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THE NEUMANN BOUNDARY CONDITION FOR THE TWO-DIMENSIONAL
LAX-WENDROFF SCHEME. II∗

ANTOINE BENOIT† AND JEAN-FRANÇOIS COULOMBEL‡

Abstract. We study the stability of a two-dimensional Lax-Wendroff scheme in a quarter-plane. Following our
previous work in [Commun. Math. Sci., 21 (2023), pp. 2051–2082], we aim here at adapting the energy method in
order to study second-order extrapolation boundary conditions. We first show, based on the one-dimensional problem,
why modifying the energy is a necessity in order to obtain stability estimates. We then study the two-dimensional
case and propose a modified energy as well as second-order extrapolation boundary and corner conditions in order to
maintain second-order accuracy and stability of the whole scheme, including near the corner.
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Notation. For d a positive integer and J ⊂ Zd, we let `2(J ;R) denote the Hilbert space
of real-valued, square integrable sequences indexed by J and equipped with the norm

∀u ∈ `2(J ;R), ‖u‖2`2(J ) :=
∑
j∈J

u2
j .

The corresponding scalar product is denoted 〈 ; 〉`2(J ). Below, we mainly focus on the case
d = 2, but we shall also encounter the case d = 1.

1. Introduction. This article is a follow-up of our previous work [1], where we have
studied the so-called Lax-Wendroff scheme with a stabilizer in two space dimensions. This
scheme was proposed in [8] to approximate solutions to symmetric hyperbolic systems.
Previous stability studies for this scheme were based on Fourier analysis and therefore dealt
with problems that were defined on the whole space or that considered periodic boundary
conditions. In [1], we have shown that the energy method is a successful technique for dealing
with `2-stability of the Lax-Wendroff scheme in two space dimensions. The energy method
bypasses Fourier analysis and is therefore interesting if one wishes to deal with problems
with boundary conditions. In [1], we were able to recover the optimal stability criterion in the
whole space (the so-called Courant-Friedrichs-Lewy condition) and also to study first-order
extrapolation boundary conditions for an outflow in the half-plane and in the quarter-plane.
For the latter case, the analysis requires specifying an extrapolation condition at the corner
which, up to our knowledge, was new.

Since the Lax-Wendroff scheme gives, at least formally, second-order approximations of
solutions to symmetric hyperbolic systems, first-order extrapolation at the boundary might
deteriorate the overall accuracy of the scheme. We thus aim here at studying second-order
extrapolation boundary conditions in the outflow case, that is, when the transport operator
does not come with any boundary condition in the continuous setting. As evidenced in the
one-dimensional case (see Section 2 below), the classical energy method does not predict
stability for second-order extrapolation, at least not in a straightforward way. Modifying the
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energy near the boundary is necessary to obtain stability estimates by energy arguments, and
this is probably one of the very first examples of discrete summation by parts operators (see,
e.g., [9, 10, 11] and subsequent works). Let us note that stability estimates for any order
of extrapolation at the boundary could also be derived through the more complete, though
elaborate, GKS analysis (see, e.g., [5, 6]), but we wish to bypass this theory in order, for
instance, to cover problems in a quarter-plane for which an analogous theory is still lacking.
Our goal here is therefore to extend the procedure of devising a suitable energy functional
for the Lax-Wendroff scheme to second-order extrapolation boundary conditions in two
space dimensions. This is, to some extent, a prototype example for a “high-order” boundary
treatment in several space dimensions with a corner in the space domain, and we shall already
see that the algebra becomes rather involved.

The plan of the article is as follows: In Section 2, we introduce and quickly analyze a
one-dimensional problem in order to motivate the necessity of modifying the energy functional
to deal with second-order extrapolation. Section 3 is the core of this article. We introduce the
two-dimensional Lax-Wendroff scheme and the associated extrapolation conditions in a quarter-
plane. We then state and prove our main result, namely Theorem 3.1 below. The general
methodology is the same as in [1], so we shall feel free at some places to shorten the details
and to refer to this companion article. At last, Section 4 includes some numerical simulations
and a discussion illustrating the theoretical result and more specifically the assumptions made
to obtain such a result.

2. The one-dimensional problem. In this section, being mostly a presentation of a
motivating example, we feel free not to make the functional framework precise and keep the
calculations at a rather formal level. We consider the outgoing transport equation in one space
dimension:

(2.1)

{
∂tu+ a ∂xu = 0, t ≥ 0, x ≥ 0,

u|t=0
= u0,

where a is a fixed negative number, which explains why we do not consider any boundary
condition on {x = 0}. The unknown function u in (2.1) is assumed to be real-valued.
We consider a space step size ∆x > 0 and a time step size ∆t > 0; we then denote by
λ := ∆t/∆x the so-called Courant-Friedrichs-Lewy (CFL in what follows) number. We then
approximate the solution to (2.1) by the Lax-Wendroff scheme

(2.2) un+1
j = unj −

λa

2
(unj+1 − unj−1) +

(λa)2

2
(unj+1 − 2unj + unj−1), n ∈ N, j ∈ N,

with the initial condition

∀j ∈ N, u0
j :=

1

∆x

∫ (j+1)∆x

j∆x

u0(y) dy.

In equation (2.2), unj is meant to be an approximation of the solution u to (2.1) in the cell
[n∆t, (n+ 1) ∆t)× [j∆x, (j + 1) ∆x) for any (n, j) ∈ N×N. The iteration (2.2) requires
knowledge of un−1 in order to determine un+1

0 . Below, for n ∈ N, the cell
[n∆t , (n + 1) ∆t) × (−∆x , 0) that corresponds to the index j = −1 is referred to as
a ghost cell since it lies outside of the physical domain R+

x . We consider here a second-order
extrapolation procedure in order to maintain, at least formally, second-order accuracy of the
whole numerical procedure up to the boundary:

(2.3) un−1 = 2un0 − un1 , n ∈ N .
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The scheme (2.2), (2.3) then determines the sequence (unj )j∈N inductively with respect to n.
Multiplying the interior equation of (2.1) by u and integrating with respect to x over R+,

we obtain the energy inequality

(2.4)
d

dt

∫
R+

u(t, x)2dx = a u(t, 0)2 ≤ 0 .

We aim here at understanding whether the numerical scheme (2.2), (2.3) satisfies an analogous
energy balance law at the discrete level. The calculations below can already be found in [3],
but we reproduce them briefly for the sake of completeness.

We start from the following decomposition, which is a direct consequence1 of (2.2):

∀j ∈ N, (un+1
j )2 − (unj )2 = − (λa)2(1− (λa)2)

4
(unj+1 − 2unj + unj−1)2

+ λa (unj−1u
n
j − unj unj+1)

+
(λa)2

2

(
(unj−1)2 − 2(unj )2 + (unj+1)2

)
+

(λa)3

2

(
(unj − unj−1)2 − (unj+1 − unj )2

)
.

The first term on the right-hand side corresponds to the dissipation of the Lax-Wendroff
scheme while the second, third, and fourth lines are telescopic with respect to j (they would
not contribute if we would sum over Z). We now sum with respect to j ∈ N and then use the
boundary condition (2.3) to obtain

∀n ∈ N,
∑
j∈N

(un+1
j )2 −

∑
j∈N

(unj )2

= − (λa)2(1− (λa)2)

4

∑
j∈N

(unj+1 − 2unj + unj−1)2

+
λa− 1

2
(un0 )2 +

1 + λa

2

(
un0 − λa (un1 − un0 )

)2

.

(2.5)

We assume that the space and time step sizes are chosen in such a way that the stability
condition λ|a| ∈ (0, 1) holds, and we recall that a is negative. In this case, the right-hand side
in (2.5) first incorporates a non-positive term that corresponds to the interior dissipation of the
Lax-Wendroff scheme. It also incorporates, in the second line on the right-hand side of (2.5),
a boundary term that is a quadratic form with respect to (un0 , u

n
1 ). This boundary term mimics

the right-hand side of (2.4) since the discrete normal derivative un1 − un0 is meant to be small
for smooth solutions and un0 is meant to be close to u(n∆t, 0).

Unfortunately, the above quadratic form on the right-hand side of (2.5) is not negative
definite since λa− 1 is negative but 1 + λa is positive. The energy argument thus does not
predict stability, at least not in this straightforward way. However, it can easily be modified
to obtain a positive conclusion to the stability problem of the scheme (2.2), (2.3). The idea,
following [10] and many subsequent works, is to modify the energy functional close to the
numerical boundary. Namely, a direct adaptation of the above energy argument gives the
identity

1

2
(un+1

0 )2+
∑
j≥1

(un+1
j )2 − 1

2
(un0 )2 −

∑
j≥1

(unj )2

1Such decompositions that incorporate dissipation and telescopic terms are derived and used in a systematic way
in [2], to which we refer for more details.
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= − (λa)2(1− (λa)2)

4

∑
j≥1

(unj+1 − 2unj + unj−1)2

+
λa

2
(un0 )2 +

λa

2

(
un0 − λa(un1 − un0 )

)2

,

where the interior dissipation term is unchanged but the boundary term is now a negative
definite quadratic form of (un0 , u

n
1 ) since a is negative and λ is a positive number. In particular,

under the Courant-Friedrichs-Lewy condition [4] (later on referred to as the CFL condition),
λ|a| ∈ (0, 1), the energy

1

2
(un0 )2 +

∑
j≥1

(unj )2

is non-increasing with respect to the time index n for any solution to (2.2), (2.3) with square
integrable initial condition. The note [3] explains where the 1/2 coefficient comes from (other
coefficients close to 1/2 could be chosen).

Below, we aim at extending such a modified energy technique to the two-dimensional case
with second-order extrapolation conditions, which would be an extension of (2.3). In [1], we
have considered first the half-plane geometry and then the quarter-plane in order to present the
associated algebra with slowly increasing difficulty. Since our main motivation is to investigate
boundary conditions in regions with corners, we only deal here with the quarter-plane and
leave the case of the half-plane to the interested reader.

3. The two-dimensional problem.

3.1. The main result. We consider from now on the two-dimensional transport equation
in the quarter-plane R+ × R+:

(3.1)

{
∂tu+ a ∂xu+ b ∂yu = 0, t ≥ 0, (x, y) ∈ R+ × R+,

u|t=0
= u0,

where a, b are some given real negative numbers. The initial condition u0 in (3.1) belongs to
the Lebesgue space L2(R+ × R+;R). Below, we consider a finite difference approximation
of (3.1), which is defined as follows: Given some space step sizes ∆x,∆y > 0 in each
spatial direction and given a time step size ∆t > 0, we introduce the ratios λ := ∆t/∆x and
µ := ∆t/∆y. In all what follows, the ratios λ and µ are assumed to be fixed, meaning that
they are given a priori of the computations and are meant to be tuned in order to satisfy some
stability requirements (the CFL condition). The solution u to (3.1) is then approximated on
the time-space domain [n∆t, (n+ 1) ∆t)× [j∆x, (j + 1) ∆x)× [k∆y, (k + 1) ∆y) by a
real number unj,k for any n ∈ N and (j, k) ∈ N2. The discrete initial condition u0 is defined,
for instance, by taking the piecewise constant projection of u0 in (3.1) on each cell, that is
(see [7]),

∀(j, k) ∈ N2, u0
j,k :=

1

∆x∆y

∫ (j+1)∆x

j∆x

∫ (k+1)∆y

k∆y

u0(x, y) dxdy.

This discrete initial condition satisfies∑
(j,k)∈N2

∆x∆y (u0
j,k)2 ≤ ‖u0‖2L2(R+×R+).

It then remains to determine the unj,k’s inductively with respect to n. The Lax-Wendroff
scheme with a stabilizer reads (see [8])
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un+1
j,k = unj,k −

λa

2

(
unj+1,k − unj−1,k

)
− µb

2

(
unj,k+1 − unj,k−1

)
+

(λa)2

2

(
unj+1,k − 2unj,k + unj−1,k

)
+

(µb)2

2

(
unj,k+1 − 2unj,k + unj,k−1

)
+
λaµb

4

(
unj+1,k+1 − unj+1,k−1 − unj−1,k+1 + unj−1,k−1

)
(3.2)

− (λa)2 + (µb)2

8

(
unj+1,k+1 − 2unj+1,k + unj+1,k−1

− 2unj,k+1 + 4unj,k − 2unj,k−1

+ unj−1,k+1 − 2unj−1,k + unj−1,k−1

)
,

where (j, k) belongs to N2. We refer to [7, 8] for alternative approximations of (3.1).
Since the computation of un+1

j,k requires knowledge of all closest neighboring cell values
unj+j′,k+k′ , with j′, k′ ∈ {−1, 0, 1}, we need to prescribe the values of the discrete solution
un in the ghost cells, which correspond to the values un−1,` and un`,−1, with ` ∈ N, and to the
value un−1,−1. These ghost cells are depicted in red and green in Figure 3.1. The interior cells
are depicted in blue.

x

y

−∆y

∆y

k∆y

−∆x 0 ∆x j∆x
×

×

× × ×

×

×

unj,k

FIG. 3.1. The spatial grid for the quarter-plane. Interior cells appear in blue, the boundary ghost cells appear
in red, and the corner ghost cell appears in green. The value unj,k corresponds to the approximation in the cell
[n∆t, (n+ 1)∆t)× [j∆x, (j + 1)∆x)× [k∆y, (k + 1)∆y).

