition is met: for every t there exists nt such
that, for n > nt,

An = Bn,t +Rn,t +Nn,t, rank (Rn,t) ≤ c(t)dn ∧ d′n,
‖Nn,t‖ ≤ ω(t),

where nt, c(t), ω(t) depend only on t, and

lim
t→∞

c(t) = lim
t→∞

ω(t) = 0.

The following theorem constitutes a link between an a.c.s. and the spectral distribution.
THEOREM 1.1 ([49, 53]). Let {An}n be a matrix sequence of size dn × d′n, with dn and

d′n monotonically increasing integer sequences, and let {{Bn,t}n}t be an a.c.s. for {An}n.
Suppose that {Bn,t}n ∼σ (ft, D) and ft converges in measure to f . Then {An}n ∼σ (f,D).
Furthermore, if dn = d′n, all the involved matrices are Hermitian, {Bn,t}n ∼λ (ft, D), and
ft converges in measure to f , then {An}n ∼λ (f,D)

1.2. Novelty of the present contribution. The tool contained in Theorem 1.1 is quite
powerful, and it was introduced in the seminal work by Tilli [53] on locally Toeplitz matrix
sequences. Then, in [49], the terminology was provided and further results were given. An
account of the general theory on generalized locally Toeplitz (GLT) matrix sequences, based
on the a.c.s. notion, can be found in [5, 6, 28, 29, 31] and the references therein.

In these books and long research/exposition papers, one can find also examples of applica-
tions ranging from approximated integro-differential equations, approximated partial differen-
tial equations, approximated fractional differential equations with any kind of methods (finite
elements, finite differences, isogeometric analysis, finite volumes, etc) and with very mild
assumptions: only Riemann integrability in the case of variable coefficients, only Peano-Jordan
measurability of the domain (see, e.g., [34] for the latter two notions), grids approximated by
a given function applied on uniform grids. In particular the richness in the potential domains
is obtained via the notion of reduced GLT matrix sequences; see [50, pp. 395–399] for a
detailed example, [51, Section 3.1.4] for an initial proposal and the related terminology, and
the long dense paper [4] for a systematic treatment of the subject and for a complete theoretical
development.

However, in all cases the idea is the immersion of the given Peano-Jordan measurable
domain into a cube or rectangle of the appropriate number of dimensions, where this idea is
related to the immersed methods [18, 35] and to the less recent idea of fictitious domains [33,
36]. The reader is referred also to [26, 39] for an asymptotical analysis and numerical methods
regarding standard PDEs and FDEs using the immersion idea and the reduced GLT tools.

As a consequence, due to the immersion into the cube [0, 1]d, possibly after affine changes
of variables, the previous techniques are not applicable in the case of unbounded domains. In
this direction, the new theorems in the present paper proved in Section 2 and the applications
in Section 4 fill the gap and represent a big step for building an extended GLT theory including
moving and unbounded domains, with either finite or infinite Lebesgue measure. Here, the
basic a.c.s. and the new g.a.c.s. notions are the main tools which allow us to go beyond the GLT
machinery. The new g.a.c.s. concept allows to deal with matrix sequences defined by different
sequences of dimensions, and this may happen, e.g., in several approximation schemes for
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differential equations. The idea is already present in [38, Theorem 4.3, Corollary 4.4], and it
is reminiscent of the extra-dimensional approach proposed by Tyrtyshnikov more than two
decades ago (see again [38, beginning of Section 4.2] and [2] for a systematic treatment).

The paper is organized as follows. Section 2 is devoted to the introduciton of further
notation and to state and derive the main approximation results. In particular, in Section 2.1,
we introduce the new tool of generalized approximating class of sequences (g.a.c.s.), and we
give an approximation result which highlights its usefulness. Section 3 contains the basic
tools regarding Toeplitz matrix sequences, which are employed in the numerical experiments.
In Section 4 we give a few applications for constant-coefficient PDEs, complemented by
numerical experiments and related visualizations, which are then extended to the case of
variable coefficients. Finally, Section 5 is devoted to concluding remarks and to mention a few
open problems and future directions of research.

2. Main results. We start this section by stating and proving a theorem that extends the
practical purposes of the a.c.s. notion to the case of unbounded domains, possibly of infinite
measure, using exhaustions by bounded sets of finite measure.

THEOREM 2.1. Let {An}n be a matrix sequence with An of size dn × d′n, with dn and
d′n monotonically increasing integer sequences. Let D be a measurable set in Rd, for some
d ≥ 1, possibly unbounded and of infinite measure, and let f : D → Cp1×p2 , p1, p2 ≥ 1, be a
measurable function with p = p1 ∧ p2. Let Dt be an exhaustion of D, that is, it holds that
Dt+1 ⊃ Dt for every t > 0 and

⋃
t>0Dt = D. Assume that there exists {{Bn,t}n}t such that

{{Bn,t}n : t > 0} is an a.c.s. for {An}n with {Bn,t}n ∼σ (ft, Dt), i.e.,

lim
n→∞

dn∧d′n∑
j=1

F (σj(Bn,t))

dn ∧ d′n
=

1

µ(Dt)

∫
Dt

p∑
k=1

F (σk(ft(s)))

p
ds = αt(F )

for every F ∈ Cc(R). Assume that, for every F ∈ Cc(R),

lim
t→∞

αt(F ) = α(F ).

Then

(2.1) lim
n→∞

dn∧d′n∑
j=1

F (σj(An))

dn ∧ d′n
= α(F ).

If in addition we have

(2.2) lim
t→∞

fEt = f

in D almost everywhere, with

fEt =

{
ft(s) if s ∈ Dt,

0 otherwise,

then we write {An}n ∼σ,moving (f,D). Moreover, if µ(D) <∞, we have

α(F ) =
1

µ(D)

∫
D

p∑
k=1

F (σk(f(s)))

p
ds.

