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Abstract. In this paper, we denoise a given noisy image by minimizing a smoothness-promoting function
over a set of local similarity measures which compare the mean of the given image and some candidate image on a
large collection of subboxes. The associated convex optimization problem possesses a huge number of constraints
which are induced by extended real-valued functions stemming from the Kullback–Leibler divergence. Alternatively,
these nonlinear constraints can be reformulated as affine ones, which makes the model seemingly more tractable.
For the numerical treatment of both formulations of the model (i.e., the original one as well as the one with affine
constraints), we propose a rather general augmented Lagrangian method which is capable of handling the huge amount
of constraints. A self-contained, derivative-free, global convergence theory is provided, allowing an extension to other
problem classes. For the solution of the resulting subproblems in the setting of our suggested image denoising models,
we make use of a suitable stochastic gradient method. Results of several numerical experiments are presented in order
to compare both formulations and the associated augmented Lagrangian methods.

Key words. augmented Lagrangian method, nonsmooth optimization, Poisson denoising

AMS subject classifications. 49M37, 90C30, 90C48, 90C90

1. Introduction. Denoising of images is an important task in many applications, which
has received considerable attention during the last decades; see, e.g., [25, 49] for recent
reviews. In this paper, we consider the problem of estimating an image û ∈ L2 (Ω), û ≥ 0, on
the unit square Ω := (0, 1)2 from a random set of discrete observations {ω1, . . . , ωN} ⊂ Ω
with N ∈ N related to û as follows: We denote by

Z :=

N∑
i=1

δωi
,

with δω being the Dirac measure centered at ω ∈ Ω, the corresponding empirical process and
assume that Z is in fact a Poisson point process with intensity û, i.e., N ∈ N is random and

1. for each measurable set A ⊂ Ω, it holds E [Z(A)] =
∫
A
û(ω) dω, and

2. whenever A1, . . . , A` ⊂ Ω are measurable and pairwise disjoint, then the random
variables Z(A1), . . . , Z(A`) are stochastically independent.
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We refer to [33] for details on Poisson point processes and emphasize that 1 and 2 already
imply that for each measurable set A ⊂ Ω,

(1.1) Z(A) ∼ Poi

(∫
A

û(ω) dω

)
,

i.e., the observations are essentially Poisson distributed. By interpreting the L2-function û as
the density of a measure Û with respect to the Lebesgue measure dω, i.e., Û(A) =

∫
A
û(ω) dω

for all measurable sets A ⊂ Ω, the relation (1.1) shows that the measure Z is in fact a noisy
version of Û with E [Z(A)] = Û(A) for all measurable A ⊂ Ω due to 1. In view of the
Radon–Nikodým theorem, there is a one-to-one correspondence between û and the absolutely
continuous measure Û , and hence, Z can be interpreted as a noisy (in fact Poissonian) version
of û.

As the Poisson distribution is a natural model in applications ranging from astronomy
to biophysics (see, e.g., [2, 5, 33, 51]), the problem of estimating û from Z has received
considerable attention over the past decades. Early references include [47, 48], where explicit
models for the noise occurring in Charge Coupled Device cameras and corresponding methods
for its removal where discussed. Since then, a major focus has been on variational approaches;
see, e.g., [3, 4, 8, 9, 10, 26, 40, 41, 54]. In all these works, a (convex) functional J : L2(Ω)→ R
of the composite form

(1.2) ∀u ∈ L2(Ω): J(u) := GZ(u) + f(u)

is minimized, where GZ : L2(Ω) → R is a data-fidelity term measuring the discrepancy
between the observations Z and the candidate image u ∈ L2(Ω) and f : L2(Ω) → R is
a regularization term promoting desired properties of u (e.g., smoothness, sparsity,. . .). A
natural choice for GZ is the negative log-likelihood functional of the Poisson distribution

(1.3) GZ(u) :=

∫
Ω

u(ω) dω −
∫

Ω

ln(u(ω)) dZ(ω) =

∫
Ω

u(ω) dω −
N∑
i=1

ln (u(ωi)) .

The previously mentioned works do all rely on this data-fidelity term and mostly differ in the
choices of f and the algorithm used for minimization. The smoothness-promoting function
f can be chosen depending on the application. Famous choices include classical L2-norm
penalties, sparsity-promoting penalties such as f(u) :=

∑∞
i=1 |(u, ei)L2(Ω)| with a complete

orthonormal system or frame {ei}i∈N ⊂ L2(Ω), or the TV-seminorm given by

TV(u) := sup

{∫
Ω

u(ω) divϕ(ω) dω

∣∣∣∣ϕ ∈ C1
c (Ω;R2),max

ω∈Ω
‖ϕ(ω)‖2 ≤ 1

}
for each u ∈ L2(Ω), which equals TV(u) =

∫
Ω
‖∇u(ω)‖2 dω for differentiable u; see [1] for

details. Above, C1
c (Ω;R2) represents the space of all continuously differentiable functions

mapping from Ω to R2 with compact support in Ω. In the case where smooth functions are
desired, also Sobolev-type penalties

(1.4) f(u) :=

∫
R2

(
1 + ‖ζ‖22

)θ |(Fu)(ζ)|2dζ,

are suitable, where θ ≥ 0 and Fu denotes the Fourier transform of u extended by 0 to all
of R2.
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1.1. Problem statement. In this paper, we will follow a different approach proposed
in [27, 28]. It is based on considering a constrained problem

(1.5) min
u∈L2(Ω)

f(u) s.t. HZ(u) ≤ c

for some function HZ : L2(Ω) → Rm depending on Z and some vector c ∈ Rm instead of
the problem minu∈L2(Ω) J(u) with J as in (1.2). Note that for m = 1 and HZ = σGZ , with
some σ > 0, this problem is in fact related to minu∈L2(Ω) J(u); see [55]. However, motivated
by results from multiscale statistics, we employ a different choice than (simply) the negative
log-likelihood term from (1.3) for the constraint function HZ in (1.5) and aim to minimize f
only over images which are everywhere locally compatible to Z. For the latter, we introduce
a (carefully chosen) finite system B ⊂ 2Ω of measurable regions with positive measure in Ω
(e.g., a set of square subboxes of the image) and consider a candidate image u ∈ L2(Ω) as
compatible with the data if and only if its mean uB := |B|−1

∫
B
u(ω) dω with the Lebesgue

measure |B| of B does not deviate too much from the mean ZB := |B|−1Z(B) of the data
Z on B for all B ∈ B. Given the Poisson distribution of ZB , the deviation of uB from ZB
can be made precise by means of statistical hypothesis testing or, as a specific instance, by the
local likelihood ratio test (LRT for short) statistic

(1.6) ∀u ∈ L2(Ω): TB (Z, u) :=
√

2 |B| (uB − ZB + ZB ln (ZB/uB)).

Whenever the local LRT statistic TB (Z, u) is too large (which can be made precise when
specifying the type-1 error of the LRT), the candidate image u is considered incompatible
with Z on B.

This motivates the consideration of the variational Poisson denoising optimization prob-
lem

(VPD) min
u∈L2(Ω)

f(u) s.t. η (ZB , uB) ≤ r(|B|) ∀B ∈ B,

with a function r : [0, 1]→ (0,∞) reflecting that the right-hand side of the constraints should—
similar to the potential number of possible regions—depend on the scale |B| only and the
so-called Kullback–Leibler divergence η : R2 → R given by

(1.7) ∀(a, b) ∈ R2 : η (a, b) :=


b− a+ a ln (a/b) if a > 0, b > 0,

b if a = 0, b ≥ 0,

∞ otherwise.

Note that η is a nonnegative, convex, and lower semicontinuous function that is continuously
differentiable on {(a, b) ∈ R2 | a, b > 0}; see, e.g., [33, 50]. However, η is discontinuous
precisely at the points from {(a, b) ∈ R2 | a, b ≥ 0, ab = 0} and thus essentially nonsmooth.
Furthermore, note the similarity to the negative log-likelihood term GZ in (1.3), which differs
from an integral over η only by terms independent of the reconstruction candidate u.

The variational Poisson denoising problem is methodologically appealing from a statistical
point of view and has a very important property which is not directly obtained for the variational
or any other method mentioned before. If the function r is chosen such that

(1.8) P [∀B ∈ B : η (ZB , ûB) ≤ r(|B|)] ≥ α

holds for the true image û, i.e., if 0 is a (1 − α)-quantile of the random variable given by
supB∈B [η (ZB , ûB)− r(|B|)] (see [38]), then each reconstruction ū ∈ L2(Ω) solving (VPD)
automatically satisfies

(1.9) P [f(ū) ≤ f(û)] ≥ α,
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i.e., with probability at least α, the reconstruction ū is at least as smooth as the true image
û. Further theoretical properties of a similar method in the case of Gaussian observations
such as optimality for given function classes have been considered in [19, 29]. From a
practical perspective, (1.8) gives a clear interpretation on how to choose r, and it ensures that
all remaining parameters of the method have a direct interpretation (such as the probability
α). However, this property comes at the price that (VPD) is a computationally demanding
nonsmooth convex problem, which especially suffers from a huge number of constraints.
For example, for the setting we will consider in our numerical examples below where u is
discretized by means of 2662 equally sized pixels, then choosing B ⊂ 2Ω as the family of
all subsquares in the image with side length (scale) between 1 and 64 pixels leads already to
3 541 216 constraints; see Section 3.2.

In [27, 28], the problem (VPD) has been tackled by an ADMM approach. This requires
that in each iteration, a projection to the feasible set

F :=
{
u ∈ L2 (Ω)

∣∣∀B ∈ B : η (ZB , uB) ≤ r(|B|)
}

=
⋂
B∈B

{
u ∈ L2 (Ω)

∣∣ η (ZB , uB) ≤ r(|B|)
}

has to be computed. In the previously mentioned works, this has been carried out by Dykstra’s
algorithm, leading to a computationally poor performance. Let us note that if the noisy image
Z possesses L2-regularity, then it would be feasible to solve (VPD).

Further implementations of comparable problems (in the Gaussian case) have been dis-
cussed in [20, 43], relying on different algorithmic frameworks such as the Chambolle–Pock
algorithm (see [14]) or semismooth Newton methods (see [32]), but these approaches explic-
itly exploit the Gaussian and hence the smooth structure of the corresponding optimization
problem.

