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Abstract. Using a recently derived integral representation in terms of elementary functions, we give new
asymptotic expansions of the normal inverse Gaussian cumulative distribution function. One of its asymptotic
representations is stated in terms of the normal Gaussian distribution or complementary error function.
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1. Introduction. The normal inverse Gaussian distribution is a four-parameter distribu-
tion (α, β, µ, δ) with argument x, which has been introduced by Barndorff-Nielsen [1, 2, 3]. In
a recent preprint [7] the commonly used representation of the cumulative distribution function
is given by

F (x;α, β, µ, δ) =
αδeδγ

π

∫ x

−∞

K1

(
α
√
δ2 + (t− µ)2

)
√
δ2 + (t− µ)2

eβ(t−µ) dt,

where γ =
√
α2 − β2 and K1(z) denotes the modified Bessel function. The cited paper

gives new convergent series and derives asymptotic expansions with the aim of developing a
software package to compute the cumulative distribution function based on the normal inverse
Gaussian distribution.

In this paper, we give more asymptotic expansions of F (x;α, β, µ, δ) after writing this
function in a standard form to apply Laplace’s method. Thereby, a modification is considered
to handle the case that a pole is near a saddle point. This yields an expansion in which the
complementary error function controls this phenomenon.

The starting point of our approach is an integral representation in terms of elementary
functions of the complementary function, which is defined by

(1.1) G(x;α, β, µ, δ) = 1− F (x;α, β, µ, δ).

Especially for numerical computations, it is important to have a stable representation for both
functions and to first compute the smaller one of the two. As worked out in this paper, the
transition value x0 with respect to x is given by

(1.2) x0 = µ+
βδ√
α2 − β2

,

and, following from the asymptotic approximation, it holds 0 ≤ F (x;α, β, µ, δ) / 1
2 when

x / x0.
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The following integral representation for the G-function has recently been derived in [7,
Equation (2.8)]):

(1.3) G(x;α, β, µ, δ) =
eδγ

π

∫ ∞
0

re−ξ(
√
r2+α2−β)

√
r2 + α2

(√
r2 + α2 − β

) sin(δr) dr,

where

ξ = x− µ ≥ 0, δ > 0, α > 0, −α < β < α, γ =
√
α2 − β2.

As observed in [7], for ξ < 0, we can use the relation

F (x;α, β, µ, δ) = 1− F (−x;α,−β,−µ, δ) = G(−x;α,−β,−µ, δ)

=
eδγ

π

∫ ∞
0

reξ(
√
r2+α2+β)

√
r2 + α2

(√
r2 + α2 + β

) sin(δr) dr.
(1.4)

In our new asymptotic results, the key term in the approximations is the complementary
error function, defined by

erfc(z) =
2√
π

∫ ∞
z

e−t
2

dt, z ∈ C,

leading to a representation that is not available in [7]. As we have explained previously, for
example in [4, 5, 6] and also in [9, Chapter 21 and Part 7], such a representation can yield a
powerful asymptotic approximation, also with respect to the so-called uniformity parameters.
Moreover, it provides an excellent starting point for inverting cumulative distribution functions
with respect to one of the parameters. This topic is intended for future research.

In Section 2 we use several transformations of the integral in (1.3) and obtain in Section 3 a
representation suitable for asymptotic analysis. In Section 4 we give the asymptotic expansions,
together with a figure and a table to explain the role of the transition value x0. In Appendix A
we present a short Maple code for the evaluation of the coefficients used in certain asymptotic
expansions.

2. Transformations of the integral. The integrand in (1.3) is an even function of r, and
so we substitute r = α sinh(t). Then we obtain

(2.1) G(x;α, β, µ, δ) =
eδγ+βξ

2π

∫ ∞
−∞

e−ξα cosh(t) sinh(t) sin (αδ sinh(t))

cosh(t)− cos(τ)
dt,

where τ is given by

β

α
= cos(τ), 0 < τ < π.

We use sin(z) = 1
i (ez − cos(z)) with z = αδ sinh(t)—observe that the cosine term will give

an odd integrand—and write (2.1) as

G(x;α, β, µ, δ) =
eδγ+βξ

2πi

∫ ∞
−∞

e−αωφ(t)
sinh(t)

cosh(t)− cos(τ)
dt,

where

φ(t) =
ξ

ω
cosh(t)− i δ

ω
sinh(t), ω =

√
ξ2 + δ2.
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We introduce ν ∈ (0, 12π) by writing

ν = arctan
δ

ξ
=⇒ ξ = ω cos(ν) and δ = ω sin(ν).