Proof. By the assumption {Bn,t}n ∼ (ft, Dt), we know that µ(Dt) > 0, and hence,
since D ⊃ Dt for every t > 0, we deduce that µ(D) > 0.
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First, we note that relation (2.1) is true if and only if it is true for any F in C1 with
bounded support by simple functional approximation techniques such as the Weierstrass
theorem plus a proper mollification technique (see [49, Lemma 2.2, p. 124, lines 6–9]). At
this point, taking F = F ↑ + F ↓, with F ↑(x) =

∫ x
0

(F ′)+(t)dt and F ↓(x) =
∫ x

0
(F ′)−(t)dt,

where g+ = max(g, 0) and g− = max(−g, 0), we deduce by linearity that (2.1) is true if and
only if it holds for every function G continuous, differentiable (with G′ nonnegative), being
equal to 0 for every x ≤ c1 and being constant (equal to ‖G‖∞) for every x ≥ c2. Now, since
{{Bn,t}n : t > 0} is an a.c.s. for {An}n, we deduce that there exists α(t) ≥ 0 for which

(2.3) σj+α(t)(dn∧d′n)(Bn,t)−
1

t
≤ σj(An) ≤ σj−α(t)(dn∧d′n)(Bn,t) +

1

t
,

where limt→∞ α(t) = 0, and the expression j − α(t)(dn ∧ d′n) has to be set equal to 1 if
j − α(t)(dn ∧ d′n) ≤ 1 and it has to be set equal to dn ∧ d′n if j − α(t)(dn ∧ d′n) ≥ dn ∧ d′n.
Inequalities in (2.3), together with the features of G, lead to

1

dn ∧ d′n

dn∧d′n∑
j=1

G

(
σj(Bn,t)−

1

t

)
− ‖G‖∞α(t)

≤ 1

dn ∧ d′n

dn∧d′n∑
j=1

G(σj(An))

≤ 1

dn ∧ d′n

dn∧d′n∑
j=1

G

(
σj(Bn,t) +

1

t

)
+ ‖G‖∞α(t).

Since

G

(
x+

1

t

)
≤ G(x) + ‖G′‖∞

1

t
and G

(
x− 1

t

)
≥ G(x)− ‖G′‖∞

1

t
,

we conclude that

1

dn ∧ d′n

dn∧d′n∑
j=1

G(σj(Bn,t))−
1

t
‖G′‖∞ − ‖G‖∞α(t)

≤ 1

dn ∧ d′n

dn∧d′n∑
j=1

G(σj(An))

≤ 1

dn ∧ d′n

dn∧d′n∑
j=1

G(σj(Bn,t)) +
1

t
‖G′‖∞ + ‖G‖∞α(t).

Since

lim
t→∞

1

t
‖G′‖∞ ± α(t)‖G‖∞ = 0,

taking any ε > 0, there exists nε = nε,t,G, such that for every n ≥ nε we have

1

dn ∧ d′n

dn∧d′n∑
j=1

G(σj(An)) ∈
[
αt(G)− ε

2
, αt(G) +

ε

2

]
⊆ [α(G)− ε, α(G) + ε] .
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This concludes the first part of the theorem.
For the “in addition” part, we observe that under the assumption µ(D) < ∞, we have

limt→∞ µ(Dt) = µ(D) and limt→∞ µ(D \Dt) = 0. Using equation (2.2), it follows that

lim
t→∞

∫
Dt

∑p
k=1 F (σk(ft(s)))

p
ds = lim

t→∞

∫
D

∑p
k=1 F (σk(fEt (s)))

p
ds− F (0)µ(D \Dt)

=

∫
D

∑p
k=1 F (σk(f(s)))

p
ds,

ending the proof.
Under the hypothesis that the sequences are constituted by Hermitian matrices, we can

extend the previous result to the case of eigenvalues, thus obtaining the theorem below. The
proof is an eigenvalue version of the proof of Theorem 2.1: the steps are identical, and we
leave the details to the interested reader.

THEOREM 2.2. Let {An}n be a matrix sequence with An of order dn such that An = A∗n
with dn a monotonically increasing integer sequence. Let D be a measurable set in Rd, for
some d ≥ 1, possibly unbounded and of infinite measure, and let f : D → Cp×p, p ≥ 1, be a
measurable function. Let Dt be an exhaustion of D, that is, Dt+1 ⊃ Dt for every t > 0 and⋃
t>0Dt = D. Assume that there exists {{Bn,t}n}t such that Bn,t = B∗n,t for every n, t and

that {{Bn,t}n : t > 0} is an a.c.s. for {An}n with {Bn,t}n ∼λ (ft, Dt), i.e.,

lim
n→∞

dn∑
j=1

F (λj(Bn,t))

dn
=

1

µ(Dt)

∫
Dt

p∑
k=1

F (λk(ft(s)))

p
ds = αt(F )

for every F ∈ Cc(R). Assume that, for every F ∈ Cc(R),

lim
t→∞

αt(F ) = α(F ).

Then

lim
n→∞

dn∑
j=1

F (λj(An))

dn
= α(F ).

If in addition we have

lim
t→∞

fEt = f

in D almost everywhere, with

fEt =

{
ft(s) if s ∈ Dt,

0 otherwise,

then we write {An}n ∼λ,moving (f,D). Moreover, if µ(D) <∞, we have

α(F ) =
1

µ(D)

∫
D

p∑
k=1

F (λk(f(s)))

p
ds.

Proof. We follow the same derivations as in the proof of Theorem 2.1, where the
interlacing results concerning the eigenvalues have to be used in place of those for the singular
values.
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2.1. The generalized approximating class of sequences. In this section, we introduce
a new tool inspired by the a.c.s. theory and by the extra-dimensional approach (see [38,
Section 4.1 and Section 4.2]), but one that is more flexible and able to handle all the parameters
needed in order to study discretizations on unbounded domains of finite measure or moving
domains. As for the classical a.c.s. tool, also the notion of generalized a.c.s. carries information
about the spectral and singular value distribution, which is what we prove in Theorem 2.4.
Hereafter, we focus on domains with finite measure, which will be the ones treated in the
numerical tests.

DEFINITION 2.1. Let {An}n be a matrix sequence of size dn × d′n, with dn and d′n
monotonically increasing integer sequences, and let {{Bn,t}n}t be a sequence of matrix
sequences of size dn,t × d′n,t. Denoting by ⊕ the standard direct sum of matrices, we say that
{{Bn,t}n}t is a generalized approximating class of sequences (g.a.c.s.) for {An}n if, for
every t, there exists nt such that, for n > nt,

An = Un,t (Bn,t ⊕ 0n,t)Vn,t +Rn,t +Nn,t,

where 0n,t is the null matrix of size (dn − dn,t)× (d′n − dn,t), Un,t and Vn,t are two unitary
matrices of order dn × dn and d′n × d′n, respectively, and Rn,t, Nn,t are matrices of the same
size of An, satisfying

rank (Rn,t) ≤ c(t)dn ∧ d′n,
‖Nn,t‖ ≤ ω(t),

dn ∧ d′n − dn,t ∧ d′n,t =: mn,t ≤ m(t)dn ∧ d′n,

lim
t→∞

c(t) = lim
t→∞

ω(t) = lim
t→∞

m(t) = 0.

If we have a sequence {An}n of square Hermitian matrices, then we also ask {{Bn,t}n}t to
be square Hermitian and Vn,t = U∗n,t for all n and t.