1.2. Augmented Lagrangian methods. In this paper, we will approach (VPD) by means
of augmented Lagrangian methods, which provide a well-established framework for the
numerical solution of constrained optimization problems; see, e.g., [6, 7]. The principal
idea behind those methods is to replace the minimization of a function subject to difficult
constraints by the minimization of the sum of the associated Lagrangian function and a
quadratic penalty term. Typically, the arising subproblems are unconstrained or at least possess
merely simple constraints. In contrast to penalty methods, convergence results for augmented
Lagrangian methods do not necessarily require that the penalty parameter tends to infinity.
The augmented Lagrangian method should be viewed as a general framework which allows
an adaptation to many different scenarios simply by taking a suitable and problem-dependent
subproblem solver. The two standard references mentioned above consider the situation of a
general nonlinear program (in finite dimensions), but a suitable (global) convergence theory
tailored for appropriate stationary points is also available for some difficult, structured, and/or
nonsmooth problems. This includes situations with an abstract geometric constraint (with a
potentially nonconvex constraint set) (see [30, 35]) and programs with a composite objective
function (see [15, 17, 18, 21, 31, 39, 45]). Specifically, in [45], issues of nonsmoothness are
eliminated by exploiting smoothness properties of the Moreau envelope in a partially convex
situation. The fully nonsmooth setting is also discussed in [24, 52], where all functions are
smoothed, as well as in [42] in the framework of so-called difference-of-convex programs.

While these references mainly deal with finite-dimensional problems, the augmented
Lagrangian approach can also be extended to the infinite-dimensional situation. Here, we
distinguish between the “half” and “full” infinite-dimensional setting. Both settings share
the property that the optimization variables belong to a Banach space, but the former allows
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only finitely many inequality constraints (possibly additional equality as well as abstract
constraints), whereas the latter allows more general functional constraints stated in a Banach
space (say, G(x) ∈ K for a mapping G : X → Y between two Banach spaces X and Y and a
closed, convex set K ⊂ Y ). The convergence theory for the “half” infinite-dimensional setting
was already considered in the seminal paper [44] by Rockafellar; see also the monograph [34].
Extensions to the fully infinite-dimensional setting are given in [12, 13, 37].

We should note, however, that there exist different versions for a realization of the
augmented Lagrangian approach. In particular, there is the classical method with the standard
Hestenes–Powell–Rockafellar update of the Lagrange multipliers, and there is the safeguarded
version with a more careful updating of the multiplier estimates; see [7]. On the one hand, the
counterexample in [36] shows that there cannot exist a satisfactory global convergence theory
for the classical method, at least not in the nonconvex setting, while the existing convergence
theory for the safeguarded version is rather complete in the sense that it has all desirable (and
realistic) properties. On the other hand, for convex problems, there exists a convergence theory
for the classical approach even with a constant penalty parameter. This result was established
by Rockafellar in [44], even for the “half” infinite-dimensional setting, and is based on the
duality of the augmented Lagrangian and the proximal point method; see [45] as well. In
particular, this convergence theory is based on the existence of Lagrange multipliers.

1.3. Our contributions. As mentioned earlier, the purpose of this article is to study the
numerical solution of (VPD) with the aid of augmented Lagrangian methods. Let us note
that (VPD) is covered by the “half” infinite-dimensional setting, and due to the huge number
of constraints in (VPD), the augmentation approach seems to be perfectly suitable to tackle
the problem computationally. In the course of the paper, we also suggest a reformulation of
the constraints in (VPD) as purely affine inequalities, and the latter is covered by the “half”
infinite-dimensional setting as well. Though both models are convex, we provide a purely
primal convergence theory for a safeguarded augmented Lagrangian method in a more general
nonconvex setting. We assume, however, that we are able to find an approximate global
minimum of the resulting subproblems. This is a realistic scenario for the convex optimization
problem (VPD) and its aforementioned reformulation but might also be applicable in some
other situations (e.g., think of disjunctive constraint systems composed of finitely many convex
branches). In contrast to the existing literature, our analysis is derivative-free and works
under minimal continuity assumptions on the data. This is rather important as the constraints
in (VPD) are modeled with the aid of the discontinuous function η from (1.7). Moreover, we
stress that our convergence theory is independent of any assumption regarding the existence (or
uniqueness or boundedness) of Lagrange multipliers. Finally, let us mention that the method
has favorable convergence properties even in the case where the constraints are inconsistent
since it still provides limits which minimize a suitable measure for the constraint violation.

The suggested safeguarded augmented Lagrangian method is then applied to the numerical
solution of (VPD) as well as to its reformulation with affine constraints. As the latter is
guaranteed to possess Lagrange multipliers at its minimizers, we also apply to it the classical
augmented Lagrangian method (i.e., we abstain from safeguarding) with a constant penalty
parameter which is reasonable due to the analysis in [44]. We compare these three numerical
approaches by means of several different test instances and document the results.

The paper is organized in the following way: In the remainder of this introductory sec-
tion, we comment on the notation that will be used throughout the paper. The safeguarded
augmented Lagrangian method of our interest is stated and analyzed in Section 2, where we
consider nonsmooth problems with finitely many inequality constraints, a general operator
equation (representing, e.g., a partial differential equation), as well as an abstract constraint set
such that the associated augmented Lagrangian subproblems can be solved up to approximate
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global optimality. Section 3 is dedicated to the numerical solution of the Poisson denoising
model with the aid of augmented Lagrangian methods. In Section 3.1, we derive a reformu-
lation of (VPD) which merely possesses (finitely many) affine inequality constraints. The
implementation of our experiments, the exploited subproblem solver, and the way we are
documenting our results are discussed in Sections 3.2–3.4 , respectively, before in Section 3.5
the numerical performance of augmented Lagrangian methods when applied to (VPD) and
its reformulation is illustrated and compared based on several different test instances. We
conclude with some final remarks in Section 4.

1.4. Notation. Let R and R+ denote the sets of all real numbers and nonnegative real
numbers, respectively. We make use of R := R ∪ {∞}. Throughout the paper, for a given
finite set D, #D is used to denote the cardinality of D. Let n ∈ N be a positive integer. For
vectors x, y ∈ Rn, max(x, y) ∈ Rn denotes the componentwise maximum of x and y. For
any p ∈ [1,∞], the `p-norm of x ∈ Rn will be denoted by ‖x‖p.

Whenever X is a Banach space, its norm will be denoted by ‖·‖X : X → [0,∞) if not
stated otherwise. Strong and weak convergence of a sequence {xk} ⊂ X to x ∈ X are
represented by xk → x and xk ⇀ x, respectively. If K ⊂ N is a set of infinite cardinality,
then we make use of xk →K x (xk ⇀K x) in order to express that the subsequence {xk}k∈K
converges (converges weakly) to x as k tends to∞ in K (which we denote by k →K ∞ for
brevity). The (topological) dual space of X will be represented by X∗, and the associated
dual pairing is then denoted by 〈·, ·〉X : X∗ ×X → R. Let Y be another Banach space. If
h : X → Y is Fréchet differentiable at x ∈ X , h′(x) : X → Y denotes the derivative of
h at x. Similarly, if X1 and X2 are Banach spaces such that X = X1 × X2, and if h is
Fréchet differentiable at x := (x1, x2) ∈ X , h′x1

(x) : X1 → Y denotes the partial derivative
with respect to x1 of h at x. The inner product in a Hilbert space H will be represented by
(·, ·)H : H ×H → R.

For an arbitrary function ϕ : X → R defined on a Banach space X , the set
domϕ := {x ∈ X |ϕ(x) <∞} is referred to as the domain of ϕ. Whenever ϕ is convex and
x̄ ∈ domϕ is chosen arbitrarily, the set

∂ϕ(x̄) := {ξ ∈ X∗ | ∀x ∈ domϕ : ϕ(x) ≥ ϕ(x̄) + 〈ξ, x− x̄〉X}

is called the subdifferential (in the sense of convex analysis) of ϕ at x̄.
For an integer d ∈ N, a bounded open set Ω ⊂ Rd, and p ∈ [1,∞), let Lp(Ω) denote

the Lebesgue space of (equivalence classes of) measurable functions u : Ω → R such that
Ω 3 ω 7→ |u(ω)|p ∈ R is integrable, equipped with the standard norm, which we denote by
‖·‖p : Lp(Ω)→ [0,∞). Note that it will be clear from the context whether ‖·‖p is taken in
Rn or Lp(Ω).

2. An augmented Lagrangian method for nonsmooth optimization problems. In this
section we address the algorithmic treatment of the rather abstract optimization problem

(P) min
x∈X

f(x) s.t. g(x) ≤ 0, h(x) = 0, x ∈ C,

where f : X → R, g : X → Rm, and h : X → Y are given functions and C ⊂ X is
a weakly sequentially closed set. Moreover, X is a reflexive Banach space, and Y is a
Hilbert space, which we identify with its dual, i.e., Y ∼= Y ∗. We assume that the functions
f, g1, . . . , gm : X → R are weakly sequentially lower semicontinuous, while the function h is
weakly-strongly sequentially continuous in the sense that

∀{xk} ⊂ X, ∀x ∈ X : xk ⇀ x in X =⇒ h(xk)→ h(x) in Y.
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In particular, h is continuous. In contrast to the standard setting of nonlinear programming,
we abstain from demanding any differentiability properties of the data functions. Throughout
this section, let F ⊂ X denote the feasible set of (P). Note that at least continuity of the
function h is indispensable in order to guarantee that F is closed. For later use, we introduce
dom g :=

⋂m
i=1 dom gi. Here, g1, . . . , gm are the component functions of g. As a minimal

requirement, we need

(2.1) dom f ∩ dom g ∩ C 6= ∅,

which will be a standing assumption in this section. Observe that (2.1) does not necessarily
rule out dom f ∩ F = ∅. However, dom f ∩ F 6= ∅ clearly implies the validity of (2.1).

The assumptions from above already guarantee that F is weakly sequentially closed.
Together with dom f ∩ F 6= ∅ and the weak sequential lower semicontinuity of the objective
functional f , this can be interpreted as a minimal requirement in constrained optimization in
order to ensure that the underlying optimization problem (P) possesses a solution. This would
be inherent whenever F is, additionally, bounded or f is, additionally, coercive as standard
arguments show.

2.1. A chain rule for lower semicontinuity. Before we can start with the presentation of
the augmented Lagrangian method and its convergence analysis, we need to prepare conditions
that guarantee that the composition of a (weakly sequentially) lower semicontinuous function
and a continuous function is (weakly sequentially) lower semicontinuous again. Such a
criterion is presented in the following lemma:

LEMMA 2.1. For some Banach space X , let ϕ : X → R be weakly sequentially lower
semicontinuous, and let ψ : R→ R be a continuous and monotonically increasing function.
Then ψ ◦ ϕ : X → R defined via

∀x ∈ X : (ψ ◦ ϕ)(x) :=

{
ψ(ϕ(x)) if ϕ(x) <∞,
limt→∞ ψ(t) if ϕ(x) =∞

is weakly sequentially lower semicontinuous.
Proof. Choose {xk} ⊂ X and x̄ ∈ X with xk ⇀ x̄ arbitrarily, and pick an infinite set

K ⊂ N such that

α := lim inf
k→∞

(ψ ◦ ϕ)(xk) = lim
k→K∞

(ψ ◦ ϕ)(xk).

