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COMPUTING A FEW EXTREME SINGULAR TRIPLETS OF A THIRD-ORDER
TENSOR USING THE t-PRODUCT∗
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LOTHAR REICHEL§

Abstract. This paper describes software for computing a few of the largest or smallest singular triplets of a
third-order tensor using the t-product. The software implements restarted partial tensor bidiagonalization techniques
that were introduced by El Hachimi et al. in [Numer. Linear Algebra Appl., 31 (2024), Art. e2530]. Restarting is
carried out by augmenting the available solution subspace by Ritz lateral slices or by harmonic Ritz lateral slices.
The performance of our Python implementation is investigated. The software is designed for easy use in various
applications.
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1. Introduction. Tensors are higher-dimensional extensions of matrices. They find
applications in a variety of areas including data compression and completion, facial recognition,
image restoration, and network analysis. This paper focuses on third-order tensors, which
are data arrays in C`×p×n, whose multiplication is defined by the t-product. This tensor
product was introduced by Kilmer et al. [7, 8] and has found many applications. The t-product
allows the definition of analogues of well-known matrix factorizations for third-order tensors.
For instance, the t-svd is an analogue for third-order tensors of the matrix singular value
decomposition (svd).

Baglama et al. [1, 2] describe efficient algorithms for approximating a few extreme
singular triplets of a large matrix. Generalizations of these algorithms for the computation
of a few extreme singular triplets of a third-order tensor using the t-product are presented
in [5]. This paper presents efficient Python implementations of the latter algorithms. The
aim of the current work is to provide an open-source and well-documented implementation.
The availability of our Python code makes it easy for scientists to use these methods in novel
applications.

To enhance readability, we summarize key theoretical concepts. In addition, we present
numerical experiments, runtime comparisons, and validation plots to benchmark the perfor-
mance of our implementation in realistic settings. The accompanying software is modular and
extensible, serving as a platform for future research in low-rank tensor approximation under
the t-product framework.

2. The t-product of third-order tensors. The t-product allows the extension of many
matrix operations to third-order tensors. We will use notation from Kilmer and Martin [8] and
Kolda and Bader [9].
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A third-order tensor is an array A = [aijk] ∈ C`×p×n. Matrices are tensors of order two,
and vectors are tensors of order one. A slice of a third-order tensor A is a section obtained by
fixing any one of the three indices. Using MATLAB notation, we let A(i, :, :), A(:, j, :), and
A(:, :, k) denote the ith horizontal, the jth lateral, and the kth frontal slices of A, respectively.
The lateral slice A(:, j, :) also is denoted by ~Aj , and the frontal slice A(:, :, k) is an ` × p
matrix, which we sometimes denote by A(k). A fiber of a third-order tensor A is defined by
fixing any two of the three indices. The fiber A(i, j, :) is called a tube of A.

We will use capital calligraphic letters A to denote third-order tensors, capital letters A to
identify matrices, boldface lower case letters a to denote tubes, and lower case letters a stand
for scalars. Furthermore, K`×p

n = R`×p×n stands for the space of third-order tensors of size
`× p× n, K`

n = R`×1×n denotes the space of lateral slices of size `× n, and Kn = R1×1×n

stands for the space of tubes with n entries.
Given two tensors A ∈ K`×q

n and B ∈ Kq×p
n , their t-product is defined as

A ∗ B = fold (bcirc(A)unfold(B)) ∈ K`×p
n ,

where the operations bcirc, fold, and unfold are defined as follows: for the tensor
A ∈ K`×p

n , the associated block circulant matrix is defined as

bcirc(A) =



A(1) A(n) · · · A(2)

A(2) A(1) · · · A(3)

A(3) . . . . . .
...

...
. . . . . .

...
A(n) A(n−1) · · · A(1)

 ∈ R`n×qn,

and for the tensor B, the unfolding operation results in

unfold(B) =


B(1)
B(2)

...
B(n)

 ∈ Rqn×p.

The folding operation fold(unfold(B)) recovers the tensor B.
The t-product can be evaluated with the aid of the Discrete Fourier Transform (DFT).

The transformed tensor Â is obtained by applying the DFT along the third dimension. Using
MATLAB notation,

Â = fft(A, [ ], 3).

The inverse operation can be evaluated with the command

A = ifft(Â, [ ], 3).

