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A COLLOCATION METHOD FOR A NONLOCAL TUMOR GROWTH MODEL∗

YASSINE MELOUANI†‡, ABDERRAHMAN BOUAHAMIDI†, AND IMAD EL HARRAKI‡

Abstract. This paper presents a model for tumor growth using a nonlocal velocity. We establish some results
on the existence and uniqueness of solutions for a nonlocal tumor growth model. Many experiments show that the
tumor spheroid can be invariant under rotation and can maintain the shape of a spheroid during the growth process in
some particular cases. Here, we assume that the multiple components of the system are invariant under rotation. Then,
we use the collocation method to solve the nonlocal system. To illustrate the efficiency of the proposed method, we
performed numerical tests that simulate a tumor growth scenario.
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1. Introduction. Mathematical modeling of tumor growth has emerged as a critical
tool for understanding cancer progression and optimizing therapeutic strategies. Traditional
approaches based on local partial differential equations (PDEs) have provided valuable insights
into tumor dynamics, yet they face fundamental limitations in capturing the complex multi-
scale interactions that characterize malignant growth [3, 28]. Recent advances in biological
understanding have revealed that cancer cells communicate and coordinate their behavior
through long-range mechanisms that extend far beyond immediate cellular neighborhoods,
necessitating a shift toward nonlocal mathematical formulations.

The biological foundation for nonlocal tumor modeling rests on compelling experimental
evidence demonstrating direct cell-to-cell communication across multiple cell diameters. Tun-
neling nanotubes (TNTs), discovered through advanced microscopy techniques, represent thin
membranous conduits (50–1000 nm diameter, extending up to 500 µm) that directly connect
cancer cells and facilitate the transfer of organelles, proteins, and signaling molecules [31, 32].
Similarly, cytonemes—actin-based membrane protrusions extending up to 100 µm between
cells—enable direct protein transport through specialized synaptic contacts [11]. These experi-
mental observations naturally lead to mathematical formulations where velocity terms depend
on nonlocal information, reflecting the observed long-range cellular communication.

The mathematical framework for nonlocal tumor growth modeling was established by
Armstrong, Painter, and Sherratt [2] in their ground-breaking work introducing integro-partial
differential equations (integro-PDEs) that successfully replicated adhesion-driven cell-sorting
experiments. The fundamental nonlocal formulation incorporates distributed adhesive forces
through integral terms of the form

∂u

∂t
= ∇ ·

(
D∇u− u

∫
Ω

K(x, y)g(u(y, t)) dy

)
,

where the nonlocal integral term represents cell sensing and interaction mechanisms over finite
ranges defined by the kernel function K(x, y) [9, 21].
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The mathematical advantages of nonlocal formulations over classical local approaches
have become increasingly apparent through theoretical analysis and computational studies.
Unlike local models that rely on pointwise gradient information, nonlocal systems naturally
accommodate finite-range cellular sensing through mathematically well-posed integral ker-
nels, enabling a more realistic representation of biological interaction ranges [9, 21]. The
integro-differential structure inherent in nonlocal models generates substantially richer pattern
formation capabilities, supporting complex spatial organizations and bifurcation phenom-
ena that remain inaccessible to local diffusion–reaction systems [4, 11, 23]. Furthermore,
nonlocal formulations demonstrate enhanced numerical stability and superior handling of
boundary conditions due to the regularizing effects of spatial averaging, which effectively
incorporates memory effects that smooth discontinuities and reduce the influence of artificial
boundaries [13, 14].

Contemporary research has witnessed significant advances in nonlocal tumor modeling
across multiple fronts. Collective migration frameworks have evolved to incorporate exper-
imentally validated coordination mechanisms, leading to more accurate representations of
metastatic invasion patterns observed in clinical settings [16, 20, 33, 35]. Patient-specific
modeling approaches now integrate advanced imaging modalities with biomechanistic non-
local models to enable personalized tumor growth predictions, representing a convergence
of mathematical sophistication with clinical applicability [28]. These developments have
established nonlocal mathematical frameworks as increasingly essential tools for precision
oncology applications, where capturing long-range cellular interactions proves critical for
accurate treatment planning and outcome prediction [15].

However, the practical implementation of nonlocal tumor models faces significant com-
putational challenges. The integro-differential nature of these equations introduces O(N2)
computational complexity due to the nonlocal integral terms, requiring specialized numerical
methods for their efficient solution [13, 22]. Classical finite-difference and finite-element
approaches often struggle with the accuracy and stability requirements of nonlocal formu-
lations, particularly when dealing with the stiff systems that commonly arise in biological
applications [14].

Current numerical approaches for nonlocal equations include various spectral methods,
finite-element techniques, and specialized quadrature schemes [36]. B-spline collocation
methods have shown particular promise for fractional integro-differential equations due to
their inherent smoothness and flexibility in capturing memory effects [1]. However, the
temporal discretization of stiff nonlocal systems remains challenging, with explicit methods
requiring impractically small time steps for stability.

Backward differentiation formula (BDF) methods have proven highly effective for solving
stiff ordinary differential equation (ODE) systems arising from the spatial discretization of
PDEs [18]. For nonlocal tumor growth models, which typically exhibit stiffness due to
the coupling between cell populations, nutrient concentrations, and growth factors, implicit
methods like BDF offer superior stability properties that enable larger time steps while
maintaining accuracy.

In this paper, we use a collocation method based on BDF B-spline techniques to solve
the nonlocal tumor growth model. In this model, we consider a three-component system
incorporating tumor cell density, healthy cell density, and nutrient concentration, with non-
local velocity terms that capture cell-cell adhesion and communication mechanisms. Under
the assumption of spherical symmetry—which is appropriate for the early-stage avascular
tumors and tumor spheroids commonly used in experimental studies [29]—we derive a radial
formulation that significantly reduces computational complexity while preserving the essential
nonlocal characteristics.
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Our approach combines cubic B-spline spatial discretization with higher-order BDF
temporal integration, specifically employing the sixth-order BDF for maximum stability and
efficiency. The resulting numerical scheme is validated through a convergence analysis using
constructed analytical solutions.

The remainder of this paper is organized as follows. Section 2 presents the nonlocal
continuum model. Section 3 establishes theoretical results on the existence and uniqueness
of solutions. Section 4 derives the radial formulation under the assumptions of spherical
symmetry. Section 5 develops the BDF B-spline numerical method and analyzes its properties.
Section 6 presents numerical experiments demonstrating convergence and applicability to
tumor growth scenarios. Finally, the last section concludes with discussion and future research
directions.

2. A nonlocal continuum model for tumor growth. We develop a nonlocal continuum
model that extends classical tumor growth formulations by incorporating experimentally
observed long-range cellular interactions. Our approach builds upon the foundational work
of Lefebvre et al. [27] while introducing specific nonlocal mechanisms motivated by recent
discoveries in cancer cell communication.

Classical tumor growth models typically employ local PDEs where the tumor cell density
P evolves according to

∂P

∂t
+∇ · (vlocalP ) = Growth− Death,

with velocity fields vlocal determined by local gradients, such as pressure or nutrient concentra-
tion gradients, via Darcy’s law. While this formulation has provided valuable insights into
tumor dynamics, recent experimental evidence reveals fundamental biological mechanisms
that cannot be captured by purely local interactions.

The most compelling evidence comes from the discovery of tunneling nanotube networks
in cancer systems. These thin membranous structures, ranging from 50 to 1000 nm in diameter
and extending up to 500 µm in length, form direct physical connections between cancer cells
separated by distances far exceeding the typical cell dimensions [31, 32]. Through these
conduits, cells coordinate their migration decisions based on information from distant cellular
states, enabling an organized collective behavior that local models fundamentally cannot
represent.

To capture these long-range interactions mathematically, we propose a nonlocal velocity
formulation where cells at position x respond to the weighted distribution of tumor cells
throughout their sensing neighborhood. We assume that the domain of study is large enough
such that there is no interaction between tumor cells and the boundary, and, without loss of
generality, we consider the domain as the open disk centered at 0 with radius R > 0, denoted
as ΩR = {x ∈ Rd : ‖x‖2 < R}, where ‖ · ‖2 is the usual Euclidean norm in Rd, and we let
∂ΩR be the boundary of ΩR. The nonlocal velocity is then defined as

V [~αp, γp, P ](t, x) = ~αp(t, x)

∫
ΩR

γp(x− y)P (t, y) dy,

where the directional response function ~αp(t, x) determines how cells at position x convert
sensed signals into directed motion, potentially varying with local conditions such as nutrient
availability or mechanical constraints. The sensing kernel γp models the decay of cell-cell
communication effectiveness with spatial separation, reflecting the finite range and intensity
of biological signaling mechanisms. The integral

∫
ΩR

γp(x − y)P (t, y) dy represents the
nonlocal density field experienced by cells at position x, computed as a weighted average of
tumor cell densities throughout their sensing neighborhood.
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This mathematical structure directly reflects that tumor cells integrate information from
their surroundings to make movement decisions. Rather than responding only to immedi-
ate local gradients, cells process signals from extended neighborhoods, weighting distant
information according to the strength and range of their communication mechanisms.

For the sensing kernel, we adopt Gaussian functions as in [5, 15, 16]. Our three-component
system models the coupled evolution of the proliferating tumor cells P , the healthy tissue cells
S, and the nutrient-oxygen concentration M . To ensure that the growth process remains within
the computational domain and there is no interference with the boundary, we introduce a cutoff
function m : Rd → R that is infinitely differentiable and satisfies m(x) = 1 if ‖x‖2 ≤ R′ and
m(x) = 0 if ‖x‖2 ≥ R, where R′ > 0 with R′ < R. This cutoff function ensures that cellular
proliferation remains within ΩR, preventing artificial boundary effects from influencing the
biological dynamics. The resulting integro-differential system becomes

∂P

∂t
+∇ · (V [~αp, γp, P ] · P ) = m(x) [H(M)− a1λ(t)M ]P,

∂S

∂t
+∇ · (V [~αs, γs, S] · S) = −a2m(x)λ(t)MS,

∂M

∂t
−D∆M = MsS(1−M)− ηMP,

subject to the appropriate boundary and initial conditions

P (t, x) = 0, S(t, x) = SR, M(t, x) = MR, (t, x) ∈ [0, T ]× ∂ΩR,

P (0, x) = P0(x), S(0, x) = S0(x), M(0, x) = M0(x), x ∈ ΩR.