Extending the above one-dimensional analysis, we will impose second-order extrapolation
boundary conditions

∀n ∈ N, ∀k ∈ N, un−1,k = 2un0,k − un1,k,(3.3a)

∀n ∈ N, ∀j ∈ N, unj,−1 = 2unj,0 − unj,1,(3.3b)

in conjunction with the numerical scheme (3.2) for (j, k) ∈ N2 (that is, for interior values). It
remains to define the corner cell value un−1,−1. Following [1] and trying, as in (3.3), to have a
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symmetric treatment of both coordinates, we shall impose here the following procedure:

(3.4) ∀n ∈ N, un−1,−1 = 4un0,0 − 2un1,0 − 2un0,1 + un1,1.

Using (3.3), this equivalently amounts to having

1

2

(
un1,−1 − 2un0,−1 + un−1,−1

)
+

1

2

(
un−1,1 − 2un−1,0 + un−1,−1

)
= 0.

The equations (3.2), (3.3), (3.4) then define the sequence (unj,k)(j,k)∈N2 inductively with
respect to n ∈ N.

Our main result in this article is a stability estimate for solutions to (3.2), (3.3), (3.4).
For u ∈ `2(N2;R), the standard norm is the one defined in the introduction of this article.
However, it will be useful below to rely on the following equivalent norm

(3.5) ‖u‖2 :=
∑
j,k≥1

u2
j,k +

1

2

∑
k≥1

u2
0,k +

1

2

∑
j≥1

u2
j,0 +

1

4
u2

0,0,

which is a two-dimensional analogue of the norm that we have shown to be useful in one
space dimension (see Section 2). The corresponding scalar product is denoted 〈 ; 〉 without
referring to the space domain since it will be the underlying norm that we shall use from now
on. Our main result is the following:

THEOREM 3.1. Let M > 0. Let the transport coefficients a, b be negative, and let the
associated CFL parameters λ, µ satisfy2:

(3.6) λ|a| ≤Mµ|b| and µ|b| ≤Mλ|a|.

There exists some constant ε > 0 that only depends on M , and there exists a numerical
constant3 c > 0 such that, if λ, µ also satisfy

(λa)2 + (µb)2 ≤ ε,

then for any u0 ∈ `2(N2;R), the solution to the numerical scheme (3.2), (3.3), (3.4) satisfies
the energy estimate

‖un+1‖2 − ‖un‖2 + c(λa)2
∑
j,k≥1

(unj−1,k − 2unj,k + unj+1,k)2

+ c(µb)2
∑
j,k≥1

(unj,k−1 − 2unj,k + unj,k+1)2

+ cλ|a|
∑
k≥0

(un0,k)2 + cµ|b|
∑
j≥0

(unj,0)2 ≤ 0.

2A careful reading of the proof below shows that instead of (3.6) one could assume the following bounds:

λ|a| ≤Mµ|b| and µ|b| ≤M ′λ|a|,

with M 6= M ′. We could thus obtain a non-symmetric set (with respect to the first bisector) of admissible CFL
parameters. The maximal radius ε would depend on both M and M ′. We choose to expose the proof for M = M ′

for the sake of simplicity.
3We shall see for instance that c = 1/10 is a suitable value, but we have not tried to optimize the constant c

(or ε).
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|a|λ

|b|µ

ε 1√
2

|b|µ = M |a|λ

|a|λ = M |b|µ

FIG. 3.2. An illustration of admissible CFL parameters. The red area corresponds to the CFL parameters
for which Theorem 3.1 holds and the blue one to the optimal set of parameters (for which stability for the Cauchy
problem holds).

Figure 3.2 illustrates the set of CFL parameters for which we obtain stability of the
Lax-Wendroff scheme with second-order boundary and corner extrapolation.

We remark that compared to [1], where we recovered the optimal set of parameters
(|a|λ)2 +(|b|µ)2 ≤ 1

2 for the Cauchy problem and for first-order extrapolation at the boundary,
we now have some restrictions on the CFL parameters. These restrictions are of two types:

• A restriction of the maximal radius of the ball (the CFL parameters should be “small
enough”).

• A restriction to a neighborhood of the first bisector (the CFL parameters should be
“comparable”).

These two restrictions are made in order to handle the much more involved algebra compared
to [1]. We do not claim that such restrictions are mandatory, and maybe the energy method
could be further refined in order to recover the maximal set of CFL parameters. Let us,
however, indicate that, in our opinion, these restrictions are a small price to pay. Indeed,
reducing the maximal radius is not so restrictive, and the second restriction (making the two
ratios comparable) is rather natural from a practical point of view.

3.2. Notation. We follow the notation from [1] and decompose the quantity un+1
j,k in (3.2)

into three pieces:

∀(j, k) ∈ N2, un+1
j,k = unj,k − wn

j,k + vnj,k,

where vnj,k and wn
j,k are defined by

vnj,k := −λa
2

(
unj+1,k − unj−1,k

)
− µb

2

(
unj,k+1 − unj,k−1

)
,(3.7a)
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wn
j,k := − (λa)2

2

(
unj+1,k − 2unj,k + unj−1,k

)
− (µb)2

2

(
unj,k+1 − 2unj,k + unj,k−1

)
− λµab

4

(
unj+1,k+1 − unj+1,k−1 − unj−1,k+1 + unj−1,k−1

)
(3.7b)

+
(λa)2 + (µb)2

8

(
unj+1,k+1 − 2unj+1,k + unj+1,k−1

− 2unj,k+1 + 4unj,k − 2unj,k−1

+ unj−1,k+1 − 2unj−1,k + unj−1,k−1

)
.

We also use the shorthand notation α := λa and β := µb. Both α and β are negative real
numbers.

The energy method in [1] relies on symmetry or skew-symmetry properties of several finite
difference operators. We thus introduce the following discrete first-order partial derivatives
and Laplacians:

(D1,+U)j,k := Uj+1,k − Uj,k, (D1,−U)j,k := Uj,k − Uj−1,k,

(D2,+U)j,k := Uj,k+1 − Uj,k, (D2,−U)j,k := Uj,k − Uj,k−1,

D1,0 :=
D1,+ +D1,−

2
, D2,0 :=

D2,+ +D2,−

2
,

∆1 := D1,+D1,−, ∆2 := D2,+D2,−.

In order to keep the notation as simple as possible, we write below D1,+uj,k rather than
(D1,+u)j,k and analogously for other operators. All above operators commute. Moreover, the
definitions allow us to rewrite (3.7) as

vn := −αD1,0u
n − βD2,0u

n,(3.8a)

wn := −α
2

2
∆1u

n − β2

2
∆2u

n − αβD1,0D2,0u
n +

α2 + β2

8
∆1∆2u

n.(3.8b)

Eventually, we follow the notation of [1] and use the discrete set of indices I := N2 for
the interior values of the numerical solution. It will be convenient below to use the notation
I̊ := N∗ × N∗. Eventually, we denote by J := ({−1} ∪ N)2 the set of indices on which
each sequence un is defined (including the indices that correspond to the ghost cells). The
underlying Hilbert space that corresponds to the norm in (3.5) is the following set:

H :=

{
u ∈ `2(J;R) | ∀k ∈ N, u−1,k = 2u0,k − u1,k,

∀j ∈ N, uj,−1 = 2uj,0 − uj,1,

and u−1,−1 = 4u0,0 − 2u1,0 − 2u0,1 + u1,1

}
.

When equipped with the norm defined in (3.5), H becomes a Hilbert space, and the question
we address in this article is mainly about understanding whether the numerical scheme defined
by (3.2) in I, with un ∈ H for any n ∈ N, yields a bounded sequence in H. Let us observe that
the sequences vn and wn in (3.8) are only defined on I and do not belong to H. Nevertheless,
we sometimes consider the norm in (3.5) and its associated scalar product as acting on elements
of H or on elements of `2(I;R) (see for instance Lemma 3.2 below) since the norm in (3.5)
only involves those indices in I and do not involve the values in the ghost cells. We hope that
this slight abuse will not create any confusion.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

328 A. BENOIT AND J.-F. COULOMBEL

3.3. Preliminary calculations. The decomposition of un+1 gives the expression

‖un+1‖2 − ‖un‖2 = 2〈un; vn〉 − 2〈vn;wn〉+ ‖vn‖2 − 2〈un;wn〉+ ‖wn‖2.(3.9)

Below, the first two terms on the right-hand side are referred to as the skew-symmetric terms
since they would not contribute on Z2 (see [1]). The three other terms on the right-hand side are
referred to as the symmetric terms. They provide the interior dissipation of the Lax-Wendroff
scheme and will also give contributions both on the boundaries and at the corner.

We start with the expression of the two skew-symmetric terms.
LEMMA 3.2. Let a, b < 0 so that α, β < 0. Let un ∈ H, and let the sequences vn, wn be

defined on the set of interior indices I by (3.8). Then there holds

2〈un; vn〉 = −|α|
∑
k≥1

(un0,k)2 − |β|
∑
j≥1

(unj,0)2 − |α|+ |β|
2

(un0,0)2,(3.10a)

−2〈vn;wn〉 = −|α|
3

2

∑
k≥1

(D1,+u
n
0,k)2 − |β|

3

2

∑
j≥1

(D2,+u
n
j,0)2

− |α|β
2

2

∑
k≥1

(D2,+u
n
0,k)2 − α2|β|

2

∑
j≥1

(D1,+u
n
j,0)2

+
|α|β2

4

∑
k≥1

(∆2u
n
0,k)2 +

α2|β|
4

∑
j≥1

(∆1u
n
j,0)2

− α2|β|
∑
k≥1

D2,0u
n
0,kD1,+u

n
0,k − |α|β2

∑
j≥1

D1,0u
n
j,0D2,+u

n
j,0

− |α| α
2 + β2

8

∑
k≥1

(D1,+D2,+u
n
0,k)2

− |β| α
2 + β2

8

∑
j≥1

(D1,+D2,+u
n
j,0)2(3.10b)

+ |β| α
2 + β2

4

∑
k≥1

D2,0u
n
0,kD1,+∆2u

n
0,k

+ |α| α
2 + β2

4

∑
j≥1

D1,0u
n
j,0D2,+∆1u

n
j,0

− |α|
3

4
(D1,+u

n
0,0)2 − |β|

3

4
(D2,+u

n
0,0)2

− (|α|+ |β|) α
2 + β2

8
(D1,+D2,+u

n
0,0)2

− α2 |β|
2

(D1,+u
n
0,0)2 − |α|β

2

2
(D2,+u

n
0,0)2

− |αβ|
2

(|α|+ |β|)D1,+u
n
0,0D2,+u

n
0,0 .

Proof. (a) We start with the proof of (3.10a). We first use definition (3.8a) and compute

2〈un; vn〉 = −2α〈un;D1,0u
n〉 − 2β〈un;D2,0u

n〉,
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and we now calculate the first term on the right-hand side (the second one is analogous). An
important observation for what follows is that the boundary condition (3.3b) gives

∀n ∈ N, ∀k ∈ N, D1,0u
n
0,k =

un1,k − un−1,k

2
= un1,k − un0,k = D1,+u

n
0,k,

and, symmetrically,

∀n ∈ N, ∀j ∈ N, D2,0u
n
j,0 = D2,+u

n
j,0.

We thus have (see (3.5) for the norm in H and its associated scalar product)

2〈un;D1,0u
n〉 =

∑
j,k≥1

unj,k(unj+1,k − unj−1,k) +
∑
k≥1

un0,k(un1,k − un0,k)

+
1

2

∑
j≥1

unj,0(unj+1,0 − unj−1,0) +
1

2
un0,0(un1,0 − un0,0)

= −
∑
k≥1

un1,ku
n
0,k +

∑
k≥1

un0,k(un1,k − un0,k)

− 1

2
un1,0u

n
0,0 +

1

2
un0,0(un1,0 − un0,0)

= −
∑
k≥1

(un0,k)2 − 1

2
(un0,0)2.