It follows that the t-product C = A∗B can be evaluated by first computing the matrix products

Ĉ(i) = Â(i)B̂(i), i = 1, 2, . . . , n,

where Â(i), B̂(i), and Ĉ(i) are the ith frontal slices of the tensors Â, B̂, and Ĉ, respectively, and
then computing the inverse transform of Ĉ; see, e.g., Kilmer et al. [7] or El Hachimi et al. [5]
for further details, where it is also pointed out that the count of arithmetic floating point
operations (flops) can be reduced somewhat by using some symmetry properties that arise for
real tensors. These symmetries do not hold for complex tensors. The operation conj in the
following algorithm denotes element-wise complex conjugation.
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Algorithm 1 The t-product with symmetry check for real tensors.
Input: A ∈ K`×p

n , B ∈ Kp×q
n

Output: C ∈ K`×q
n

1: Compute Â, and B̂.
2: if both A and B are real then
3: for i = 1, . . . ,

[
n+1
2

]
do

4: Ĉ(i) = Â(i)B̂(i);
5: end for
6: for i =

[
n+1
2

]
+ 1, . . . , n do

7: Ĉ(i) = conj(Ĉ(n−i+2));
8: end for
9: else

10: for i = 1, . . . , n do
11: Ĉ(i) = Â(i)B̂(i);
12: end for
13: end if
14: Compute C from Ĉ;

2.1. Computational complexity of the t-product. The dominant computational work
required when evaluating the t-product of two tensors A ∈ K`×p

n and B ∈ Kp×q
n by Al-

gorithm 1 is the calculation of DFTs and of matrix-matrix products. The DFT is applied
to every tube of the tensor A, each with n components. Using the Fast Fourier Transform
(FFT) algorithm, the computation of the DFT of an n-vector requires O(n log n) flops. Con-
sequently, the application of the DFT to all tubes demands O(` · p · n log n) flops. The
same flop count holds for the inverse transform. Similarly, the DFT applied to B requires
O(p · q · n log n) flops. Matrix-matrix products of frontal slices have to be evaluated. This
requires O(` · p · q) flops for each pair of slices. When applied to all slices, the resulting flop
count becomes O(n · ` · p · q). Summing up these flop counts, we obtain that Algorithm 1
demands O(` · p · n · log n+ p · q · n log n+ n · ` · p · q) flops. When the tensors are large, the
matrix-matrix product evaluations dominate the flop count.

Algorithm 1 requires storage of the tensors A and B, and of the Fourier-transformed
tensors Â and B̂, in addition to the storage of the resulting tensor C. The latter may overwrite
the tensor Ĉ. Here we assume that we do not want to overwrite the tensors A and B. The
storage requirement then is of size O(n · (` · p+ p · q + ` · q)).

To illustrate the computational complexity of Algorithm 1, we applied the algorithm
to a sequence of n × n × n tensors for increasing values of n and measured the runtimes,
which are displayed in Figure 2.1. The runtime grows roughly like O(n4). All computations
shown in this paper were carried out on a desktop computer equipped with an AMD Ryzen 9
7950X 16-Core Processor (32 threads), with a base clock speed of 400 MHz and a maximum
clock speed of 5.84 GHz. The system has 64 GB of RAM and runs Python 3.10.12 on a
Linux-based operating system. All calculations involving tensors are averaged over 20 runs,
and the tensors used in the experiments are randomly generated with reasonable conditioning
to ensure numerical stability.

Figure 2.1 shows the computing time to be quite close to the curve n → c · n4, where
c = 6.93 × 10−11. However, certain data points deviate somewhat from this curve. This
variation can largely be attributed to overheads present in real-world computation environments.
Moreover, we found that the time required by the FFT function of Python varies significantly
depending on the factorization of n.
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The execution times for the Python functions fft and ifft generally follow the expected
n3 log(n) trend, and tensor-tensor multiplication follows the n4 trend. However, variations
in the timings for the fft function indicate that the timings are heavily influenced by the
factorization of n; the runtime is faster when n is a product of small primes; see Figure 2.2.

FIG. 2.1. Runtime of Algorithm 1 as a function of n and a comparison with n4 (red curve).

FIG. 2.2. Detailed runtime analysis of the three significant components of the t-product evaluation. Timings
for the fft and ifft functions, as well as for tensor-tensor product evaluations are displayed. The timings for the
fft and ifft functions are compared with graphs for n→ cn3 log(n), and the timings for matrix-matrix product
evaluation are compared to the graph n→ dn4 for suitable constants c and d.