The growth dynamics is governed by the sigmoid function

H(M) = κ
1 + tanh(δ(M −Mthreshold))

2
,

which captures the transition between proliferative and hypoxic regimes as nutrient levels
cross the critical threshold Mthreshold. This formulation, adopted from Lefebvre et al. [27],
provides a smooth mathematical representation of the sharp biological switch between the
growth and quiescence observed in tumor spheroids and clinical tumors.

Treatment effects enter through the drug concentration term λ(t), where a1 represents the
tumor cell resistance to therapy and a2 quantifies the treatment toxicity to healthy tissue. The
nutrient dynamics follow a classical reaction–diffusion behavior, with healthy cells producing
nutrients at rate Ms subject to carrying capacity limitations (1 − M), while tumor cells
consume nutrients at rate η proportional to their local density and nutrient availability.

Since the solution is compactly supported within the computational domain, we restrict
the convolution terms by integrating only over ΩR, which leads us to express the nonlocal
velocities as

V [~αp, γp, P ](t, x) = ~αp(t, x)

∫
ΩR

γp(x− y)P (t, y) dy,

V [~αs, γs, S](t, x) = ~αs(t, x)

∫
ΩR

γs(x− y)S(t, y) dy.
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Regrouping the equations with their boundary conditions, the complete system becomes

(2.1)



∂P

∂t
(t, x) +∇ ·

[
V [~αp, γp, P ](t, x)P (t, x)

]
= m(x)

(
H(M(t, x))P (t, x)− a1λ(t)M(t, x)P (t, x)

)
,

∂S

∂t
(t, x) +∇ ·

[
V [~αs, γs, S](t, x)S(t, x)

]
= −a2m(x)λ(t)M(t, x)S(t, x),

∂M

∂t
(t, x)−D∆M(t, x) = MsS(t, x)(1−M(t, x))− ηM(t, x)P (t, x),

P (t, x) = 0, S(t, x) = SR, M(t, x) = MR, (t, x) ∈ [0, T ]× ∂ΩR,

P (0, x) = P0(x), S(0, x) = S0(x), M(0, x) = M0(x), x ∈ ΩR.

Letting U = (P, S,M), we rewrite the system of equations (2.1) in the following form:

(2.2)


∂U

∂t
(t, x) +A(U)(t, x) = G(U)(t, x), (t, x) ∈ [0, T ]× ΩR,

U(t, x) = UR, (t, x) ∈ [0, T ]× ∂ΩR,

U(0, x) = U0(x), x ∈ ΩR,

with

A(U)(t, x) =

[
∇ ·
(
~αp(t, x)

∫
ΩR

γp(x− y)P (t, y) dy · P (t, x)

)
,

∇ ·
(
~αs(t, x)

∫
ΩR

γs(x− y)S(t, y) dy · S(t, x)

)
, −D∆M

]
,

G(U) =

g1(U)
g2(U)
g3(U)

 =

mP (H(M)− a1λM)
−ma2λMS

MsS(1−M)− ηMP

 ,
UR =(0, SR,MR), and U0 = (P0, S0,M0).

3. Existence and uniqueness of solution. Our aim in this section is to prove the ex-
istence and uniqueness of solutions for the system outlined in equation (2.1). We begin
by examining the local dynamics through the isolation of the convolution term and using
established principles from the theory of semilinear evolution equations. Following this, we
integrate insights from the theory of nonlocal balance equations, as elaborated in [24] and [25],
to affirm the existence and uniqueness of solutions for the system mentioned in equation (2.2).

Before proceeding with the existence and uniqueness proofs, we need to define the
following spaces. Let L∞(ΩR) be the space of essentially bounded measurable functions on
ΩR, equipped with the norm

‖f‖L∞(ΩR) = ess sup
x∈ΩR

|f(x)|.

Let C(ΩR) be the space of continuous functions on ΩR with the uniform norm

‖f‖C(ΩR) = sup
x∈ΩR

|f(x)|.
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Let C1
b (ΩR) be the space of continuously differentiable functions on ΩR with bounded

derivatives, normed by

‖f‖C1
b (ΩR) = ‖f‖C(ΩR) + ‖∇f‖C(ΩR).

For a Banach space (X, ‖ · ‖X), let C([0, T ];X) denote the space of continuous functions
from [0, T ] to X with the norm

‖f‖C([0,T ];X) = sup
t∈[0,T ]

‖f(t)‖X .

Let L1([0, T ];X) be the space of Bochner-integrable functions from [0, T ] toX with the norm

‖f‖L1([0,T ];X) =

∫ T

0

‖f(t)‖X dt.

Let W 2,1(ΩR) be the Sobolev space defined as

W 2,1(ΩR) = {u ∈ L1(ΩR) : Dαu ∈ L1(ΩR) for all |α| ≤ 2}.

3.1. Existence and uniqueness of the solution of the local system. Let wp and ws be
two fixed functions belonging to C([0, T ], C1

b (Rd)), and let w := (wp, ws). We consider the
associated local system to (2.2), written as follows:

(3.1)


∂Uw
∂t

(t, x) +Aw(Uw)(t, x) = G(Uw)(t, x), (t, x) ∈ [0, T ]× ΩR,

Uw(t, x) = UR, (t, x) ∈ [0, T ]× ∂ΩR,

U(0, x) = U0(x), x ∈ ΩR,

with Aw(U) =
[
∇ · (~αp(t, x)wp(t, x)Pw(t, x)), ∇ · (~αs(t, x)ws(t, x)Sw(t, x)), −D∆M

]
,

and

G(Uw) =

g1(Uw)
g2(Uw)
g3(Uw)

 =

 mPw(H(Mw)− a1λMw)
−ma2λMwSw

MsSw(1−Mw)− ηMwPw

 ,
and we have UR = (0, SR,MR) and U0 = (P0, S0,M0).

To ensure that the solution remains positive and bounded within the domain, we make the
following assumptions regarding initial conditions and velocities:

ASSUMPTION 3.1. We assume that
(A1) U0 ∈ C1(ΩR)3 := C1(ΩR)× C1(ΩR)× C1(ΩR),
(A2) U0 = (P0, S0,M0) ≥ 0, which means P0 ≥ 0, S0 ≥ 0, and M0 ≥ 0,
(A3) U0 − UR is compactly supported in ΩR,
(A4) ~αk ∈ C2([0, T ]× ΩR;Rd), k = p, s,
(A5) ~αs is compactly supported in [0, T ]× ΩR, and
(A6) λ ∈ C([0, T ]).

The Banach space L∞(ΩR)3 := L∞(ΩR)× L∞(ΩR)× L∞(ΩR) is equipped here with
the norm

‖f‖L∞(ΩR)3 = ‖f1(t)‖L∞(ΩR) + ‖f2(t)‖L∞(ΩR) + ‖f3(t)‖L∞(ΩR)

for all f = (f1, f2, f3) ∈ L∞(ΩR)3.
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THEOREM 3.2. Let the assumptions (A1)–(A6) hold. Then there exists a maximal
time Tmax such that equation (3.1) has a unique positive solution in C([0, T ], L∞(ΩR)3).
Furthermore, U(t, ·)w − UR is a compactly supported function in ΩR for all t ≤ Tmax.

Proof. To establish existence and uniqueness for (3.1), we apply the characteristic method.
First, we ensure that there is no interaction between the tumor and the boundary by selecting
T so that the characteristics are appropriately defined within ΩR. This is guaranteed by the
fact that U0 − UR and the velocity vectors of healthy cells have a compact support in ΩR. Let
0 < R0 < R be such that supp(U0) ∪ supp(~αp) ⊂ ΩR0 , and let

Ri = R0 +
i(R−R0)

3
, for i = 1, 2, 3.

In order to prevent the characteristic curves from exiting ΩR, we proceed under the
assumption that T ≤ Tmax is sufficiently small such that

T < T ∗1 :=
R−R0

3 max{‖~αpwp‖C([0,Tmax],L∞(ΩR)), ‖~αsws‖C([0,Tmax],L∞(ΩR))}

with Tmax a large fixed value. The characteristics are well defined for all t, s ∈ [0, T ] and
x ∈ ΩR2

as follows:

∂X[t, x]wp
(s)

∂s
= ~αp(s,X[t, x]wp(s))wp(s,X[t, x]wp(s)),

X[t, x]wp
(t) = x,

and

∂X[t, x]ws(s)

∂s
= ~αs(s,X[t, x]ws(s))ws(s,X[t, x]ws(s)),

X[t, x]ws
(t) = x.

In fact, let x ∈ ΩR2
. By using the condition on the final time T , we have for k = p, s

‖X[t, x]wk
(s)‖2 ≤ ‖x‖2 + ‖X[t, x]wk

(s)− x‖2

≤ R2 +

∫ s

t

‖~αk(s,X[t, x]wk
(s))wk(s,X[t, x]wk

(s))‖2 ds

≤ R0 + 2
3 (R−R0) + T‖~αkwk‖C([0,T ],L∞(ΩR))

< R0 + 2
3 (R−R0) + 1

3 (R−R0) = R.

For (t, x) ∈ [0, T ]× ΩR2 , using the semi-explicit form for the local balance law in [25],
we have

Pw(t, x) = P0(X[t, x]wp
(0)) det(DX[t, x]wp

(0))

+

∫ T

0

det(DX[t, x]wp
(s)) g1(Uw)(s,X[t, x]wp

(s)) ds

Sw(t, x) = S0(X[t, x]ws
(0)) det(DX[t, x]ws

(0))

+

∫ T

0

det(DX[t, x]ws(s′)) g2(Uw)(s′, X[t, x]ws(s′)) ds′,
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with

(3.2) det(DX[t, x]wk
(s)) = exp

(∫ s

t

div
(
~αk(s,X[t, x]wk

(s))wk(s,X[t, x]wk
(s))

)
ds

)
for k = p, s. Now, letting t, s ∈ [0, T ] and x ∈ ΩR2 \ ΩR1 , we then have

‖X[t, x]wk
(s)‖2 ≥

∣∣ ‖x‖2 − ‖X[t, x]wk
(s)− x‖2

∣∣ (for k = p, s)

>
∣∣R1 − 1

3 (R−R0)
∣∣ = R0.

Using the assumption that initial functions are compactly supported in ΩR0 , we deduce
that P0(X[t, x]wp

(0)) = 0 and S0(X[t, x]ws
(0)) = SR. Furthermore, the function m ensures

that the right-hand side is compactly supported in ΩR by choosing R′ ≤ R0. Using the
assumption of the compactness of the support of ~αs, we get Pw(t, x) = 0 and Sw(t, x) = SR
for all (t, x) ∈ [0, T ]×ΩR2\ΩR1 . Using equation (3.1), we can smoothly extend P and S to
be constant in ΩR\ ΩR2 .