REMARK 2.3. The notion of g.a.c.s. is intended as a generalization of the idea of a.c.s. be-
ing more natural when dealing with the approximation of infinite-dimensional operators over
moving or unbounded domains. In particular, in the case of a discretization of a (fractional)
differential operator over moving or unbounded domains, we usually end up with a sequence
of domains (either a precompact exhaustion of the unbounded domain or the sequence of
moving domains or a combination of both). Using the same approximation procedure (finite
differences, finite elements, isogeometric analysis, finite volumes etc), it is natural to obtain
matrices of different dimensions, and the g.a.c.s. is intended as a tool for dealing with this
difficulty in the spirit of the extra-dimensional approach used in [38, Sections 4.1, 4.2].

THEOREM 2.4. Let {An}n be a matrix sequence of size dn × d′n, with dn and d′n
monotonically increasing integer sequences. Let {{Bn,t}n}t be a g.a.c.s. for {An}n. If for
all t, there exist (ft, Dt) such that

• {Bn,t}n ∼σ (ft, Dt),

• Dt ⊂ Dt+1, ∀t,
• D :=

⋃
t>0

Dt of finite measure,

• ∃f : D → Cp1×p2 , p1, p2 ≥ 1, measurable such that fEt → f in measure, t→ +∞,
with p = p1 ∧ p2 and

fEt =

{
ft(s) if s ∈ Dt,

0 if s ∈ D \Dt,
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then {An}n ∼σ (f,D), i.e.,

(2.4) lim
n→∞

dn∧d′n∑
j=1

F (σj(An))

dn ∧ d′n
=

1

µ(D)

∫
D

p∑
k=1

F (σk(f(s)))

p
ds, ∀F ∈ Cc(R).

Proof. First, we note that relation (2.4) is true if and only if it is true for any F in C1

with bounded support by simple functional approximation techniques (see [49, Lemma 2.2,
p. 124, lines 6–9]). At this point, taking F = F ↑ + F ↓, with F ↑(x) =

∫ x
−∞(F ′)+(t)dt and

F ↓(x) =
∫ x
−∞(F ′)−(t)dt, where g+ = max(g, 0) and g− = max(−g, 0), we deduce by

linearity that (2.4) is true if and only if it holds for every function G continuous, differentiable
(with G′ nonnegative), being equal to 0 for every x ≤ c1 and being constant (equal to ‖G‖∞)
for every x ≥ c2.

Since, by hypothesis, {Bn,t}n ∼σ (ft, Dt), Dt ⊂ Dt+1, and D :=
⋃
t>0

Dt is of finite

measure, we have

0 < µ(Dt) ≤ µ(Dt+1)→ µ(D) < +∞, t→ +∞,

and, since fEt → f in measure as t→ +∞, we also have

σk(fEt )→ σk(f) in measure, ∀1 ≤ k ≤ p.

Hence

lim
t→∞

1

µ(Dt)

∫
Dt

p∑
k=1

G(σk(ft(s)))

p
ds

= lim
t→∞

µ(D)

µ(Dt)

1

µ(D)

(∫
D

p∑
k=1

G(σk(fEt (s)))

p
ds−G(0)µ(D \Dt)

)

=
1

µ(D)

∫
D

p∑
k=1

G(σk(f(s)))

p
ds.(2.5)

Now, since for all n > nt, An = Un,t (Bn,t ⊕ 0n,t)Vn,t + Rn,t + Nn,t, we set
Cn,t = Un,t (Bn,t ⊕ 0n,t)Vn,t, and we notice that the singular values of Cn,t are the sin-
gular values of Bn,t with mn,t = dn ∧ d′n − dn,t ∧ d′n,t additional singular values equal to
zero. By classic results on the interlacing of singular values under rank and norm corrections,
we have

σj(An) = σj(Cn,t +Rn,t +Nn,t) ≤ σj(Cn,t +Rn,t) + ω(t)

≤ σj+(dn∧d′n)c(t)(Cn,t) + ω(t),

where σj(Cn,t) := +∞ for j > dn ∧ d′n. On the basis of the initial discussion, we take G
differentiable, monotone nondecreasing, positive and bounded (so ‖G‖∞ = G(+∞)), and we
have

dn∧d′n∑
j=1

G(σj(An))

dn ∧ d′n
=

dn∧d′n∑
j=1

G(σj(Cn,t +Rn,t +Nn,t))

dn ∧ d′n
(2.6)

≤
dn∧d′n∑
j=1

G(σj+(dn∧d′n)c(t)(Cn,t) + ω(t))

dn ∧ d′n
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≤
dn∧d′n∑
j=1

G(σj+(dn∧d′n)c(t)(Cn,t))

dn ∧ d′n
+ ω(t) ‖G′‖∞

≤
dn∧d′n∑

j=1+(dn∧d′n)c(t)

G(σj(Cn,t))

dn ∧ d′n
+ c(t) ‖G‖∞ + ω(t) ‖G′‖∞

≤
dn∧d′n∑
j=1

G(σj(Cn,t))

dn ∧ d′n
+ c(t) ‖G‖∞ + ω(t) ‖G′‖∞ .

Taking into account the information about the singular values of Cn,t, it follows that

dn∧d′n∑
j=1

G(σj(Cn,t))

dn ∧ d′n
=
dn,t ∧ d′n,t
dn ∧ d′n

dn,t∧d′n,t∑
j=1

G(σj(Bn,t))

dn,t ∧ d′n,t
+

mn,t

dn ∧ d′n
G(0)(2.7)

≤
dn,t∧d′n,t∑
j=1

G(σj(Bn,t))

dn,t ∧ d′n,t
+m(t) ‖G‖∞ .

Now, given ε > 0, we choose t large enough such that ω(t), c(t),m(t) < ε, and, also by (2.5),
we find

(2.8)
1

µ(Dt)

∫
Dt

p∑
k=1

G(σk(ft(s)))

p
ds ≤ 1

µ(D)

∫
D

p∑
k=1

G(σk(f(s)))

p
ds+ ε.

Once t is fixed, using that {Bn,t}n ∼σ (ft, Dt), we can find Nε > nt such that for all n > Nε
we have

(2.9)
dn,t∧d′n,t∑
j=1

G(σj(Bn,t))

dn,t ∧ d′n,t
≤ 1

µ(Dt)

∫
Dt

p∑
k=1

G(σk(ft(s)))

p
ds+ ε .