It follows that the function φ(t) can be expressed as

φ(t) = cosh(t) cos(ν)− i sinh(t) sin(ν) = cosh(t− iν).

Using this in the integral representation (2.1) yields

(2.2) G(x;α, β, µ, δ) =
eδγ+βξ

2πi

∫ ∞
−∞

e−αω cosh(t−iν) sinh(t)

cosh(t)− cos(τ)
dt.

This integral converges when cos(ν) ≥ 0, but since for the representation of G(x;α, β, µ, δ)
in (1.3) it is needed that δ = ω sin(ν) > 0, we therefore assume ν ∈

(
0, 12π

)
.

We want to integrate the integral in (2.2) along the horizontal path with =t = ν, and we
need information about the poles of the integrand. Since it holds −1 < cos(τ) < 1, the poles
closest to the origin are t± = ±iτ , so we can shift the path of integration in (2.2) to the path
=t = ν. When ν > τ , we cross the pole at iτ and calculate the residue.

After shifting the path, we integrate along the horizontal line=t = ν using the substitution
t = s+ iν, and for ν > τ we evaluate the relation

−αω cosh(iτ − iν) = −αω cos(τ − ν) = −βξ − δγ.

We obtain the representations

(2.3)

G(x;α, β, µ, δ) =
eδγ+βξ

2πi

∫ ∞
−∞

e−αω cosh(s) sinh(s+ iν)

cosh(s+ iν)− cos(τ)
ds, τ > ν,

G(x;α, β, µ, δ) = 1− eδγ+βξ

2πi

∫ ∞
−∞

e−αω cosh(s) sinh(s+ iν)

cos(τ)− cosh(s+ iν)
ds, τ < ν.

Moreover, the case τ < ν gives

(2.4) F (x;α, β, µ, δ) =
eδγ+βξ

2πi

∫ ∞
−∞

e−αω cosh(s) sinh(s+ iν)

cos(τ)− cosh(s+ iν)
ds, τ < ν.

For convergence of the integral in (1.3) we assumed ξ ≥ 0, or x ≥ µ, but in the above
three integrals this is no longer needed, and we can also let ξ ≤ 0 or x ≤ µ.

These integrals have a saddle point at the origin, and the real axis is the path of steepest
descent. There are poles at the s-values corresponding to the poles t± = ±iτ , and by the
transformation t = s+ iν, the poles in the s-variable are given by

(2.5) s± = −i(ν ∓ τ), ν ∈ (0, π), τ ∈ (0, π).
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We see that the pole s+ coincides with the saddle point at the origin when ξ takes the
value ξ0 that follows from

(2.6) τ = ν =⇒ arctan
δ

ξ0
= arccos

β

α
=⇒ ξ0 =

δβ√
α2 − β2

=
δβ

γ
.

This yields, for x = µ+ ξ, the transition value x0 = ξ0 +µ announced in (1.2). The transition
value x0 = ξ0 + µ coincides with the mean of the normal Gaussian distribution.

We have the following cases:

(2.7)

τ > ν =⇒ x > x0, =s+ > 0, =s− < 0,

τ = ν =⇒ x = x0, s+ = 0, =s− < 0,

τ < ν =⇒ x < x0, =s+ < 0, =s− < 0.

When one of these poles is close to the origin, we need special asymptotic methods to deal
with it.

3. Further preparations for the asymptotic analysis. We continue with (2.4), assuming
that ν > τ . Note that this condition will be relaxed after deriving the asymptotic expansions
in Section 4. We write the real and imaginary parts of the integrand using

sinh(s+ iν) = sinh(s) cos(ν) + i cosh(s) sin(ν),

cosh(s+ iν) = cosh(s) cos(ν) + i sinh(s) sin(ν).

We obtain

sinh(s+ iν)

cos(τ)− cosh(s+ iν)
=

sinh(s) (cos(τ) cos(ν)− cosh(s))

(cosh(s)− cos(τ) cos(ν))
2 − sin2(τ) sin2(ν)

+ i
sin(ν) (cos(τ) cosh(s)− cos(ν))

(cosh(s)− cos(τ) cos(ν))
2 − sin2(τ) sin2(ν)

.