The fitted function for tensor-tensor multiplication is n→ c · n4 with c = 3.2× 10−11,
while the fft and ifft coefficients show greater variation, reflecting sensitivity to n. The
fitted curves for these operations are shown in the figure, where the multiplication fit follows
dn4 and the fft and ifft fits follow cn3 log(n) for suitable constants c and d.

3. The tensor singular value decomposition (t-svd). One of the attractions of the tensor
t-product is that it allows for generalizations of common matrix factorizations to third-order
tensors including Cholesky factorization, QR factorization, singular value decomposition
(SVD), and spectral factorization; see, e.g., [4, 5, 7, 11].
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FIG. 3.1. Comparison of the runtime for the evaluation of the t-svd and the t-product of tensors in Kn×n
n for

increasing values of n. The graphs illustrate the significantly higher computational demand of t-svd computations.

The SVD of a tensor under the t-product, known as the t-svd, has received considerable
attention due to its use in a variety of applications including tensor denoising, completion, and
compression; see, e.g, [3, 10, 12]. A third-order tensor A ∈ K`×`

n is said to be orthogonal if

AH ∗ A = A ∗ AH = I`,

where the tensor AH is obtained by first transposing and conjugating each one of the frontal
slices ofA, and then reversing the order of the conjugated transposed frontal slices 2 through n.
The identity tensor I` ∈ K`×`

n has the first frontal slice equal to the identity matrix, and the
remaining frontal slices are zero matrices. A third-order tensor is said to be f-diagonal if its
frontal slices in the Fourier domain are diagonal matrices; see [7].

THEOREM 3.1 ([7]). Let A ∈ K`×p
n . Then A can be factored as

(3.1) A = U ∗ S ∗ VH ,

where U ∈ K`×`
n and V ∈ Kp×p

n are orthogonal tensors, and S ∈ K`×p
n is an f-diagonal

tensor.
The decomposition (3.1) allows A to be expressed as

A =

min(`,p)∑
i=1

~Ui ∗ si ∗ ~VH
i =

min(`,p)∑
i=1

si ∗ ~Ui ∗ ~VH
i ,

where si = S(i, i, :) represents the ith singular tube and ~Ui = U(:, i, :) and ~Vi = V(:, i, :) are
left and the right singular slices of A, respectively. The singular tubes are ordered according
to decreasing norm, i.e.,

‖s1‖ ≥ ‖s2‖ ≥ . . . ≥ ‖smin(`,p)‖ ≥ 0,

where ‖·‖ denotes the Euclidean vector norm. We refer to {si, ~Ui, ~Vi} as the ith singular triplet
of A. The largest singular triplets are associated with singular tubes of largest norm, while
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Algorithm 2 The t-svd.
Input: A ∈ K`×p

n

Output: U ∈ K`×`
n , S ∈ K`×p

n , V ∈ Kp×p
n

1: Compute Â.
2: if A is real then
3: for i = 1, . . . ,

[
n+1
2

]
do

4:
[
Û (i), Ŝ(i), V̂(i)

]
= svd

(
Â(i)

)
.

5: end for
6: for i =

[
n+1
2

]
+ 1, . . . , n do

7: Û (i) = conj
(
Û (n−i+2)

)
8: Ŝ(i) = conj

(
Ŝ(n−i+2)

)
9: V̂(i) = conj

(
V̂(n−i+2)

)
10: end for
11: else
12: for i = 1, . . . , n do
13:

[
Û (i), Ŝ(i), V̂(i)

]
= svd

(
Â(i)

)
.

14: end for
15: end if
16: Compute U , S, and V from Û , Ŝ, and V̂ , respectively.

the smallest singular triplets are associated with singular tubes of smallest norm. Algorithm 2
outlines the computation of the t-svd of a third-order tensor.

The computation of the t-svd of a tensorA ∈ Kn×n
n requires O(n4) flops. This flop count

follows from the fact that the evaluation of the singular value decomposition of an n×nmatrix
demands O(n3) flops. Figure 3.1 compares the runtime for the computation of tensor-tensor
products and the t-svd as a function of n. Despite the fact that both computations require
O(n4) flops, the evaluation of the t-svd can be seen to be much slower. We determine the
leading coefficient in the fitted curves so that the dashed graphs approximate the data fairly
well. The difference in timings depends on the fact that the evaluation of the t-svd of a tensor
A ∈ Kn×n

n is much more complicated than the evaluation of the t-product A ∗ A. Moreover,
the available hardware allows efficient execution of the computations required for the latter
task.