Finally, using the derivations in (2.6), (2.7), (2.8), and (2.9), for all n > Nε, we deduce

dn∧d′n∑
j=1

G(σj(An))

dn ∧ d′n
≤
dn∧d′n∑
j=1

G(σj(Cn,t))

dn ∧ d′n
+ c(t) ‖G‖∞ + ω(t) ‖G′‖∞

≤
dn,t∧d′n,t∑
j=1

G(σj(Bn,t))

dn,t ∧ d′n,t
+ (m(t) + c(t)) ‖G‖∞ + ω(t) ‖G′‖∞

≤ 1

µ(Dt)

∫
Dt

p∑
k=1

G(σk(ft(s)))

p
ds+ (1 + 2 ‖G‖∞ + ‖G′‖∞)ε

≤ 1

µ(D)

∫
D

p∑
k=1

G(σk(f(s)))

p
ds+ (2 + 2 ‖G‖∞ + ‖G′‖∞)ε .

Since ε is arbitrary, we infer

lim sup
n→∞

dn∧d′n∑
j=1

G(σj(An))

dn ∧ d′n
≤ 1

µ(D)

∫
D

p∑
k=1

G(σk(f(s)))

p
ds .
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In a similar way we can also obtain that

lim inf
n→∞

dn∧d′n∑
j=1

G(σj(An))

dn ∧ d′n
≥ 1

µ(D)

∫
D

p∑
k=1

G(σk(f(s)))

p
ds .

For the latter we just need to be a bit more careful in two of the steps: indeed, when using that
G is positive, we add terms in the sum in (2.6), and we use that dn,t ∧ d′n,t ≤ dn ∧ d′n in (2.7).
Nevertheless, those two additional terms of correction depend on G, c(t), and m(t) and can be
controlled similarly to those coming from the lim sup derivations. This ends the proof.

Under the hypothesis that all the involved matrices are Hermitian, we can extend the
previous result to the case of eigenvalues (with essentially the same proof), by obtaining the
following theorem. Since the proof mimics that of Theorem 2.4 we leave it to the reader.

THEOREM 2.5. Let {An}n be a sequence of Hermitian matrices of size dn, with dn a
monotonically increasing integer sequence. Let {{Bn,t}n}t be a g.a.c.s. for {An}n (in the
Hermitian sense). If for all t there exist (ft, Dt) such that

• {Bn,t}n ∼λ (ft, Dt),

• Dt ⊂ Dt+1, ∀t,
• D :=

⋃
t>0

Dt of finite measure,

• ∃f : D → Cp×p measurable such that fEt → f in measure, t→ +∞, with

fEt =

{
ft(s) if s ∈ Dt,

0 if s ∈ D \Dt,

then {An}n ∼λ (f,D).
REMARK 2.6. In the case of domains of infinite measure, we expect that a similar

extension as the one inferred for an a.c.s. can be obtained. We do not go into detail at the
moment as we want to focus mainly on unbounded domains with finite measure, leaving this
possible extension for future developments. At any rate, as Theorem 2.1 and Theorem 2.2
show, the infinite measure setting can be handled: however, we still need to make a fine tuning
of the new concepts in order to work in the best possible way.

REMARK 2.7. Following the work of Barbarino [3], the developed concepts and results
can be recast in probabilistic terms as vague convergence of measures, where χE(·) is the
characteristic function of a measurable set E, each matrix An with dimension dn × d′n is
associated to the atomic measure

µAn :=
1

dn ∧ d′n

dn∧d′n∑
k=1

δσk(An),

δσ being the delta Dirac concentrated at σ, and each symbol f defined on a domain D with
finite measure is associated to the probability measure

µf (E) :=

∫
s∈D χE(f(s))ds

µ(D)
.

In this context, {An}n ∼σ f is equivalent to say that µAn converge vaguely to µf . Moreover,
the g.a.c.s. can be linked to the modified optimal matching distance between sequences of
matrices defined in [3], where it has been proved how to induce the vague convergence for the
measures associated to the matrix sequences and therefore for their respective symbols.
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As our main focus is to analyze how changing domains for the symbols affects the
convergence of singular values and spectra of the sequences, we do not make use of the
probabilistic notations and results, since the information on the domain for the symbol f
would be lost if we deal with the associated measure µf . We finally stress that the domain is
important in the present setting, since it retains information on the physical domain where the
differential operator is defined, as it is transparent in Section 4.

3. Multi-index notation, Toeplitz and multilevel Toeplitz matrices. In this section
we first introduce a multi-index notation that we use hereafter. Given an integer d ≥ 1, a
d-index k is an element of Zd, that is, k = (k1, . . . , kd), with kr ∈ Z for every r = 1, . . . , d.
Given two d-indices i = (i1, . . . , id), j = (j1, . . . , jd), we write i C j if ir < jr for the first
r ∈ {1, 2, . . . , d} such that ir 6= jr. We say that i E j if either i = j or i C j. The relation
E is a total order on Zd, usually addressed as standard lexicographic ordering. The relations
B,D are defined accordingly.

Given two d-indices i, j, we write i < j if ir < jr for every r = 1, . . . , d. The relations
≤, >,≥ are defined accordingly.

We use bold letters for vectors and vector/matrix-valued functions. We indicate with
0,1,2, . . ., the d-dimensional constant vectors (0, 0, . . . , 0), (1, 1, . . . , 1), (2, 2, . . . , 2) , . . .,
respectively. Finally, given a d-index n, we write n → ∞, meaning that
minr=1,...,d{nr} → ∞.

A Toeplitz matrix of order n is characterized by the fact that all the diagonals are constant:
(Tn)i,j = ti−j , for i, j = 1, ..., n, and some coefficients tk, k = 1− n, ..., n− 1:

Tn =


t0 t−1 · · · t1−n

t1 t0
. . .

...
...

. . . . . . t−1

tn−1 · · · t1 t0

 .

When every term tk is a matrix of fixed size p1 × p2, we say that Tn is of block Toeplitz type.
The definition of d-level Toeplitz matrices is more involved, and it is based on the following
recursive idea: a d-level Toeplitz matrix is a Toeplitz matrix where each coefficient tk is a
(d− 1)-level Toeplitz matrix, and a 1-level Toeplitz matrix is just a standard Toeplitz matrix.
Using standard multi-index notation, we can give a more detailed definition as follows: a
d-level Toeplitz matrix is a matrix Tn such that

Tn = (ti−j)
n
i,j=1 ∈ C(n1···nd)×(n1···nd),

with the multi-index n such that 0 < n = (n1, . . . , nd) and tk ∈ C, −(n− 1) E k E n− 1.
If the basic element tk is a block of fixed size p1 × p2, max{p1, p2} ≥ 2, we write that the
matrix is a d-level block Toeplitz matrix, and we denote it by Tn,p1,p2 , that is,

Tn,p1,p2 = (ti−j)
n
i,j=1 ∈ C(n1···ndp1)×(n1···ndp2), tk ∈ Cp1×p2 .