We observe that the real part is odd with respect to s and the imaginary part is even. So we
can write

F (x;α, β, µ, δ) =
eδγ+βξ

2π

∫ ∞
−∞

e−αω cosh(s) sin(ν) (cos(τ) cosh(s)− cos(ν))

(cosh(s)− cos(τ) cos(ν))
2 − sin2(τ) sin2(ν)

ds.

Next, we use cosh(s) = 1 + 2 sinh2(s/2) and substitute

σ = sinh(s/2),
ds

dσ
=

2√
1 + σ2

.

This gives

(3.1) F (x;α, β, µ, δ) =
eδγ+βξ−αω

4π

∫ ∞
−∞

e−2αωσ
2

f(σ) dσ, ν > τ,

where

f(σ) =
sin(ν)√
1 + σ2

cos(τ)(1 + 2σ2)− cos(ν)(
σ2 + 1

2 −
1
2 cos(τ) cos(ν)

)2 − 1
4 sin2(τ) sin2(ν)

=
sin(ν)√
1 + σ2

cos(τ)(1 + 2σ2)− cos(ν)

(σ2 − σ2
+)(σ2 − σ2

−)
.
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The poles σ± follow from the poles s± via the relation σ = sinh(s/2). We have (see (2.5))

(3.2) σ± = sinh
(
1
2s±

)
= i sin

(
1
2s±

)
= −i sin

(
1
2 (ν ∓ τ)

)
.

By splitting into fractions, we obtain

f(σ) =
sin(ν)√

1 + σ2 (σ2
− − σ2

+)

(
cos(ν)− cos(τ)(1 + 2σ2

+)

σ2 − σ2
+

−
cos(ν)− cos(τ)(1 + 2σ2

−)

σ2 − σ2
−

)

=
1√

1 + σ2

(
sin(ν − τ)

σ2 − σ2
+

+
sin(ν + τ)

σ2 − σ2
−

)
.

The argument of the exponential function in front of the integral in (3.1) can be written as

δγ + βξ − αω = −2αω sin2
(
1
2 (ν − τ)

)
= 2αωσ2

+.

After these steps, we summarize the results obtained so far in the following theorem:

THEOREM 3.1. We can write (3.1) in the form

F (x;α, β, µ, δ) = F+(x;α, β, µ, δ) + F−(x;α, β, µ, δ),

F±(x;α, β, µ, δ) =
ezσ

2
+

4π
sin(ν ∓ τ)U(σ±, z),

U(σ±, z) =

∫ ∞
−∞

e−zσ
2 dσ

(σ2 − σ2
±)
√

1 + σ2
,

(3.3)

where, employing the notation used so far,

z = 2αω, ξ = x− µ, x0 = µ+ ξ0, ξ0 =
βδ

γ
,

σ+ = i sin
(
1
2 (ν − τ)

)
, σ− = −i sin

(
1
2 (ν + τ)

)
,

ξ = x− µ = ω cos(ν), δ = ω sin(ν),

ν = arctan
δ

ξ
, ν ∈

(
0, 12π

)
,

ω =
√
ξ2 + δ2, cos(τ) =

β

α
, τ ∈ (0, π),

γ =
√
α2 − β2 = α sin(τ).

(3.4)
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4. Asymptotic expansions. First, we give the asymptotic expansion of U(σ±, z) as
defined in (3.3), with z a positive large parameter and iσ± ∈ (0, 1). We initially assume that
iσ± is not small, say 1

2 ≤ iσ± < 1. In that case, an asymptotic expansion can be obtained by
using Laplace’s method; see [9, Chapter 3].

We expand

(4.1)
1

(σ2 − ρ2)
√

1 + σ2
=

∞∑
k=0

uk(ρ)σ2k, ρ = σ±,

and obtain the asymptotic expansion

U(ρ, z) ∼
√
π

z

∞∑
k=0

uk(ρ)

(
1
2

)
k

zk
, z →∞, 1

2 ≤ iσ± < 1,

where (a)k = Γ(a+ k)/Γ(a) is the Pochhammer symbol. The first coefficients are

u0(ρ) = − 1

ρ2
, u1(ρ) =

ρ2 − 2

2ρ4
, u2(ρ) = −3ρ4 − 4ρ2 + 8

8ρ6
.

Next, we want to obtain an expansion that is valid for small positive values of |σ±|. As
explained in [9, Chapter 21 and Part 7] and [4, 5, 6], we can use the complementary error
function to obtain uniform approximations. We have the integral representations (for properties
of the error functions, we refer to [8])

erfc(z) =
2√
π

∫ ∞
z

e−t
2

dt, z ∈ C,

w(z) =
1

πi

∫ ∞
−∞

e−t
2 dt

t− z
= e−z

2

erfc(−iz), =z > 0.