Here we have used that the sums with respect to the first index j are telescopic. Expres-
sion (3.10a) follows because α and β are negative.

(b) We now turn to the proof of (3.10b). We start from the definitions (3.8) and compute

−2〈vn;wn〉 = −α3〈D1,0u
n; ∆1u

n〉 − β3〈D2,0u
n; ∆2u

n〉

− 2α2β〈D1,0u
n;D1,0D2,0u

n〉 − 2αβ2〈D2,0u
n;D1,0D2,0u

n〉

− α2β〈∆1u
n;D2,0u

n〉 − αβ2〈∆2u
n;D1,0u

n〉(3.11)

+
α2 + β2

4
〈αD1,0u

n + βD2,0u
n; ∆1∆2u

n〉.

We then compute each line on the right-hand side of (3.11) separately, and, eventually, we
combine them.

Observing that (3.3b) gives ∆1u
n
0,k = 0 for any k ∈ N, we write ∆1 = D1,+ −D1,−

and recall the relation D1,0 = (D1,+ +D1,−)/2. We thus find

〈D1,0u
n; ∆1u

n〉 =
∑
j,k≥1

D1,0u
n
j,k∆1u

n
j,k +

1

2

∑
j≥1

D1,0u
n
j,0∆1u

n
j,0

=
1

2

∑
j,k≥1

(D1,+u
n
j,k)2 − (D1,−u

n
j,k)2

+
1

4

∑
j≥1

(D1,+u
n
j,0)2 − (D1,−u

n
j,0)2

= −1

2

∑
k≥1

(D1,+u
n
0,k)2 − 1

4
(D1,+u

n
0,0)2,
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and similarly for the scalar product 〈D2,0u
n; ∆2u

n〉. We thus have

−α3〈D1,0u
n; ∆1u

n〉−β3〈D2,0u
n; ∆2u

n〉

= −|α|
3

2

∑
k≥1

(D1,+u
n
0,k)2 − |β|

3

2

∑
j≥1

(D2,+u
n
j,0)2(3.12)

− |α|
3

4
(D1,+u

n
0,0)2 − |β|

3

4
(D2,+u

n
0,0)2.

These terms give the first and ninth lines on the right-hand side of (3.10b).
We now turn to the second line on the right-hand side of (3.11). We first observe that

the extrapolation condition (3.4) gives the relation D1,0D2,0u
n
0,0 = D1,+D2,+u

n
0,0. Using the

extrapolation conditions (3.3) and the definition of the operator D2,+, we therefore compute

〈D1,0u
n;D1,0D2,0u

n〉 =
1

2

∑
j,k≥1

(D1,0u
n
j,kD1,0u

n
j,k+1 −D1,0u

n
j,kD1,0u

n
j,k−1)

+
1

2

∑
j≥1

D1,0u
n
j,0D1,0D2,+u

n
j,0

+
1

4

∑
k≥1

(D1,+u
n
0,kD1,+u

n
0,k+1 −D1,+u

n
0,kD1,+u

n
0,k−1)

+
1

4
D1,+u

n
0,0D1,+D2,+u

n
0,0

= −1

2

∑
j≥1

D1,0u
n
j,0D1,0u

n
j,1 +

1

2

∑
j≥1

D1,0u
n
j,0D2,+D1,0u

n
j,0

− 1

4
D1,+u

n
0,0D1,+u

n
0,1 +

1

4
D1,+u

n
0,0D2,+D1,+u

n
0,0

= −1

2

∑
j≥1

(D1,0u
n
j,0)2 − 1

4
(D1,+u

n
0,0)2.

We then use the following formula that is valid for any `2-sequence on N (see [1, Lemma 3.2]
for a similar computation):

∑
j≥1

(D1,0Uj)
2 +

1

4

∑
j≥1

(∆1Uj)
2 =

1

2

∑
j≥1

(D1,+Uj)
2 +

1

2

∑
j≥1

(D1,−Uj)
2(3.13)

=
∑
j≥1

(D1,+Uj)
2 +

1

2
(D1,+U0)2.

We thus get

〈D1,0u
n;D1,0D2,0u

n〉 = −1

2

∑
j≥1

(D1,+u
n
j,0)2 +

1

8

∑
j≥1

(∆1u
n
j,0)2 − 1

2
(D1,+u

n
0,0)2,

with, of course, a similar expression for the other scalar product in the second line of (3.11).
Summarizing, we have obtained the expression
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−2αβ2〈D2,0u
n;D1,0D2,0u

n〉−2α2β〈D1,0u
n;D1,0D2,0u

n〉

=− |α|β2
∑
k≥1

(D2,+u
n
0,k)2 − α2|β|

∑
j≥1

(D1,+u
n
j,0)2

+
|α|β2

4

∑
k≥1

(∆2u
n
0,k)2 +

α2|β|
4

∑
j≥1

(∆1u
n
j,0)2(3.14)

− |α|β2(D2,+u
n
0,0)2 − α2|β|(D1,+u

n
0,0)2.

These terms contribute to the second line and give the third line of (3.10b). They will also
contribute to the eleventh line of (3.10b).

We now turn to the third line on the right-hand side of (3.11). Recalling that ∆1u
n
0,k

vanishes for any k ∈ N (see (3.3b)), we have

〈∆1u
n;D2,0u

n〉 =
∑
j,k≥1

∆1u
n
j,kD2,0u

n
j,k +

1

2

∑
j≥1

∆1u
n
j,0D2,+u

n
j,0,

and we now use the discrete integration by parts formula,

(3.15)
∑
j≥1

(∆1Uj)Vj = −
∑
j≥1

(D1,+Uj)D1,+Vj − (D1,+U0)V1,

which yields

〈∆1u
n;D2,0u

n〉 = −
∑
j,k≥1

D1,+u
n
j,kD1,+D2,0u

n
j,k −

∑
k≥1

D1,+u
n
0,kD2,0u

n
1,k

− 1

2

∑
j≥1

D1,+u
n
j,0D1,+D2,+u

n
j,0 −

1

2
D1,+u

n
0,0D2,+u

n
1,0.

The first sum on the right-hand side is telescopic with respect to k, and it partially simplifies
with the third term on the right-hand side (the sum with respect to the index j only). We get

〈∆1u
n;D2,0u

n〉 =
1

2

∑
j≥1

(D1,+u
n
j,0)2 −

∑
k≥1

D1,+u
n
0,kD2,0u

n
1,k −

1

2
D1,+u

n
0,0D2,+u

n
1,0

=
1

2

∑
j≥1

(D1,+u
n
j,0)2

−
∑
k≥1

D1,+u
n
0,kD2,0u

n
0,k −

∑
k≥1

D1,+u
n
0,kD2,0D1,+u

n
0,k

− 1

2
D1,+u

n
0,0D2,+D1,+u

n
0,0 −

1

2
D1,+u

n
0,0D2,+u

n
0,0

=
1

2

∑
j≥1

(D1,+u
n
j,0)2 −

∑
k≥1

D1,+u
n
0,kD2,0u

n
0,k

+
1

2
(D1,+u

n
0,0)2 − 1

2
D1,+u

n
0,0D2,+u

n
0,0.

Summing with the analogous term in the third line of (3.11), this gives the contribution

−α2β〈∆1u
n;D2,0u

n〉 − αβ2〈∆2u
n;D1,0u

n〉

=
α2|β|

2

∑
j≥1

(D1,+u
n
j,0)2 +

|α|β2

2

∑
k≥1

(D2,+u
n
0,k)2
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− α2|β|
∑
k≥1

D2,0u
n
0,kD1,+u

n
0,k − |α|β2

∑
j≥1

D1,0u
n
j,0D2,+u

n
j,0(3.16)

+
α2|β|

2
(D1,+u

n
0,0)2 +

|α|β2

2
(D2,+u

n
0,0)2

− |α||β|
2

(|α|+ |β|)D1,+u
n
0,0D2,+u

n
0,0.

These terms give the final contribution in the second line of (3.10b). They also give the
fourth line of (3.10b). Finally, these terms also give the final contribution in the eleventh line
of (3.10b) and give the twelfth line of (3.10b).

We now turn to the fourth and last line on the right-hand side of (3.11). We first observe
that the boundary conditions (3.3) and (3.4) imply that the quantity ∆1∆2u

n
j,k vanishes

whenever j or k (or both) is zero. In particular, (3.3) and (3.4) imply ∆1∆2u
n
0,0 = 0. We thus

have

〈D1,0u
n; ∆1∆2u

n〉 =
∑
j,k≥1

D1,0u
n
j,k∆1∆2u

n
j,k,

and we then perform a discrete integration by parts with respect to k (see (3.15)) to get

〈D1,0u
n; ∆1∆2u

n〉 = −
∑
j,k≥1

D1,0D2,+u
n
j,k∆1D2,+u

n
j,k −

∑
j≥1

D1,0u
n
j,1∆1D2,+u

n
j,0

=
1

2

∑
k≥1

(D1,+D2,+u
n
0,k)2 −

∑
j≥1

D1,0u
n
j,1∆1D2,+u

n
j,0

=
1

2

∑
k≥1

(D1,+D2,+u
n
0,k)2

−
∑
j≥1

D1,0D2,+u
n
j,0∆1D2,+u

n
j,0 −

∑
j≥1

D1,0u
n
j,0∆1D2,+u

n
j,0

=
1

2

∑
k≥1

(D1,+D2,+u
n
0,k)2 +

1

2
(D1,+D2,+u

n
0,0)2

−
∑
j≥1

D1,0u
n
j,0∆1D2,+u

n
j,0.

We thus get the final contribution

α2 + β2

4
〈αD1,0u

n+βD2,0u
n; ∆1∆2u

n〉

= −|α|α
2 + β2

8

∑
k≥1

(D1,+D2,+u
n
0,k)2

− |β|α
2 + β2

8

∑
j≥1

(D1,+D2,+u
n
j,0)2(3.17)

+ |α|α
2 + β2

4

∑
j≥1

D1,0u
n
j,0∆1D2,+u

n
j,0

+ |β|α
2 + β2

4

∑
k≥1

D2,0u
n
0,k∆2D1,+u

n
0,k
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− (|α|+ |β|)α
2 + β2

8
(D1,+D2,+u

n
0,0)2.

These terms give the fifth, sixth, seventh, and eighth lines of (3.10b) as well as the tenth line.
It now only remains to collect the contributions in (3.12), (3.14), (3.16), and (3.17) to obtain
the relation (3.10b).

We now explain how to derive the expression of the first symmetric term in (3.9).
LEMMA 3.3. Let a, b < 0. Let un ∈ H, and let the sequences vn, wn be defined on the

set of interior indices I by (3.8). Then there holds

‖vn‖2 − 2〈un;wn〉 = −α
2

4
‖∆1u

n‖2
`2 (̊I) −

β2

4
‖∆2u

n‖2
`2 (̊I)

− α2 + β2

16

(
‖D1,−D2,−u

n‖2
`2 (̊I) + ‖D1,−D2,+u

n‖2
`2 (̊I)

+ ‖D1,+D2,−u
n‖2

`2 (̊I) + ‖D1,+D2,+u
n‖2

`2 (̊I)

)
− α2

8

∑
j≥1

(∆1u
n
j,0)2 − β2

8

∑
k≥1

(∆2u
n
0,k)2

− α2
∑
k≥1

un0,kD1,+u
n
0,k − β2

∑
j≥1

unj,0D2,+u
n
j,0(3.18)

− (α2 + β2)

8

∑
j≥1

(D1,+D2,+u
n
j,0)2

− (α2 + β2)

8

∑
k≥1

(D1,+D2,+u
n
0,k)2

− (α2 + β2)

4

∑
j≥1

D1,+u
n
j,0D1,+D2,+u

n
j,0

− (α2 + β2)

4

∑
k≥1

D2,+u
n
0,kD1,+D2,+u

n
0,k

+ |αβ|(un0,0)2 − α2

2
un0,0D1,+u

n
0,0 −

β2

2
un0,0D2,+u

n
0,0

− (α2 + β2)

4

(
un0,0 +D1,+u

n
0,0 +D2,+u

n
0,0

)
D1,+D2,+u

n
0,0

− 3(α2 + β2)

16
(D1,+D2,+u

n
0,0)2,

where we recall the notation I̊ = N∗ × N∗.
Proof. We start from the definitions (3.8) and compute

‖vn‖2 − 2〈un;wn〉 = α2
(
‖D1,0u

n‖2 + 〈un; ∆1u
n〉
)

+ β2
(
‖D2,0u

n‖2 + 〈un; ∆2u
n〉
)

+ 2αβ
(
〈D1,0u

n;D2,0u
n〉+ 〈un;D1,0D2,0u

n〉
)

(3.19)

− α2 + β2

4
〈un; ∆1∆2u

n〉.