The equation of nutrients M is a semilinear parabolic equation; therefore, by using the
maximum principle, we deduce that Uw − UR is compactly supported in ΩR.

Now we prove local existence and uniqueness for equation (3.1). To do this, we employ a
classical approach for semilinear evolutionary equations using Banach’s fixed-point theorem.
This approach has been demonstrated in works such as [10, 37].

In the first step, we show that the right-hand side is locally Lipschitzian. In fact, let
L > 0 for Uw = (Pw, Sw,Mw) and Vw = (P ′w, S

′
w,M

′
w) in C([0, T ], L∞(ΩR)3) such that

‖Uw‖C([0,T ],L∞(ΩR)3), ‖Vw‖C([0,T ],L∞(ΩR)3) ≤ L. Then we have

‖G(Uw(t))−G(Vw(t))(t)‖L∞(ΩR)3

= ‖g1(Uw(t))− g1(Vw(t))‖∞ + ‖g2(Uw(t))− g2(Vw(t))‖∞
+ ‖g3(Uw(t))− g3(Vw(t))‖∞.

By using the fact that ‖H(M)‖C([0,T ],L∞(ΩR)) ≤ κ together with the inequalities

‖g1(Uw(t))− g1(Vw(t))‖∞ ≤ κ‖Pw(t)− P ′w(t)‖∞
+ a1L

(
‖Pw(t)− P ′w(t)‖∞ + ‖Mw(t)−M ′w(t)‖∞

)
,

‖g2(Uw(t))− g2(Vw(t))‖∞ ≤ a2L
(
‖Sw(t)− S′w(t)‖∞ + ‖Mw(t)−M ′w(t)‖∞

)
+MsMR‖Sw(t)− S′w(t)‖∞,

and

‖g3(Uw(t))− g3(Vw(t))‖∞ ≤MsL
(
‖Sw(t)− S′w(t)‖∞ + ‖Mw(t)−M ′w(t)‖∞

)
+ ηL

(
‖Pw(t)− P ′w(t)‖∞ + ‖Mw(t)−M ′w(t)‖∞

)
,

we get

‖G(Uw(t))−G(Vw(t))‖L∞(ΩR)3 ≤ C(L)‖Uw(t)− Vw(t)‖∞,

where C(L) is a positive function depending on the constant L. Finally, by taking the
maximum over the time t ∈ [0, T ], we get the result.

For the next step, we consider the following constants:

(3.3) Ck = ‖~αk‖∞‖∇wk‖∞ + ‖∇ · (~αk)‖∞‖wk‖∞ and Cv = eT max{Cp,Cs} ≥ 1.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

376 Y. MELOUANI, A. BOUAHAMIDI AND I. EL HARRAKI

Let K = 2LCv. We denote the closed ball of radius K (closed convex) of the Banach space
C([0, T ], L∞(ΩR)3) by

E = {f ∈ C([0, T ], L∞(ΩR)3) : ‖f‖C([0,T ],L∞(ΩR)3) ≤ K}.

Letting Uw ∈ E, we consider the following functional:

Φ(Uw)(t) =



P0(X[t, x]wp
(0)) det(DX[t, x]wp

(0))

+

∫ T

0

det(DX[t, x]wp(s)) g1(Uw)(s,X[t, x]wp(s)) ds

S0(X[t, x]ws
(0)) det(DX[t, x]ws

(0))

+

∫ T

0

det(DX[t, x]ws
(s′)) g2(Uw)(s′, X[t, x]ws

(s′)) ds′

T (t)M0 +

∫ T

0

T (t− s)g2(Uw)(s) ds


,

where t→ T (t) is the semigroup of the heat operator A = −D∆ with domain

D(A) = {u ∈W 2,1(ΩR) : Au ∈ L∞(ΩR), u|∂ΩR
= MR}.

The semigroup t→ T (t) satisfies

(3.4) ‖T (t)M0‖C([0,T ],L∞(ΩR)) ≤ ‖M0‖L∞(ΩR) for all t ∈ [0, T ]

(see [6] for more details).
First, let us show that Φ(E) ⊆ E. Let Uw ∈ E; we have

‖Φ(Uw)(t)‖∞ =

∥∥∥∥∥P0(X[t, x]wp(0)) det(DX[t, x]wp(0))

+

∫ T

0

det(DX[t, x]wp(s)) g1(Uw)(s,X[t, x]wp(s)) ds

∥∥∥∥∥
∞

+

∥∥∥∥∥S0(X[t, x]ws
(0)) det(DX[t, x]ws

(0))

+

∫ T

0

det(DX[t, x]ws
(s′)) g2(Uw)(s′, X[t, x]ws

(s′)) ds′

∥∥∥∥∥
∞

+

∥∥∥∥∥T (t)M0 +

∫ T

0

T (t− s) g3(Uw)(s) ds

∥∥∥∥∥
∞

.

By using (3.2), (3.3), and (3.4), and the estimates from [25], we obtain

‖det(DX[t, x]wk
(s))‖C([0,T ],L∞(ΩR)) ≤ Cv (for k = p, s).

Then, it follows that

‖Φ(Uw)(t)‖∞ ≤ Cv(‖P0‖∞ + ‖S0‖∞) + ‖M0‖∞
+ T

[
Cv
(
‖g1(Uw)(t)‖∞ + ‖g2(Uw)(t)‖∞

)
+ ‖g3(Uw)(t)‖∞

]
.
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Using the Lipschitz property of G and G(0) = 0, we have

‖Φ(Uw)(t)‖∞ ≤ Cv
[
(‖P0‖∞ + ‖S0‖∞ + ‖M0‖∞)

+TC(L)
(
‖g1(Uw)(t)‖∞ + ‖g2(Uw)(t)‖∞ + ‖g3(Uw(t))‖∞

)]
≤ CvL(1 + TC(L)).

Then, by choosing

(3.5) T ≤ T ∗2 := min

{
T ∗1 ,

1

2C(L)

}
and taking the maximum over time, we deduce that Φ(E) ⊆ E. Now, let Uw, U ′w ∈ E; we
have

‖Φ(Uw)− Φ(U ′w)‖E ≤ TCv‖Uw − U ′w‖E ≤ 1
2‖(Uw − U

′
w‖E .

Therefore, Φ is a contraction in E with Lipschitz constant 1/2, and so Φ has a fixed point
Uw ∈ E, which ensures the existence and uniqueness of a solution of (3.1).

3.2. Existence and uniqueness of the nonlocal system. Now we turn back to the
nonlocal system (2.2). We use Banach’s fixed theorem once again as in [25] to obtain the main
theorem.

THEOREM 3.3. Let the assumptions (A1)–(A6) hold, and assume that γp, γs ∈ C1
b (ΩR).

Then the system of equations (2.2) has a unique solution U = (P, S,M) in the Banach space
C([0, T ], L∞(ΩR)3).

Proof. In the proof, we follow the lines of [25] adapted to the case of a system of coupled
nonlocal equations.

Let us define the following constants:

Np := ‖γp‖C([0,T ]×ΩR)

(
‖P0‖L1(ΩR)

+ sup
w∈C([0,T ],C1

b (ΩR))2
‖g1(Uw)‖L1([0,T ],L1(ΩR))

)
,

dNp :=

∥∥∥∥dγpdx
∥∥∥∥
C([0,T ]×ΩR)

(
‖P0‖L1(ΩR)

+ sup
w∈C([0,T ],C1

b (ΩR))2
‖g1(Uw)‖L1([0,T ],L1(ΩR))

)
,

and

Ns := ‖γs‖C([0,T ]×ΩR)

(
‖S0‖L1(ΩR)

+ sup
w∈C([0,T ],C1

b (ΩR))2
‖g2(Uw)‖L1([0,T ],L1(ΩR))

)
,

dNs :=

∥∥∥∥dγsdx
∥∥∥∥
C([0,T ]×ΩR)

(
‖S0‖L1(ΩR)

+ sup
w∈C([0,T ],C1

b (ΩR))2
‖g2(Uw)‖L1([0,T ],L1(ΩR))

)
,
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where C([0, T ], C1
b (ΩR))2 := C([0, T ], C1

b (ΩR))× C([0, T ], C1
b (ΩR)).

REMARK 3.4. We have shown in Theorem 3.2 that, by the compactness of the initial data,
the velocities, and the semilinear terms, we have boundedness of the local solution. Therefore
G(Uw) = (g1(Uw), g2(Uw), g3(Uw)) is bounded for every w ∈ C([0, T ], C1

b (ΩR))2.
We now set N = max{Np, Ns} and Nz = max{dNp, dNs}. Then we consider

B =
{
f ∈ C([0, T ], C1

b (ΩR))2 | ‖f‖C([0,T ],C(ΩR))2 ≤ N, ‖∇f‖C([0,T ],C(ΩR))2 ≤ Nz
}
.

It is known that B is a closed subset of a Banach space. Now we verify that F is a contraction
on B. Let w := (wp, ws) ∈ B. We consider the following mapping F :

F(w)(t, x) =

[
F1(w)(t, x)

F2(w)(t, x)

]

=



∫
Xwp [t,ΩR](0)

γp(x−Xwp
[0, y](t))P0(y) dy

+

∫
ΩR

∫ T

0

γp(x−Xwp [s, y](t)) g1(Uw)(s, y) dy ds∫
Xws [t,ΩR](0)

γs(x−Xws [0, y](t))S0(y) dy

+

∫
ΩR

∫ T

0

γs(x−Xws
[s′, y](t)) g2(Uw)(s′, y) dy ds′


.

Let us introduce the notation

Λ1(P, g) := ‖P‖L1(ΩR) + sup
w∈C([0,T ],C1

b (ΩR))2
‖g(Uw)‖L1([0,T ],L1(ΩR)),

Λ∞(P, g) := ‖P‖L∞(ΩR) + sup
w∈C([0,T ],C1

b (ΩR))2
‖g(Uw)‖L1([0,T ],L∞(ΩR)),

C∞(P, g, γ) := 1 + 8RCv‖γ‖C([0,t]×ΩR)Λ∞(P, g).

Following the same lines as in [25], we can show that F(B) ⊂ B, and we have for w,w′ ∈ B
the following estimates:

|F1(w)(t, x)−F1(w′)(t, x)| ≤
∥∥Xwp

[t, ·](∗)−Xw′p
[t, ·](∗)

∥∥
C([0,t]×ΩR)

× ‖γp(t, ·)‖C1
b (ΩR) Λ1(P0, g1)C∞(P0, g1, γp),

and we also have∥∥Xwp
[t, ·](∗)−Xw′p

[t, ·](∗)
∥∥
C([0,t]×ΩR)

≤ T‖wp − w′p‖C([0,t];C(ΩR)) exp(T (Nz + ‖D~αp‖L∞([0,t]×ΩR))).