First, we argue that α cannot attain the value −∞. Indeed, weak sequential lower semiconti-
nuity of ϕ yields the estimate −∞ < ϕ(x̄) ≤ lim infk→∞ ϕ(xk), so we infer that {ϕ(xk)}
is bounded from below. Consequently, {(ψ ◦ ϕ)(xk)} is also bounded from below, and thus,
α > −∞. In the case α = ∞, we automatically have α ≥ (ψ ◦ ϕ)(x̄), and thus, there
is nothing to show. Hence, we assume α ∈ R. By weak sequential lower semicontinuity
of ϕ, we have β := lim infk→K∞ ϕ(xk) ≥ ϕ(x̄). Pick an infinite set K ′ ⊂ K such that
limk→K′∞ ϕ(xk) = β. In the case where β ∈ R holds, ϕ(x̄) and the tail of the sequence
{ϕ(xk)}k∈K′ are finite, so we find

α = lim
k→K′∞

(ψ ◦ ϕ)(xk) = lim
k→K′∞

ψ(ϕ(xk)) = ψ(β) ≥ ψ(ϕ(x̄)) = (ψ ◦ ϕ)(x̄)

by continuity and monotonicity of ψ. Next, suppose that β = ∞ holds. In the case where
{ϕ(xk)}k∈K′ equals∞ along the tail of the sequence, we find

α = lim
k→K′∞

(ψ ◦ ϕ)(xk) = lim
t→∞

ψ(t) ≥ (ψ ◦ ϕ)(x̄)
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by monotonicity of ψ. Otherwise, there is an infinite set K ′′ ⊂ K ′ such that we have
{ϕ(xk)}k∈K′′ ⊂ R. However, β =∞ yields limk→K′′∞ ϕ(xk) =∞. Hence, by definition
of the composition, we find

α = lim
k→K′′∞

(ψ ◦ ϕ)(xk) = lim
k→K′′∞

ψ(ϕ(xk)) = lim
t→∞

ψ(t) ≥ (ψ ◦ ϕ)(x̄)

by continuity and monotonicity of ψ. This completes the proof.
We would like to note that, in general, for a (weakly sequentially) lower semicontinuous

function ϕ : X → R, the mappings x 7→ |ϕ(x)| and x 7→ ϕ2(x) are not (weakly sequentially)
lower semicontinuous (for example, choose X := R, and set ϕ(x) := −1 for all x ≤ 0 and
ϕ(x) := 0 for all x > 0). Observe that the absolute value function and the square are not
monotonically increasing, i.e., the assumptions of Lemma 2.1 are not satisfied in this situation.

We comment on a typical setting where Lemma 2.1 applies.
EXAMPLE 2.2. For each α > 0 and β ∈ R, the function ψ : R → R given by

ψ(t) := max2(0, αt + β) for each t ∈ R is continuous, monotonically increasing, and
satisfies limt→∞ ψ(t) = ∞. Thus, for each Banach space X and each weakly sequentially
lower semicontinuous function ϕ : X → R, the composition ψ ◦ ϕ : X → R given by

∀x ∈ X : (ψ ◦ ϕ)(x) :=

{
ψ(ϕ(x)) if ϕ(x) <∞,
∞ if ϕ(x) =∞

is weakly sequentially lower semicontinuous as well by Lemma 2.1.
We also note that this particular function ψ is convex. Thus, keeping the monotonicity of

ψ in mind, whenever ϕ is convex, the composition ψ ◦ ϕ is convex as well.

2.2. Statement of the algorithm. Let L : X × Rm+ × Y → R denote the Lagrangian
function associated with (P), which is given by

L(x, λ, µ) := f(x) + λ>g(x) + (µ, h(x))Y

for x ∈ X , λ ∈ Rm+ , and µ ∈ Y . For the construction of our solution method, we make use of
the corresponding augmented Lagrangian function Lρ : X×Rm+ ×Y → R associated with (P)
and which is given by

(2.2)
Lρ(x, λ, µ) := f(x) +

1

2ρ

m∑
i=1

(
max2 (0, λi + ρgi(x))− λ2

i

)
+ (µ, h(x))Y +

ρ

2
‖h(x)‖2Y ,

for all x ∈ X , λ ∈ Rm+ , and µ ∈ Y , where ρ > 0 is a given penalty parameter. Roughly
speaking, the latter results from L by adding a standard quadratic penalty for the constraints
g(x) ≤ 0 and h(x) = 0 appearing in (P). Within our algorithmic framework, the function Lρ
has to be minimized with respect to x, which means that the term − 1

2ρ ‖λ‖
2
2 could be removed

from the definition of Lρ. However, for some of the proofs that we are going to provide, it will
be beneficial to keep this shift. We would like to point the reader’s attention to the fact that
the function Lρ(·, λ, µ) is weakly sequentially lower semicontinuous for each λ ∈ Rm+ and
µ ∈ Y due to Lemma 2.1, Example 2.2, and the fact that the function h is weakly-strongly
sequentially continuous. Furthermore, we would like to point out that the abstract constraint
set C is not incorporated into the definitions of L and Lρ on purpose.
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REMARK 2.3. Whenever (P) is a convex optimization problem, i.e., whenever the
functions f, g1, . . . , gm are convex while h is affine, then, for each λ ∈ Rm+ and µ ∈ Y ,
Lρ(·, λ, µ) is a convex function as well by monotonicity and convexity of t 7→ max2(0, αt+β)
for each α > 0 and β ∈ R.

For some penalty parameter ρ > 0, we introduce a function Vρ : X ×Rm+ → R by means
of

Vρ(x, λ) :=

{
max

(
‖max(g(x),−λ/ρ)‖∞ , ‖h(x)‖Y

)
if x ∈ dom g,

∞ if x /∈ dom g,

for all x ∈ X and λ ∈ Rm+ . From the definition of Vρ, we obtain

Vρ(x, λ) = 0 ⇐⇒ g(x) ≤ 0, λ ≥ 0, λ>g(x) = 0, h(x) = 0,

i.e., Vρ can be used to measure the feasibility of x for (P) with respect to the constraints
induced by g and h as well as the validity of the complementarity-slackness condition with
respect to the inequality constraints.

In Algorithm 1, we state a pseudo-code which describes our method.

Algorithm 1 Safeguarded Augmented Lagrangian Method for (P).
Require: nonempty, closed, convex, and bounded sets Bm ⊂ Rm+ and BY ⊂ Y , starting

point (x0, λ0, µ0) ∈ C×Rm+ ×Y , initial penalty parameter ρ0 > 0, parameters τ ∈ (0, 1),
γ > 1

1: Set k := 0.
2: while a suitable termination criterion is violated at iteration k do
3: Choose vk and wk as the projections of λk and µk onto Bm and BY , respectively.
4: Compute xk+1 ∈ C as an approximate solution of the optimization problem

(2.3) min
x∈X

Lρk(x, vk, wk) s.t. x ∈ C.

5: Set

(2.4) λk+1 := max
(
0, vk + ρkg(xk+1)

)
, µk+1 := wk + ρkh(xk+1).

6: If k = 0, or if the condition

(2.5) Vρk(xk+1, vk) ≤ τ Vρk−1
(xk, vk−1)

holds, then set ρk+1 := ρk; otherwise set ρk+1 := γρk.
7: Set k ← k + 1.
8: end while
9: return xk

In Algorithm 1, the quantities vk and wk play the role of Lagrange multiplier estimates.
By construction, the sequences {vk} and {wk} remain bounded throughout a run of the
algorithm while this does not necessarily hold true for {λk} and {µk}. Note that the classical
augmented Lagrangian method could be recovered from Algorithm 1 by replacing vk and
wk by λk and µk everywhere, respectively, and removing Step 3. However, the so-called
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safeguarded variant from Algorithm 1 has been shown to possess better global convergence
properties than the classical method; see, e.g., [36] for details. For example, one can choose
Bm as the (very large) box [0,v] for some v ∈ Rm satisfying v > 0. A similar choice is
possible for BY if Y is equipped with a suitable partial order relation. This way, Algorithm 1
is likely to parallel the classical augmented Lagrangian method if the sequences {λk} and
{µk} remain bounded. Let us mention that, in principle, the convergence analysis associated
with Algorithm 1, which is presented in Section 2.3, just requires the inclusions vk ∈ Bm and
wk ∈ BY in Step 3.

Assuming for a moment that all involved data functions are smooth, then the derivative
with respect to x of Lρ from (2.2) is given by

(Lρ)
′
x(x, λ, µ) = f ′(x) +

m∑
i=1

max(0, λi + ρ gi(x)) g′i(x) + h′(x)∗[µ+ ρh(x)].

Thus, the updating rule for the multipliers in (2.4) yields

(2.6) (Lρk)′x(xk+1, vk, wk) = L′x(xk+1, λk+1, µk+1),

which is the basic idea behind Step 5. Note that a similar formula as (2.6) can be obtained
in terms of several well-known concepts of subdifferentiation whenever a suitable chain rule
applies.

Finally, let us mention that in Step 6, the penalty parameter is increased whenever
the new iterate (xk+1, vk, wk) is not (sufficiently) better from the viewpoint of feasibility
(and complementarity) than the old iterate (xk, vk−1, wk−1). Note that our choice for the
infinity norm in the definition of Vρ is a matter of taste since all norms are equivalent in
finite-dimensional spaces. However, this particular error measure Vρ keeps track of the
largest violation of the feasibility and complementarity condition with respect to all inequality
constraints, which is why we favor it here.

For further information about (safeguarded) augmented Lagrangian methods in nonlinear
programming, we refer the interested reader to the monograph [7].

2.3. Convergence to global minimizers. In this section, we provide a convergence
analysis for Algorithm 1, where we assume that in Step 4, the subproblem (2.3) is solved up
to (approximate) global optimality. For example, this is possible whenever (P) is a convex
program (see Remark 2.3) but also in more general situations where (P) has a special structure,
e.g., if the feasible set can be decomposed into a moderate number of convex branches
while the objective function is convex. Within the assumption below, which will be standing
throughout this section, we quantify the requirements regarding the subproblem solver.