In order to simplify the first line on the right-hand side of (3.19), we use the telescopic formula
(see [1])

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

334 A. BENOIT AND J.-F. COULOMBEL

(U`+1 − U`−1)2

4
+ U`(U`+1 − 2U` + U`−1)

= − (U`+1 − 2U` + U`−1)2

4
+

1

2
(U2

`+1 − U2
` )− 1

2
(U2

` − U2
`−1).

We thus get∑
j,k≥1

(D1,0u
n
j,k)2 +

∑
j,k≥1

unj,k∆1u
n
j,k = −1

4
‖∆1u

n‖2
`2 (̊I) −

1

2

∑
k≥1

(un1,k)2 − (un0,k)2,

and we also get a similar expression on one side of the boundary (since the tangential index k
is a mere parameter in this calculation):∑

j≥1

(D1,0u
n
j,0)2 +

∑
j≥1

unj,0∆1u
n
j,0 = −1

4

∑
j≥1

(∆1u
n
j,0)2 − 1

2
(un1,0)2 +

1

2
(un0,0)2.

Combining the previous two equalities and recalling that we have ∆1u
n
0,k = 0 for any k ∈ N,

we get

‖D1,0u
n‖2 + 〈un; ∆1u

n〉 = −1

4
‖∆1u

n‖2
`2 (̊I) −

1

8

∑
j≥1

(∆1u
n
j,0)2

+
1

2

∑
k≥1

(D1,+u
n
0,k)2 − (un1,k)2 + (un0,k)2

+
1

4
(D1,+u

n
0,0)2 − 1

4
(un1,0)2 +

1

4
(un0,0)2

= −1

4
‖∆1u

n‖2
`2 (̊I) −

1

8

∑
j≥1

(∆1u
n
j,0)2 −

∑
k≥1

un0,kD1,+u
n
0,k

− 1

2
un0,0D1,+u

n
0,0.

We thus obtain the expression of the first line on the right-hand side of (3.19):

α2
(
‖D1,0u

n‖2+〈un; ∆1u
n〉
)

+ β2
(
‖D2,0u

n‖2 + 〈un; ∆2u
n〉
)

= −α
2

4
‖∆1u

n‖2
`2 (̊I) −

β2

4
‖∆2u

n‖2
`2 (̊I)

− α2

8

∑
j≥1

(∆1u
n
j,0)2 − β2

8

∑
k≥1

(∆2u
n
0,k)2(3.20)

− α2
∑
k≥1

un0,kD1,+u
n
0,k − β2

∑
j≥1

unj,0D2,+u
n
j,0

− α2

2
un0,0D1,+u

n
0,0 −

β2

2
un0,0D2,+u

n
0,0.

These terms give the first, fourth, and fifth lines on the right-hand side of (3.18) as well as the
last two terms of the tenth line in (3.18).

We now turn to the second line on the right-hand side of the decomposition (3.19). We
use the telescopic formula

D1,0u
n
j,kD2,0u

n
j,k + unj,kD1,0D2,0u

n
j,k =

1

4
D1,+D2,+

(
unj−1,k−1u

n
j,k + unj−1,ku

n
j,k−1

)
,
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and thus obtain the relation∑
j,k≥1

D1,0u
n
j,kD2,0u

n
j,k + unj,kD1,0D2,0u

n
j,k =

1

4
(un0,0u

n
1,1 + un0,1u

n
1,0)

as well as the relations4∑
j≥1

D1,0u
n
j,0D2,0u

n
j,0 + unj,0D1,0D2,0u

n
j,0 = −1

2
(un0,0u

n
1,1 + un0,1u

n
1,0) + un0,0u

n
1,0,

∑
k≥1

D1,0u
n
0,kD2,0u

n
0,k + un0,kD1,0D2,0u

n
0,k = −1

2
(un0,0u

n
1,1 + un0,1u

n
1,0) + un0,0u

n
0,1.

Adding the interior and boundary contributions together with the corner contribution5 at (0, 0),
we eventually get

〈D1,0u
n;D2,0u

n〉+ 〈un;D1,0D2,0u
n〉

= −1

4
(un0,0u

n
1,1 + un0,1u

n
1,0) +

1

2
un0,0(un0,1 + un1,0)

+
1

4
D1,+u

n
0,0D2,+u

n
0,0 +

1

4
un0,0D1,+D2,+u

n
0,0

=
1

2
(un0,0)2.

Recalling that both α and β are negative, we end up with

(3.21) 2αβ
(
〈D1,0u

n;D2,0u
n〉+ 〈un;D1,0D2,0u

n〉
)

= |αβ|(un0,0)2,

and this gives the first term of the tenth line in (3.18).
It remains to examine the very last term on the right-hand side of (3.19). We first recall

that ∆1∆2u
n
j,k vanishes whenever j or k is zero. This property has already been used in the

proof of Lemma 3.2. We thus have

〈un; ∆1∆2u
n〉 =

∑
j,k≥1

unj,k∆1∆2u
n
j,k.

We now use twice (alternatively with respect to the second and first variables) the algebraic
relation

(3.22)

U`(V`+1 − 2V` + V`−1) +
1

2
(U` − U`−1)(V` − V`−1) +

1

2
(U`+1 − U`)(V`+1 − V`)

=
1

2
(U`+1 + U`)(V`+1 − V`)−

1

2
(U` + U`−1)(V` − V`−1),

which yields, using the fact that the right-hand side of (3.22) is telescopic,

〈un; ∆1∆2u
n〉 =

1

4
‖D1,−D2,−u

n‖2
`2 (̊I) +

1

4
‖D1,−D2,+u

n‖2
`2 (̊I) +

1

4
‖D1,+D2,−u

n‖2
`2 (̊I)

4Here we use the boundary conditions (3.3).
5We recall that the boundary conditions (3.3) and (3.4) yield D1,0un0,0 = D1,+un0,0, D2,0un0,0 = D2,+un0,0

and D1,0D2,0un0,0 = D1,+D2,+un0,0.
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+
1

4
‖D1,+D2,+u

n‖2
`2 (̊I) −

1

2

∑
j≥1

(unj,0 + unj,1)∆1D2,+u
n
j,0(3.23)

+
1

4

∑
k≥1

(D2,−u
n
0,k +D2,−u

n
1,k)D1,+D2,−u

n
0,k

+
1

4

∑
k≥1

(D2,+u
n
0,k +D2,+u

n
1,k)D1,+D2,+u

n
0,k.

Let us look at the sums with respect to k arising in the last two lines on the right-hand side
of (3.23). From the definition D1,+D2,−u

n
0,k = D2,−u

n
1,k −D2,−u

n
0,k, we get∑

k≥1

(D2,−u
n
0,k +D2,−u

n
1,k)D1,+D2,−u

n
0,k

=
∑
k≥1

(D2,−u
n
1,k)2 − (D2,−u

n
0,k)2

=
∑
k≥1

(D1,+D2,−u
n
0,k)2 + 2D2,−u

n
0,kD1,+D2,−u

n
0,k

=
∑
k≥0

(D1,+D2,+u
n
0,k)2 + 2D2,+u

n
0,kD1,+D2,+u

n
0,k.

The sum in the fourth line of (3.23) can be rewritten similarly (except for the very last manipu-
lation which was a shift on the index k), which yields the following equivalent expression for
the scalar product 〈un; ∆1∆2u

n〉:

〈un; ∆1∆2u
n〉 =

1

4
‖D1,−D2,−u

n‖2
`2 (̊I) +

1

4
‖D1,−D2,+u

n‖2
`2 (̊I) +

1

4
‖D1,+D2,−u

n‖2
`2 (̊I)

+
1

4
‖D1,+D2,+u

n‖2
`2 (̊I) −

1

2

∑
j≥1

(unj,0 + unj,1)∆1D2,+u
n
j,0(3.24)

+
1

2

∑
k≥1

(D1,+D2,+u
n
0,k)2 +

∑
k≥1

D2,+u
n
0,kD1,+D2,+u

n
0,k

+
1

4
(D1,+D2,+u

n
0,0)2 +

1

2
D2,+u

n
0,0D1,+D2,+u

n
0,0.

We now deal with the sum with respect to j in the second line of (3.24). We first decompose∑
j≥1

(unj,0 + unj,1)∆1D2,+u
n
j,0 = 2

∑
j≥1

unj,0∆1D2,+u
n
j,0 +

∑
j≥1

D2,+u
n
j,0∆1D2,+u

n
j,0

and then apply the integration by parts formula (3.22) to each of the two sums. After a few
manipulations, we obtain the expressions∑

j≥1

unj,0∆1D2,+u
n
j,0 = −

∑
j≥1

D1,+u
n
j,0D1,+D2,+u

n
j,0

− (un0,0 +D1,+u
n
0,0)D1,+D2,+u

n
0,0∑

j≥1

D2,+u
n
j,0∆1D2,+u

n
j,0 = −

∑
j≥1

(D1,+D2,+u
n
j,0)2

− (D1,+D2,+u
n
0,0)2 −D2,+u

n
0,0D1,+D2,+u

n
0,0.
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Going back to (3.24) and substituting, we obtain

〈un; ∆1∆2u
n〉 =

1

4
‖D1,−D2,−u

n‖2
`2 (̊I) +

1

4
‖D1,−D2,+u

n‖2
`2 (̊I)

+
1

4
‖D1,+D2,−u

n‖2
`2 (̊I) +

1

4
‖D1,+D2,+u

n‖2
`2 (̊I)

+
1

2

∑
j≥1

(D1,+D2,+u
n
j,0)2 +

1

2

∑
k≥1

(D1,+D2,+u
n
0,k)2(3.25)

+
∑
j≥1

D1,+u
n
j,0D1,+D2,+u

n
j,0 +

∑
k≥1

D2,+u
n
0,kD1,+D2,+u

n
0,k

+ (un0,0 +D1,+u
n
0,0 +D2,+u

n
0,0)D1,+D2,+u

n
0,0

+
3

4
(D1,+D2,+u

n
0,0)2.

We now multiply (3.25) by −(α2 + β2)/4 and combine with (3.20) and (3.21) to obtain the
decomposition (3.18).

Eventually, we explain how to derive an estimate for the second symmetric term in (3.9).
LEMMA 3.4. Let a, b < 0. Let un ∈ H, and let the sequence wn be defined on the set of

interior indices I by (3.8). Then there holds

‖wn‖2 ≤ 2(α2 + β2)

{
α2

4
‖∆1u

n‖2
`2 (̊I) +

β2

4
‖∆2u

n‖2
`2 (̊I)

+
α2 + β2

16

(
‖D1,−D2,−u

n‖2
`2 (̊I) + ‖D1,−D2,+u

n‖2
`2 (̊I)

+ ‖D1,+D2,−u
n‖2

`2 (̊I) + ‖D1,+D2,+u
n‖2

`2 (̊I)

)}

− α2β2

8

∑
j≥1

(∆1u
n
j,0)2 − α2β2

8

∑
k≥1

(∆2u
n
0,k)2(3.26)

− α2β2

8

∑
j≥1

(D2,+∆1u
n
j,0)2 − α2β2

8

∑
k≥1

(D1,+∆2u
n
0,k)2

− α2(α2 + β2)

8

∑
j≥1

(∆1u
n
j,0)D2,+∆1u

n
j,0

− β2(α2 + β2)

8

∑
k≥1

(∆2u
n
0,k)D1,+∆2u

n
0,k

+
(α2 + β2)

8

β2
∑
j≥1

(D1,+D2,+u
n
j,0)2 + α2

∑
k≥1

(D1,+D2,+u
n
0,k)2


+ |α|3|β|

∑
j≥1

(∆1u
n
j,0)D2,+D1,0u

n
j,0 + |α||β|3

∑
k≥1

(∆2u
n
0,k)D1,+D2,0u

n
0,k

− (α2 + β2)2

16
(D1,+D2,+u

n
0,0)2.