Then we get

|F1(w)(t, x)−F1(w′)(t, x)|(3.6)
≤ T‖wp − w′p‖C([0,t];C(ΩR)) exp(T (Nz + ‖D~αp‖L∞([0,t]ΩR)))

× ‖γp(t, ·)‖C1
b (ΩR) Λ1(P0, g1)C∞(P0, g1, γp).
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Using the same estimates, we get similarly

|F2(w)(t, x)−F2(w′)(t, x)|(3.7)
≤ T‖ws − w′s‖C([0,t];C(ΩR)) exp(T (Nz + ‖D~αs‖L∞([0,t]ΩR)))

× ‖γs(t, ·)‖C1
b (ΩR) Λ1(S0, g2)C∞(S0, g2, γs).

By summing the two estimates (3.6) and (3.7), we deduce that F is Lipschitz continuous.
Then by choosing T small enough we have

‖F(w)−F(w′)‖C([0,T ],C(ΩR))2 <
1
2‖w − w

′‖C([0,T ],C(ΩR))2 .

Therefore, F is a contraction on B. Then using Banach’s fixed point theorem, there exists a
unique fixed point w ∈ B such that F(w) = w for t ≤ T ∗. Furthermore, [25, Theorem 3.24]
ensures that existence and uniqueness of the solution hold also for any final time T > 0.
Hence, in our case we have existence and uniqueness for all t ≤ T ∗2 given in (3.5).

4. Radial model reformulation. Experiments show that a tumor spheroid can be invari-
ant under rotation and can hold the shape of a spheroid during the growth process in some
cases [7, 26, 34]. In this paper, in order to simplify our presented model, we assume that the
behaviour of a tumor spheroid holds for all t ≤ T , and we use the assumption of rotational
invariance to write the model in radial coordinates, which allows us to obtain a simplified
expression of the model.

Let f : Rd → R be a radial function. By definition there exists a function f̃ that satisfies

f(x) = f̃(‖x‖) = f̃(r) for all x ∈ Rd, with r = ‖x‖.

Under the assumption of invariance under rotation, P is a radial function. We also assume that
S, M , ~αk, γk, and m are radial for k = p, s.

The next proposition is crucial for the characterization of a radial expression for the
nonlocal term.

PROPOSITION 4.1 (Convolution of two radial functions). Let f and g be two radial
functions, defined from Rd to R such that f ∗ g is well defined. Then the convolution product
f ∗ g is also a radial function. Furthermore, we have, for all x ∈ Rd

f ∗ g(x) = f̃ ∗ g(r) = f̃ ∗̃ g̃(r),

where f̃ ∗̃ g̃ is defined as

f̃ ∗̃ g̃(r) =
2π(d−1)/2

Γ((d− 1)/2)

×
∫ +∞

0

[∫ π

0

f̃
(√

s2 + r2 + 2rs cos(θ)
)
sd−1 sind−2(θ) dθ

]
g̃(s) ds,

where Γ denotes the classical Gamma function.
Proof. Let x1 and x2 be two vectors in Rd, such that ‖x1‖ = ‖x2‖. A classical result

in linear algebra states that there exists an orthogonal endomorphism A such that Ax2 = x1.
Then we have

f ∗ g(x1) =

∫
Rd

f(x1 − y)g(y) dy =

∫
Rd

f(Ax2 − y)g(y) dy.
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With the substitution y = Az, using the fact that |det(A)| = 1, we get

f ∗ g(x1) =

∫
Rd

f(Ax2 −Az)g(Az) dz.

So we have

f ∗ g(x1) =

∫
Rd

f(A(x2 − z))g(Az) dz =

∫
Rd

f(x2 − z)g(z) dz = f ∗ g(x2).

This shows that f ∗ g is a radial function. By using the fact that the convolution product f ∗ g
is radial, we get

f ∗ g(x) = f ∗ g(‖x‖e1) =

∫
Rd

f(‖x‖e1 − y)g(y) dy

=

∫
Rd

f̃
(∥∥‖x‖e1 − y

∥∥)g̃(‖y‖) dy

=

∫
Rd

f̃
(√

(‖x‖ − y1)2 + ‖ỹ‖22
)
g̃
(√

y2
1 + ‖ỹ‖22

)
dy,

with e1 = (1, 0, . . . , 0) ∈ Rd and ỹ = (y2, y3, . . . , yd) ∈ Rd−1. Using Fubini’s theorem, we
get the following:

f ∗ g(x) =

∫
R

(∫
Rd−1

f̃
(√

(‖x‖ − y1)2 + ‖ỹ‖22
)
g̃
(√

y2
1 + ‖ỹ‖22

)
dỹ

)
dy1.

We recall that, for a radial function h on Rd, we have the formula∫
Rd

h(x) dx = ωd

∫ +∞

0

h̃(r)rd−1 dr,

where ωd = 2πd/2/Γ(d/2) denotes the measure of the unit sphere in Rd. Then, we may write

f ∗ g(x) = ωd−1

∫
R

(∫ +∞

0

f̃
(√

(‖x‖ − y1)2 + r̃2
)
g̃
(√

y2
1 + r̃2

)
r̃d−2dr̃

)
dy1,

where r̃ = ‖ỹ‖ is the 2-norm in Rd−1. By using polar coordinates

Ψ : ]0,+∞[ × ]−π/2, π/2[ −→ ]0,+∞[ × R
(s, ϕ) 7−→ (r̃(s, ϕ) = s cos(ϕ), y1(s, ϕ) = s sin(ϕ)),

we obtain

f ∗ g(x) = ωd−1

∫ +∞

0

∫ π/2

−π/2
f̃
(√

(‖x‖ − s sin(ϕ))2 + s2 cos2(ϕ)
)

× g̃(s)sd−2 cosd−2(ϕ)s dϕ ds

= ωd−1

∫ +∞

0

∫ π/2

−π/2
f̃
(√
‖x‖2 − 2s‖x‖ sin(ϕ) + s2

)
× g̃(s)sd−1 cosd−2(ϕ) dϕ ds.

And finally, by the change of variable, θ = ϕ+ π/2, we get the desired result.
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Now we will transform the model (2.1) into radial coordinates. Due to the fact that the
solution is compactly supported (see Theorem 3.2), we have

∇·(V [~αp, γp, P ](t, x)P (t, x))

= ∇ · (~αp(γp ∗ (1ΩR
P ))(t, x)P (t, x))

= ∇ · (~αp(γp ∗ P )(t, x)P (t, x))

= ∇ · (~αp(t, x)(γp ∗ P )(t, x))P (t, x) + (~αp(t, x)(γp ∗ P )(t, x)) · ∇P (t, x)

=
[
∇ · (~αp(t, x))(γp ∗ P )(t, x) + ~αp(t, x) · ∇((γp ∗ P )(t, x))

]
P (t, x)

+ (~αp(t, x)(γp ∗ P )(t, x)) · ∇P (t, x).

The directional vector of the velocity ~αp is assumed to be a radial vector, so it can be
written as

~αp(t, x) = α̃p(t, r)~er,

with ~er = x/‖x‖. So we have

∇ · (~αp(t, x)) =
d− 1

r
α̃p(t, r) +

∂α̃p(t, r)

∂r
=

1

rd−1

∂

∂r
(rd−1α̃p(t, r)),

and because

∇((γp ∗ P )(t, x)) =
∂(γ̃p ∗ P )

∂r
(t, r)~er and ∇P (t, x) =

∂P̃

∂r
(t, r)~er,

we get the following:

~αp(t, x) · ∇((γp ∗ P )(t, x)) = α̃p(t, r)
∂(γ̃p ∗ P )

∂r
(t, r) = α̃p(t, r)

∂γ̃p
∂r
∗̃ P̃ (t, r)

and

~αp(t, x)(γp ∗ P )(t, x) · ∇P (t, x) = α̃p(t, r)(γ̃p ∗ P )(t, r)
∂P̃

∂r
(t, r).

Thus, we have

∇ · (V [~αp, γp, P ](t, x)P (t, x))

=

[
1

rd−1

∂

∂r

(
rd−1α̃p(t, r)

)
(γ̃p ∗̃ P̃ )(t, r) + α̃p(t, r)

(
∂γ̃p
∂r
∗̃ P̃

)
(t, r)

]
P̃ (t, r)

+ α̃p(t, r)(γ̃p ∗̃ P̃ )(t, r)
∂P̃

∂r
(t, r)

= α̃p(t, r)
∂((γ̃p ∗̃ P̃ )P̃ )

∂r
(t, r) +

1

rd−1

∂

∂r

(
rd−1α̃p(t, r)

)
(γ̃p ∗̃ P̃ )(t, r)P̃ (t, r).

Finally, we can write the equation for the proliferation cells in the system (2.1) in the
following form:

∂P̃

∂t
(t, r) + α̃p(t, r)

∂((γ̃p ∗̃ P̃ )P̃ )

∂r
(t, r)

=

(
m̃(r)H(M̃(t, r))− a1m̃(r)λ(t)M̃(t, r)

− 1

rd−1

∂

∂r

(
rd−1α̃p(t, r)

)
(γ̃p ∗̃ P̃ )(t, r)

)
P̃ (t, r).
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In the same way, for the equation of healthy cells, we have

∂S̃

∂t
(t, r) + α̃s(t, r)

∂((γ̃s ∗̃ S̃)S̃)

∂r
(t, r)

=

(
−a2m̃(r)λ(t)M̃(t, r)− 1

rd−1

∂

∂r

(
rd−1α̃s(t, r)

)
(γ̃s ∗̃ S̃)(t, r)

)
S̃(t, r).

We recall that

∆M(t, x) = ∆M̃(t, ‖x‖2) =
d− 1

r

∂M̃

∂r
(t, r)+

∂2M̃

∂r2
(t, r) =

1

rd−1

∂

∂r

(
rd−1 ∂M̃

∂r
(t, r)

)
.