Given now a function f : [−π, π]d → Cp1×p2 in L1([−π, π]d), we denote its Fourier coeffi-
cients by

f̂k =
1

(2π)d

∫
[−π,π]d

f(θ)e−ı̂k·θdθ ∈ Cp1×p2 , k ∈ Zd, k · θ =

d∑
r=1

krθr,
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(the integrals are understood component-wise), and we associate to f the family of d-level
block Toeplitz matrices

Tn,p1,p2(f) :=
(
f̂ i−j

)n
i,j=1

, n ∈ Nd.

In this context, f is called the generating function of the sequence {Tn,p1,p2(f)}n. The
following result links the definition of symbol function and generating function for multilevel
block Toeplitz matrix sequences:

THEOREM 3.1 ([22, 54, 55]). Let f : [−π, π]d → Cp1×p2 be a function belonging to
L1([−π, π]d), p1, p2, d ≥ 1. Then

{Tn,p1,p2(f)}n ∼σ f ,

that is, the generating function of {Tn,p1,p2(f)}n coincides with its singular values symbol.
When p1 = p2 = p and f is Hermitian-valued almost everywhere or belongs to the Tilli class,
i.e., f is essentially bounded, the closure of its range has empty interior, and the range does
not disconnect the complex field (see [55] when p = 1 and [22] when p > 1), we have

{Tn,p,p(f)}n ∼λ f ,

that is, the generating function of {Tn,p,p(f)}n coincides with its spectral symbol. Here,
when p1 = p2 = p, by the range of f we mean the union of the ranges of the p eigenvalue
functions of f .

4. Applications, examples, numerical evidence. In this section we show a few basic
numerical examples for proving the validity of the theory developed in the previous section.
We start with a kind of trivial one in a bounded setting and then explore a more involved one
where the domain is unbounded with finite measure and hence, of course, of non-Cartesian
type: in this case we consider both P1- and P2-finite elements and as operator both the constant-
coefficient and the variable-coefficient Laplacian. Of course, from a practical viewpoint, our
quite elementary numerical experiments should be regarded as a starting point toward the use
of the present framework in real world models, including either PDEs with moving boundaries
in monument degradation, cell biology, etc [11, 13, 14, 23, 58] or PDEs on unbounded domains
when considering elasticity problems in volcanology [15].

4.1. Approximating by finite elements over an exhaustion of (0,1). We consider the
following model problem:

−∆u = f on (0, 1),

u(0) = u(1) = 0.

It is probably the most studied test example, and it is already known that its P1-finite
elements approximation [12] on a uniform grid with a proper scaling leads to the solution
of a linear system whose coefficient matrix is An = Tn(2 − 2 cos(θ)). As widely known,
the related sequence {An}n has a spectral distribution given by the function 2− 2 cos(θ) in
[−π, π]: it is indeed a special case of Theorem 3.1 since its symbol is real-valued. We can see
this also by applying linear finite elements to the problem

−∆u = f on (0, 1− 1/t),

u(0) = u(1− 1/t) = 0.

In this case the spectral distribution of the associated matrix sequence {Bn,t}n is given
by the symbol function (1− 1/t)(2− 2 cos(θ)) for every t > 0. Clearly, all the assumption of
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Theorem 2.2 are satisfied, hence the sequence {An}n has a spectral distribution with symbol
given by limt→∞(1− 1/t)(2− 2 cos(θ)) = 2− 2 cos(θ).

REMARK 4.1. We note that one of the main aspects that allows us to infer the spectral
distribution of the sequence {An}n is the “convergence" of the points in the discretization
defining {{Bn,t}n}t (and of the related domain) to those defining {An}n (and of the limit
domain) as t → ∞. In fact, this is what makes {{Bn,t}n}t an a.c.s. for {An}n, and, by
definition, {{Bn,t}n}t is also a g.a.c.s. for {An}n.

REMARK 4.2. From now on we consider two-dimensional examples, and a multi-
index notation as in Section 3 is employed. In these examples, the used numerical schemes
lead naturally to approximants that are composed by matrices having a different size with
respect to the matrices of the original matrix sequence. Hence, differently from before (see
Remark 4.1), we are forced to consider the new g.a.c.s notion and the related notations,
that is, {An}n, {{Bn,t}n}t, and {{Cn,t}n}t. As done in the proof of Theorem 2.4, since
dim(An) 6= dim(Bn,t), we consider {{Cn,t}n}t, where Cn,t = Bn,t⊕ 0m and m = m(n, t)
is such that dim(Cn,t) = dim(An). In the numerical experiments, we will verify that
{{Bn,t}n}t is a g.a.c.s. for {An}n and that {{Cn,t}n}t is a standard a.c.s. for {An}n. Both
are feasible asymptotic approximations of the original matrix sequence according to the theory.
However the a.c.s. is less natural because of the zero added eigenvalues, which look somehow
artificial, even if the number of these zero eigenvalues tends to became relatively negligible as
t tends to infinity.

4.2. Quadratic finite elements for the model problem on a two-dimensional un-
bounded set of finite measure. We consider the following problem:

(4.1)
−∆u = v on Ω,

u = 0 on ∂Ω,

where Ω = {(x, y) ∈ R : x > 0, y > 0 and y < g(x)} with

g(x) =

{
1 x < 1,
1
x2 x ≥ 1.

It is clear that µ(Ω) =
∫∞

0
g(x)dx = 2 < ∞. For the discretization, we consider as spatial

stepsize h = 1
n+1 and the nodes (xi, yj) = (ih, jh). We consider the maximum value of i,

ī, for which there exists j such that (xī, yj) ∈ Ω. We consider all the points in the rectangle
(0, ī)× (0, 1). Note that the index ī = b

√
n+ 1c.

By using these points, we draw rectangular triangles, so defining uniform structured
meshes to which we apply quadratic P2-finite elements, which leads to a two-level Toeplitz
matrix Tn(f) with n = (n, nb

√
n+ 1c) and f = fP2

: [−π, π]2 −→ C4×4 (see [42]) with

fP2
(θ1, θ2)

=


α −β(1 + eı̂θ1) −β(1 + eı̂θ2) 0

−β(1 + e−ı̂θ1) α 0 −β(1 + eı̂θ2)

−β(1 + e−ı̂θ2) 0 α −β(1 + eı̂θ1)

0 −β(1 + e−ı̂θ2) −β(1 + e−ı̂θ1) γ + β
2 (cos(θ1) + cos(θ2))

 ,

where α = 16/3, β = 4/3, and γ = 4.
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Clearly, this sequence has a spectral distribution given by f on the domain [−π, π]2 by
Theorem 3.1 since its symbol is Hermitian-valued: indeed given the even nature of the symbol,
the domain can be reduced to the subdomain [0, π]2.