Proof. We use the definition (3.5) of the norm to find

4‖wn‖2 =
∑
j,k≥1

(2wn
j,k)2 + 2

∑
j≥1

(wn
j,0)2 + 2

∑
k≥1

(wn
0,k)2 + (wn

0,0)2.
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We first make the boundary and corner contributions explicit in Step 1 below. We then derive
an estimate for the interior sum (namely the sum with respect to both indices j, k ∈ N∗) in
Steps 2 and 3. We conclude in Step 4 by collecting all contributions.

(i) Step 1 (the boundary and corner contributions). For j ≥ 1, the boundary condi-
tion (3.3b) gives

∀j ≥ 1, wn
j,0 = −α

2

2
∆1u

n
j,0 − αβD2,+D1,0u

n
j,0,

and we thus have

2
∑
j≥1

(wn
j,0)2 =

α4

2

∑
j≥1

(∆1u
n
j,0)2 + 2α2β2

∑
j≥1

(D2,+D1,0u
n
j,0)2

+ 2α3β
∑
j≥1

∆1u
n
j,0D2,+D1,0u

n
j,0.

We then use formula (3.13) to obtain

2
∑
j≥1

(wn
j,0)2 =

α4

2

∑
j≥1

(∆1u
n
j,0)2 + 2α2β2

∑
j≥1

(D1,+D2,+u
n
j,0)2

− α2β2

2

∑
j≥1

(D2,+∆1u
n
j,0)2 + 2α3β

∑
j≥1

∆1u
n
j,0D2,+D1,0u

n
j,0

+ α2β2(D1,+D2,+u
n
0,0)2.

There is, of course, a similar expression for the analogous contribution on the other side of the
boundary. Recalling that we have wn

0,0 = −αβD1,+D2,+u
n
0,0, we end up with the relation

2
∑
j≥1

(wn
j,0)2 + 2

∑
k≥1

(wn
0,k)2 + (wn

0,0)2

=
α4

2

∑
j≥1

(∆1u
n
j,0)2 +

β4

2

∑
k≥1

(∆2u
n
0,k)2

+ 2α2β2

∑
j≥1

(D1,+D2,+u
n
j,0)2 +

∑
k≥1

(D1,+D2,+u
n
0,k)2


− α2β2

2

∑
j≥1

(D2,+∆1u
n
j,0)2 +

∑
k≥1

(D1,+∆2u
n
0,k)2


+ 2α3β

∑
j≥1

∆1u
n
j,0D2,+D1,0u

n
j,0

+ 2αβ3
∑
k≥1

∆2u
n
0,kD1,+D2,0u

n
0,k

+ 3α2β2(D1,+D2,+u
n
0,0)2.

In particular, α and β being both negative, the product αβ is positive, and we easily obtain our
first estimate
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2
∑
j≥1

(wn
j,0)2 + 2

∑
k≥1

(wn
0,k)2 + (wn

0,0)2

≤ α4

2

∑
j≥1

(∆1u
n
j,0)2 +

β4

2

∑
k≥1

(∆2u
n
0,k)2

+
(α2 + β2)2

2

∑
j≥1

(D1,+D2,+u
n
j,0)2 +

∑
k≥1

(D1,+D2,+u
n
0,k)2


− α2β2

2

∑
j≥1

(D2,+∆1u
n
j,0)2 +

∑
k≥1

(D1,+∆2u
n
0,k)2

(3.27)

+ 2α3β
∑
j≥1

∆1u
n
j,0D2,+D1,0u

n
j,0

+ 2αβ3
∑
k≥1

∆2u
n
0,kD1,+D2,0u

n
0,k

+
3

2
αβ(α2 + β2)(D1,+D2,+u

n
0,0)2.

We now turn to the interior contribution.

(ii) Step 2 (the interior contribution). It is convenient to introduce the shorthand notation
‖ · ‖o rather than ‖ · ‖`2 (̊I) for the `2-norm on the set I̊ = N∗ × N∗ (the set of interior indices).
The corresponding scalar product is denoted 〈 ; 〉o. In other words, we have

〈U ;V 〉o =
∑
j,k≥1

Uj,kVj,k.

From the definition (3.8b), we thus compute the expression

4‖wn‖2o = α4‖∆1u
n‖2o + β4‖∆2u

n‖2o + 2α2β2〈∆1u
n; ∆2u

n〉o

+ 4α2β2‖D1,0D2,0u
n‖2o +

(α2 + β2)2

16
‖∆1∆2u

n‖2o

− α2 + β2

2
〈∆1∆2u

n;α2∆1u
n + β2∆2u

n〉o

+ 4αβ〈D1,0D2,0u
n;α2∆1u

n + β2∆2u
n〉o

− (α2 + β2)αβ〈D1,0D2,0u
n; ∆1∆2u

n〉o.

Some of our arguments below are borrowed from our previous work [1]. For instance, in the
first line on the right-hand side, we use the inequality

2〈∆1u
n; ∆2u

n〉o ≤ ‖∆1u
n‖2o + ‖∆2u

n‖2o,

while in the second line on the right-hand side, we use the inequality

4α2β2 ≤ (α2 + β2)2,

which gives
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4‖wn‖2o ≤ (α2 + β2)
(
α2‖∆1u

n‖2o + β2‖∆2u
n‖2o
)

+ (α2 + β2)2

(
‖D1,0D2,0u

n‖2o +
1

16
‖∆1∆2u

n‖2o
)

− α2 + β2

2
〈∆1∆2u

n;α2∆1u
n + β2∆2u

n〉o

+ 4αβ〈D1,0D2,0u
n;α2∆1u

n + β2∆2u
n〉o

− (α2 + β2)αβ〈D1,0D2,0u
n; ∆1∆2u

n〉o.

We now use twice the first equality of (3.13) to expand the norm ‖D1,0D2,0u
n‖2o:

‖D1,0D2,0u
n‖2o =

1

4

(
‖D1,−D2,−u

n‖2o + ‖D1,−D2,+u
n‖2o

+ ‖D1,+D2,−u
n‖2o + ‖D1,+D2,+u

n‖2o
)

− 1

8

(
‖D1,−∆2u

n‖2o + ‖D1,+∆2u
n‖2o

+ ‖D2,−∆1u
n‖2o + ‖D2,+∆1u

n‖2o
)

+
1

16
‖∆1∆2u

n‖2o,

and this expression is substituted into the right-hand side of our previous estimate for 4‖wn‖2o.
We thus obtain our first preliminary estimate:

4‖wn‖2o ≤ (α2 + β2)

{
α2‖∆1u

n‖2o + β2‖∆2u
n‖2o(3.28)

+
(α2 + β2)

4

(
‖D1,−D2,−u

n‖2o + ‖D1,−D2,+u
n‖2o

+ ‖D1,+D2,−u
n‖2o + ‖D1,+D2,+u

n‖2o
)}

+A,

where the quantity A is defined by

A :=
(α2 + β2)2

8
‖∆1∆2u

n‖2o

− (α2 + β2)2

8

(
‖D1,−∆2u

n‖2o + ‖D1,+∆2u
n‖2o

+ ‖D2,−∆1u
n‖2o + ‖D2,+∆1u

n‖2o
)

(3.29)

− α2 + β2

2
〈∆1∆2u

n;α2∆1u
n + β2∆2u

n〉o

− (α2 + β2)αβ〈D1,0D2,0u
n; ∆1∆2u

n〉o
+ 4αβ〈D1,0D2,0u

n;α2∆1u
n + β2∆2u

n〉o.

We now focus on estimating the quantity A. We use the one-dimensional formula∑
j≥1

(∆1Uj)Uj = −1

2

∑
j≥1

(D1,−Uj)
2 − 1

2

∑
j≥1

(D1,+Uj)
2 − 1

2
(U1 − U0)2 − U0(U1 − U0),
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and integrate by parts the two scalar products 〈∆1∆2u
n; ∆1u

n〉o and 〈∆1∆2u
n; ∆2u

n〉o. We
obtain the equivalent expression

A =
(α2 + β2)2

8
‖∆1∆2u

n‖2o

+
(α2 + β2)

8

{
(α2 − β2)

(
‖D2,−∆1u

n‖2o + ‖D2,+∆1u
n‖2o
)

+ (β2 − α2)
(
‖D1,−∆2u

n‖2o + ‖D1,+∆2u
n‖2o
)}

− (α2 + β2)αβ〈D1,0D2,0u
n; ∆1∆2u

n〉o
+ 4αβ〈D1,0D2,0u

n;α2∆1u
n + β2∆2u

n〉o

+
α2(α2 + β2)

4

∑
j≥1

(D2,+∆1u
n
j,0)2 +

β2(α2 + β2)

4

∑
k≥1

(D1,+∆2u
n
0,k)2

+
α2(α2 + β2)

2

∑
j≥1

(∆1u
n
j,0)D2,+∆1u

n
j,0

+
β2(α2 + β2)

2

∑
k≥1

(∆2u
n
0,k)D1,+∆2u

n
0,k.

We now rewrite the scalar product 〈D1,0D2,0u
n; ∆1∆2u

n〉o by using the formula

〈D2,0U ; ∆2V 〉o + 〈D2,0V ; ∆2U〉o = −
∑
j≥1

(D2,+Uj,0)D2,+Vj,0,

which gives, after computing the resulting sum with respect to j in yet another telescopic way,

〈D1,0D2,0u
n; ∆1∆2u

n〉o = −〈D1,0∆2u
n;D2,0∆1u

n〉o +
1

2
(D1,+D2,+u

n
0,0)2.

We have thus obtained the expression

A =
(α2 + β2)2

8
‖∆1∆2u

n‖2o

+
(α2 + β2)

8

{
(α2 − β2)

(
‖D2,−∆1u

n‖2o + ‖D2,+∆1u
n‖2o
)

+ (β2 − α2)
(
‖D1,−∆2u

n‖2o + ‖D1,+∆2u
n‖2o
)}

+ (α2 + β2)αβ〈D1,0∆2u
n;D2,0∆1u

n〉o
+ 4αβ〈D1,0D2,0u

n;α2∆1u
n + β2∆2u

n〉o

+
α2(α2 + β2)

4

∑
j≥1

(D2,+∆1u
n
j,0)2 +

β2(α2 + β2)

4

∑
k≥1

(D1,+∆2u
n
0,k)2

+
α2(α2 + β2)

2

∑
j≥1

(∆1u
n
j,0)D2,+∆1u

n
j,0

+
β2(α2 + β2)

2

∑
k≥1

(∆2u
n
0,k)D1,+∆2u

n
0,k
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− αβ (α2 + β2)

2
(D1,+D2,+u

n
0,0)2.

Then, as in [1], we focus on the first scalar product in the third line on the right-hand side of
the latter expression for A. We use the Cauchy-Schwarz inequality as well as the following
inequality: for a1, a2, a3, a4 ∈ R,

(3.30) a1a2a3a4 ≤
1

4
(a2

1 + a2
2)(a2

3 + a2
4),

and we end up with the inequality

A ≤ (α2 + β2)2

8
‖∆1∆2u

n‖2o

+
(α2 + β2)

8

{
(α2 − β2)

(
‖D2,−∆1u

n‖2o + ‖D2,+∆1u
n‖2o
)

+ (β2 − α2)
(
‖D1,−∆2u

n‖2o + ‖D1,+∆2u
n‖2o
)}

+
(α2 + β2)2

4

(
‖D1,0∆2u

n‖2o + ‖D2,0∆1u
n‖2o
)

+ 4αβ〈D1,0D2,0u
n;α2∆1u

n + β2∆2u
n〉o

+
α2(α2 + β2)

4

∑
j≥1

(D2,+∆1u
n
j,0)2 +

β2(α2 + β2)

4

∑
k≥1

(D1,+∆2u
n
0,k)2

+
α2(α2 + β2)

2

∑
j≥1

(∆1u
n
j,0)D2,+∆1u

n
j,0

+
β2(α2 + β2)

2

∑
k≥1

(∆2u
n
0,k)D1,+∆2u

n
0,k

− αβ (α2 + β2)

2
(D1,+D2,+u

n
0,0)2.