The graphs of Figure 3.1 compare the execution times for the t-product and t-svd algo-
rithms, both of which exhibit an asymptotic complexity of O(n4). However, the constant
factors differ significantly: for the t-product, the coefficient is 6.92 × 10−11, while for the
t-svd, it is 4.12× 10−10.

4. Partial tensor Lanczos bidiagonalization under the t-product. The extension of
matrix decompositions to tensors via the t-product finds applications in multi-dimensional
data analysis. An application to face recognition that uses a database of color images of facial
expressions is described in [5]. The numerical method used in this application is based on
the computation of a few of the largest singular triplets of a large third-order tensor. This is
achieved with the aid of partial tensor Lanczos bidiagonalization.
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Let A ∈ K`×p
n be a third-order tensor. The application of 1 ≤ m� min{`, p, n} steps

of the tensor Lanczos bidiagonalization process generically yields the tensors

(4.1) Pm =
[
~P1, . . . , ~Pm

]
∈ Kp×m

n , Qm =
[
~Q1, . . . , ~Qm

]
∈ K`×m

n ,

as well as a bidiagonal tensor Bm ∈ Km×m
n . The lateral slices of Pm and Qm form bases for

the tensor Krylov subspaces

Km(AH ∗ A, ~P1) = span
{
~P1,AH ∗ A ∗ ~P1, . . . , (AH ∗ A)m−1 ∗ ~P1

}
,

Km(A ∗ AH , ~Q1) = span
{
~Q1,A ∗ AH ∗ ~Q1, . . . , (A ∗ AH)m−1 ∗ ~Q1

}
,

respectively. Algorithm 3 describes the computation of the tensors (4.1).

Algorithm 3 Partial tensor Lanczos bidiagonalization under the t-product.

Input: A ∈ K`×p
n , initial unit-norm slice ~P1 ∈ Kp

n, number of steps m ∈ N∗.
Output: Tensors Pm ∈ Kp×m

n and Qm ∈ K`×m
n with orthonormal lateral slices, upper

bidiagonal tensor Bm ∈ Km×m
n , and residual tensor ~Rm ∈ Kp

n.

1: P1 ←
[
~P1

]
2: ~Q1 ← A ∗ ~P1

3:
[
~Q1,α1

]
← Normalize( ~Q1)

4: Q1 ←
[
~Q1

]
5: Bm(1, 1, :)← α1

6: for i← 1 to m do
7: ~Ri ← AH ∗ ~Qi −αi ∗ ~Pi

8: ~Ri ← ~Ri − Pi ∗ (PH
i ∗ ~Ri)

9: if i < m then
10:

[
~Pi+1,βi

]
← Normalize( ~Ri)

11: Pi+1 ←
[
Pi, ~Pi+1

]
12: Bm(i, i+ 1, :)← βi

13: ~Qi+1 ← A ∗ ~Pi+1 − βi ∗ ~Qi

14: ~Qi+1 ← ~Qi+1 −Qi ∗ (QH
i ∗ ~Qi+1)

15:
[
~Qi+1,αi+1

]
← Normalize( ~Qi+1)

16: Qi+1 ←
[
Qi, ~Qi+1

]
17: Bm(i+ 1, i+ 1, :)← αi+1

18: end if
19: end for

In detail, the Lanczos bidiagonalization process applied to the tensor A ∈ K`×p
n is based

on the equations

A ∗ Pm = Qm ∗ Bm,(4.2)
AH ∗ Qm = Pm ∗ BHm + ~Rm ∗ ~EHm ,(4.3)

where the tensor slice ~Rm is orthogonal to all lateral slices of Pm, and ~Em ∈ Km
n denotes the

canonical lateral slice whose elements are zero except for the first element of the mth tube,
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which equals 1. The tensor Bm is upper bidiagonal,

Bm =


α1 β1

α2 β2

. . . . . .
αm−1 βm−1

αm

 ∈ Km×m
n ,

where the αi and βi denote coefficients that are determined by the algorithm. Normalization
of the “remainder slice” ~Rm in (4.3) gives

(4.4) ~Rm = ~Pm ∗ βm,

where ~Pm+1 ∈ Kp
m is of unit norm and βm is a tube; see [5]. Equation (4.3) now can be

expressed as

AH ∗ Qm = Pm+1 ∗ BHm,m+1,

where the tensor Pm+1 is obtained by appending the lateral slice ~Pm+1 to Pm, namely,
Pm+1 =

[
Pm, ~Pm+1

]
. Moreover, the tensor Bm,m+1 is defined by

Bm,m+1 =

[
Bm

βm+1

]
∈ Km×(m+1)

n .