We now consider the points (xi, yj) ∈ Ω and the points (xi, yj) ∈ Ωt = Ω∩B(0, t)‖·‖∞ .
As h → 0, we obtain uniform discretizations both for the set Ω and for the sets Ωt, which
constitute an exhaustion of the domain Ω. Finally, we can obtain a discrete version An

of the Laplacian on Ω by simply cutting from the matrix Tn(f) all the rows and columns
corresponding to indices (i, j) such that (xi, yj) are not in Ω.

We can do the same on Ωt obtaining another sequence of matrices {{Bn,t}n}t. In general
dim(An) 6= dim(Bn,t). According to Remark 4.2, we then consider the sequence {{Cn,t}n}t,
where Cn,t = Bn,t ⊕ 0m and m = m(n, t) is such that dim(Cn,t) = dim(An). We want to
prove that

a) there exists ft such that

{Bn,t}n ∼λ,σ (ft,Ωt × [−π, π]2), {Cn,t}n ∼λ,σ (fEt ,Ω× [−π, π]2).

b) {{Cn,t}n}t is an a.c.s. for a matrix sequence {Ãn}n, where Ãn is similar to An for
every n using a unique permutation matrix and {{Bn,t}n}t is a g.a.c.s. for {Ãn}n.

c) The limit limt→∞ fEt exists in Ω× [−π, π]2.
For item a) we can simply use the theory of reduced GLT in [4], obtaining that

{Cn,t}n ∼λ,σ (fEt ,Ω × [−π, π]2), where ft(x, θ1, θ2) = χΩt(x) · f , with f depending
on the used approximation of the considered PDE and x = (x, y).

For item b) we note that Ãn = Cn,t +Rn,t with rank(Rn,t) ≤ (2− µ(Ωt))n
2 + c(t)n,

where c(t) → 0 as t → ∞. Since µ(Ωt) → 2 as t → ∞, we find that {{Bn,t}n}t is a
g.a.c.s. for {Ãn}n and {{Cn,t}n}t is an a.c.s. for {Ãn}n.

For item c) we have

lim
t→∞

fEt = f,

for every (x, θ1, θ2) ∈ Ω × [−π, π]2. Using either Theorem 2.1 and Theorem 2.2 or Theo-
rem 2.4 and Theorem 2.5, recalling Definition 1.1, we conclude that the sequence {An}n
has a distribution both in the eigenvalue sense and in the spectral value sense given by f on
Ω× [−π, π]2, or, equivalently, on Ω× [0, π]2.

REMARK 4.3. Equivalently, we can choose as Cn,t the matrix defined by

Dn(χΩt)AnDn(χΩt),

and it is possible to see that the rank of An − Cn,t satisfies the same upper estimate as
above and {Cn,t}n is still distributed as (fEt ,Ω × [−π, π]2). Here, Dn(χΩt) is the diago-
nal multilevel matrix obtained by sampling the argument in a proper equispaced grid; see,
e.g., [29, Section 4.1.1, equations (4.1)–(4.2)]. Furthermore the set [−π, π]2 can be replaced
by [0, π]2 in all cases in which the function is even in θ1, θ2, separately. As already observed
in [50, pp. 375–378], it is worth recalling that the obtained spectral symbol depends on three
actors: the operator order, the coefficients/physical domain, the approximation technique. For
instance, in our setting the underlying operator has order two, and this can be read in the
minimal eigenvalue of the symbol, which is asymptotic to 2− 2 cos(θ) in one variable and to
4− 2 cos(θ1)− 2 cos(θ2) in two variables. In both cases the order of the zero is two, and this
decides the conditioning of the resulting matrices which will grow as N

2
d , with N being the

matrix size and d the dimensionality of the domain Ω. However, there are also other features
that can be recovered. Here we mention three of them:
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• The fact that the zero is at zero informs that the subspace related to low frequencies
is the one associated with the small eigenvalues.

• An unbounded diffusion coefficient a(x, y), e.g., with a unique pole at (x̂, ŷ) of
order γ, will be seen in the maximal eigenvalues exploding as N

γ
d , and the related

subspaces that can be easily identified as a function of the point (x̂, ŷ): in this case
the overall conditioning will be asymptotic to N

(2+γ)
d .

• The approximation technique plays a role in the structure of the underlying matrices
and hence in the complexity of the associated matrix-vector product: the more the
method is precise, the larger is the bandwidth in a multilevel sense, while the number
of levels is decided by the dimensionality of the physical domain Ω, and the presence
of blocks and their size is exactly the gap between the degree of the polynomials
used in the finite elements and the global continuity which is imposed (see also the
discussion at the end of the introduction).

The remark below concerns the approximation byQ2-finite elements, i.e., using rectangles
as basic geometric elements instead of triangles. Notice that the curve y = 1

x2 , for x ≥ 1,
defining the domain is better approximated using triangles instead of rectangles, which would
give an unpleasant staircase.

REMARK 4.4. Consider the Q2-finite elements approximation of the considered one-
dimensional model problem. The resulting stiffness matrix is essentially of block Toeplitz
type with blocks

K0 =
1

3

[
16 −8
−8 14

]
, K1 =

1

3

[
0 −8
0 1

]
.

Hence, the symbol of the sequence of the stiffness matrices is the function

f2(θ) =
1

3

[
16 −8− 8eı̂θ

−8− 8e−ı̂θ 14 + 2 cos θ

]
, θ ∈ [−π, π].

The eigenvalues of f2(θ), are

λ1(f2(θ)) = 5 +
1

3
cos θ +

1

3

√
129 + 126 cos θ + cos2 θ,

λ2(f2(θ)) = 5 +
1

3
cos θ − 1

3

√
129 + 126 cos θ + cos2 θ =

16

3

2− 2 cos θ

λ1(f2(θ))
.

Since the eigenvalue functions λi(f2(θ)), i = 1, 2, are even, it follows from Definition 1.1
that f2(θ) restricted to [0, π] is still a symbol for {K(2)

n }n. As already recalled in the introduc-
tion, the latter is equivalent to the fact that a suitable ordering of the eigenvalues λj(K

(2)
n ),

j = 1, . . . , 2n−1, assigned in correspondence with an equispaced grid on [0, π], approximately
reconstructs the graphs of the eigenvalue functions λi(f2(θ)), i = 1, 2.