We apply once again the first equality of (3.13) and expand the two norms ‖D1,0∆2u
n‖2o and

‖D2,0∆1u
n‖2o. After simplifying with other terms, we obtain the following estimate for the

quantity A defined in (3.29):

A ≤ α2A1 + β2A2

+
α2(α2 + β2)

4

∑
j≥1

(D2,+∆1u
n
j,0)2 +

β2(α2 + β2)

4

∑
k≥1

(D1,+∆2u
n
0,k)2

+
α2(α2 + β2)

2

∑
j≥1

(∆1u
n
j,0)D2,+∆1u

n
j,0(3.31)

+
β2(α2 + β2)

2

∑
k≥1

(∆2u
n
0,k)D1,+∆2u

n
0,k

− αβ (α2 + β2)

2
(D1,+D2,+u

n
0,0)2,
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where the expressions for the terms A1 and A2 are as follows (compare with [1] where the
analogous terms are denoted B1 and B2):

A1 :=
(α2 + β2)

4

(
‖D2,−∆1u

n‖2o + ‖D2,+∆1u
n‖2o
)

+4αβ〈D1,0D2,0u
n; ∆1u

n〉o,(3.32a)

A2 :=
(α2 + β2)

4

(
‖D1,−∆2u

n‖2o + ‖D1,+∆2u
n‖2o
)

+4αβ〈D1,0D2,0u
n; ∆2u

n〉o.(3.32b)

The third step of the proof is to estimate both terms A1 and A2.

(iii) Step 3 (the interior contribution). Following [1], we introduce the averaging operators
A1 and A2 defined by

(A1,+V )j,k :=
Vj,k + Vj+1,k

2
, (A2,+V )j,k :=

Vj,k + Vj,k+1

2
,

(A1,−V )j,k :=
Vj−1,k + Vj,k

2
, (A2,−V )j,k :=

Vj,k−1 + Vj,k
2

,

which verify, for instance, D2,0 = D2,+A2,−. We then use the following formula:

(D2,0Vj,k)Wj,k − (D2,+Vj,k)(A2,+Wj,k) =
1

2
(D2,−Vj,k)Wj,k −

1

2
(D2,+Vj,k)Wj,k+1,

where the right-hand side is telescopic with respect to k. We thus obtain the equivalent
expression

〈D1,0D2,0u
n; ∆1u

n〉o = 〈D2,+D1,0u
n;A2,+∆1u

n〉o +
1

2

∑
j≥1

(∆1u
n
j,1)D2,+D1,0u

n
j,0

= 〈D2,+D1,0u
n;A2,+∆1u

n〉o +
1

2

∑
j≥1

(∆1u
n
j,0)D2,+D1,0u

n
j,0

− 1

4
(D1,+D2,+u

n
0,0)2,

where we write unj,1 = D2,+ u
n
j,0 + unj,0 in the first sum on the right-hand side. Starting from

the definition (3.32a), we thus obtain the expression

A1 =
(α2 + β2)

4

(
‖D2,−∆1u

n‖2o + ‖D2,+∆1u
n‖2o
)

+ 4αβ〈D2,+D1,0u
n;A2,+∆1u

n〉o

+ 2αβ
∑
j≥1

(∆1u
n
j,0)D2,+D1,0u

n
j,0 − αβ(D1,+D2,+u

n
0,0)2.

We then apply the Cauchy-Schwarz inequality to the scalar product in the first line, and we
use again inequality (3.30) to get

A1 ≤
(α2 + β2)

4

(
‖D2,−∆1u

n‖2o + ‖D2,+∆1u
n‖2o

+ 4‖D2,+D1,0u
n‖2o + 4‖A2,+∆1u

n‖2o
)

+ 2αβ
∑
j≥1

(∆1u
n
j,0)D2,+D1,0u

n
j,0 − αβ(D1,+D2,+u

n
0,0)2.

By shifting indices in the norm ‖D2,−∆1u
n‖2o, we therefore have
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A1 ≤
(α2 + β2)

4

(
2‖D2,+∆1u

n‖2o + 4‖D2,+D1,0u
n‖2o + 4‖A2,+∆1u

n‖2o
)

(3.33)

+
(α2 + β2)

4

∑
j≥1

(D2,+∆1u
n
j,0)2 + 2αβ

∑
j≥1

(∆1u
n
j,0)D2,+D1,0u

n
j,0

− αβ(D1,+D2,+u
n
0,0)2.

We then expand the two norms ‖D2,+D1,0u
n‖o and ‖A2,+∆1u

n‖o as follows: We use again
the first identity of (3.13) for ‖D2,+D1,0u

n‖2o and a straightforward computation for the norm
‖A2,+∆1u

n‖2o,

4‖D2,+D1,0u
n‖2o = 2‖D1,−D2,+u

n‖2o + 2‖D1,+D2,+u
n‖2o − ‖D2,+∆1u

n‖2o,

4‖A2,+∆1u
n‖2o = 4‖∆1u

n‖2o − ‖D2,+∆1u
n‖2o − 2

∑
j≥1

(∆1u
n
j,1)2.

By substituting the previous two relations into the right-hand side of (3.33) and by further
expanding ∆1u

n
j,1 = ∆1u

n
j,0 +D2,+∆1u

n
j,0, we obtain the estimate

A1 ≤
(α2 + β2)

2

(
‖D1,−D2,+u

n‖2o + ‖D1,+D2,+u
n‖2o + 2‖∆1u

n‖2o
)

− (α2 + β2)

2

∑
j≥1

(∆1u
n
j,0)2

− (α2 + β2)

4

∑
j≥1

(D2,+∆1u
n
j,0)2 − (α2 + β2)

∑
j≥1

(∆1u
n
j,0)D2,+∆1u

n
j,0

+ 2αβ
∑
j≥1

(∆1u
n
j,0)D2,+D1,0u

n
j,0 − αβ(D1,+D2,+u

n
0,0)2.

Combining this with the analogous estimate for A2, we end up after a few simplifications with

α2A1 + β2A2

≤ (α2 + β2)
(
α2‖∆1u

n‖2o + β2‖∆2u
n‖2o
)

+
(α2 + β2)2

4

(
‖D1,−D2,−u

n‖2o + ‖D1,−D2,+u
n‖2o

+ ‖D1,+D2,−u
n‖2o + ‖D1,+D2,+u

n‖2o

)

− α2(α2 + β2)

4

∑
j≥1

(D2,+∆1u
n
j,0)2 − β2(α2 + β2)

4

∑
k≥1

(D1,+∆2u
n
0,k)2

− α2(α2 + β2)
∑
j≥1

(∆1u
n
j,0)D2,+∆1u

n
j,0

− β2(α2 + β2)
∑
k≥1

(∆2u
n
0,k)D1,+∆2u

n
0,k(3.34)

− α2(α2 + β2)

2

∑
j≥1

(∆1u
n
j,0)2 − β2(α2 + β2)

2

∑
k≥1

(∆2u
n
0,k)2

− α2(α2 + β2)

2

∑
j≥1

(D1,+D2,+u
n
j,0)2 − β2(α2 + β2)

2

∑
k≥1

(D1,+D2,+u
n
0,k)2
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+ 2α3β
∑
j≥1

(∆1u
n
j,0)D2,+D1,0u

n
j,0 + 2αβ3

∑
k≥1

(∆2u
n
0,k)D1,+D2,0u

n
0,k

− αβ(α2 + β2)(D1,+D2,+u
n
0,0)2 − (α2 + β2)2

4
(D1,+D2,+u

n
0,0)2.

(iv) Step 4 (conclusion). We first use the estimate (3.34) in the estimate (3.31) for the
quantity A that is defined in (3.29). The quantity A arises on the right-hand side of the
estimate (3.28). In this way we obtain an estimate for the interior norm 4‖wn‖2o. This estimate
reads

4‖wn‖2o ≤ 2(α2 + β2)
(
α2‖∆1u

n‖2o + β2‖∆2u
n‖2o
)

+
(α2 + β2)2

2

(
‖D1,−D2,−u

n‖2o + ‖D1,−D2,+u
n‖2o

+ ‖D1,+D2,−u
n‖2o + ‖D1,+D2,+u

n‖2o
)

− α2(α2 + β2)

2

∑
j≥1

(∆1u
n
j,0)D2,+∆1u

n
j,0

− β2(α2 + β2)

2

∑
k≥1

(∆2u
n
0,k)D1,+∆2u

n
0,k

− α2(α2 + β2)

2

∑
j≥1

(∆1u
n
j,0)2 − β2(α2 + β2)

2

∑
k≥1

(∆2u
n
0,k)2

− α2(α2 + β2)

2

∑
j≥1

(D1,+D2,+u
n
j,0)2

− β2(α2 + β2)

2

∑
k≥1

(D1,+D2,+u
n
0,k)2

+ 2α3β
∑
j≥1

(∆1u
n
j,0)D2,+D1,0u

n
j,0 + 2αβ3

∑
k≥1

(∆2u
n
0,k)D1,+D2,0u

n
0,k

− 3

2
αβ(α2 + β2)(D1,+D2,+u

n
0,0)2 − (α2 + β2)2

4
(D1,+D2,+u

n
0,0)2.

We then combine this estimate of the interior norm with the estimate (3.27) for the boundary
and corner terms, and we therefore obtain the estimate (3.26) of Lemma 3.4 (recalling that
both α and β are negative).

3.4. Proof of the main result. We go back to the decomposition (3.9) and then combine
Lemma 3.2, Lemma 3.3, and Lemma 3.4. We obtain the energy inequality

(3.35) ‖un+1‖2 − ‖un‖2 ≤ I + B1 + B2 + C,

where I incorporates the interior contributions, namely
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I :=
(
− 1 + 2(α2 + β2)

){α2

4
‖∆1u

n‖2o +
β2

4
‖∆2u

n‖2o(3.36)

+
α2 + β2

16

(
‖D1,−D2,−u

n‖2o + ‖D1,−D2,+u
n‖2o

+ ‖D1,+D2,−u
n‖2o + ‖D1,+D2,+u

n‖2o
)}

,

the term B1, respectively B2, incorporates all the contributions on the boundary
{k = 0, j ≥ 1}, respectively {j = 0, k ≥ 1}, namely6

B1 := −|β|
∑
j≥1

(unj,0)2 − |β|
3

2

∑
j≥1

(D2,+u
n
j,0)2 − α2|β|

2

∑
j≥1

(D1,+u
n
j,0)2

− α2(1− |β|)2

8

∑
j≥1

(∆1u
n
j,0)2 − α2β2

8

∑
j≥1

(D2,+∆1u
n
j,0)2

− β2
∑
j≥1

unj,0D2,+u
n
j,0 − |α|β2

∑
j≥1

D1,0u
n
j,0D2,+u

n
j,0

+ |α| (α
2 + β2)

4

∑
j≥1

D1,0u
n
j,0D2,+∆1u

n
j,0

− (1 + |β| − β2)(α2 + β2)

8

∑
j≥1

(D1,+D2,+u
n
j,0)2(3.37)

− (α2 + β2)

4

∑
j≥1

D1,+u
n
j,0D1,+D2,+u

n
j,0

− α2(α2 + β2)

8

∑
j≥1

(∆1u
n
j,0)D2,+∆1u

n
j,0

+ |α|3|β|
∑
j≥1

(∆1u
n
j,0)D2,+D1,0u

n
j,0,

and the term C incorporates the corner contributions, namely,

C :=

(
|α||β| − |α|+ |β|

2

)
(un0,0)2

−
(
|α|3

4
+
α2|β|

2

)
(D1,+u

n
0,0)2 −

(
|β|3

4
+
|α|β2

2

)
(D2,+u

n
0,0)2

− α2

2
un0,0D1,+u

n
0,0 −

β2

2
un0,0D2,+u

n
0,0 −

|αβ|
2

(|α|+ |β|)D1,+u
n
0,0D2,+u

n
0,0(3.38)

− (α2 + β2)

4

(
un0,0 +D1,+u

n
0,0 +D2,+u

n
0,0

)
D1,+D2,+u

n
0,0

− 3(α2 + β2)

16
(D1,+D2,+u

n
0,0)2,

− (|α|+ |β|) (α2 + β2)

8
(D1,+D2,+u

n
0,0)2 − (α2 + β2)2

16
(D1,+D2,+u

n
0,0)2.

6We only give the definition for the term B1 and leave the analogous definition for B2 to the interested reader.
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Let us split the analysis below into three steps, which correspond to the interior, corner,
and boundary contributions. The ordering corresponds to an increasing level of difficulty. At
the end, we establish an easy concluding argument.

(i) Step 1 (the interior contribution). We first deal with the term I defined in (3.36). We
first choose the parameter ε := 1/4 and assume that (α, β) = (λa, µb) satisfy

(3.39) α2 + β2 ≤ ε.

We see from the defining equation (3.36) that we have

(3.40) I ≤ −α
2

8
‖∆1u

n‖2o −
β2

8
‖∆2u

n‖2o,

where we have not kept all non-positive contributions on the right-hand side of (3.36) but only
the two most simple ones. It would be possible to keep more contributions, but, in our opinion,
this would not change significantly the main result of this article since the main feature of the
dissipation estimate for the Lax-Wendroff scheme is a fourth-order dissipation with respect to
both spatial directions.