In our analysis, we need the function

V (ρ, z) =

∫ ∞
−∞

e−zσ
2 dσ

σ2 − ρ2
=

π

iρ
w
(
ρ
√
z
)

=
π

iσ±
e−zσ

2
±erfc

(
iσ±
√
z
)
,

where we used ρ = σ±, with σ± defined in (3.2). Both σ± satisfy =σ± < 0 (see also the third
line of (2.7)).

Next, we consider U(σ±, z) defined in (3.3). We specify the role of the poles by writing

1

(σ2 − ρ2)
√

1 + σ2
= g(σ, ρ) +

1

(σ2 − ρ2)
√

1 + ρ2
, ρ = σ±,

where

g(σ, ρ) =
1

σ2 − ρ2

(
1√

1 + σ2
− 1√

1 + ρ2

)

= − 1
√

1 + σ2
√

1 + ρ2
(√

1 + σ2 +
√

1 + ρ2
) .(4.2)
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Applying this to the function U(ρ, z) defined in (3.3) gives

U(ρ, z) =

∫ ∞
−∞

e−zσ
2

(
1

(σ2 − ρ2)
√

1 + ρ2
+ g(σ, ρ)

)
dσ

=
1√

1 + ρ2
V (ρ, z) +

∫ ∞
−∞

e−zσ
2

g(σ, ρ) dσ

= − πi

ρ
√

1 + ρ2
e−zρ

2

erfc
(
iρ
√
z
)

+

∫ ∞
−∞

e−zσ
2

g(σ, ρ) dσ.

The function g(σ, ρ) is analytic for |σ| < 1, thus, we can expand it as

(4.3) g(σ, ρ) = g(0, ρ)

∞∑
k=0

ck(ρ)σ2k, g(0, ρ) = − 1√
1 + ρ2

(
1 +

√
1 + ρ2

)
to obtain the asymptotic expansion

U(ρ, z) ∼ − πi

ρ
√

1 + ρ2
e−zρ

2

erfc
(
iρ
√
z
)

+ g(0, ρ)

√
π

z

∞∑
k=0

dk(ρ)

zk
,

where

dk(ρ) = ck(ρ)
(
1
2

)
k
, k = 0, 1, 2, . . .

From the second line in (4.2) we see that the computation of the coefficients ck can be done
by multiplying the Maclaurin series of 1/

√
1 + σ2 and that of 1/

(√
1 + σ2 +

√
1 + ρ2

)
.

For large values of k, both coefficients of these expansions are of small algebraic order of k,
but the coefficients dk = ck

(
1
2

)
k

= ckΓ
(
k + 1

2

)
/Γ
(
1
2

)
are of factorial order.

After these preparations, we obtain the asymptotic expansions for F±(x;α, β, µ, δ) de-
fined in (3.3):

F±(x;α, β, µ, δ)

∼ ezσ
2
+ sin(ν ∓ τ)

4π

(
− πie−zσ

2
±

ρ
√

1 + ρ2
erfc

(
iσ±
√
z
)

+ g(0)

√
π

z

∞∑
k=0

dk(σ±)

zk

)
.

Let us simplify a few of the expressions. We have (see equations (3.4) and(4.3))

sin(ν ∓ τ)

ρ
√

1 + ρ2
=

sin(ν ∓ τ)

−i sin
(
1
2 (ν ∓ τ)

)
cos
(
1
2 (ν ∓ τ)

) = 2i,

sin(ν ∓ τ)g(0, σ±) = − sin(ν ∓ τ)

cos
(
1
2 (ν ∓ τ)

) (
1 + cos

(
1
2 (ν ∓ τ)

))
= −

sin
(
1
2 (ν ∓ τ)

)
cos2

(
1
4 (ν ∓ τ)

) = −2 tan
(
1
4 (ν ∓ τ)

)
,

z(σ2
+ − σ2

−) = −2αω sin(ν) sin(τ) = −2γδ.