ASSUMPTION 1. In each iteration k ∈ N of Algorithm 1, the approximate solution
xk+1 ∈ C of (2.3) satisfies

(2.7) ∀x ∈ C : Lρk(xk+1, vk, wk)− εk ≤ Lρk(x, vk, wk),

where εk ≥ 0 is some given constant.
Typically, the inexactness parameter εk in Assumption 1 is chosen to be positive. While

εk := 0 corresponds to the situation where the subproblems (2.3) are solved exactly, we
will see that the augmented Lagrangian technique generally works fine if only approxi-
mate solutions of the subproblems are computed. This also has the advantage that when-
ever infx{Lρk(x, vk, wk) |x ∈ C} is finite, then one can always find points xk+1 satis-
fying (2.7) for arbitrarily small εk > 0, while an exact global minimizer may not exist.
Furthermore, we note that, due to (2.1), Lρk(xk+1, vk, wk) <∞ holds for each k ∈ N, i.e.,
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xk+1 ∈ dom f ∩ dom g ∩ C is valid for each computed iterate. Finally, it is worth mentioning
that the validity of (2.7) guarantees that Lρk(·, vk, wk) is bounded from below on C.

Throughout the section, we make use of the following lemma:

LEMMA 2.4. Let v ∈ Rm, w ∈ Y , and ρ > 0, and let x ∈ F be an arbitrary feasible
point of (P). Then Lρ(x, v, w) ≤ f(x) is valid.

Proof. Due to h(x) = 0 and by definition of the augmented Lagrangian function Lρ
from (2.2), we find

Lρ(x, v, w) = f(x) +
1

2ρ

m∑
i=1

(
max2(0, vi + ρ gi(x))− v2

i

)
,

i.e., in order to show the claim, it is sufficient to verify max2(0, vi + ρ gi(x)) ≤ v2
i for all

i ∈ {1, . . . ,m}. Thus, fix i ∈ {1, . . . ,m} arbitrarily. In the case vi + ρ gi(x) ≤ 0, we find
max2(0, vi + ρ gi(x)) = 0 ≤ v2

i . Conversely, vi + ρ gi(x) > 0 yields 0 ≤ vi + ρ gi(x) ≤ vi
since gi(x) ≤ 0 is valid by the feasibility of x for (P), so by monotonicity of the square on the
nonnegative real line, max2(0, vi + ρ gi(x)) ≤ v2

i follows.

Let us now start with the convergence analysis associated with Algorithm 1. Therefore,
we first study issues related to the feasibility of accumulation points.

PROPOSITION 2.5. Let (2.1) hold. Assume that Algorithm 1 produces a sequence {xk}
such that Assumption 1 holds for some bounded sequence {εk}, and let {ρk} and {vk} be the
associated sequences of penalty parameters and Lagrange multiplier estimates associated with
the inequality constraints in (P), respectively. Let the subsequence {xk+1}k∈K and x̄ ∈ X be
chosen such that xk+1 ⇀K x̄. Then x̄ is a global minimizer of the optimization problem

(2.8) min
x∈X

1

2
‖max(g(x), 0)‖22 +

1

2
‖h(x)‖2Y s.t. x ∈ dom f ∩ C,

where, for each x /∈ dom g, 1
2 ‖max(g(x), 0)‖22 := ∞. Furthermore, whenever F 6= ∅,

x̄ ∈ dom f ∩ F holds, and we have Vρk(xk+1, vk)→K 0.

Proof. Let us start with the observation that, due to xk+1 ∈ dom f ∩ C for each k ∈ K,
the weak sequential lower semicontinuity of f and the weak sequential closedness of C
guarantee that x̄ ∈ dom f ∩ C, i.e., x̄ is feasible for (2.8). To proceed, we distinguish two
cases.

Case 1: Suppose that {ρk} remains bounded. Then Step 6 yields that ρk remains constant
on the tail of the sequence, i.e., there is some k0 ∈ N such that ρk = ρk0 is valid for all k ∈ N
satisfying k ≥ k0. In particular, condition (2.5) is satisfied for all k ≥ k0, which immediately
yields Vρk(xk+1, vk)→ 0 due to {xk+1} ⊂ dom g. On the one hand, we infer h(xk+1)→ 0
and, on the other hand, by weak-strong sequential continuity of h, h(xk+1) →K h(x̄). By
uniqueness of the limit, h(x̄) = 0 follows. Due to boundedness of {vk}, we may also assume
without loss of generality that vk →K v̄ is valid for some v̄ ∈ Rm. The componentwise weak
sequential lower semicontinuity of g yields max(g(x̄),−v̄/ρk0) ≤ 0 in the light of (2.5), i.e.,
g(x̄) ≤ 0 follows. Hence, x̄ ∈ F has been shown, i.e., x̄ is feasible to (P). The objective value
of (2.8) associated with x̄ is 0, so that x̄ is a global minimizer of this problem as well.

Case 2: Now, assume that {ρk} is not bounded. Then by construction we have ρk →∞.
Fix an arbitrary point x ∈ dom f ∩ dom g ∩ C (such a point exists due to our standing
assumption (2.1)). Observe that Assumption 1 and the definition of the augmented Lagrangian
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function give

(2.9)

f(xk+1) +
1

2ρk

m∑
i=1

(
max2

(
0, vki + ρkgi(x

k+1)
)
− (vki )2

)
+ (wk, h(xk+1))Y +

ρk
2
‖h(xk+1)‖2Y − εk

≤ f(x) +
1

2ρk

m∑
i=1

(
max2

(
0, vki + ρkgi(x)

)
− (vki )2

)
+ (wk, h(x))Y +

ρk
2
‖h(x)‖2Y

for each k ∈ N. Division by ρk yields

(2.10)

f(xk+1)

ρk
+

1

2

m∑
i=1

(
max2

(
0,
vki
ρk

+ gi(x
k+1)

)
−
(
vki
ρk

)2
)

+ (wk/ρk, h(xk+1))Y +
1

2
‖h(xk+1)‖2Y −

εk
ρk

≤ f(x)

ρk
+

1

2

m∑
i=1

(
max2

(
0,
vki
ρk

+ gi(x)

)
−
(
vki
ρk

)2
)

+ (wk/ρk, h(x))Y +
1

2
‖h(x)‖2Y

for each k ∈ N. Note that {f(xk+1)}k∈K is bounded from below due to the assumed weak
sequential lower semicontinuity of f . Furthermore, we have vk/ρk → 0, wk/ρk → 0, and
εk/ρk → 0 due to the boundedness of {vk}, {wk}, and {εk} as well as ρk → ∞. Thus,
taking the lower limit k →K ∞ in (2.10) yields

(2.11)
1

2
‖max(g(x̄), 0)‖22 +

1

2
‖h(x̄)‖2Y ≤

1

2
‖max(g(x), 0)‖22 +

1

2
‖h(x)‖2Y <∞,

where we also exploited weak sequential lower semicontinuity of g1, . . . , gm and weak-strong
sequential continuity of h. Hence, x̄ is a global minimizer of

min
x∈X

1

2
‖max(g(x), 0)‖22 +

1

2
‖h(x)‖2Y s.t. x ∈ dom f ∩ dom g ∩ C.

Further, we note that for any x /∈ dom g, the objective value of this optimization problem
would be∞, so x̄ is already a global minimizer of (2.8).

Whenever dom f ∩F is nonempty, we may choose x ∈ dom f ∩F above in order to see
from (2.11) that g(x̄) ≤ 0 and h(x̄) = 0 are valid, and x̄ ∈ F follows. It remains to show
Vρk(xk+1, vk)→K 0. Therefore, we exploit Lemma 2.4 and x ∈ F to obtain the estimate

(2.12)

f(xk+1)− 1

2ρk
‖vk‖22 + (wk, h(xk+1))Y − εk

≤ f(xk+1) +
1

2ρk

m∑
i=1

(
max2

(
0, vki + ρkgi(x

k+1)
)
− (vki )2

)
+ (wk, h(xk+1))Y +

ρk
2
‖h(xk+1)‖2Y − εk

≤ f(x)
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for each k ∈ N from (2.9). From xk+1 ⇀K x̄, we find h(xk+1) →K h(x̄) by weak-strong
sequential continuity of h. Thus, {(wk, h(xk+1))Y }k∈K remains bounded as {wk} is bounded
by construction. Since {vk} is bounded by construction as well while ρk → ∞ holds and
since {εk} is assumed to be bounded, the sequence {f(xk+1)}k∈K is bounded from above.
Its lower boundedness has already been mentioned earlier in the proof. Hence, we have
f(xk+1)/ρk →K 0.

Dividing (2.12) by ρk/2 and taking, in contrast to our earlier strategy, the upper limit
k →K ∞ in the second estimate gives

lim sup
k→K∞

(
‖max(0, vk/ρk + g(xk+1))‖22 + ‖h(xk+1)‖2Y

)
≤ 0

as we now also know f(xk+1)/ρk →K 0. Due to vk/ρk → 0, this gives convergence of
‖max(g(xk+1),−vk/ρk)‖2 →K 0, and it also follows that ‖h(xk+1)‖Y →K 0. Since all
norms in finite-dimensional spaces are equivalent, Vρk(xk+1, vk)→K 0 is obtained, and the
proof is completed.

Next, we want to show that under Assumption 1, Algorithm 1 can be used to compute a
global minimizer of (P) provided there exists one.

THEOREM 2.6. Let dom f ∩ F 6= ∅ hold. Assume that Algorithm 1 produces a sequence
{xk} such that Assumption 1 holds for some sequence {εk} satisfying εk → 0. Then, for
each subsequence {xk+1}k∈K and each point x̄ ∈ X satisfying xk+1 ⇀K x̄, we have
f(xk+1)→K f(x̄), and x̄ is a global minimizer of (P).

Proof. To start, note that Proposition 2.5 guarantees that x̄ is a feasible point of (P).
Furthermore, for each feasible point x ∈ dom f ∩ F of (P), Assumption 1 and Lemma 2.4
yield

(2.13) ∀k ∈ N : Lρk(xk+1, vk, wk)− εk ≤ Lρk(x, vk, wk) ≤ f(x).

We note that the same inequality holds trivially for all x ∈ F \ dom f . We will first prove
that lim supk→K∞ f(xk+1) ≤ f(x̄) is valid. Again, we proceed by investigating two disjoint
cases.

Case 1: Suppose that {ρk} remains bounded. As in the proof of Proposition 2.5, this
implies that condition (2.5) holds along the tail of the sequence. Thus, for each i ∈ {1, . . . ,m},
we find ∣∣max

(
0, vki /ρk + gi(x

k+1)
)
− vki /ρk

∣∣ =
∣∣max

(
gi(x

k+1),−vki /ρk
)∣∣→ 0

as k →∞. By the boundedness of {vki /ρk}, the term {max(0, vki /ρk + gi(x
k+1))} needs to

be bounded as well, which is why we already find that∣∣∣max2
(
0, vki /ρk + gi(x

k+1)
)
−
(
vki /ρk

)2∣∣∣→ 0,

and by the boundedness of {ρk} this yields

1

ρk

(
max2(0, vki + ρk gi(x

k+1))− (vki )2
)
→ 0.