In what follows we shall allow ourselves to further decrease the value of ε and will always
assume that (3.39) holds.

(ii) Step 2 (the corner contribution). We consider the quantity C defined in (3.38). We first
try to absorb some of the cross terms. We use Young’s inequality to estimate the fourth line on
the right-hand side of (3.38):

(α2 + β2)

4

∣∣∣un0,0 +D1,+u
n
0,0 +D2,+u

n
0,0

∣∣∣∣∣∣D1,+D2,+u
n
0,0

∣∣∣
≤ (α2 + β2)

4

(
(un0,0)2 + (D1,+u

n
0,0)2 + (D2,+u

n
0,0)2

)
+

3(α2 + β2)

16
(D1,+D2,+u

n
0,0)2.

Estimating |α||β| ≤ (α2 + β2)/2 in the coefficient of (un0,0)2 in the first line of (3.38), we
thus obtain the first estimate

C ≤
(

3(α2 + β2)

4
− |α|+ |β|

2

)
(un0,0)2

+

(
(α2 + β2)

4
− |α|

3

4
− α2|β|

2

)
(D1,+u

n
0,0)2

+

(
(α2 + β2)

4
− |β|

3

4
− |α|β

2

2

)
(D2,+u

n
0,0)2

− α2

2
un0,0D1,+u

n
0,0 −

β2

2
un0,0D2,+u

n
0,0 −

|αβ|
2

(|α|+ |β|)D1,+u
n
0,0D2,+u

n
0,0(3.41)

− (|α|+ |β|) (α2 + β2)

8
(D1,+D2,+u

n
0,0)2 − (α2 + β2)2

16
(D1,+D2,+u

n
0,0)2.

We keep on estimating some cross terms and now deal with the product D1,+u
n
0,0D2,+u

n
0,0 in

the third line on the right-hand side of (3.41). We use again Young’s inequality to obtain

α2|β|
2

∣∣D1,+u
n
0,0

∣∣ ∣∣D2,+u
n
0,0

∣∣ ≤ |α|3
4

(D1,+u
n
0,0)2 +

|α|β2

4
(D2,+u

n
0,0)2,

|α|β2

2

∣∣D1,+u
n
0,0

∣∣ ∣∣D2,+u
n
0,0

∣∣ ≤ α2|β|
4

(D1,+u
n
0,0)2 +

|β|3

4
(D2,+u

n
0,0)2.
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This gives our second estimate for the corner contribution C

C ≤
(

3(α2 + β2)

4
− |α|+ |β|

2

)
(un0,0)2 − α2

2
un0,0D1,+u

n
0,0 −

β2

2
un0,0D2,+u

n
0,0

+

(
(α2 + β2)

4
− α2|β|

4

)
(D1,+u

n
0,0)2 +

(
(α2 + β2)

4
− |α|β

2

4

)
(D2,+u

n
0,0)2(3.42)

− (|α|+ |β|) (α2 + β2)

8
(D1,+D2,+u

n
0,0)2 − (α2 + β2)2

16
(D1,+D2,+u

n
0,0)2.

The very last term on the right-hand side of (3.42) has the correct sign, but it will not help in
the analysis below. We thus feel free to discard this last term.

Unlike what we did in [1], we estimate the cross terms un0,0D1,+u
n
0,0 and un0,0D2,+u

n
0,0

rather crudely since there are already “bad” terms of the form (un0,0)2, but, more importantly,
there are “bad” terms of the form (D1,+u

n
0,0)2 and (D2,+u

n
0,0)2 that cannot be absorbed, even

by taking (α, β) small enough. We have

α2

2

∣∣un0,0∣∣ ∣∣D1,+u
n
0,0

∣∣ ≤ α2

4
(un0,0)2 +

α2

4
(D1,+u

n
0,0)2,

β2

2

∣∣un0,0∣∣ ∣∣D2,+u
n
0,0

∣∣ ≤ β2

4
(un0,0)2 +

β2

4
(D2,+u

n
0,0)2,

and thus we get from (3.42) the estimate

C ≤
(
α2 + β2 − |α|+ |β|

2

)
(un0,0)2 − α2|β|

4
(D1,+u

n
0,0)2 − |α|β

2

4
(D2,+u

n
0,0)2

+
(2α2 + β2)

4
(D1,+u

n
0,0)2 +

(α2 + 2β2)

4
(D2,+u

n
0,0)2

− (|α|+ |β|) (α2 + β2)

8
(D1,+D2,+u

n
0,0)2.

Up to further restricting the parameters (α, β) by choosing a smaller value for ε, the corner
contribution C satisfies

C ≤ −|α|+ |β|
4

(un0,0)2 − α2|β|
4

(D1,+u
n
0,0)2 − |α|β

2

4
(D2,+u

n
0,0)2

− (|α|+ |β|) (α2 + β2)

8
(D1,+D2,+u

n
0,0)2(3.43)

+
(α2 + β2)

2

(
(D1,+u

n
0,0)2 + (D2,+u

n
0,0)2

)
,

where the first and second lines on the right-hand side correspond to a dissipative contribution
and the only two terms with a “bad” sign are collected in the third line. We shall illustrate in
the concluding argument how to absorb these terms.

(iii) Step 3 (the boundary contribution). We consider the quantity B1 defined in (3.37)
and absorb again some cross terms. The first cross term in the second line on the right-hand
side of (3.37) is estimated by Young’s inequality

β2

∣∣∣∣∣∣
∑
j≥1

unj,0D2,+u
n
j,0

∣∣∣∣∣∣ ≤ 3|β|
4

∑
j≥1

(unj,0)2 +
|β|3

3

∑
j≥1

(D2,+u
n
j,0)2.
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Moreover, in the third line on the right-hand side of (3.37), we use the inequality |β| ≥ β2 to
simplify the term that involves the sum of the (D1,+D2,+u

n
j,0)2. At last, in the first line on

the right-hand side of (3.37), we use the inequality (1− |β|)2 ≥ 1/2 that holds as long as the
parameter ε in (3.39) is chosen small enough. We thus get our first estimate

B1 ≤ −
|β|
4

∑
j≥1

(unj,0)2 − |β|
3

6

∑
j≥1

(D2,+u
n
j,0)2 − α2|β|

2

∑
j≥1

(D1,+u
n
j,0)2

− α2

16

∑
j≥1

(∆1u
n
j,0)2 − α2β2

8

∑
j≥1

(D2,+∆1u
n
j,0)2

− (α2 + β2)

8

∑
j≥1

(D1,+D2,+u
n
j,0)2 − |α|β2

∑
j≥1

D1,0u
n
j,0D2,+u

n
j,0

− (α2 + β2)

4

∑
j≥1

D1,+u
n
j,0D1,+D2,+u

n
j,0(3.44)

+ |α| (α
2 + β2)

4

∑
j≥1

D1,0u
n
j,0D2,+∆1u

n
j,0

− α2(α2 + β2)

8

∑
j≥1

(∆1u
n
j,0)D2,+∆1u

n
j,0 + |α|3|β|

∑
j≥1

(∆1u
n
j,0)D2,+D1,0u

n
j,0.

We use again Young’s inequality for the first cross term in the third line on the right-hand
side of (3.44),

(α2 + β2)

4

∣∣∣∣∣∣
∑
j≥1

D1,+u
n
j,0D1,+D2,+u

n
j,0

∣∣∣∣∣∣
≤ (α2 + β2)

4

∑
j≥1

(D1,+u
n
j,0)2 +

(α2 + β2)

16

∑
j≥1

(D1,+D2,+u
n
j,0)2,

and we now recall that the CFL parameters λ, µ are subject to the conditions (3.6) where
M > 0 is a fixed constant. This means that the negative parameters α and β satisfy |α| ≤M |β|
and |β| ≤M |α|, so we have

(α2 + β2)

4

∣∣∣∣∣∣
∑
j≥1

D1,+u
n
j,0D1,+D2,+u

n
j,0

∣∣∣∣∣∣
≤ (1 +M2)|β|

4
|β|
∑
j≥1

(D1,+u
n
j,0)2 +

(α2 + β2)

16

∑
j≥1

(D1,+D2,+u
n
j,0)2.

Since we have D1,+u
n
j,0 = unj+1,0 − unj,0, we get the (non-optimal!) estimate∑

j≥1

(D1,+u
n
j,0)2 ≤ 4

∑
j≥1

(unj,0)2,

and we thus see that choosing ε in (3.39) possibly smaller (but the choice now depends on M ),
we get

(α2 + β2)

4

∣∣∣∣∣∣
∑
j≥1

D1,+u
n
j,0D1,+D2,+u

n
j,0

∣∣∣∣∣∣
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≤ |β|
12

∑
j≥1

(unj,0)2 +
(α2 + β2)

16

∑
j≥1

(D1,+D2,+u
n
j,0)2.

Using this estimate in (3.44), we obtain

B1 ≤ −
|β|
6

∑
j≥1

(unj,0)2 − |β|
3

6

∑
j≥1

(D2,+u
n
j,0)2

− α2|β|
2

∑
j≥1

(D1,+u
n
j,0)2 − α2

16

∑
j≥1

(∆1u
n
j,0)2

− α2β2

8

∑
j≥1

(D2,+∆1u
n
j,0)2 − (α2 + β2)

16

∑
j≥1

(D1,+D2,+u
n
j,0)2

− |α|β2
∑
j≥1

D1,0u
n
j,0D2,+u

n
j,0 + |α| (α

2 + β2)

4

∑
j≥1

D1,0u
n
j,0D2,+∆1u

n
j,0(3.45)

− α2(α2 + β2)

8

∑
j≥1

(∆1u
n
j,0)D2,+∆1u

n
j,0 + |α|3|β|

∑
j≥1

(∆1u
n
j,0)D2,+D1,0u

n
j,0.

We now deal with the first term in the third line on the right-hand side of (3.45) and recall the
relation D1,0 = D1,+ −∆1/2. We thus have

−|α|β2
∑
j≥1

D1,0u
n
j,0D2,+u

n
j,0

= −|α|β2
∑
j≥1

D1,+u
n
j,0D2,+u

n
j,0 +

|α|β2

2

∑
j≥1

∆1u
n
j,0D2,+u

n
j,0.

For the cross term with the product D1,+u
n
j,0D2,+u

n
j,0, we use again Young’s inequality

and (3.6):

|α|β2

∣∣∣∣∣∣
∑
j≥1

D1,+u
n
j,0D2,+u

n
j,0

∣∣∣∣∣∣ ≤M |β|3
∣∣∣∣∣∣
∑
j≥1

D1,+u
n
j,0D2,+u

n
j,0

∣∣∣∣∣∣
≤ |β|

3

8

∑
j≥1

(D2,+u
n
j,0)2 + 2M2|β|3

∑
j≥1

(D1,+u
n
j,0)2

≤ |β|
3

8

∑
j≥1

(D2,+u
n
j,0)2 + 8M2|β|3

∑
j≥1

(unj,0)2.

We can therefore absorb this term on the right-hand side of (3.45) by choosing ε in (3.39)
small enough. The argument for the cross term with the product ∆1u

n
j,0D2,+u

n
j,0 is similar,

and we leave it to the interested reader (it is important here to estimate β in terms of α, which
is made possible by (3.6)).

Using Young’s inequality and possibly choosing ε smaller in (3.39) (the choice still
depends on M ), we can also absorb the first cross term of the form (∆1u

n
j,0)D2,+∆1u

n
j,0 in

the fourth line on the right-hand side of (3.45). At this stage, by choosing ε small enough and
(α, β) that satisfy (3.39), we can enforce the following estimate7 for the boundary contribution

7The coefficients are not aimed to be optimal. Our main goal is to show here that all cross terms can be absorbed
by choosing ε small enough, but this requires to be able to estimate α by β and β by α, as is made possible by (3.6).
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B1:

B1 ≤ −
|β|
8

∑
j≥1

(unj,0)2 − |β|
3

32

∑
j≥1

(D2,+u
n
j,0)2

− α2|β|
2

∑
j≥1

(D1,+u
n
j,0)2 − α2

32

∑
j≥1

(∆1u
n
j,0)2

− α2β2

16

∑
j≥1

(D2,+∆1u
n
j,0)2 − (α2 + β2)

16

∑
j≥1

(D1,+D2,+u
n
j,0)2(3.46)

+ |α| (α
2 + β2)

4

∑
j≥1

D1,0u
n
j,0D2,+∆1u

n
j,0 + |α|3|β|

∑
j≥1

(∆1u
n
j,0)D2,+D1,0u

n
j,0.