In summary, we have the following theorem. The parameters ν, τ , σ±, and z are given
in (3.4).
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THEOREM 4.1. The functions F±(x;α, β, µ, δ) composing the normal inverse Gaussian
cumulative distribution F (x;α, β, µ, δ) as written in (3.3) of Theorem 3.1 have the asymptotic
expansions

F±(x;α, β, µ, δ) ∼ ezσ
2
+

4π

(
2πe−zσ

2
±erfc

(
iσ±
√
z
)
− 2 tan

(
1
4 (ν ∓ τ)

)√π

z

∞∑
k=0

dk(σ±)

zk

)
,

or

F+(x;α, β, µ, δ) ∼ 1
2erfc(ζ+)− ezσ

2
+

tan
(
1
4 (ν − τ)

)
2
√
πz

∞∑
k=0

dk(σ+)

zk
,

F−(x;α, β, µ, δ) ∼ 1
2e
−2γδerfc(ζ−)− ezσ

2
+

tan
(
1
4 (ν + τ)

)
2
√
πz

∞∑
k=0

dk(σ−)

zk
,

(4.4)

where

ζ+ = iσ+
√
z = sin

(
1

2
(ν − τ)

)√
z = sign(x0 − x)

√
αω − βξ − γδ,

ζ− = iσ−
√
z = sin

(
1

2
(ν + τ)

)√
z =

√
αω − βξ + γδ.

(4.5)

The expansions are valid for large values of z and |σ±| ≤ 1
2 .

For the complementary function G(x;α, β, µ, δ) defined in (1.1) we have the next corol-
lary:

COROLLARY 4.2. The asymptotic expansion of the function G(x;α, β, µ, δ) follows from

G(x;α, β, µ, δ) = G+(x;α, β, µ, δ)− F−(x;α, β, µ, δ)

with

G+(x;α, β, µ, δ) ∼ 1
2erfc(−ζ+) + ezσ

2
+

tan
(
1
4 (ν − τ)

)
2
√
πz

∞∑
k=0

dk(σ+)

zk
.

We make a few observations.
1. The square root forms of ζ± in (4.5) follow from the relations in (3.4). The expression
αω− βξ− γδ for ζ+ is a convex function of ξ with a double zero at ξ0, the transition
point. This follows from calculating the first terms in the Taylor expansion of ζ+ as a
function of ξ at ξ0.

2. The argument ζ+ of erfc(ζ+) in the first line of (4.4) vanishes when ν = τ , that is,
when x = x0; see the earlier discussion at equation (2.6). In the first paragraph of
Section 3 we assumed that ν > τ (or x < x0) since we have started with (2.4). This
corresponds to ζ+ > 0 in erfc(ζ+).

3. However, erfc(ζ+) allows us to take ν < τ (or x > x0), and the transition from
ν > τ to ν < τ in erfc(ζ+) is smooth and analytic. In addition, other elements
in the series expansion of the function F+(x;α, β, µ, δ) remain well-defined, and
F+(x;α, β, µ, δ) changes from values smaller than 1

2 (x ≤ x0 or ν > τ ) to values
larger than 1

2 (x ≥ x0 or ν < τ ).
4. When ν < τ we can repeat the analysis with the representation of the complementary

function G(x;α, β, µ, δ), starting with the first line of (2.3). The result will be the
same as in Corollary 4.2.
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FIG. 4.1. Graphs obtained using the asymptotic approximations, for α = 8, µ = 3, δ = 2, 0 ≤ x ≤ 20, and
three values of β: left β = −4, middle β = 2, right β = 7.5. In the left figure we display graphs of the function
F (x;α, β, µ, δ); in the right one we display F−(x;α, β, µ, δ) for the same parameters.

5. A notable point is that the asymptotic approximations can be used for negative values
of ξ = x− µ, while the starting representation in (2.1) is only valid for ξ ≥ 0. For
ξ < 0, see also the representation in (1.4).

The first coefficients dk(σ±) are given by

d0(σ±) = 1, d1(σ±) = − w + 2

4(w + 1)
, d2(σ±) =

3(3w2 + 9w + 8)

32(w + 1)2
,

d3(σ±) = −15(5w3 + 20w2 + 29w + 16)

128(w + 1)3
,

d4(σ±) =
105(35w4 + 175w3 + 345w2 + 325w + 128)

2048(w + 1)4
.

Here, w =
√

1 + σ2
±. Hence, w = cos

(
1
2 (ν ∓ τ)

)
. In Appendix A we describe a recursive

method for the symbolic evaluation of these coefficients, together with a short Maple code.