Furthermore, we find (wk, h(xk+1))Y →K 0 and ρk
2 ‖h(xk+1)‖2Y →K 0 from the fact that

xk+1 ⇀K x̄, the weak-strong sequential continuity of h, that h(x̄) = 0, and the boundedness
of {wk}. Plugging all this into (2.13) while respecting the definition of the function Lρk and
εk → 0, we find lim supk→K∞ f(xk+1) ≤ f(x).
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Case 2: Let {ρk} be unbounded. Then we already have ρk → ∞ by construction of
Algorithm 1. Furthermore, (2.13) implies the validity of the estimate

∀k ∈ N : f(xk+1)− 1

2ρk
‖vk‖22 + (wk, h(xk+1))Y − εk ≤ f(x)

by leaving out some of the nonnegative terms on the left-hand side. As above, we find
(wk, h(xk+1))→K 0 by the boundedness of {wk}, the weak-strong sequential continuity of
h, and by h(x̄) = 0. The boundedness of {vk} and ρk →∞ yield 1

2ρk
‖vk‖22 → 0 as k →∞.

Thus, taking the upper limit in the above estimate shows lim supk→K∞ f(xk+1) ≤ f(x).
In order to finalize the proof, we observe that the weak sequential lower semicontinuity of

f now yields the estimate

f(x̄) ≤ lim inf
k→K∞

f(xk+1) ≤ lim sup
k→K∞

f(xk+1) ≤ f(x).

As this has been shown for each x ∈ dom f∩F (and it is trivially valid for each x ∈ F\dom f ),
x̄ is a global minimizer of (P). Using the above estimate with x := x̄, we additionally find the
convergence f(xk+1)→K f(x̄).

As a consequence of the previous result, we obtain the following stronger version for
convex problems with a strongly convex objective function.

COROLLARY 2.7. Let F 6= ∅ hold. Assume that Algorithm 1 produces a sequence {xk}
such that Assumption 1 holds for some sequence {εk} satisfying εk → 0. Furthermore, let
f be continuous as well as strongly convex, g1, . . . , gm be convex, h be affine, and C be
convex. Then the entire sequence {xk} converges (strongly) to the uniquely determined global
minimizer of (P).

Proof. Since f is strongly convex, the (convex) optimization problem (P) has a unique
solution x̄ ∈ X; see [53, Theorem 2.5.1, Propositions 2.5.6, 3.5.8]. As x̄ is a minimizer
of the underlying convex problem (P) and since f is assumed to be continuous, there exists
ξ̄ ∈ ∂f(x̄) such that

〈
ξ̄, x− x̄

〉
X
≥ 0 is valid for all x ∈ F ; see [53, Theorem 2.9.1]. By

strong convexity of f , there exists a constant ν > 0 such that

(2.14) ∀x ∈ X : f(x) ≥ f(x̄) + 〈ξ̄, x− x̄〉X +
ν

2
‖x− x̄‖2X ;

see, e.g., [53, Corollary 3.5.11]. This implies

f(x̄) + 〈ξ̄, xk+1 − x̄〉X +
ν

2
‖xk+1 − x̄‖2X −

1

2ρk
‖vk‖22 + (wk, h(xk+1))Y

≤ f(xk+1)− 1

2ρk
‖vk‖22 + (wk, h(xk+1))Y

≤ f(xk+1) +
1

2ρk

m∑
i=1

(
max2

(
0, vki + ρkgi(x

k+1))− (vki )2
)

+ (wk, h(xk+1))Y +
ρk
2
‖h(xk+1)‖2Y

= Lρk(xk+1, vk, wk)

≤ Lρk(x̄, vk, wk) + εk

≤ f(x̄) + εk

for all k ∈ N, where the first inequality results from (2.14), the second one comes from adding
some nonnegative terms, the subsequent equation is simply the definition of the augmented
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Lagrangian, the penultimate inequality takes into account Assumption 1, and the final estimate
uses Lemma 2.4.

Note that, on the one hand, the term on the right-hand side is bounded. On the other
hand, since {vk} and {wk} are bounded sequences and h is affine, the growth behavior of
the left-hand side is dominated by the quadratic term. Consequently, the sequence {xk} is
bounded and therefore has a weakly convergent subsequence in the reflexive space X . The
weak limit is necessarily a solution of (P) by Theorem 2.6. Since the entire sequence {xk} is
bounded, we therefore get xk ⇀ x̄ and f(xk)→ f(x̄) from Theorem 2.6.

Let us now test (2.14) with x := xk+1. Then, after some rearrangements, we find

f(xk+1)− f(x̄)−
〈
ξ̄, xk+1 − x̄

〉
X
≥ ν

2
‖xk+1 − x̄‖2X ≥ 0.

From xk+1 ⇀ x̄ and f(xk+1)→ f(x̄), the left-hand side in this estimate tends to 0 as k →∞.
Due to ν > 0, this immediately gives xk+1 → x̄, and the proof is complete.

We end this section by discussing a suitable termination criterion for Algorithm 1 and
recalling the central convergence result for convex problems stated in [44], which is based on
a non-safeguarded version of Algorithm 1.

REMARK 2.8. Observe that Proposition 2.5 indicates that testing the condition
Vρk−1

(xk, vk−1) ≤ εalm
abs for some εalm

abs ≥ 0 in each of the iterations k ∈ N, k ≥ 1, is a reason-
able termination criterion for Algorithm 1 provided that dom f ∩ F 6= ∅. On the one hand, if
Vρk−1

(xk, vk−1) is small, then the underlying point xk is close to be feasible, and the asso-
ciated Lagrange multiplier estimate vk−1 is close to satisfy the associated complementarity-
slackness condition with respect to the inequality constraints. On the other hand, along weakly
convergent subsequences of the iterates produced by Algorithm 1, Vρk−1

(xk, vk−1) indeed
becomes arbitrarily small under the assumptions of Proposition 2.5. Furthermore, under the
assumptions of Theorem 2.6, weak accumulation points are already global minimizers of (P).

REMARK 2.9. In [44], the author considers (P) with convex, continuously differentiable
functions f, g1, . . . , gm, a closed, convex set C, and in the absence of (infinite-dimensional)
equality constraints. For the numerical solution of this problem, a simplified version of
Algorithm 1 is suggested where safeguarding of the Lagrange multipliers is omitted and the
penalty parameter stays constant. More precisely, this means that Steps 3 and 6 are removed
from the method, in Step 4, the subproblem

(2.15) min
x∈X

Lρ0(x, λk) s.t. x ∈ C

is solved up to εk-minimality (see Assumption 1), and the Lagrange multiplier update in Step 5
is replaced by

λk+1 := max
(
0, λk + ρ0g(xk+1)

)
.

In [44, Theorem 2.1], it is shown that whenever (P) possesses a minimizer which is station-
ary (in the sense that Lagrange multipliers exist) while

∑∞
k=0

√
εk < ∞ holds, then each

accumulation point (x̄, λ̄) ∈ X × Rm+ of the primal-dual sequence {(xk, λk)} produced by
the adjusted method is a Karush–Kuhn–Tucker pair of (P), i.e., x̄ is a feasible point with
associated Lagrange multipliers λ̄. In particular, x̄ is a minimizer of (P) in this case.

3. Numerical solution of the Poisson denoising model. In this section, we numerically
test the variational Poisson denoising model. First, in Section 3.1, we introduce an affine
reformulation of the constraints in (VPD). General comments about the implementation of
the experiments are presented in Section 3.2. In particular, we introduce three augmented
Lagrangian schemes which are used to tackle (VPD) computationally, one of them focusing
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on the original model (VPD) while the other two address the aforementioned reformulation.
In Section 3.3, we comment on a stochastic gradient descent method which is used to solve
the arising subproblems within the augmented Lagrangian schemes. Our way of documenting
the obtained results is briefly outlined in Section 3.4. Finally, the outcome of our experiments
is presented in Section 3.5.

3.1. Reformulation of the constraints. Let us point out that the constraints in (VPD)
are heavily nonlinear and, due to the fact that the Kullback–Leibler divergence is extended
real-valued and nonsmooth. In this section, we show that these constraints can be reformulated
as affine ones, making the associated reformulation of (VPD) seemingly easier to tackle from
an algorithmic point of view.

For given a ≥ 0 and c > 0, let us consider the nonlinear constraint

(3.1) η(a, b) ≤ c

for the real variable b. Above, η is the Kullback–Leibler divergence defined in (1.7). Whenever
a = 0, we can immediately rewrite (3.1) as 0 ≤ b ≤ c.

Thus, let us assume that a > 0. Then (3.1) requires b > 0. Let us study the properties of
the smooth function (0,∞) 3 b 7→ η(a, b) ∈ R. One can easily verify that it is strictly convex
with a uniquely determined minimizer at b̌ := a with function value 0. Furthermore, we have

lim
b↓0

η(a, b) =∞, lim
b→∞

η(a, b) =∞.

Hence, there exist uniquely determined points b ∈ (0, b̌) and b ∈ (b̌,∞) that solve the
nonlinear equation

(3.2) η(a, b)− c = 0,

and thus, (3.1) is equivalent to b ≤ b ≤ b. Let us now describe how the bounds b and b can be
accessed computationally. Division by a in (3.2) and some rearrangements yield

b

a
+ ln

(a
b

)
=
c

a
+ 1.

We exponentiate this equation and take the reciprocal on both sides in order to find(
− b
a

)
exp

(
− b
a

)
=

−1

exp
(
c
a + 1

) .
Due to

−1

exp(1)
<

−1

exp
(
c
a + 1

) < 0,

the latter equation indeed possesses two solutions, which can be expressed in terms of Lam-
bert’s W function Wκ, i.e., the multivalued inverse of t 7→ t exp(t) (see, e.g., [16] for
properties, applications, and the numerical evaluation of this function), as

b := b(a, c) := −aW0

(
−1

exp
(
c
a + 1

)) , b := b(a, c) := −aW−1

(
−1

exp
(
c
a + 1

)) .
Taking all our above findings together, we can equivalently state (VPD) as

(VPDaff) min
u∈L2(Ω)

f(u) s.t.

{
0 ≤ uB ≤ r(|B|) ∀B ∈ B0

Z ,

b(ZB , r(|B|)) ≤ uB ≤ b(ZB , r(|B|)) ∀B ∈ B+
Z ,
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where we made use of the sets

B0
Z := {B ∈ B |ZB = 0}, B+

Z := {B ∈ B |ZB > 0}.