Finally, we write the system (2.1) in radial coordinates as follows:

(4.1)



∂P̃

∂t
(t, r) + α̃p(t, r)

∂

∂r
((γ̃p ∗̃ P̃ )P̃ ) = fP (t, r)P̃ (t, r),

∂S̃

∂t
(t, r) + α̃s(t, r)

∂

∂r
((γ̃s ∗̃ S̃)S̃) = fS(t, r)S̃(t, r),

∂M̃

∂t
(t, r)− D

rd−1

∂

∂r

(
rd−1 ∂M̃

∂r

)
= MsS̃(1− M̃)− ηM̃P̃ ,

P (t, R) = 0, S(t, R) = SR, M(t, R) = MR,

P (0, r) = P0(r), S(0, r) = S0(r), M(0, r) = M0(r),

where (t, r) ∈ [0, T ] × ]0, R] and

fP (t, r) = m̃(r)H(M̃(t, r))− a1m̃(r)λ(t)M̃(t, r)

− 1

rd−1

∂

∂r
(rd−1α̃p(t, r))(γ̃p ∗̃ P̃ )(t, r),

fS(t, r) = −a2m̃(r)λ(t)M̃(t, r)− 1

rd−1

∂

∂r
(rd−1α̃s(t, r))(γ̃s ∗̃ S̃)(t, r).

We denote by Ũ = (P̃ , S̃, M̃) the exact solution of the radial problem (4.1). Then the
system (4.1) may be written as

(4.2)


∂Ũ

∂t
(t, r) + Ã(Ũ)(t, r) = G̃(Ũ)(t, r), (t, r) ∈ [0, T ] × ]0, R],

Ũ(t, R) = ŨR, t ∈ [0, T ],

Ũ(0, r) = Ũ0(r), r ∈ ]0, R],

with

Ã(Ũ)(t, r) =

[
α̃p(t, r)

∂

∂r
((γ̃p ∗̃ P̃ )P̃ ), α̃s(t, r)

∂

∂r
((γ̃s ∗̃ S̃)S̃), − D

rd−1

∂

∂r

(
rd−1 ∂M̃

∂r

)]
,

G̃(Ũ)(t, r) =
(
g̃1(Ũ)(t, r), g̃2(Ũ)(t, r), g̃3(Ũ)(t, r)

)
,
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where

g̃1(Ũ)(t, r) =

(
m̃(r)H(M̃(t, r))− a1m̃(r)λ(t)M̃(t, r)

− 1

rd−1

∂

∂r
(rd−1α̃p(t, r))(γ̃p ∗̃ P̃ )(t, r)

)
P̃ (t, r),

g̃2(Ũ)(t, r) =

(
−a2m̃(r)λ(t)M̃(t, r)− 1

rd−1

∂

∂r
(rd−1α̃s(t, r))(γ̃s ∗̃ S̃)(t, r)

)
S̃(t, r),

g̃3(Ũ)(t, r) = MsS̃(t, r)(1− M̃(t, r))− ηM̃(t, r)P̃ (t, r),

UR = (0, SR,MR), and U0 = (P0, S0,M0).

5. The collocation method. In this section we describe the collocation method used to
solve the radial system (4.2). The method is based on cubic B-splines, which are widely used in
numerical analysis because of their smoothness and local approximation properties [8, 12]. B-
splines are piecewise polynomial functions that ensure continuity up to the second derivative,
making them well-suited for interpolation and for the numerical solution of differential
equations, including various classes of partial integro-differential equations [8, 17, 19].

We first subdivide the computational interval into N equal subintervals with nodes

ri = i h, for i = 0, 1, . . . , N and h = R/N,

so that the grid points on [0, R] are given by r0 = 0, r1, . . . , rN = R. For the B-spline
construction we then use an extended uniform partition obtained by adjoining three extra knots
at each end. Explicitly, we keep the subdivision block

r−3 < r−2 < r−1 < 0 = r0 < r1 < · · · < rN = R < rN+1 < rN+2 < rN+3.

Adding three knots per side is standard for cubic splines. It ensures that all boundary basis
functions are fully defined while preserving the compact support suppBi = [ri−2, ri+2] and
the approximation order. The resulting basis {Bi(r)}N+1

i=−1 spans an (N + 3)-dimensional
space on [0, R].

In this context, the fundamental B-spline function refers to the cubic spline centered at
the nodes −2,−1, 0, 1, 2, and its support is limited to the interval [−2, 2]. It can be written as
follows:

B(r) =



0 if r < −2 or r ≥ 2,

1
6 (2 + r)3 if − 2 ≤ r < −1,

1
6 (4− 6r2 − 3r3) if − 1 ≤ r < 0,

1
6 (4− 6r2 + 3r3) if 0 ≤ r < 1,

1
6 (2− r)3 if 1 ≤ r < 2,

and Bi represent the well-known B-spline functions associated to the nodes ri defined for
i = −1, . . . , N + 1 by

Bi(r) = B

(
r − ri
h

)
.

The function Bi is compactly supported on the interval [ri−2, ri+2]. Table 5.1 provides a
summary of the values of Bi and its derivatives at the points ri.
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TABLE 5.1
Values of B-splines and their derivatives at the points ri.

x ri−2 ri−1 ri ri+1 ri+2

Bi(r) 0 1/6 4/6 1/6 0
B′i(r) 0 −1/2h 0 1/2h 0
B′′i (r) 0 1/h2 −2/h2 1/h2 0

The exact solution of (4.2) is approximated by a cubic B-spline given by the following
expression:

Ũh(t, r) =
(
P̃h(t, r), S̃h(t, r), M̃h(t, r)

)
=

(
N+1∑
i=−1

α
(1)
i (t)Bi(r),

N+1∑
i=−1

α
(2)
i (t)Bi(r),

N+1∑
i=−1

α
(3)
i (t)Bi(r)

)
,

where α(k)
i (t) are time-dependent coefficients with unknown values for k = 1, 2, 3.

Let us consider the following vector-valued functions of dimensions (N − 1) × 1 and
3(N − 1)× 1, respectively:

B(r) =
(
B1(r), B2(r), . . . , BN−1(r)

)T
and α(t) =

(
α(1)(t)T , α(2)(t)T , α(3)(t)T

)T
,

with

α(k)(t) =
(
α

(k)
1 (t), α

(k)
2 (t), . . . , α

(k)
N−1(t)

)T
, k = 1, 2, 3.

The function Uh(t, x) has the form

Ũh(t, r) =



α
(1)
−1(t)B−1(r) + α

(1)
0 (t)B0(r) +B(r)Tα(1)(t)

+α
(1)
N (t)BN (r) + α

(1)
N+1(t)BN+1(r)

α
(2)
−1(t)B−1(r) + α

(2)
0 (t)B0(r) +B(r)Tα(2)(t)

+αN (t)(2)BN (r) + α
(2)
N+1(t)BN+1(r)

α
(3)
−1(t)B−1(r) + α

(3)
0 (t)B0(r) +B(r)Tα(3)(t)

+αN (t)(3)BN (r) + α
(3)
N+1(t)BN+1(r)


,(5.1)

where the notation B(r)T is used for the transpose of the vector B(r).

The collocation method involves substituting Ũh and its derivatives in (4.2) with the
expression for Ũh given by (5.1). This substitution is followed by evaluating the resulting
equation at the points ri, for i = 0, . . . , N . Consequently, we obtain an ODE that we can
solve later. Beginning with the first equation for tumor cells P̃h, we have

∂P̃h
∂t

(t, r) + α̃p(t, r)
∂((γ̃p ∗̃ P̃h)P̃h)

∂r
(t, r) = g̃1(Ũh)(t, r),
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which may be written in the form

∂P̃h
∂t

(t, r) + (γ̃p ∗̃ P̃h)(t, r)

[
1

rd−1

∂

∂r
(rd−1α̃p(t, r))P̃h(t, r) + α̃p(t, r)

∂P̃h
∂r

(t, r)

]

+

(
∂γ̃p
∂r
∗̃ P̃h

)
(t, r)P̃h(t, r)

=
(
H(M̃h(t, r))− a1λ(t)M̃h(t, r)

)
P̃h(t, r).

We start by first expressing the nonlocal term. We have

(5.2) (γ̃p ∗̃ P̃h)(t, r) =

(
γ̃p ∗̃

(
N+1∑
i=−1

α
(1)
i (t)Bi

))
(t, r) =

N+1∑
i=−1

α
(1)
i (t) (γ̃p ∗̃ Bi) (r).

For i = −1, . . . , N + 1 and k = p, s, we note that

Zki (r) := (γ̃k ∗̃ Bi) (r) and Z
k

i (r) :=
∂(γ̃k ∗̃ Bi)(r)

∂r
=

(
∂γ̃k
∂r
∗̃ Bi

)
(r).

Then by substituting in (5.2), we get

N+1∑
i=−1

dα
(1)
i

dt
(t)Bi(r) +

N+1∑
i=−1

α
(1)
i (t)Zpi (r)

×

[
1

rd−1

∂

∂r

(
rd−1α̃p(t, r)

) N+1∑
i=−1

α
(1)
i (t)Bi(r) + α̃p(t, r)

N+1∑
i=−1

α
(1)
i (t)B′i(r)

]

+ α̃p(t, r)

N+1∑
i=−1

α
(1)
i (t)Z

p

i (r)

N+1∑
i=−1

α
(1)
i (t)Bi(r)

=

(
H

(
N+1∑
i=−1

α
(3)
i (t)Bi(r)

)
− a1λ(t)

N+1∑
i=−1

α
(3)
i (t)Bi(r)

)
N+1∑
i=−1

α
(1)
i (t)Bi(r).

(5.3)

For the healthy cells S̃h, similar calculations lead to

N+1∑
i=−1

dα
(2)
i

dt
(t)Bi(r) +

N+1∑
i=−1

α
(2)
i (t)Zsi (r)

×

[
1

rd−1

∂

∂r

(
rd−1α̃s(t, r)

) N+1∑
i=−1

α
(2)
i (t)Bi(r) + α̃s(t, r)

N+1∑
i=−1

α
(2)
i (t)B′i(r)

]

+ α̃s(t, r)

N+1∑
i=−1

α
(2)
i (t)Z

s

i (r)

N+1∑
i=−1

α
(2)
i (t)Bi(r)

= −a2λ(t)

N+1∑
i=−1

α
(3)
i (t)Bi(r)

N+1∑
i=−1

α
(2)
i (t)Bi(r).
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Similarly, for the third equation describing the concentration of oxygen and nutrients in
the tissue, we have

N+1∑
i=−1

dα
(3)
i

dt
(t)Bi(r)−D

(
d− 1

r

N+1∑
i=−1

α
(3)
i (t)B′i(r) +

N+1∑
i=−1

α
(3)
i (t)B′′i (r)

)

= Ms

N+1∑
i=−1

α
(2)
i (t)Bi(r)

(
1−

N+1∑
i=−1

α
(3)
i (t)Bi(r)

)

− η
N+1∑
i=−1

α
(3)
i (t)Bi(r)

N+1∑
i=−1

α
(1)
i (t)Bi(r).