In Figure 4.1 we display graphs obtained using the asymptotic approximations in (4.4),
for α = 8, µ = 3, δ = 2, 0 ≤ x ≤ 20, and three values of β: left β = −4, middle β = 2, right
β = 7.5. In the figure on the left, we see three graphs of the function F (x;α, β, µ, δ), and on
the right, we see three graphs of F−(x;α, β, µ, δ) for the same parameters. We observe that
the main contributions come from F+(x;α, β, µ, δ), but for the numerical computations those
of F−(x;α, β, µ, δ) cannot be neglected.

The corresponding transition values x0, the function values of F (x0; 8, β, 3, 2), and the
values of the large parameter z = 2αω are given in Table 4. In addition, we display the absolute
errors in the computation of the asymptotic expansions relative to more accurate computations
of the function F . The computations of the asymptotic approximations are performed with
Maple, Digits = 8, with terms up to and including k = 5 in the asymptotic expansions in (4.4).
The given absolute errors illustrate the quality of the asymptotic approximation with only 6
terms. In a future paper, we plan to perform more extensive tests to assess the accuracy of the
asymptotic expansions for different regions of the parameters.
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TABLE 4.1
For the values of β used in Figure 4.1, we give the transition values x0, the function values F (x0;α, β, µ, δ)

for α = 8, µ = 3, δ = 2, the large parameter z = 2αω, and the absolute errors in the values of the F -function for
these parameters.

β x0 F z absolute errors
−4.0 1.845299462 0.473833601 36.95041722 3.1× 10−08

2.0 3.516397780 0.512385772 33.04945788 1.7× 10−09

7.5 8.388159062 0.575900502 91.95791466 4.7× 10−10
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Appendix A. We can obtain the coefficients ck of the expansion (4.3) of the function
g(σ, ρ) given in (4.2) using Maple’s procedure taylor. To state an algorithm without this
procedure and without Maple’s procedure pochhammer, we use a recursive method for the
symbolic evaluation of the coefficients ck. Finally, we provide a Maple procedure dkproc for
this method. A similar code can be written for the evaluation of the coefficients uk(ρ) of the
Maclaurin series in (4.1).

We use the second line of equation (4.2) and write the expansion in (4.3) in the form

−g(0, ρ)
(
w(1 + σ2) + w2

√
1 + σ2

) ∞∑
k=0

ck(ρ)σ2k = 1, w =
√

1 + ρ2,

or

−g(0, ρ)

∞∑
k=0

bk(ρ)σ2k
∞∑
k=0

ck(ρ)σ2k = 1,

where

c0 = 1, b0 = w + w2, b1 = w + 1
2w

2, bk = w2(−1)k
(− 1

2 )k

k!
, k ≥ 2.

The next step is to multiply the two series:

−g(0, ρ)

∞∑
k=0

ak(ρ)σ2k = 1, ak =

k∑
j=0

bj(ρ)ck−j(ρ).

All coefficients ak(ρ) should vanish, except a0(ρ) = b0(ρ)c0(ρ), and by using (4.3) we obtain
the equation −g(0, ρ)b0(ρ)c0(ρ) = 1, which yields c0(ρ) = 1. For the other ck(ρ), we obtain
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the recursive relation

ck(ρ) = − 1

b0(ρ)

k∑
j=1

bj(ρ)ck−j(ρ), k = 1, 2, 3, . . .

With these coefficients, we can obtain dk(ρ) =
(
1
2

)
k
ck(ρ).

In the following Maple code, we describe an algorithm to compute dk(ρ).
restart;
dkproc:= proc(kmax, dk) local bk, ck, w, j, k, s, p;
# To compute d_k, see (4.24); dk is an output parameter.

bk[0]:= w+w^2; bk[1]:= w+w^2/2; bk[2]:= -w^2/8;
ck[0]:= 1; dk[0]:= 1; ck[1]:= normal(-bk[1]/bk[0]);
p:= 1/2; dk[1]:= p*ck[1];
# p = (1/2)_1; a Pochhammer value to start a recursion.
for k from 2 to kmax do
# bk[k] is a binomial coefficient, generated by recursion.
bk[k+1]:= -(k-1/2)*bk[k]/(k+1);
s:= 0;
for j from 1 to k do s:= normal(s + bk[j]*ck[k-j]) od;
ck[k]:= normal(-s/bk[0]); p:= p*(k-1/2);
#This makes p = (1/2)_k;
dk[k]:= p*ck[k];

od;
kmax

end;
# For example:
kmax:= 5; dkproc(kmax, dk);
for k from 0 to kmax do print(k,dk[k]) od;
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