Observe that (VPDaff) possesses twice as many constraints as (VPD) does.
Let us note that (VPDaff) is not a box-constrained problem since uB already involves

an averaging operation of u on the box B ∈ B. However, using the weighted characteristic
function χB ∈ L2(Ω) given by

∀ω ∈ Ω: χB(ω) :=

{
|B|−1 ω ∈ B,
0 ω /∈ B,

for each subbox B ∈ B, the constraints in (VPDaff) can be rewritten in the form{
0 ≤ 〈χB , u〉L2(Ω) ≤ r(|B|) ∀B ∈ B0

Z ,

b(ZB , r(|B|)) ≤ 〈χB , u〉L2(Ω) ≤ b(ZB , r(|B|)) ∀B ∈ B+
Z .

Hence, whenever the objective function f is smooth enough, local minimizers of (VPDaff) are
stationary point of that problem due to [11, Proposition 2.42], i.e., Lagrange multipliers exist
in that case.

3.2. Implementation. For the numerical realization, we discretize the image using 2562

equally sized pixels. We use a zero padding of five equally sized pixels at the borders of the
image to prevent artifacts in the reconstruction due to the periodic extension in the objective
value associated with (1.4). Thus, setting n := 266, the image to be denoised has actually a
size of n2 pixels. A wider padding would give a higher guarantee of avoiding these artifacts at
the cost of higher computational complexity. Empirically, our tests show that the padding size
of five pixels seems to be sufficient. The (padded) image u is therefore approximated by an
n× n matrix of pixels with pixel size s := 1/n2 = 266−2. With this resolution, the family of
regions B ⊂ 2Ω is chosen as all subsquares of the image with side length (scale) between 1
and 64 pixels. The size |B| of a region B ∈ B is numerically computed as |B| := s#B. The
number of constraints in (VPD), i.e., the number of subboxes in B, is then calculated by

n∑
i=n−63

i2 = 3 541 216

and is approximately 50 times higher than the total number of pixels. The usage of squares
is clearly subjective, but without a priori information about the image content, it is not clear
which other shapes might be preferable. We emphasize that, however, our methodology is also
applicable with other shapes such as rectangles, circles, or ellipses.

As there are way more subsquares with small side length, a penalty term

pen(|B|) :=
√

2 (log (n2/ |B|) + 1),

which only depends on the size of the subsquares, is introduced. This is necessary to avoid the
small subsquares to dominate the statistical behavior of the overall test statistic

Tn(Z, u,B) := max
B∈B

[TB(Z, u)− pen(|B|)]

(see [38]), where TB is the LRT statistic from (1.6). We approximate the (1 − α)-quantile
q1−α of Tn by the (empirically sampled) (1− α)-quantile q̃1−α of

Mn(B) := max
B∈B

[
|B|−1/2

∣∣∣∑
i∈B

Xi

∣∣∣− pen(|B|)
]
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with i.i.d. standard normal random variables Xi. If the smallest scale in B is at least of size
log(n), then this approximation is shown to be valid in [38]. However, the chosen penalization
pen effectively overdamps the small scales (see [46]), which makes this approximation
reasonable over all scales considered here. Altogether, this leads to the right-hand side

r(|B|) :=
(q̃1−α + pen(|B|))2

2|B|
in (VPD). In the numerical experiments, the 0.1-quantile q̃0.1 := 1.63 is used because for
larger values of α, the local hypothesis tests are not restrictive enough such that the obtained
reconstruction is oversmoothed. For the same reason, θ := 0.01 is chosen relatively small in
the Sobolev-type penalty (1.4), which is used as the objective function subsequently. Observe
that the discretized problem associated with (VPDaff) is a convex quadratic optimization
problem in this situation.

We solve the associated problem (VPD) with the aid of the following procedures:
ALM: the safeguarded augmented Lagrangian method from Algorithm 1 applied to

(VPD),
ALMr: the safeguarded augmented Lagrangian method from Algorithm 1 applied to

the reformulated problem (VPDaff), and
sALMr: the simplified augmented Lagrangian method without safeguarding and with

constant penalty parameter applied to (VPDaff); see Remark 2.9.
For all three methods, the discretized noisy observation is taken as the primal starting point,
i.e., x0 := Z, while λ0 := 0 is chosen for the initial Lagrange multiplier. Note that this
choice for x0 is only possible in the discretized setting, as Z is likely to lack L2-regularity
in the infinite-dimensional framework. In the case of continuous computations, one could,
e.g., use a kernel density estimator to obtain some point x0 ∈ L2(Ω) from Z. Within our
implementation of ALM and ALMr, we choose vk as the componentwise projection of the
Lagrange multiplier λk onto the interval [0, 108]. Furthermore, we use the parameters ρ0 := 4,
τ := 0.9, and γ := 4 for these methods. In sALMr, we make use of the (constant) penalty
parameter ρ0 := 4 · 105. Finally, for the abort of all three methods, we exploit the termination
criterion from Remark 2.8 with εalm

abs := 10−2. Let us note that the aforementioned choice
for ρ0 in sALMr is such that this termination criterion is almost satisfied already in the first
iteration of the method. In some preliminary experiments, it turned out that sALMr is not
capable to enhance the feasibility properties along the iterates significantly if ρ0 is chosen
much smaller than 4 · 105. Finally, all three methods are, at the latest, aborted after a total
number of 30 outer augmented Lagrangian iterations.

3.3. Stochastic gradient descent as a subproblem solver. Solving the unconstrained
associated subproblems (2.3) as well as (2.15) within the algorithmic frameworks ALM as
well as ALMr and sALMr, respectively, is computationally expensive, especially as the
problems (VPD) and (VPDaff) possess many constraints. This obstacle is tackled by using the
first-order gradient descent method NADAM from [23], which outperformed other gradient
descent methods in the setting we are considering here. It is also utilized that the constraints
are redundant to a certain degree, and thus, a stochastic version of the NADAM method can
be used. Undoubtedly, this also speeds up the evaluation of the (stochastic) gradient of the
augmented Lagrangian function and cheapens each iteration of the subproblem solver.

Let us comment on the implementation of NADAM in the context of ALM. For the
fixed penalty parameter ρk > 0 and the Lagrange multiplier estimate vk := {vkB}B∈B, the
augmented Lagrangian subproblem (2.3) takes the particular form

min
u∈Rn×n

f(u) +
1

2ρk

∑
B∈B

(
max 2

(
0, vkB + ρk(η(ZB , uB)− r(|B|))

)
− (vkB)2

)
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in the present situation. Here and in what follows, we approximate the continuous mean
|B|−1

∫
B
u(ω) dω by uB := s|B|−1

∑
i∈B ui = (#B)−1

∑
i∈B ui, which corresponds to

the discrete mean. For the NADAM method, one needs to calculate the gradient of the
augmented Lagrangian function. Therefore, the partial derivative of u 7→ η(ZB , uB) with
respect to the pixel ui (where it exists) is given by (#B)−1(1 − ZB/uB) if i ∈ B and 0
otherwise. Thus, the partial derivative of the associated augmented Lagrangian function with
respect to the pixel ui (where it exists) equals

f ′ui
(u) +

∑
B∈B(i)

1

#B
max

(
0, vkB + ρk(η(ZB , uB)− r(|B|))

)(
1− ZB

uB

)
,

where

B(i) := {B ∈ B | i ∈ B}.

The above formula is valid whenever uB > 0 for all B ∈ B(i). To account for the non-
differentiability on the boundary, we set

(Lρk)′ui
(u, vk) := f ′ui

(u) +
∑

B∈B(i)

bρk(Z, u,B, vk)

with

bρk(Z, u,B, vk)

:=


1

#B max
(
0, vkB + ρk(η(ZB , uB)− r(|B|))

) (
1− ZB

uB

)
if uB > 0,

C if uB = 0 and ZB > 0,

0 if uB = ZB = 0.

In the case uB = ZB = 0, the constraint is satisfied, and thus, we can set the corresponding
gradient to 0. The rationale behind the definition for uB = 0 and ZB > 0 is to enforce a step
in positive direction. Numerically, we use C := −10 < 0. By definition it always holds that
ZB ≥ 0, and therefore we do not need to cope with the case ZB < 0. As the NADAM method
may produce iterates having pixels with negative value, we set all pixels to zero which have
negative value after each NADAM iteration. This way, we also ensure uB ≥ 0.

Instead of calculating the summand for every B ∈ B, we choose a random family Br ⊂ B
and approximate the gradient by

(Lρk)′ui
(u, vk) ≈ f ′ui

(u) +
∑

B∈Br∩B(i)

bρk(Z, u,B, vk).

As it is possible to efficiently calculate all summands with the same scale |B| with the help
of the discrete Fourier transform, we pick the scales at random and only include all sets B
of those scales in Br. In practice, it was first tried to use a fixed number of 10 scales. This
yielded fast convergence in the beginning, but convergence slowed down during the runs
due to missing accuracy when solving the subproblems. Thus, we decided to increase the
number of scales picked during the algorithm although this worsens the running time of a
single augmented Lagrangian step. More precisely, in our experiments, we now increase
the amount of scales by one after every augmented Lagrangian step. For simplicity, a fixed
number of 300 iterations of the NADAM method is chosen, and the stepsize is picked constant
as max(0.005, 0.8k) in the k-th iteration of Algorithm 1 to solve the augmented Lagrangian
subproblem (2.3).
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Within the algorithmic framework of ALMr, for a given penalty parameter ρk > 0
and Lagrange multiplier estimates vk := {vkB}B∈B ∪ {vkB}B∈B, the associated augmented
Lagrangian subproblem (2.3) is given by

(3.3)

min
u∈Rn×n

f(u) +
1

2ρk

∑
B∈B0

Z

(
max 2

(
0, vkB + ρk(uB − r(|B|))

)
− (vkB)2

+ max 2
(
0, vkB − ρkuB

)
− (vkB)2

)
+

1

2ρk

∑
B∈B+

Z

(
max 2

(
0, vkB + ρk(uB − b(ZB , r(|B|)))

)
− (vkB)2

+ max 2
(
0, vkB + ρk(b(ZB , r(|B|))− uB)

)
− (vkB)2

)
.

In the discretized setting, the partial derivative of the augmented Lagrangian function with
respect to the pixel ui equals

f ′ui
(u) +

∑
B∈B0

Z∩B(i)

1

#B

(
max

(
0, vkB + ρk(uB − r(|B|))

)
−max

(
0, vkB − ρkuB

))
+

∑
B∈B+

Z∩B(i)

1

#B

(
max

(
0, vkB + ρk(uB − b(ZB , r(|B|)))

)
−max

(
0, vkB + ρk(b(ZB , r(|B|))− uB)

))
.