To determine the values of α at the boundaries, we consider Ũh = (P̃h, S̃h, M̃h)T as
natural cubic splines. Natural cubic splines require that their second derivatives vanish at the
endpoints of the interval [0, R]. Hence, we have

∂2Ũh
∂r2

(t, r0) =
1

h2

(
α

(j)
−1(t)− 2α

(j)
0 (t) + α

(j)
1 (t)

)T
j=1,2,3

= 0,

which leads to

(5.4) αj−1(t) = 2αj0(t)− αj1(t), for j = 1, 2, 3.

On the other hand, we set the value of the solution at the point r = r0 to be fixed and
denote it by Uh(t, r0) := (PL(t), SL(t),ML(t))T . Then we have

Ũh(t, r0) = 1
6

(
α

(j)
−1(t) + 4α

(j)
0 (t) + α

(j)
1 (t)

)T
j=1,2,3

=
(
α

(j)
0 (t)

)T
j=1,2,3

= (PL(t), SL(t),ML(t))
T
.

(5.5)

By analogous observations, we get for r = rN+1 = R the following:

(5.6) αjN+1(t) = 2αjN (t)− αjN−1(t), for j = 1, 2, 3

and

(5.7)
(
α

(1)
N+1(t), α

(2)
N+1(t), α

(3)
N+1(t)

)T
= (PR, SR,MR)

T
.

Now, let us note for k = p, s the following vector-valued functions of size N − 1:

(5.8) Zk(r) :=
(

Zk1(r)− Zk−1(r),Zk2(r), . . . ,ZkN−2(r),ZkN−1(r)− ZkN+1(r)
)T
,

and

(5.9) Zk(r) :=
(

Z
k

1(r)− Z
k

−1(r),Z
k

2(r), . . . ,Z
k

N−2(r),Z
k

N−1(r)− Z
k

N+1(r)
)T
.

Furthermore, we define the functions

Qp(r) := PL(t)
(
2Zp−1(r) + Zp0(r)

)
+ PR

(
2ZpN+1(r) + ZpN+1(r)

)
,

Qp(r) := PL(t)
(
2Z

p

−1(r) + Z
p

0(r)
)

+ PR
(
2Z

p

N+1(r) + Z
p

N+1(r)
)
,

Qs(r) := SL(t)
(
2Zs−1(r) + Zs0(r)

)
+ SR

(
2ZsN+1(r) + ZsN+1(r)

)
,

Qs(r) := SL(t)
(
2Z

s

−1(r) + Z
s

0(r)
)

+ SR
(
2Z

s

N+1(r) + Z
s

N+1(r)
)
.(5.10)

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

A COLLOCATION METHOD FOR A NONLOCAL TUMOR GROWTH MODEL 387

Using the natural spline boundary conditions (5.4), (5.5), (5.6), and (5.7), and the nota-
tion (5.8), (5.9), and (5.10), the nonlocal terms can be expressed compactly as

N+1∑
i=−1

α
(1)
i (t)Zpi (r) = Qp(r) +ZTp (r)α(1)(t),

N+1∑
i=−1

α
(1)
i (t)Z

p

i (r) = Qp(r) +Z
T

p (r)α(1)(t),

N+1∑
i=−1

α
(2)
i (t)Zsi (r) = Qs(r) +ZTs (r)α(2)(t),

N+1∑
i=−1

α
(2)
i (t)Z

s

i (r) = Qs(r) +Z
T

s (r)α(2)(t).

Now we express Ũh at the points ri, for i = 0, . . . , N . We start with equation (5.3) at r = r0

and obtain

dα
(1)
0

dt
(t) = −(Qp(r0) +ZTp (r0)α(1)(t))

×

[
1

rd−1
0

(
∂(rd−1α̃p)

∂r
(t, r0)

)
PL(t) + α̃p(t, r0)

1

h
(α

(1)
1 (t)− PL(t))

]
− α̃p(t, r0)

(
Qp(r0) +Z

T

p (r0)α(1)(t)
)
PL(t)

+ [H(ML(t))− a1λ(t)ML(t)]PL(t),

dα
(2)
0

dt
(t) = −(Qs(r0) +ZTs (r0)α(2)(t))

×

[
1

rd−1
0

(
∂(rd−1α̃s)

∂r
(t, r0)

)
SL(t) + α̃s(t, r0)

1

h
(α

(1)
1 (t)− SL(t))

]
− α̃s(t, r0)

(
Qs(r0) +Z

T

s (r0)α(2)(t)
)
SL(t)

− a2λ(t)ML(t)SL(t),

dα
(3)
0

dt
(t) =

D(d− 1)

rh
(α

(3)
1 (t)−ML(t)) +MsSL(t)(1−ML(t))− ηML(t)PL(t).

By substituting at r = ri, for i = 1, . . . , N − 1, we get

1

6

(
dα

(1)
i−1

dt
(t) + 4

dα
(1)
i

dt
(t) +

dα
(1)
i+1

dt
(t)

)
= −

(
Qp(ri) +ZTp (ri)α

(1)(t)
)

×

[
1

rd−1
i

(
∂(rd−1α̃p)

∂r
(t, ri)

)
1

6

(
α

(1)
i−1(t) + 4α

(1)
i (t) + α

(1)
i+1(t)

)
+ α̃p(t, ri)

1

2h

(
α

(1)
i+1(t)− α(1)

i−1(t)
)]

− 1

6
α̃p(t, ri)

(
Qp(ri) +Z

T

p (ri)α
(1)(t)

)(
α

(1)
i−1(t) + 4α

(1)
i (t) + α

(1)
i+1(t)

)
+

[
H

(
1

6

(
α

(3)
i−1(t) + 4α

(3)
i (t) + α

(3)
i+1(t)

))
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− 1

6
a1λ(t)

(
α

(3)
i−1(t) + 4α

(3)
i (t) + α

(3)
i+1(t)

)]

× 1

6

(
α

(1)
i−1(t) + 4α

(1)
i (t) + α

(1)
i+1(t)

)
,

1

6

(
dα

(2)
i−1

dt
(t) + 4

dα
(2)
i

dt
(t) +

dα
(2)
i+1

dt
(t)

)
= −

(
Qs(ri) +ZTs (ri)α

(2)(t)
)

×

[
1

rd−1
i

(
∂(rd−1α̃s)

∂r
(t, ri)

)
1

6

(
α

(2)
i−1(t) + 4α

(2)
i (t) + α

(2)
i+1(t)

)
+ α̃s(t, ri)

1

2h

(
α

(2)
i+1(t)− α(2)

i−1(t)
)]

− 1

6
α̃s(t, ri)

(
Qs(ri) +Z

T

s (ri)α
(2)(t)

)(
α

(2)
i−1(t) + 4α

(2)
i (t) + α

(2)
i+1(t)

)
− 1

36
a2λ(t)

(
α

(3)
i−1(t) + 4α

(3)
i (t) + α

(3)
i+1(t)

)(
α

(2)
i−1(t) + 4α

(2)
i (t) + α

(2)
i+1(t)

)
,

and

1

6

(
dα

(3)
i−1

dt
(t) + 4

dα
(3)
i

dt
(t) +

dα
(3)
i+1

dt
(t)

)

= D

(
d− 1

2rh

(
α

(3)
i+1(t)− α(3)

i−1(t)
)

+
1

h2

(
α

(3)
i−1(t)− 2α

(3)
i (t) + α

(3)
i+1(t)

))
+
Ms

6

(
α

(2)
i−1(t) + 4α

(2)
i (t) + α

(2)
i+1(t)

)(
1− 1

6

(
α

(3)
i−1(t) + 4α

(3)
i (t) + α

(3)
i+1(t)

))
− η 1

36

(
α

(3)
i−1(t) + 4α

(3)
i (t) + α

(3)
i+1(t)

)(
α

(1)
i−1(t) + 4α

(1)
i (t) + α

(1)
i+1(t)

)
.

Finally we get for r = rN = R the following:

dα
(1)
N

dt
(t) = −

(
Qp(rN ) +ZTp (rN )α(1)(t)

)
×

[
1

rd−1
N

(
∂(rd−1α̃p)

∂r
(t, rN )

)
PR + α̃p(t, rN )

1

h

(
PR − α(1)

N−1(t)
)]

− α̃p(t, rN )
(

Qp(rN ) +Z
T

p (rN )α(1)(t)
)
PR

+ [H(MR)− a1λ(t)MR]PR,

dα
(2)
N

dt
(t) = −

(
Qs(rN ) +ZTs (rN )α(2)(t)

)
×

[
1

rd−1
N

(
∂(rd−1α̃s)

∂r
(t, rN )

)
SR + α̃s(t, rN )

1

h

(
SR − α(2)

N−1(t)
)]

− α̃s(t, rN )
(

Qs(rN ) +Z
T

s (rN )α(2)(t)
)
SR

− a2λ(t)MRSR,

dα
(3)
N

dt
(t) =

D(d− 1)

rh

(
MR − α(3)

N−1(t)
)

+MsSR(t)(1−MR)− ηMRPR.
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For the initial time t = 0, the B-spline interpolation conditions yield the linear system

Aα(0) = Ũ0,

whereA = diag(A,A,A) is a 3(N − 1)× 3(N − 1) block diagonal matrix, with A being the
(N − 1)× (N − 1) tridiagonal matrix

A = 1
6 (diag(1N−2,−1) + diag(4N−1, 0) + diag(1N−2, 1)).

Here 1n and 4n denote vectors of 1s and 4s of length n, respectively, and the notation
diag(v, k) represents a matrix with vector v on the kth diagonal. The right-hand side vector
Ũ0 = (Ũ0,(1), Ũ0,(2), Ũ0,(3))T contains the initial data with each block defined as

Ũ0,(k) =
(
Ũ0
k (r1)− 1

6 Ũ
0
k (r0), Ũ0

k (r2), . . . , Ũ0
k (rN−2), Ũ0

k (rN−1)− 1
6 Ũ

0
k (rN )

)T
,

where Ũ0
1 = P̃0, Ũ0

2 = S̃0, and Ũ0
3 = M̃0.

Subsequently, α satisfies the following ODE:

(5.11)

A
dα

dt
(t) = Φ(t,α(t)), t ∈ [0, T ],

Aα(0) = Ũ0,

where the nonlinear function Φ(t,α(t)) can be expressed as

Φ(t,α(t)) = −diag(Mp
Z ,M

s
Z ,0)α(t)− (Mp

Q,M
s
Q,0)T

� [(Mp

α̃(t),Ms

α̃(t),0)T �A+ (Mp
α̃,M

s
α̃,0)T � diag(A′, A′,0)]α(t)

+G(t,α(t)) + f(t,α(t)).