SettingK(2)
n the stiffness matrix in one dimension, this is observed in Figure 4.1, where we

fix the equispaced grid kπ
n+1 , k = 1, . . . , n, in [0, π] and plot the eigenvalue functions λi(f2(θ)),

i = 1, 2, as well as the pairs
(
kπ
n+1 , λk(K

(2)
n )
)

, k = 1, . . . , n, and
(

(2n−k)π
n+1 , λk(K

(2)
n )
)

,
k = n+ 1, . . . , 2n− 1, for n = 40. We clearly see from Figure 4.1 that the eigenvalues of
K

(2)
n can be split into two subsets (or branches) of approximately the same cardinality, and

the i-th branch is approximately given by a uniform sampling over [0, π] of the i-th eigenvalue
function λi(f2(θ)), i = 1, 2.

The spectral symbol in the two-dimensional case is then

f = fQ2
(θ1, θ2) = f2(θ1)h2(θ2) + h2(θ1)f2(θ2)
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FIG. 4.1. Graph over [0, π] of the eigenvalue functions λi(f2(θ)), i = 1, 2, and of the pairs(
kπ
n+1

, λk(K
(2)
n )

)
, k = 1, . . . , n, and

(
(2n−k)π
n+1

, λk(K
(2)
n )

)
, k = n+ 1, . . . , 2n− 1, for n = 40.

according to [30, Formula (5.1)] and with f2 as before and with h2 related to the mass
matrix sequence as defined in [30]. Interestingly enough, the dimensionality of the two
symbols fP2 , fQ2 is the same: two variables and the matrix size equal to four. Furthermore,
in both cases three eigenvalues are strictly positive, and only one of them is asymptotic to
the symbol of the standard discrete Laplacian by finite differences or P1-finite elements, i.e.,
4− 2 cos(θ1)− 2 cos(θ2): compare [42] and [30].

Indeed, in the case of a general PDE with variable coefficients in a d-dimensional do-
mains with standard finite elements, the number of variables is 2d, which reduces to d if the
coefficients of the differential operator are constants, and the dimensionality is kd, where k is
the degree of the used polynomials in the finite elements. For diminishing the presence of an
exponential number of branches, as discussed in the introduction, the solution is isogeometric
analysis [31], and only one branch is observed when maximal regularity is used [19, 20].

Finally, we consider a variable-coefficient version of the previous PDE in (4.1) expressed
as follows:

(4.2)
div(−a∇u) = v on Ω,

u = 0 on ∂Ω,

where a(x, y) is a positive non-degenerate variable coefficient on the domain
Ω = {(x, y) ∈ R : x > 0, y > 0 and y < g(x)} with

g(x) =

{
1 x < 1,
1
x2 x ≥ 1.

Notice that for a ≡ 1 problem (4.2) reduces to (4.1). As in the constant-coefficient case, we
opt for basic P1-finite elements. According to the theory reported in [30, 42], the symbol is

f(x, θ1, θ2) = (4− 2 cos θ1 − 2 cos θ2)a(x),

with four variables, x = (x, y) in the physical domain, (θ1, θ2) in the Fourier domain, and
dimensionality 1 since the degree of the polynomials used in the finite elements is 1.
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4.3. Numerical evidence. In this section we show numerical tests and visualizations
corroborating the analysis conducted in the previous section. We focus on essentially a few
discretization techniques for the approximation of (4.1) and (4.2), namely a standard centered
finite differences scheme of order two, or equivalently P1-finite elements, Q1-finite elements,
and P2-finite elements.

With reference to Remark 4.3, we observed that the conditioning of the resulting matrices
grows as N

2
d , with N being the matrix size and d being the dimensionality. This is due to the

minimal eigenvalue, which converges to zero as N−
2
d (see [9, 47, 48] for the pure Toeplitz

setting and [41, 59] for the variable-coefficient case), and the related property is illustrated
in Figures 4.2–4.4, where the univariate unique nondecreasing rearrangement of the symbol,
for d = 2, has a positive bounded derivative so that the minimal eigenvalue tends to zero as
N−1. Things do not change, as expected, in the variable-coefficient setting since the diffusion
coefficient a(x, y) is positive and bounded: see Figure 4.5.

The P2-finite elements case deserves further comments. Since the underlying symbol is
4× 4 Hermitian-valued, we have four different branches, which can be represented in several
ways. The univariate unique nondecreasing rearrangement of the symbol samplings is, in our
opinion, the most effective way and even more when considering an error analysis with respect
to the eigenvalue convergence. However, we may also plot the four branches separately, again
by considering a nondecreasing rearrangement inside each branch (see Figure 4.6 top left) to
analyze the features of each branch, or we may visualize them more properly as surfaces, thus
stressing the matching with the two-dimensional sampling in [0, π]× [0, π] (see Figure 4.6 top
right to bottom right). The same representation is considered in Figure 4.7 with respect to the
An-eigenvalues, showing a very good agreement with the functional samplings. We remark
that a surface representation is important in terms of frequency subspaces, whose knowledge
has a specific role when designing multigrid or multi-iterative solvers as in [19, 25, 46].

For the rest, there is nothing much to comment given the very strong agreement of the
spectral behavior of the global matrix sequences and of the corresponding approximations
{{Bn,t}n}t, {{Cn,t}n}t as t grows. According to the notation in the proof of Theorem 2.4 and
in Remark 4.2 (compare with Remark 4.1), Bn,t has a smaller size thanAn, Cn,t = Bn,t⊕0m
has the same size asAn, {{Bn,t}n}t is a g.a.c.s. for {An}n, {{Cn,t}n}t is a standard a.c.s. for
{An}n. Essentially, both {{Bn,t}n}t and {{Cn,t}n}t carry the same information: however,
the presence of the additional zero eigenvalues is visible in the plateau of zeros in Figures 1.7–
1.8, in Figures 1.16–1.17, in Figures 2.6–2.7, in Figures 3.6–3.7 in the supplementary material1,
where the percentage of these additional zero eigenvalues goes to zero as t tends to infinity,
since the ratio between the size of Bn,t and that of An tends to 1 as t tends to infinity.

The very striking fact is that convergence is observed already for moderate values of t,
giving evidence of the practical use of the used tools, i.e., the notion of a.c.s and that, which is
indeed more natural, of the generalized a.c.s.: for the details on the approximating matrices,
we refer to Figures 4.8–4.11, and compare with Figures 4.2–4.5 regarding the various matrix
sequences {An}n, respectively.