The following plots illustrate the finite-precision behavior of the identities (4.2) and (4.3).
Let A ∈ Kn×n

n , and let m denote the number of steps of Algorithm 3. Figure 4.1 displays the
Frobenius norm of the residual

‖A ∗ Pm −Qm ∗ Bm‖F

for various tensor dimensions n and Lanczos bidiagonalization steps m. The surface appears
visually flat because the error remains numerically close to machine precision for all tested
values. This indicates that equation (4.2) holds with high accuracy in finite-precision arithmetic.
The flatness of the surface suggests backward stability and internal consistency of the partial
tensor Krylov decompositions (4.2) computed by Algorithm 3.

Figure 4.2 depicts the Frobenius norm of the residual in equation (4.3), namely

‖AH ∗ Qm − Pm ∗ BHm + ~Rm ∗ ~EHm‖F .

In contrast to Figure 4.1, this plot reveals more variation of the error, in particular for small
values of m.

While the norms shown in Figures 4.1 and 4.2 are small, we stress that these plots do
not imply that the tensors Bm, Pm, and Qm are computed with high accuracy. Rather, they
validate that the relations among these tensors are satisfied to a high degree of precision.

Finally, Figure 4.3 displays the execution time in seconds required by Algorithm 3 as
a function of the tensor dimension n and the number of Lanczos bidiagonalization steps m.
The execution time increases with both parameters, as can be expected. The sharp rise in the
surface along both axes reflects the cubic complexity in the tensor dimension n and the linear
complexity with respect to the number of steps m. This is consistent with the cost of repeated
tensor-matrix multiplications and orthogonalizations carried out by the algorithm.

Notably, the execution time remains under 4 seconds also for the largest tested config-
uration (n = 300, m = 5). This indicates that the method is computationally feasible for
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moderately sized problems and illustrates the usefulness of partial tensor Lanczos bidiagonal-
ization under the t-product for real-world applications. As with the previous figures, the flat
region near the lower-left corner of Figure 4.3 corresponds to small problem sizes for which
the computational cost is negligible.

FIG. 4.1. Frobenius norm of the difference of the computed right-hand side and left-hand side of equation (4.2)
for tensorsA of different sizes n and a few steps m with Algorithm 3.

FIG. 4.2. Frobenius norm of the difference of the computed right-hand side and left-hand side of equation (4.3)
for tensorsA of different sizes n and a few steps m with Algorithm 3.
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FIG. 4.3. Execution time (in seconds) of Algorithm 3 for various values of the tensor size n and number of
steps m.

5. Approximation of a few singular triplets. Let ` ≥ p, and consider a large third-order

tensor A ∈ K`×p
n . We approximate the first k singular triplets

{
sAi,m,

~UAi,m, ~VAi,m
}k

i=1
of A by

(5.1) sAi,m = si, ~UAi,m = Qm ∗ ~Ui, ~VAi,m = Pm ∗ ~Vi,

where
{
si, ~Ui, ~Vi

}m

i=1
are the singular triplets of Bm. They satisfy the relations

Bm ∗ ~Vi = ~Ui ∗ si, BHm ∗ ~Ui = ~Vi ∗ si.

It is shown in [5] that the approximate singular triplets satisfy

A ∗ ~VAi,m = ~UAi,m ∗ sAi,m, AH ∗ ~UAi,m = ~VAi,m ∗ sAi,m + βm ∗ ~Pm+1 ∗ ~EHm ∗ ~Ui.

It is desirable that the residual term βm ∗ ~Pm+1 ∗ ~EHm ∗ ~Ui has small Frobenius norm. This
requirement suggests that the inequalities∥∥∥βm ∗ ~Pm+1 ∗ ~EHm ∗ ~Ui

∥∥∥
F
≤ ε

(
sA1,m

)(1)
, i = 1, . . . , k,

be satisfied for some small value of ε > 0. Here
(
sA1,m

)(1)
denotes the first entry of the vector

sA1,m. If these inequalities do not hold for a user-specified value of ε, then techniques outlined
in the following sections can be used to improve the approximations of the singular triplets.
Further details can be found in [5, 6].