Again, we do not exploit the full gradient of the augmented Lagrangian function in the
NADAM framework but rely on an approximation where the appearing sums are restricted to
a random family Br ⊂ B which is chosen in the same way as outlined above. Similarly, the
maximum number of iterations and the stepsize for NADAM are chosen as described in the
setting of ALM.

Finally, in the setting of sALMr, the appearing augmented Lagrangian sub-
problem (2.15) equals (3.3) with ρk := ρ0 and vk := λk for the current Lagrange multiplier
λk := {λkB}B∈B ∪ {λ

k

B}B∈B, and this subproblem is treated in the same way as (3.3) in the
ALMr framework. The only exception is that we choose the number of NADAM iterations by
104 in the first outer iteration of the augmented Lagrangian method. This is necessary to get a
good approximate solution of the subproblem. In the subsequent outer iterations, we again use
merely 300 NADAM iterations as we are already closer to a good approximate solution.

3.4. Documentation of results. In order to compare the algorithmic frameworks in
A := {ALM,ALMr, sALMr} in a reasonable way, we run all these methods on the same
set P of benchmark instances for (VPD) and illustrate the outcome with the aid of so-called
performance profiles (see [22]) based on different performance indicators.

Let us briefly comment on the concept of performance profiles. Therefore, we denote the
output of algorithm a ∈ A for problem p ∈ P by ua

p. Let q be a given performance measure
taking only positive values such that a smaller value of q indicates a better performance. The
associated performance ratio is defined via

∀p ∈ P, ∀a ∈ A : rp,a :=
q(ua

p)

min{q(ua′
p ) | a′ ∈ A}

.
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In the associated performance profile, for each of the algorithms a ∈ A, we plot the illustrative
part of the nondecreasing curve ζa : [1,∞)→ [0, 1] given by

∀t ∈ [1,∞) : ζa(t) :=
#{p ∈ P | rp,a ≤ t}

#P
.

For example, for a ∈ A, ζa(1) denotes the portion of benchmark problems in P on which
algorithm a performed best. For t > 1, ζa(t) represents the portion of benchmark problems
p ∈ P on which algorithm a produces an output whose value with respect to the performance
measure q(ua

p) is at most the t-fold of the best value achieved by any algorithm in A for the
particular instance p.

To document the results of our experiments, we make use of the performance measures:
• Objective function value of output

We note that the Sobolev-type penalty f from (1.4) only takes nonnegative values. In
all practically relevant scenarios, all feasible points of (VPD) will possess positive
objective values for this choice of the objective function.

• Number of outer augmented Lagrangian iterations until termination
• Value of error measure when the method is aborted

For a ∈ {ALM,ALMr}, the performance measure is given by Vρk−1
(ua

p, v
k−1),

where k ∈ N is the final value of the iteration counter when Algorithm 1 is aborted.
For a := sALMr, we take Vρ0(ua

p, λ
k−1) as the performance measure, where the

meaning of k is the same as mentioned above.
• Value of the penalty parameter when the method is aborted

Here, we only compare ALM and ALMr since the penalty parameter is not enlarged
in sALMr.

• Percentage of constraints violated by the output
Let us note that a constraint in (VPD) is violated if and only if precisely one of
the associated two constraints in (VPDaff) is violated. In particular, an arbitrarily
chosen point satisfies at least 50% of the constraints in (VPDaff). We thus measure the
percentage of violated constraints in terms of the constraints in (VPD) for all three
methods in order to state a fair comparison. Due to the huge number of constraints, it
is unlikely that any of the methods actually computes a feasible point of (VPD) or
(VPDaff). Nevertheless, we added the positive offset δ := 1 to each of the percentages
to obtain meaningful performance profiles.

• Maximum relative (affine) constraint violation of the output
For a comparatively fair comparison, this quantity is first measured in terms of the
constraints of (VPD) only, i.e., for any p ∈ P and a ∈ A, the quantity

max
B∈B

max(0, η(ZB , (u
a
p)B)− r(|B|))

r(|B|)

is used as a performance measure. For the outputs of ALM, this quantity has almost
always been finite. However, as ALMr and sALMr aim to compute feasible points
of (VPDaff), it may happen that, for some boxes B ∈ B, the appearing fraction
takes the value∞; see (1.7) again for the precise definition of the Kullback–Leibler
divergence η. In this case, we set the maximum relative constraint violation to be the
largest finite value of

max(0, η(ZB , (u
a′

p′)B)− r(|B|))
r(|B|)

,
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which is observed for all p′ ∈ P and a′ ∈ A in order to get a meaningful performance
profile. Second, in a similar fashion, the relative constraint violation is measured in
terms of the constraints in (VPDaff) for all three methods. Note that in this case, no
issues regarding infinite values have to be faced. Again, a constant offset of δ := 1 is
added to the relative (affine) constraint violation to make the associated performance
profile compelling.

• Average relative (affine) constraint violation of the output
This performance measure is first defined by∑

B∈B

max(0, η(ZB , (u
a
p)B)− r(|B|))

#B r(|B|)

for p ∈ P and a ∈ A. Again, we note that the appearing fraction may take value
∞ for a ∈ {ALMr, sALMr}. In this case, it is replaced by the largest finite value
of this fraction achieved over P and A. Second, a similar quantity based on the
affine constraints in (VPDaff) is defined for a comparison of all three methods. In
both situations, we use the constant offset δ := 1 to obtain meaningful performance
profiles.

Let us mention that we do not rely on computation time as a performance measure for the
following reasons. Whenever k ∈ N denotes the final value of the outer iteration counter when
the augmented Lagrangian method of interest is aborted, then, by construction, ALM and
ALMr have run precisely 300k iterations of the subproblem solver NADAM while sALMr has
run precisely 104 + 300(k− 1) ≈ 300(k+ 32) iterations of it. Let us also emphasize that with
an increasing outer iteration counter, the cost for one iteration of NADAM increases as well
since the number of subboxes, taken into account for the computation of the stochastic gradient
of the augmented Lagrangian function, is enlarged in each outer iteration; see Section 3.3.
Thus, k is the decisive quantity for the running time of all three methods, and sALMr is,
generally, slower than ALM and ALMr since the maximum number of outer iterations is
set, for all three methods, to 30; see Section 3.2. For example, one run on the “Cameraman”
image (see Figure 3.1) on an AMD Ryzen 5 Pro 5650U in our Python implementation took
64, 69, and 81 minutes for ALM, ALMr, and sALMr with k = 25, k = 27, and k = 30,
respectively.

3.5. Numerical results. In this section, we comment on the numerical behavior of the
augmented Lagrangian schemes ALM, ALMr, and sALMr for the denoising of the three
standard test images “Brain”, “Butterfly”, and “Cameraman”, where the hyperparameters
are chosen as described in the previous sections. The benchmark problems are created by
applying Poisson noise to each of the three ground truth pictures û. Thus, every pixel Zi of
the (discrete) noisy observation Z is randomly drawn according to

∀i ∈ {1, . . . , n}2 : Zi ∼ Poi(ûi).

To obtain a reasonable benchmark collection of noisy test images, we created 10 noisy versions
of each of the three test images mentioned above. The three test images of interest as well as
some exemplary noisy versions of them can be found in Figure 3.1.

We pick r such that (1.8) and, consequently, (1.9) hold true with α = 0.1. Typical
examples of outputs associated with ALM can be found in Figure 3.2. The reconstructions
show that the method yields reasonable results as convergence to a meaningful solution is
observed. As mentioned before, using α = 0.1 ensures the statistical guarantee (1.9) and
thus leads by construction to a method tending to oversmoothing. This is clearly visible in
Figure 3.2 but must be seen as a feature of the variational Poisson denoising method under
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FIG. 3.1. The three test images (top row) and noisy versions of the test images (bottom row). ©Copyrighted
content. Creative commons license does not apply.

FIG. 3.2. Denoised versions of the test images obtained via ALM. ©Copyrighted content. Creative commons
license does not apply.

consideration. Let us note that the outputs of ALMr and sALMr are of comparable quality so
we do not present the associated denoised images here.

To prevent the observed oversmoothing, one could apply the variational Poisson denoising
approach with a smaller function r (shifted by a constant). For example, this can be seen
in the denoised version of the “Cameraman” image in Figure 3.3, which, again, has been
obtained with the aid of ALM but with decreased r. This modification implies that the
statistical guarantee (1.9) is lost, but therefore the constraints are more restrictive and prevent
oversmoothing. Note that a similar observation was made in [28]. It can be seen from
Figure 3.3 that the corresponding reconstruction is less smooth but seems visually superior
over the one in Figure 3.2. For our numerical comparison of the three methods ALM, ALMr,
and sALMr, however, we stick to our original choice of r and α in order to preserve the idea
behind variational Poisson denoising.
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FIG. 3.3. Reconstruction of the “Cameraman” image with decreased r to reduce oversmoothing obtained via
ALM. ©Copyrighted content. Creative commons license does not apply.

Let us now start to document the comparison of the three augmented Lagrangian methods
ALM, ALMr, and sALMr based on the performance measures mentioned in Section 3.4. Let
us first inspect the performance profiles in Figure 3.4, which document the obtained objective
function values, the total number of outer augmented Lagrangian iterations, as well as the
value of the error measure and the size of the penalty parameter when the respective method is
aborted. We observe that ALM computes the best objective function values for approximately
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FIG. 3.4. Performance profiles for the objective function value, the number of outer augmented Lagrangian
iterations, the value of the error measure, and the value of the penalty parameter (from top left to bottom right).
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67% of the test instances, but the scale of the t-axis underlines that ALMr and sALMr do not
significantly fall behind ALM in this regard. Interestingly, ALMr and sALMr produce a point
whose objective value is just 1‰ and 2‰ worse than the best computed function value for
each test instance, respectively—a quality which ALM does not achieve. Regarding the total
number of outer augmented Lagrangian iterations, we observe that ALM and ALMr perform
best in about 40% and 60% of all test runs, respectively, while sALMr cannot match the other
two methods in this regard. The performance profile also indicates that in about 90% of all
test runs, the total number of outer iterations for any of the algorithms under consideration is
at most 1.5 times as high as the smallest number of exploited outer iterations. Regarding the
value of the error measure, there is a significant difference between ALM as well as ALMr,
which perform similarly well with slight advantages for ALMr, and sALMr is outperformed
by the other two methods. For example, the situation where the error measure is allowed
to be 20 times higher than the best achieved value of the error measure is only covered in
about 60% of all test runs for sALMr. The final value of the penalty parameter for ALM is
smaller than the one for ALMr for about 68% of all test instances. However, while for its
termination, ALMr reliably needs a penalty parameter which is at most γ6 = 4096 times
larger than the smallest necessary penalty parameter, i.e., at most 6 more enlargements of the
penalty parameter in Step 6 of Algorithm 1 are necessary, a similar bound for ALM cannot be
distilled from the associated performance profile.