Here the matrices A′ and A′′ are defined using the diag-notation as

A′ =
−1

2h
(diag(1N−2,−1) + diag(1N−2, 1)),

A′′ =
1

h2
(diag(1N−2,−1)− 2 diag(1N−1, 0) + diag(1N−2, 1)),

and

Mk
Z = (Zk(r1), . . . ,Zk(rN−1))T , Mk

Z = (Zk(r1), . . . ,Zk(rN−1))T , k = p, s,

Mk
Q = (Qk(r1), . . . , Qk(rN−1))T , Mk

Q = (Qk(r1), . . . , Qk(rN−1))T ,

Mk
α̃(t) = (α̃k(t, r1), . . . , α̃k(t, rN−1))T ,

Mk

α̃(t) =

(
1

rd−1
1

∂

∂r
(rd−1α̃k(t, r1)), . . . ,

1

rd−1
N−1

∂

∂r
(rd−1α̃k(t, rN−1))

)T
,

VM (t) =

(
ML(t)

6
, 0, . . . , 0,

MR

6

)T
,

rd = (d− 1)

(
1

rd−1
1

, . . . ,
1

rd−1
N−1

)T
, 1 = (1, . . . , 1)T .
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Above, the notation � stands for the Hadamard product. Furthermore, the growth and reaction
terms are given by

G(t,α(t))

=


{H(Aα(3)(t) + VM (t))− a1λ(t)Aα(3)(t)} � (Aα(1)(t))

− a2λ(t)(Aα(3)(t))� (Aα(2)(t))

D(rd �A′ +A′′)α(3)(t)
+Ms(Aα

(2)(t))� (1−Aα(3)(t))− η(Aα(3)(t))� (Aα(1)(t))

 ,

while the boundary correction vector f(t,α(t)) is a 3(N − 1)× 1 vector with the following
nonzero components:

f1(t,α(t)) =− 1

6

dα
(1)
0

dt
(t)−

(
Qp(r1) +ZTp (r1)α(1)(t)

)
×
[

1

6rd−1
1

∂(rd−1α̃p)

∂r
(t, r1)PL(t)− α̃p(t, r1)

1

2h
PL(t)

]
− 1

6
α̃p(t, r1)

(
Qp(r1) +Z

T

p (r1)α(1)(t)
)
PL(t)

− 1

36
a1λ(t)

[
ML(t)

(
PL(t) + 4α

(1)
1 (t) + α

(1)
2 (t)

)
+ PL(t)

(
ML(t) + 4α

(3)
1 (t) + α

(3)
2 (t)

)]
,

fN−1(t,α(t)) =− 1

6

dα
(1)
N

dt
(t)−

(
Qp(rN−1) +ZTp (rN−1)α(1)(t)

)
×
[

1

6rd−1
N−1

∂(rd−1α̃p)

∂r
(t, rN−1)PR + α̃p(t, rN−1)

1

2h
PR

]
− 1

6
α̃p(t, rN−1)

(
Qp(rN−1) +Z

T

p (rN−1)α(1)(t)
)
PR

− 1

36
a1λ(t)

[
MR

(
PR + 4α

(1)
N−1(t) + α

(1)
N−2(t)

)
+ PR

(
MR + 4α

(3)
N−1(t) + α

(3)
N−2(t)

)]
,

fN (t,α(t)) =− 1

6

dα
(2)
0

dt
(t)−

(
Qs(r1) +ZTs (r1)α(2)(t)

)
×
[

1

6rd−1
1

∂(rd−1α̃s)

∂r
(t, r1)SL(t)− α̃s(t, r1)

1

2h
SL(t)

]
− 1

6
α̃s(t, r1)

(
Qs(r1) +Z

T

s (r1)α(2)(t)
)
SL(t)

− 1

36
a2λ(t)

[
ML(t)

(
SL(t) + 4α

(2)
1 (t) + α

(2)
2 (t)

)
+ SL(t)

(
ML(t) + 4α

(3)
1 (t) + α

(3)
2 (t)

)]
,

f2N−2(t,α(t)) =− 1

6

dα
(2)
N

dt
(t)−

(
Qs(rN−1) +ZTs (rN−1)α(2)(t)

)
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×
[

1

6rd−1
N−1

∂(rd−1α̃s)

∂r
(t, rN−1)SR + α̃s(t, rN−1)

1

2h
SR

]
− 1

6
α̃s(t, rN−1)

(
Qs(rN−1) +Z

T

s (rN−1)α(2)(t)
)
SR

− 1

36
a2λ(t)

[
MR

(
SR + 4α

(2)
N−1(t) + α

(2)
N−2(t)

)
+ SR

(
MR + 4α

(3)
N−1(t) + α

(3)
N−2(t)

)]
,

f2N−1(t,α(t)) =− 1

6

dα
(3)
0

dt
(t) +D

(
1

h2
ML(t)− d− 1

2rh
ML(t)

)
+
Ms

6
SL(t)

− Ms

36

[
ML(t)

(
SL(t) + 4α

(2)
1 (t) + α

(2)
2 (t)

)
+ SL(t)

(
ML(t) + 4α

(3)
1 (t) + α

(3)
2 (t)

)]
− η

36

[
ML

(
PL(t) + 4α

(1)
1 (t) + α

(1)
2 (t)

)
+ PL(t)

(
ML(t) + 4α

(3)
1 (t) + α

(3)
2 (t)

)]
,

f3N−3(t,α(t)) =− 1

6

dα
(3)
0

dt
(t) +D

(
1

h2
MR +

d− 1

2rh
MR

)
+
Ms

6
SR

− Ms

36

[
MR

(
SR + 4α

(2)
N−1(t) + α

(2)
N−2(t)

)
+ SR

(
ML(t) + 4α

(3)
N−1(t) + α

(3)
N−2(t)

)]
− η

36

[
MR

(
PL(t) + 4α

(1)
N−1(t) + α

(1)
N−2(t)

)
+ PR

(
MR + 4α

(3)
N−1(t) + α

(3)
N−2(t)

)]
,

with fj(t,α(t)) = 0 for all j /∈ {1, N − 1, N, 2N − 2, 2N − 1, 3N − 3}.
The solution of the ODE (5.11) can be approached using several methods found in the

literature. However, due to the stiffness of the equation, which is a common characteristic in
systems derived from discretized PDEs, common explicit methods, such as the popular Runge–
Kutta family of integrators, are not suitable for such stiff problems. To overcome this limitation,
we employ the BDF method, which is an implicit multi-step method specifically designed for
solving stiff ODEs [18]. This method allows for larger time steps while maintaining accuracy
and stability, which can be done by using information from previous time steps and solving an
implicit equation at each step. Here, we apply the BDF method of order p = 6, for maximal
stability and efficiency. The method applied to (5.11) gives the following approximations:

(5.12) Aαn − β∆tΦ(tn,αn)−A
p−1∑
j=0

ηjαn−j−1 = 0.

In this context, ∆t = T/p represents the time step, and αn = [αn1 , . . . ,α
n
N−1]T is the

BDF method’s approximation of the vector α(t) at time tn = n∆t, for n = 0, . . . , p. The
coefficients ηj and β for the p-step BDF formula are provided in Table 5.2.
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TABLE 5.2
BDF coefficients for order 6.

p β η0 η1 η2 η3 η4 η5

1 1 1

2 2
3

4
3 − 1

3

3 6
11

18
11 − 9

11
2
11

4 12
25

48
25 − 36

25
16
25 − 3

25

5 60
137

300
137 − 300

137
200
137 − 75

137
12
137

6 60
147

360
147 − 450

147
400
147 − 225

147
72
147 − 10

147

At each time step n, equation (5.12) for αn must be solved by reformulating it into the
following form:

ϕ(αn) = Aαn − β∆tΦ(tn,αn)−A
p−1∑
j=0

ηjαn−j−1 = 0.

To solve equation (5.12) for αn efficiently, we employ the Newton method. We use the solution
from the previous time step as an initial guess. The Newton method approximates αn through
a series of iterations (ζk) by{

ζ0,
ζk+1 = ζk − [Jϕ(ζk)]−1ϕ(ζk), k > 0.

Here Jϕ(ζk) is the Jacobian matrix of ϕ, expressed as

Jϕ(ζk) = A− β∆tJΦ(ζk),

with JΦ the Jacobian matrix of Φ with respect to αn.

6. Numerical experiments. In this section, we aim to examine the accuracy of our
proposed numerical scheme by comparing it with a known analytical solution. This evaluation
is essential to determine the efficiency and validity of the method. The construction of a
classical solution for a simplified version of the system in (4.1) presents significant challenges,
mainly due to the nonlocal term, which must be calculated analytically in order to prevent
errors that could arise from numerical integration. Then in Section 6.2, we use values similar
to those reported by Lefebvre et al. [27], examining the dynamics of avascular tumor growth
in the absence of medical treatment, considering a nonlocal velocity.

Throughout this section, we consider the spatial dimension of our system (2.2) to be
d = 2. In this context, the nonlocal terms are expressed as

Zki (r) := (γ̃k ∗̃ Bi)(r)

= 2

∫ R

0

∫ π

0

γ̃k

(√
s2 + r2 + 2rs cos(θ)

)
B(s)s ds dθ

and

Z
k

i (r) :=
∂(γ̃k ∗̃ Bi)(r)

∂r

= 2

∫ R

0

∫ π

0

r + s cos(θ)√
r2 + s2 + 2rs cos(θ)

γ̃k
′
(√

s2 + r2 + 2rs cos(θ)
)
B(s)s ds dθ.
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These double integrals are calculated numerically using the function integral2 in MAT-
LAB, which is effective for this type of two-dimensional integration over rectangular regions.

The simulations performed in Section 6.1 are executed in the spatial domain [0, 1], while
in Section 6.2, the spatial domain [10−3, 2] is considered. It is important to note that radial
hyperbolic and radial parabolic equations are likely to suffer from singularities at the origin
(see [30]). To mitigate this issue, the calculations are initiated from a small radius in space.
The numerical simulations presented in this paper were performed using MATLAB on a
standard laptop computer equipped with an Intel Core i5 processor (2.6 GHz, two cores) and
8 GB of RAM. No specialized GPU acceleration was utilized for these computations. This
configuration was sufficient for running our simulations, demonstrating the efficiency of the
proposed numerical method.