5.1. Augmentation by Ritz lateral slices. Consider a large third-order tensorA ∈ K`×p
n

with ` ≥ p. If m steps of Algorithm 3 are executed and the first k < n singular triplets of A
are to be approximated, then we apply a scheme that uses Ritz lateral slices.
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DEFINITION 5.1. Let A ∈ K`×p
n , and let equations (4.2) and (4.3) hold for some m > 0.

Define the ith lateral Ritz slice corresponding to AH ∗ A as the ith approximated right lateral
slice ~VAi,m, as specified in equation (5.1) associated with the Ritz tube (sAi,m)2.

The approach of the above definition is used when tensor Lanczos bidiagonalization
alone does not yield a sufficiently accurate approximation. This approach constructs modified
equations that are similar to (4.2) and (4.3) and replaces the first k lateral slices of the right
basis of the tensor Krylov subspace with the first k lateral Ritz slices.

THEOREM 5.2 ([5]). Apply m steps of Algorithm 3 to A. If βm in (4.4) is non-zero for
k < m, then the following relations hold:

A ∗ P̃k+1 = Q̃k+1 ∗ B̃k+1,(5.2)

AH ∗ Q̃k+1 = P̃k+1 ∗ B̃Hk+1 + β̃k+1 ∗
~̃Pk+2 ∗ ~EHk+1,(5.3)

where P̃k+1 and Q̃k+1 are tensors in Kp×(k+1)
n and K`×(k+1)

n , respectively, with orthonormal
lateral slices, and B̃k+1 is an upper triangular tensor in K(k+1)×(k+1)

n .

For further details on the construction of tensors and lateral slices in equations (5.2)
and (5.3), we refer to [5]. The efficacy of this method hinges on that β̃k+1 is non-vanishing.

5.2. Augmentation by harmonic Ritz lateral slices. Augmentation by harmonic Ritz
lateral slices is carried out when approximating the k last singular triplets of a third-order
tensor A ∈ K`×p

n with ` ≥ p; see, e.g., the numerical examples in [5].

DEFINITION 5.3 ([5]). Let A ∈ K`×p
n . Assume that equations (4.2) and (4.3) hold for a

tensor Lanczos bidiagonalization determined by m steps of Algorithm 3. Let 1 ≤ j < m. If
the pair (θ̂j , ~̂ωj) ∈ Kn ×Km

n solves the equation(
(BHm ∗ Bm)2 +α2

m ∗ β2
m ∗ ~Em ∗ ~EHm

)
∗ ~̂ωj = θ̂j ∗ BHm ∗ Bm ∗ ~̂ωj ,

then the pair (θ̂j ,Pm ∗ ~̂ωj) is said to be the jth harmonic Ritz pair associated with A.

The above definition yields new tensor relations that are analogous to (4.2) and (4.3) using
harmonic Ritz lateral slices obtained from AH ∗ A.

THEOREM 5.4 ([5]). Apply m steps of Algorithm 3 to A and assume that the tensor Bm
so determined is invertible. Then for k = 1, . . . ,m− 1, we have

A ∗ P̂k+1 = Q̂k+1 ∗ B̂k+1,

AH ∗ Q̂k+1 = P̂k+1 ∗ B̂
H

k+1 + β̂k+1 ∗
~̂Pk+2 ∗ ~EHk+1,

where P̂k+1 and Q̂k+1 are tensors with orthonormal lateral slices, and B̂k+1 is an upper
triangular tensor.

For details on the construction of the tensors in Theorem 5.4 and for proofs, we refer
to [5]. This method to determine harmonic Ritz lateral slices performs well when the tensor
Bm is not very ill-conditioned.

We use the tensor Lanczos bidiagonalization Ritz (t-lbr) algorithm to compute a few
extreme singular triplets of a large tensor; see Algorithm 4. This algorithm determines Ritz or
harmonic Ritz lateral slices for computing a few of the largest or smallest singular triplets of
a tensor. The choice of augmentation by Ritz or harmonic Ritz lateral slices depends on the
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condition number, κ(Bm), of Bm. Section 5.3 discusses and illustrates properties of the t-lbr
algorithm.

Algorithm 4 Partial tensor Lanczos bidiagonalization Ritz (t-lbr) algorithm for computing a
few singular triplets.