Second, let us inspect the feasibility properties of the outputs of all these methods.
In Figure 3.5, the percentage of violated constraints (with respect to the model (VPD)) is
documented. Here, we observe that the smallest percentage of violated constraints is achieved
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FIG. 3.5. Performance profile for the percentage of violated constraints.

by ALMr in about 68% of all test runs. However, ALM falls behind the smallest percentage
of violated constraints only by a factor 1.003 in all test runs, and, anyhow, is in the lead for the
other 32% of the test instances. Again, sALMr clearly cannot compete with ALM and ALMr.
Still, it falls short the smallest percentage of violated constraints only by a factor 1.01, which
is still an acceptable deviation. Note, however, that the percentage of violated constraints
does not document how bad the violated constraints are missed. Therefore, let us inspect
Figure 3.6 which reports the maximum and average relative (affine) constraint violation. Here,
we observe that regarding the maximum and average relative constraint violation (with respect
to the constraints of (VPD)), all methods perform in a good way with obvious advantages for
ALM and ALMr in the settings of the average and maximum constraint violation, respectively.
This is good news, as all three methods are, at their core, constructed to solve the model

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

58 C. KANZOW, F. KRÄMER, P. MEHLITZ, G. WACHSMUTH, AND F. WERNER

1 1.5 2 2.5 3 3.5

0

0.2

0.4

0.6

0.8

1

maximum relative constraint violation

ALM
ALMr
sALMr

1 1.1 1.2 1.3 1.4 1.5

0

0.2

0.4

0.6

0.8

1

maximum relative affine constraint violation

ALM
ALMr
sALMr

1 1.002 1.004 1.006

0

0.2

0.4

0.6

0.8

1

average relative constraint violation

ALM
ALMr
sALMr

1 1.0001 1.0002 1.0003

0

0.2

0.4

0.6

0.8

1

average relative affine constraint violation

ALM
ALMr
sALMr

FIG. 3.6. Performance profiles for the maximum relative constraint violation, the maximum relative affine
constraint violation, the average relative constraint violation, and the average relative affine constraint violation
(from top left to bottom right).

problem (VPD), which comes along with the handling of the associated huge number of
constraints. Let us now inspect the performance profiles for the maximum and average relative
affine constraint violation (with respect to the constraints of (VPDaff)). One would expect
that ALMr as well as sALMr outperform ALM in this regard as the former two algorithms
directly work with the model formulation (VPDaff) while the latter algorithm does not. This
intuition is supported by our results only in parts. Indeed, we observe that ALM and sALMr
both cannot challenge ALMr and that ALM performs significantly better than sALMr.

Let us present an interim summary of our numerical experiments. While ALM and ALMr
both perform well on the set of benchmark problems, sALMr falls short both of these methods
regarding the number of outer iterations, the final value of the error measure, and the feasibility
aspects of the produced output. Furthermore, it has to be mentioned that, due to the fact that
we need to run 10000 iterations of NADAM in order to solve the first augmented Lagrangian
subproblem up to a reasonable precision to observe any convergence of sALMr later on (see
Section 3.3), the latter is significantly slower than ALM and ALMr. We thus cannot attest
sALMr a satisfying performance.

Next, we present some averaged numbers to analyze the behavior of the three methods
on each of the three test images individually. Let us start with a documentation of the results
associated with the test image “Brain” which can be found in Table 3.1. The performance
profiles already indicated that all three methods compute points with related objective function
value, and this is underlined by Table 3.1. Inspecting the total number of outer iterations
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TABLE 3.1
Averaged numbers for the test image “Brain”.

performance measure ALM ALMr sALMr

objective function value 2.4729·108 2.4592·108 2.4583·108

number of outer iterations 29.3 26.5 30.0
value of error measure 1.4998·101 7.6307·10−3 3.8705·10−2

value of penalty parameter 3.4903·1016 1.0486·107 4.0000·105

percentage of violated constraints 9.4996·10−5 5.8363·10−3 8.4727·10−3

max. rel. constraint violation 3.7626·10−3 9.6763·10−1 1.7180
max. rel. affine constraint violation 2.2717·10−5 7.6307·10−3 3.8705·10−2

av. rel. constraint violation 1.1616·10−8 1.4712·10−3 4.0849·10−3

av. rel. aff. constraint violation 2.2768·10−11 6.7136·10−7 3.3754·10−6

reveals an advantage of ALMr against ALM as well as sALMr, and similar observations
can be made for the final value of the error measure and the penalty parameter. Let us note
that sALMr exploits the predefined maximum total number of outer iterations in each run. It
thus might be possible to achieve better results with this approach when allowing for further
iterations. This, however, costs additional time, and we already mentioned above that sALMr
is the slowest algorithm we are considering here. Regarding the feasibility aspects, ALM
is clearly better than the other two methods. It has to be mentioned that there is a strong
relation between these assessments. For the test image “Brain”, which possesses broad areas
of uniform color, we observe that, on many subboxes, the mean of the noisy image as well
as the mean of the iterates are (very close to) zero. Numerically, this drives the value of
the associated constraints in (VPD) and thus the error measure to∞. In order to avoid this,
Algorithm 1 enlarges the penalty parameter more often in this setting, compared to the one
where (VPDaff) is tackled, and this phenomenon cannot happen. At the end of the day, ALM
then produces images which are much closer to feasibility.

Let us now inspect the averaged numbers for the results associated with the test images
“Butterfly” and “Cameraman” in Tables 3.2 and 3.3, respectively.

TABLE 3.2
Averaged numbers for the test image “Butterfly”.

performance measure ALM ALMr sALMr

objective function value 9.8967·108 9.9047·108 9.9007·108

number of outer iterations 27.9 26.4 30.0
value of error measure 8.8339·10−3 7.3673·10−3 8.7777·10−2

value of penalty parameter 1.2452·105 6.2076·107 4.0000·105

percentage of violated constraints 2.2192·10−3 7.4833·10−5 5.4026·10−3

max. rel. constraint violation 9.6253·10−1 1.8556·10−2 3.8648·10−1

max. rel. affine constraint violation 2.7286·10−1 7.3673·10−3 1.4300
av. rel. constraint violation 9.5834·10−5 7.6614·10−8 2.5851·10−4

av. rel. aff. constraint violation 4.4251·10−5 4.8633·10−8 2.2870·10−4

Again, all three methods do not differ regarding the objective function value of the
produced output. Inspecting the error measure reveals no big differences between ALM
and ALMr, while ALM now terminates with a significantly smaller penalty parameter than
ALMr does. In contrast, the feasibility measures look far better for ALMr than for ALM.
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TABLE 3.3
Averaged numbers for the test image “Cameraman”.

performance measure ALM ALMr sALMr

objective function value 1.1606·109 1.1622·109 1.1613·109

number of outer iterations 23.8 28.3 30.0
value of error measure 6.8892·10−3 4.9436·10−3 1.2357·10−1

value of penalty parameter 3.0147·105 1.4764·108 4.0000·105

percentage of violated constraints 1.9836·10−3 3.4649·10−5 4.1128·10−3

max. rel. constraint violation 7.7851·10−1 1.2058·10−2 3.4789·10−1

max. rel. affine constraint violation 2.6348·10−1 4.9436·10−3 7.9586·10−1

av. rel. constraint violation 1.1465·10−4 5.1053·10−8 1.6282·10−4

av. rel. aff. constraint violation 5.1804·10−5 2.5188·10−8 1.0092·10−4

Interestingly, for the test image “Cameraman”, ALM terminates after a notably smaller number
of outer iterations than ALMr. As above, sALMr exploits the predefined maximum total
number of outer iterations in each run. Regarding almost all aspects, sALMr cannot match
the other two methods.

Summing up these results, we observe that both ALM and ALMr are reasonable strate-
gies for the implementation of the Poisson denoising approach for image recovery while
sALMr is not. As depicted above, the individual performance of ALM and ALMr depends
on the structure of the underlying picture, so a general ranking between ALM and ALMr
is not possible. This is rather remarkable since ALM is based on the nonlinear nonsmooth
model problem (VPD) while ALMr builds on the seemingly simpler convex quadratic prob-
lem (VPDaff).

4. Concluding remarks. In this paper, we discussed the numerical solution of the so-
called variational Poisson denoising problem, which is a statistically motivated model for
image denoising that possesses a huge number of constraints, with the aid of augmented
Lagrangian methods. To tackle the original model (VPD), whose constraints are modeled with
the aid of the extended real-valued Kullback–Leibler divergence and are thus nonsmooth, we
suggested a rather general safeguarded augmented Lagrangian framework for fully nonsmooth
problems in Banach spaces with finitely many inequality constraints, equality constraints
within a Hilbert space setting, and additional abstract constraints, where the inequality and
equality constraints are augmented. An associated derivative-free global convergence theory
has been developed which applies in situations where the appearing subproblems can be solved
to approximate global minimality, and the latter is likely to be possible in convex situations.
Our results generalize related findings in (partially) smooth settings; see, e.g., [37, Section 4]
or [39, Theorem 6.15]. For our analysis, we only relied on minimal requirements regarding
semicontinuity properties of all involved data functions as (generalized) differentiation played
no role, and this makes our results broadly applicable.

We also visualized that it is possible to equivalently reformulate the constraints in (VPD)
as affine inequalities, but this procedure comes at the price of doubling the total number of
constraints. After discretization, this new model (VPDaff) is a convex quadratic optimization
problem with a huge number of constraints and can be tackled with the standard safeguarded
augmented Lagrangian framework. Furthermore, as the minimizers of (VPDaff) are stationary,
it is possible to solve the latter with the classical non-safeguarded version of the augmented
Lagrangian method where the penalty parameter undergoes no evolution.

These three algorithmic approaches have been implemented to denoise a benchmark
collection of noisy images obtained from the standard test images “Brain”, “Butterfly”, and
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“Cameraman” by adding some random Poisson noise. On the one hand, our results document
that the safeguarded augmented Lagrangian method performs comparably well when applied
to (VPD) or its reformulation (VPDaff). On the other hand, the classical non-safeguarded
augmented Lagrangian method with a constant penalty parameter falls clearly short of the
results obtained by the other two methods and thus cannot be considered a reasonable approach
to solve the Poisson denoising model.
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