For the very last two cross terms in the last line on the right-hand side of (3.46), we use
the relation D1,0 = D1,+ −∆1/2 in order to involve only the operators D1,+, D2,+, and ∆1.
When we expand the second cross term, we have to deal with cross terms that involve the
products

(∆1u
n
j,0)D1,+D2,+u

n
j,0, (∆1u

n
j,0)D2,+∆1u

n
j,0,

and for each of these two terms, we can apply the above argument that is based on Young’s
inequality (in order to absorb the “worst” square term) and choosing ε sufficiently small (in
order to absorb the remaining square term). The estimate (3.46) thus yields, for instance, by
choosing ε small enough,

B1 ≤ −
|β|
8

∑
j≥1

(unj,0)2 − |β|
3

32

∑
j≥1

(D2,+u
n
j,0)2

− α2|β|
2

∑
j≥1

(D1,+u
n
j,0)2 − α2

64

∑
j≥1

(∆1u
n
j,0)2

− α2β2

32

∑
j≥1

(D2,+∆1u
n
j,0)2 − (α2 + β2)

32

∑
j≥1

(D1,+D2,+u
n
j,0)2(3.47)

+ |α| (α
2 + β2)

4

∑
j≥1

D1,+u
n
j,0D2,+∆1u

n
j,0

− |α| (α
2 + β2)

8

∑
j≥1

∆1u
n
j,0D2,+∆1u

n
j,0.

The analysis is almost complete. For the first cross term in the last line on the right-hand
side of (3.47), we use the above argument to get

|α| (α
2 + β2)

4

∣∣∣∣∣∣
∑
j≥1

D1,+u
n
j,0D2,+∆1u

n
j,0

∣∣∣∣∣∣
≤ α2β2

64

∑
j≥1

(D2,+∆1u
n
j,0)2 + C(M)β2

∑
j≥1

(unj,0)2,

where the constant C(M) only depends on M (it is actually a polynomial quantity in M ).
The trouble comes with the very last term since the operator ∆1, unlike D1,+, involves a
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symmetric stencil, and the control we have on ∆1u
n
j,0 does not seem good enough at this stage.

We shall therefore use the (non-optimal) bound
∑

j≥1(∆1 u
n
j,0)2 ≤ 16

∑
j≥0(unj,0)2 to take

advantage of the good control on unj,0. Reproducing the above argument, we get the inequality

|α| (α
2 + β2)

4

∣∣∣∣∣∣
∑
j≥1

∆1u
n
j,0D2,+∆1u

n
j,0

∣∣∣∣∣∣
≤ α2β2

64

∑
j≥1

(D2,+∆1u
n
j,0)2 + C(M)β2

∑
j≥0

(unj,0)2,

with a possibly larger constant C(M), but the important thing is that the very last sum bears
on the indices {j ≥ 0} and not only on {j ≥ 1}.

As a conclusion for this third step, we have seen that we can choose ε small enough (and
the choice depends on M ) such that, for CFL parameters that satisfy (3.39), we get

(3.48) B1 ≤ C(M)β2(un0,0)2 − |β|
9

∑
j≥1

(unj,0)2.

Here we forget about many of the non-positive contributions on the right-hand side of (3.47)
in order to simplify the final estimate that is stated in Theorem 3.1. We recall that there is
an analogous term B2 on the boundary {j = 0, k ≥ 1}, and this term satisfies the analogous
estimate

(3.49) B2 ≤ C(M)α2(un0,0)2 − |α|
9

∑
k≥1

(un0,k)2.

(iv) Conclusion. From the estimate (3.35) and the three estimates (3.40), (3.43) (where
we only keep the first dissipation term), (3.48), and (3.49), we have

‖un+1‖2 − ‖un‖2 +
α2

8
‖∆1u

n‖2
`2 (̊I) +

β2

8
‖∆2u

n‖2
`2 (̊I)

≤ C(M)(α2 + β2)(un0,0)2 +
(α2 + β2)

2

(
(D1,+u

n
0,0)2 + (D2,+u

n
0,0)2

)
− |α|+ |β|

4
(un0,0)2 − |α|

9

∑
k≥1

(un0,k)2 − |β|
9

∑
j≥1

(unj,0)2.

There are only three terms on the right-hand side with the “wrong” sign, but each of them can
be absorbed by either one of the three terms with a negative sign since we have

(D1,+u
n
0,0)2 + (D2,+u

n
0,0)2 ≤ 4(un0,0)2 + 2(un1,0)2 + 2(un0,1)2.

Up to restricting again the parameter ε, we end up with the estimate

‖un+1‖2 − ‖un‖2 +
α2

8
‖∆1u

n‖2
`2 (̊I) +

β2

8
‖∆2u

n‖2
`2 (̊I)

+
|α|
10

∑
k≥0

(un0,k)2 +
|β|
10

∑
j≥0

(unj,0)2 ≤ 0,

where we have incorporated the control of the corner value un0,0 into the boundary sums for
simplicity. The proof of Theorem 3.1 is now complete.
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4. Discussion and numerical illustrations. In this section, we briefly discuss the result
of Theorem 3.1 and our strategy for its proof. If we compare with the analogous result in
our previous article, that is, [1, Theorem 4.1], then the main difference is that our stability
estimate for the second-order boundary and corner extrapolation does not cover the whole set
of parameters (λa, µb) that satisfy the stability requirement for the Cauchy problem, namely
the CFL condition:

(4.1) (λa)2 + (µb)2 ≤ 1

2
.

In our final arguments, we have been rather crude in estimating the corner and boundary
contributions in the decomposition (3.35). Let us see whether there is a potential room for
improvement. We first look at the corner contribution (3.38). The corner contribution C defined
in (3.38) is a quadratic form with respect to (un0,0, D1,+u

n
0,0, D2,+u

n
0,0, D1,+D2,+u

n
0,0) ∈ R4.

Figure 4.1 illustrates the set of parameters (λ|a|, µ|b|) ∈ [0, 1]2 for which this quadratic form
is negative definite (which is what we were aiming at in the proof of Theorem 3.1). The set
of good parameters, that is, the parameters for which the quadratic form is negative definite
and (4.1) holds, is depicted in yellow. The exterior of the ball (4.1) is depicted in dark blue. In
the light blue region, (4.1) holds, but the quadratic form is not negative definite. The latter
region contains all small values of λ|a|, µ|b|, which is reminiscent of our final estimate (3.43)
and can be deduced by merely looking at the expression of C with either a or b equal to zero.

FIG. 4.1. Negativity of the quadratic form associated with the corner contribution C. In dark blue: the exterior
of the ball. In yellow: the parameters (λ|a|, µ|b|) for which (4.1) holds and the quadratic form is negative definite.
In light blue: the parameters (λ|a|, µ|b|) for which (4.1) holds and the quadratic form is not negative definite.

The main problem in the analysis of the corner contribution C comes from the cross terms

D1,+u
n
0,0D1,+D2,+u

n
0,0 and D2,+u

n
0,0D1,+D2,+u

n
0,0.

In our analysis, these terms are partly absorbed thanks to the boundary dissipation. If one now
looks at the reduced corner contribution (where we omit the cross terms from which some
difficulties arise, compare with (3.38)),

C̃ :=

(
|α||β| − |α|+ |β|

2

)
(un0,0)2

−
(
|α|3

4
+
α2|β|

2

)
(D1,+u

n
0,0)2 −

(
|β|3

4
+
|α|β2

2

)
(D2,+u

n
0,0)2
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− α2

2
un0,0D1,+u

n
0,0 −

β2

2
un0,0D2,+u

n
0,0 −

|αβ|
2

(|α|+ |β|)D1,+u
n
0,0D2,+u

n
0,0

− (α2 + β2)

4
un0,0D1,+D2,+u

n
0,0 −

3(α2 + β2)

16
(D1,+D2,+u

n
0,0)2,

− (|α|+ |β|) (α2 + β2)

8
(D1,+D2,+u

n
0,0)2 − (α2 + β2)2

16
(D1,+D2,+u

n
0,0)2,

we can still try to identify numerically the region of parameters for which the associated
quadratic form is negative definite. The result is illustrated in Figure 4.2 with the same color
scale as in Figure 4.1. The yellow region is far larger, which confirms that the above two cross
terms are the core of the problem. Nevertheless, there remain very tiny portions near the axes,
that is, when either λ|a| dominates µ|b| or the opposite, where the reduced quadratic form C̃
is not negative definite (this can also be seen by setting either a or b equal to zero). In full
generality, it thus seems necessary to absorb part of the “bad” terms in the corner contribution
by part of the good terms in the boundary contributions.

FIG. 4.2. Negativity of the quadratic form associated with the reduced corner contribution C̃. In dark blue: the
exterior of the ball. In yellow: the parameters (λ|a|, µ|b|) for which (4.1) holds and the quadratic form is negative
definite. In light blue: the parameters (λ|a|, µ|b|) for which (4.1) holds and the quadratic form is not negative
definite.

We now examine the boundary contribution B1 in (3.37). Actually, we are going to
simplify a little bit and consider the analogue of this term when extended to the whole set of
integers Z. In other words, we consider two sequences u ∈ `2(Z;R) (u being a placeholder
for un·,0) and v ∈ `2(Z;R) (v being a placeholder for the normal derivative D2,+u

n
·,0), and we

consider the quantity

B̃ := −|β|
∑
j∈Z

u2
j −

α2|β|
2

∑
j∈Z

(D1,+uj)
2 − α2(1− |β|)2

8

∑
j∈Z

(∆1uj)
2

− |β|
3

2

∑
j∈Z

v2
j −

α2β2

8

∑
j∈Z

(∆1vj)
2 − β2

∑
j∈Z

ujvj − |α|β2
∑
j∈Z

D1,0ujvj

+ |α| (α
2 + β2)

4

∑
j∈Z

D1,0uj∆1vj −
(1 + |β| − β2)(α2 + β2)

8

∑
j∈Z

(D1,+vj)
2

− (α2 + β2)

4

∑
j∈Z

D1,+ujD1,+vj −
α2(α2 + β2)

8

∑
j∈Z

∆1uj∆1vj
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+ |α|3|β|
∑
j∈Z

∆1ujD1,0vj .

After identifying the sequences u and v with square integrable piecewise constant functions
on R, we can apply the Plancherel theorem and obtain

B̃ =
1

2π

∫
R

[
û(ξ)
v̂(ξ)

]∗
H(ξ)

[
û(ξ)
v̂(ξ)

]
dξ,

where the 2× 2 Hermitian matrix H(ξ) is defined by

H(ξ) :=

[
h1 h3 + ih4

h3 − ih4 h2

]
,

where we use from now on the shorthand notation x := sin2(ξ/2) and the real quantities h1,
h2, h3, and h4 are defined by

h1 :=− |β|(1 + 2α2x)− 2α2(1− |β|)2x2,

h2 :=− |β|
3

2
− (1 + |β| − β2)(α2 + β2)

2
x− 2α2β2x2,

h3 :=− β2

2
− (α2 + β2)

x

2
− α2(α2 + β2)x2,

h4 := sin ξ

(
|α|β2

2
+
|α|(α2 + β2)

2
x− 2|α|3|β|x

)
.

FIG. 4.3. Negativity of the simplified boundary contribution B̃. In dark blue: the exterior of the ball. In yellow:
the parameters (λ|a|, µ|b|) for which (4.1) holds and the quadratic form is negative definite. In light blue: the
parameters (λ|a|, µ|b|) for which (4.1) holds and the quadratic form is not negative definite.

If H(ξ) is negative definite for any ξ ∈ R, then we can get an upper bound for the
boundary contribution B̃ with the “good” sign. The trace of H(ξ) is easily shown to be
negative for parameters (α, β) = (λa, µb) that satisfy (4.1) and β < 0. Thus, H(ξ) being
negative definite is equivalent to showing that the determinant of H(ξ) is positive for any
ξ ∈ R (this determinant is shown to depend only on x, so there only remains a free parameter
x in the interval [0, 1]). Figure 4.3 displays the set of parameters (λ|a|, µ|b|) for which H(ξ)
is negative definite for any ξ ∈ R with the same color scale as in Figures 4.1 and 4.2. The
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important point here is that for any parameters that satisfy the CFL condition (4.1), the
simplified boundary contribution B̃ does seem to provide some dissipation. However, we have
not been able to derive the optimal scaling of this dissipation in terms of α and β, and it is
therefore not clear whether, in a quarter-plane, the boundary terms may compensate for all
the contributions at the corner that do not have the correct sign. This is left open for further
studies.
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