Input: A ∈ K`×p
n , number of Lanczos stepsm, initial unit vector ~P1 ∈ Kp

n, number of desired
singular triplets k, tolerance δ, machine epsilon ε, augmentation type (‘Ritz’ or ‘Harm’).
Output: The k desired singular triplets of A: {(σi, ~Ui, ~Vi)}ki=1.

1: Compute partial Lanczos bidiagonalization of A by Algorithm 3.
2: Compute the t-svd of Bm.
3: Check convergence of the k desired singular triplets. If all triplets are within tolerance δ,

then terminate the computations.
4: if type is ’Ritz’ or κ(Bm) > ε−1/2 then
5: Compute Ritz augmentation using Bm.
6: else if type is ’Harm’ and κ(Bm) ≤ ε−1/2 then
7: Compute harmonic Ritz augmentation using Bm,m+1.
8: end if
9: Append additional columns and rows to tensors to expand them to full size.

10: Repeat from step 2 if necessary.

5.3. Numerical examples of Ritz augmentation. This section presents numerical exper-
iments that illustrate the performance of Algorithm 4 using Ritz augmentation to approximate
selected singular triplets of third-order tensors.

5.3.1. Approximating the first four singular triplets. We first illustrate the use of
Ritz augmentation for approximating the four largest singular triplets of third-order tensors
A ∈ Kn×100×3. The tensor dimension n varies from 250 to 1750, and the number of Lanczos
steps m ranges from 7 to 15. For each pair (n,m), Algorithm 4 is executed 20 times with a
convergence tolerance of 10−6.

Figure 5.1 illustrates the Frobenius norm of the relative error of the computed approximate
singular tubes. The color gradient encodes the magnitude of the error, with cooler colors
indicating higher accuracy. The results show that increasing the number of Lanczos steps m
improves the quality of the approximation. This improvement, however, comes at the cost of
increased computational effort.

As shown in Figure 5.1, the error tends to stabilize for n ≥ 1000 and larger values of
m, confirming the effectiveness of the augmentation strategy in capturing dominant spectral
components of large-scale tensors. These observations illustrate the capability of Algorithm 4
to accurately approximate the leading singular triplets by carrying out a modest number of
Lanczos bidiagonalization steps.

5.3.2. Convergence behavior of the t-lbr algorithm. We analyze the convergence
characteristics of the t-lbr algorithm for a variety of tensor dimensions and numbers of
Lanczos bidiagonalization steps. Our aim is to understand how the number of iterations of the
algorithm varies with these parameters when approximating the four largest singular triplets
of tensors of size (n× 100× 3).
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FIG. 5.1. Frobenius norm of the relative error of computed approximate singular tubes for a variety of tensor
dimensions n and Lanczos step numbers m.

FIG. 5.2. Number of t-lbr iterations required to satisfy the stopping criterion for various tensor sizes and
Lanczos step counts.

The convergence tolerance is set to 10−6, and the algorithm is allowed to iterate until
this criterion is satisfied. For each pair (n,m), we record the number of iterations required
to satisfy the stopping criterion. Figure 5.2 displays the number of iterations required to
satisfy the stopping criterion. As expected, the number of iterations increases with the tensor
dimension n. This trend reflects the increased effort required to capture spectral information
of larger tensors.
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FIG. 5.3. Execution time required by the t-lbr algorithm as a function of the tensor dimension n and the number
of Lanczos steps m.

FIG. 5.4. Frobenius norm of the relative error in approximating the last four singular triplets of tensors of size
(n× 100× 3). Accuracy improves with increased Lanczos steps, although convergence is slower than for dominant
triplets.

5.3.3. Execution time of the t-lbr algorithm. To assess the computational cost, we
measure the execution time (in seconds) of the t-lbr algorithm for the same tensor configura-
tions as above. Each run targets the approximation of the four largest singular triplets with a
convergence tolerance of 10−6 and a maximum of 20 Lanczos bidiagonalization steps.

Figure 5.3 displays the execution time to increase steadily with both the tensor dimension
n and the number of Lanczos bidiagonalization steps m. This behavior aligns with the
algorithmic complexity, which is dominated by repeated tensor-matrix product evaluations
and orthogonalization steps.
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FIG. 6.1. Execution time comparison of the t-svd and t-lbr algorithms for various tensor sizes n, and different
numbers of singular triplets k.

5.3.4. Approximating the last four singular triplets. Finally, we examine the accuracy
of the t-lbr algorithm when computing the last four singular triplets of third-order tensors
A ∈ Kn×100×3. In this experiment, the tensor dimension n again varies from 250 to 1750.
The algorithm is allowed up to 40 Lanczos steps with a convergence tolerance of 10−6.