6.1. Convergence test with known analytical solution. In this section, we consider the
following coupled system with source terms:

(6.1)



∂P̃

∂t
+ 2πr

∂

∂r

[(∫ R

0

P̃ (t, s)s ds

)
P̃

]

=

[
H(M̃)− tM̃ − 2

∫ R

0

P̃ (t, s)s ds

]
P̃ + f1(t, r),

∂S̃

∂t
+ 2πr

∂

∂r

[(∫ R

0

S̃(t, s)s ds

)
S̃

]

= −

[
tM̃ + 2

∫ R

0

S̃(t, s)s ds

]
S̃ + f2(t, r),

∂M̃

∂t
− 0.01

(
r
∂2M̃

∂r2
+
∂M̃

∂r

)
= S̃(1− M̃)− M̃P̃ + f3(t, r),

Ũ(t, R) = Ũex(t, R), Ũ(t, 0) = Ũex(t, 0), t ∈ [0, T ],

Ũ(0, r) = Ũex(0, r), r ∈ [0, R].

The source term (f(t, r) = f1(t, r), f2(t, r), f3(t, r)) is chosen in order that the system (6.1)
has the analytical solution

Ũex(t, r) =

 P̃ex(t, r)

S̃ex(t, r)

M̃ex(t, r)



=



3

2
exp

((
r − t

2000

)2
50

)
+ exp

((
r − t

350

)2
100

)
+

1

2
exp

((
r − t

400

)2
150

)

3

2
exp

((
r − t

2000

)2
70

)
+ exp

((
r − t

350

)2
140

)
+

1

2
exp

((
r − t

400

)2
210

)

3

2
exp

((
r − t

2000

)2
80

)
+

4

5
exp

((
r − t

200

)2
160

)
+

3

5
exp

((
r − t

300

)2
240

)


.
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The nonlocal system (6.1) can be considered a particular case of the general system (4.1)
by setting specific parameter values. Specifically, we choose α̃p(t, r) = α̃s(t, r) = r,
γ̃p(r) = γ̃s(r) = 1, a1 = 1, a2 = 1, λ(t) = t, Ms = η = 1, and D = 0.01. These
parameters were selected to allow the radial convolution to be calculated analytically. This
is important because radial systems often exhibit singularities at r = 0. To address these
singularities, the velocity functions α̃p and α̃s and the diffusion parameter D are specially
chosen.

To numerically solve the system, we discretize the domain [0, R] using a uniform grid.
The grid points are defined as ri = ih, for i = 1, . . . , N , where h is the spatial step size given
by h = R/N , and N is the number of discretization nodes. We then compare the approximate
numerical solution to the analytical solution using the relative error metrics defined as

E∞n =

∥∥∥Ũ(tn)− Ũh(tn)
∥∥∥
∞∥∥∥Ũ(tn)

∥∥∥
∞

=
sup0≤i≤N

∥∥∥Ũ(tn, ri)− Ũh(tn, ri)
∥∥∥

sup0≤i≤N

∥∥∥Ũ(tn, ri)
∥∥∥

and

E∞ =

∥∥∥Ũ − Ũh∥∥∥
∞∥∥∥Ũ∥∥∥

∞

=
supn

∥∥∥Ũ(tn)− Ũh(tn)
∥∥∥
∞

supn

∥∥∥Ũ(tn)
∥∥∥
∞

.

Table 6.1 presents the execution times and relative errors for different numbers of nodes.
Figure 6.1 illustrates the comparison between the approximate numerical solution, denoted as
Ũh, and the exact solution, denoted as Ũex, of our nonlocal system for a range of time values:
t = 0, t = 25, t = 50, t = 75, and t = 100. Figures 6.2–6.4 provides illustrations of the
approximate solutions.

TABLE 6.1
Execution time (seconds) and relative error for different node numbers for R = 1 and T = 10.

N 50 100 150 200 250 300

E∞ 3.344e-03 1.456e-03 6.610e-04 3.707e-04 2.440e-04 1.649e-04

CPU time 18.96 48.56 188.53 422.28 853.93 1619.54

In Figure 6.1, it is evident that the numerical solution approximates the exact solution with
high accuracy across the different time instances (t = 0, t = 25, t = 50, t = 75, t = 100).
This demonstrates the effectiveness of the numerical method over the specified time intervals.

Table 6.2 presents various values of the relative error E∞n for ∆t = h/2 with different
spatial step sizes h. The data suggest that, as h decreases, the computational error also
decreases.

Figure 6.5a illustrates the decrease of the relative error E∞ as the number of grid points
N increases from 100 to 500, while Figure 6.5b presents the convergence analysis in a log-log
scale. The convergence order p is calculated as the slope of the best-fit line in logarithmic
space, yielding p ≈ 1.98. This value confirms second-order spatial accuracy, which is the
expected theoretical convergence rate for cubic B-spline approximations.

Although proving the theoretical convergence of the BDF method for a nonlinear ODE is
challenging, the computed results indicate a reduction in error with smaller spatial steps. This
observation is consistent with existing literature on the numerical analysis and the stability
of numerical integration methods. The known stability of the BDF method in stiff problems
corroborates the observed error reduction trends with decreasing h-values.
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FIG. 6.1. Approximate solution Ũh and exact solution Ũex for t = 0, t = 25, t = 50, t = 75, t = 100.

TABLE 6.2
Relative error E∞.

N 100 200 300 400 500
h 0.01 0.005 0.0033 0.0025 0.002

∆t 0.005 0.0025 0.00165 0.00125 0.001

t = 20 6.9801e-04 1.7519e-04 7.7218e-05 4.3550e-05 2.7949e-05
t = 40 4.1530e-04 1.0432e-04 5.3297e-05 2.6102e-05 1.67076e-05
t = 60 8.0758e-04 2.0209e-04 9.0763e-05 4.9907e-05 3.2346e-05
t = 80 1.4171e-03 3.5577e-04 1.5894e-04 8.9162e-05 5.6989e-05
t = 100 1.8271e-03 4.5819e-04 2.0402e-04 1.1462e-04 7.3364e-05
E∞ 5.0599e-04 1.2579e-04 7.0742e-05 3.1597e-05 2.0176e-05

6.2. Numerical test for tumor growth. In this section, we present numerical simulations
of the nonlocal tumor growth model (2.1) under the scenario of no medical intervention. The
initial conditions for our simulations are defined as

P̃ (0, r) =
0.3e2

e2 + e20r
, S̃(0, r) =

0.8e2 + e20r

e2 + e20r
, M̃(0, r) = 1.

At the boundary radius R, the conditions are specified as

P̃ (t, R) = 0, S̃(t, R) = 1, M̃(t, R) = 1.

The velocities and kernel functions incorporated in our model are expressed as

α̃p(t, r) =
2e

e+ e10r
, α̃s(t, r) =

0.2e7.5

e7.5 + e15r
,

γ̃p(r) = 0.2 exp
(
− r

50

)
, γ̃s(r) =

1

100
exp

(
− r

150

)
.

We used a hypoxia threshold value of Mth = 0.5. The growth factor parameter κ is set at
0.02. The model also integrates a diffusion coefficient D of 0.8. Furthermore, the nutrient
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FIG. 6.2. Approximation of P̃ on [0, 1]× [0, 100]. FIG. 6.3. Approximation of S̃ on [0, 1]× [0, 100].

FIG. 6.4. Approximation of M̃ on [0, 1]× [0, 100].

(a) Error decrease with mesh refinement. (b) Convergence rate analysis.

FIG. 6.5. Convergence analysis of the BDF B-spline collocation method for the nonlocal tumor growth model.

consumption rate η is 1.5, and the blood vessel creation rate is characterized by Ms = 1. The
results of our numerical simulations are shown in Figure 6.6.

Figures 6.7 and 6.8 illustrate the growth of the tumor core, particularly at its edges, where
higher nutrient concentrations are present, facilitating cellular proliferation. The presence of
abundant nutrients at the periphery enables the cells to rapidly divide and expand outward. In
contrast, the center of the tumor exhibits a decrease in tumor cell density due to insufficient
oxygen supply, leading to necrosis. The lack of oxygen, known as hypoxia, results in cell death
and the formation of a necrotic core. This process highlights the dynamic nature of tumor
growth, where peripheral areas continue to expand while central regions undergo cell death.
Furthermore, the hypoxic conditions in the tumor center can lead to the release of signaling
molecules that may promote angiogenesis or new blood vessel formation in an attempt to
supply the tumor with more oxygen and nutrients.

7. Conclusion. The process of tumor growth remains a complex subject to study, predom-
inantly due to the multifaceted nature of the factors that influence it. A detailed understanding
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(a) t = 5 (b) t = 20 (c) t = 40

(d) t = 60 (e) t = 80 (f) t = 100

FIG. 6.6. Radial tumor cells density P̃ , healthy cells density S̃, and the concentration of nutriment and oxygen
M̃ for different time instants.

of the mechanisms governing tumor growth is essential for the advancement of effective
anticancer strategies.

In this paper, we have presented an innovative continuum model of tumor growth, which
includes both cell-cell and cell-matrix adhesion and interactions. This model is characterized by
the integration of nonlocal terms within a system of PDEs. We have successfully demonstrated
the existence and uniqueness of solutions through the application of semigroup properties and
Banach’s fixed-point theorem, in combination with results established by Keimer et al. [25].
Furthermore, we have developed a numerical scheme for resolving the radial nonlocal system.
This scheme employs B-splines for spatial discretization and the BDF method for temporal
discretization. Extensive numerical tests have been conducted to validate the model’s accuracy,
and we have demonstrated experimental results related to tumor growth.

The use of nonlocal balance equations in our model offers several significant advantages
over traditional local approaches. For example, nonlocal models can avoid the formation of
shock waves and singularities that often challenge local hyperbolic systems. This regularizing
effect leads to smoother solutions and may prevent the breakdown of numerical schemes,
which is a common issue in local models of complex phenomena. The efficient numerical
solution of nonlocal systems has potential applications in many fields such as population
dynamics, material science, and climate modeling, where long-range effects play a crucial role
and where avoiding discontinuities is critical.

In the future, our research aims to optimize the factors of medical drugs within the
system (2.1), using the theory of optimal control for nonlocal balance equations. This may
help in designing new strategies that minimize the auxiliary effects of treatment and maximize
its efficacy. Using mathematical models, we intend to precisely adjust drug dosages, timings,
and combinations to achieve the best therapeutic outcomes while reducing negative side
effects.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

398 Y. MELOUANI, A. BOUAHAMIDI AND I. EL HARRAKI

(a) t = 0 (b) t = 20 (c) t = 40

(d) t = 60 (e) t = 80 (f) t = 100

FIG. 6.7. Tumor cells density P for different time instants.

FIG. 6.8. Radial tumor cells density for different time instants.
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