Furthermore, in Figures 4.12–4.13, the errors in the eigenvalue predictions are reported by
considering the minimal distance of the eigenvalues from a suitable sampling of the symbol.
More precisely, in the first column of Figure 4.12, the minimal distance is computed by
considering a sampling of the symbol of approximately the same cardinality as the eigenvalues,
thus highlighting the eigenvalue convergence as h decreases. In the second column the same
analysis is performed by considering an high cardinality sampling of the symbol to better stress
the quite good independence of the spectral approximation. The same quite good independence
is observed in Figure 4.13 for different t-values as well.

1https://etna.ricam.oeaw.ac.at/volumes/2021-2030/vol63/addition/p424.php
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FIG. 4.2. Eigenvalue distribution of {An}n for different h-values together with the sampling of f(θ1, θ2) =
(2− 2 cos θ1) + (2− 2 cos θ2).
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FIG. 4.3. Eigenvalue distribution of {An}n for different h-values together with the sampling of f(θ1, θ2) =
(8− 2 cos θ1 − 2 cos θ2 − 4 cos θ1 cos θ2)/3.

Finally, the pseudo-random behavior can be attributed to the nondecreasing (univariate)
rearrangement of the spectral symbol of {An}n. When maintaining the complete number
of variables, a much smoother surface is expected. In addition, when looking at the figures
related to the P2-approximation, we observe 4 points where the rearranged symbol is not
differentiable, and this corresponds to the 4 branches of the spectra since the symbol is 4× 4
Hermitian-valued. Finally, when looking at Figures 4.5 and 4.11, we observe smoother curves
and wider ranges, and this is due to the variable coefficient a(x, y), since any of the four
eigenvalue functions in the constant coefficient case is multiplied by a(x, y). An exhaustive
set of numerical evidence is reported in the supplementary material.

5. Conclusions. We have considered matrix sequences {Bn,t}n, with matrices of in-
creasing sizes, depending on n, and equipped with a parameter t > 0. For every fixed t > 0,
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FIG. 4.4. Eigenvalue distribution of {An}n for different h-values together with the sampling of f(θ1, θ2) =
fP2 (θ1, θ2).
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FIG. 4.5. Eigenvalue distribution of {An(a)}n for different h-values together with the sampling of
f(θ1, θ2, x, y) = [(2− 2 cos θ1) + (2− 2 cos θ2)]a(x, y).

we assume that each {Bn,t}n possesses a canonical spectral/singular values symbol ft defined
on Dt ⊂ Rd of finite measure, d ≥ 1. Furthermore we assume that {{Bn,t}n : t > 0} is an
a.c.s. for {An}n and that

⋃
t>0Dt = D with Dt+1 ⊃ Dt. Under such assumptions and via

the a.c.s. notion, we have proved general distribution results on the canonical distributions of
{An}n, whose symbol, when it exists, can be defined on the possibly unbounded domain D of
finite or even infinite measure. In a second theoretical part, we have concentrated out attention
on the case of unbounded domains of finite measure and have introduced a new concept, the
g.a.c.s., which is suited particularly when moving or unbounded domains have to be treated.

Beside the notions of a.c.s and g.a.c.s, the main tool in concrete applications is the theory
of GLT matrix sequences to which usually all the basic matrix sequences {Bn,t}n belong to
for every t > 0, as shown in the examples stemming from the numerical approximation of
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FIG. 4.6. Eigenvalues of the 4 × 4 Hermitian-valued symbol fP2
(θ1, θ2) samplings λi(fP2

(θ1, θ2)),
i = 1, . . . , 4, represented as ordered branches and as surfaces.

FIG. 4.7. Matching of the eigenvalue distribution of {An}n with the eigenvalues of the 4× 4 Hermitian-valued
symbol fP2

(θ1, θ2) samplings λi(fP2
(θ1, θ2)), i = 1, . . . , 4, represented as ordered branches and as surfaces.

PDEs with either moving or unbounded domains. Some numerical evidence has been given in
order to corroborate the analysis.

As open questions we can mention the following main items:

1. In the present work we have focused on the case of unbounded domains with finite
measure. However, as already mentioned, the problem of dealing with discretizations
on domains of infinite measure remains interesting, both from the point of view
of approximation and from the distributional point of view. In this context, also
using the simpler a.c.s. notion, there is probably not a distributional symbol for the
sequence as in the classical sense but rather a limit operator α that exploits some
features of the discretized operator.
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FIG. 4.8. Eigenvalue distribution of {Bn,t}n for different h-values together with the sampling of f(θ1, θ2) =
(2− 2 cos θ1) + (2− 2 cos θ2), and t = 2, 4.
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FIG. 4.9. Eigenvalue distribution of {Bn,t}n for different h-values together with the sampling of f(θ1, θ2) =
(8− 2 cos θ1 − 2 cos θ2 − 4 cos θ1 cos θ2)/3, and t = 2, 4.

2. Examples regarding approximated FDEs on unbounded/moving domains represent a
future challenge for the new tools to be investigated with care.

3. The a.c.s. notion has been used as one of the main tools at the foundation of the GLT
theory. It is possible that a similar role could be played by the notion of g.a.c.s. for the
construction of a new larger class of matrix sequences, with a structure of maximal
∗-algebra isometrically equivalent to measurable functions on a proper unbounded
domain. This will be a subject of further studies in the future.

4. The study of the eigenvalue distribution in non-normal cases in which the matrix
sequence cannot be viewed as a small perturbation of a Hermitian matrix sequence
is still very intricate (see [40, 44, 45] and the use of potential theory in [43] and the
references therein). This type of research is very challenging/difficult, and it is worth
to be considered.
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FIG. 4.10. Eigenvalue distribution of {Bn,t}n for different h-values together with the sampling of f(θ1, θ2) =
fP2 (θ1, θ2), and t = 2, 4.
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FIG. 4.11. Eigenvalue distribution of {Bn,t(a)}n for different h-values together with the sampling of
f(θ1, θ2, x, y) = [(2−2 cos θ1)+(2−2 cos θ2)]a(x, y), a(x, y) = (10+x2+2y2+sin2(x+y))/(1+x2+y2),
and t = 2, 4.

Supplementary Material. Further information and numerical results can be found in the
supplement to this paper at
https://etna.ricam.oeaw.ac.at/volumes/2021-2030/vol63/addition/p424.php.
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FIG. 4.12. Minimal distance of eigenvalues of An from f(θ1, θ2) = (2 − 2 cos θ1) + (2 − 2 cos θ2) for
different h-values. First column with cardinality of f samplings comparable to eigenvalue cardinality, second column
with high cardinality of f samplings.
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FIG. 4.13. Minimal distance of eigenvalues of Bn,t from f(θ1, θ2) = (2− 2 cos θ1) + (2− 2 cos θ2) and
t = 2, 4 for different h-values.
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