Figure 5.4 displays the Frobenius norm of the relative error in the computed singular
triplets. Compared to the approximation of the first four singular triplets, we can see that it is
significantly more demanding to compute accurate approximations of the smallest singular
triplets. The figure shows that more Lanczos bidiagonalization steps are required to achieve
comparable accuracy, especially for large tensors. These results illustrate that it can be difficult
to capture the smallest singular triplets. This is also true for matrices when the smallest
singular values are close.

6. Execution time comparison of t-svd and t-lbr. This section compares the com-
putational performance of the t-svd and t-lbr algorithms for third-order tensors of size
A ∈ Rn×100×3. We would like to illustrate how the runtime of each method scales with the
tensor dimension n, and under what conditions the Lanczos bidiagonalization-based method
is more efficient than computing the full t-svd.

Execution times are measured for tensor sizes with n ∈ {500, 1000, . . . , 8000}. For each
tensor size, we evaluate the performance of the t-lbr algorithm when computing k singular
triplets with k ∈ {5, 10, 15, 20} and compare it to the runtime required to evaluate the full
t-svd decomposition of the same tensor.

Figure 6.1 displays the runtime of t-svd to grow rapidly with increasing n, as the method
computes all singular triplets of the tensor. In contrast, the t-lbr algorithm requires significantly
less runtime, especially when only a small number of singular triplets are requested. We can
observe the following key behaviors:

• For small n, t-svd can be competitive due to the efficient underlying implementation
of the Python function svd.

• For moderate to large values of n, t-lbr outperforms t-svd consistently when k is
small (e.g., k = 5 or k = 10).
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• The crossover point when t-lbr becomes faster than t-svd depends on the value of k.
For smaller k, the benefit of using t-lbr manifests itself at smaller n.

• As k increases, the gap between the performance of t-svd and t-lbr narrows, and for
very large k, the advantage of t-lbr is reduced.

Our timings show that for large-scale tensor problems for which only a few leading
singular triplets are needed, t-lbr is more efficient than t-svd. This situation is common in
applications such as low-rank tensor approximation, data reduction, and signal compression,
where computing the full decomposition is both unnecessary and computationally prohibitive.

7. Conclusion. This paper discusses the performance of efficient algorithms for com-
puting a few of the largest or smallest singular triplets of large third-order tensors under the
t-product framework. By extending matrix-based bidiagonalization techniques, such as Ritz
and harmonic Ritz augmentation, to the tensor setting, competitive numerical methods for
computing a few extremal singular triplets are obtained.

The tensor Lanczos bidiagonalization algorithm (t-lbr) leverages the structure of the
t-product and exploits the tensor Krylov subspace to build low-rank approximations of third-
order tensors. We demonstrate the accuracy and efficiency of this approach through a detailed
numerical experiments. Future work includes adaptation of these methods considered in this
paper to more general tensor products and exploration of preconditioning strategies.

8. Software. This section describes the software that accompanies the paper1. The
software provided is a Python package. This package is structured into three levels, each
containing modules and functions related to tensor operations. Below is a detailed organization
of the functions by modules:

8.1. Level 1: Basic tensor operations.

8.1.1. tensor_basic_operations Module. This module provides basic tensor
operations:

• tensor_transpose(tensor): Transpose the first two dimensions of a tensor
and apply complex conjugate.

• normalize_tensor(tensor): Normalize a tensor using FFT and inverse FFT.
• tensor_norm(tensor): Compute the norm of a tensor.
• diagonal_tensor(slice_tensor): Create a diagonal tensor from a given

lateral slice.
• upper_triangular_tensor(tensor): Convert each frontal slice of a tensor

to its upper triangular form.

8.1.2. tensor_generation module. This module focuses on generating specific
types of tensors:

• generate_canonical_slice(n_dim, p_dim, tube_index): Gener-
ate a canonical lateral slice tensor.

• generate_identity_tensor(shape): Generate an identity tensor with the
specified shape.

• generate_one_tube(length): Generate a one-tube tensor where all elements
are equal to one.

1Available at https://etna.ricam.oeaw.ac.at/volumes/2021-2030/vol63/addition/p300.php.
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8.2. Level 2: Operations with two tensors.

8.2.1. tensor_pair_operations module. This module deals with operations in-
volving two tensors:

• t_product(tensor1, tensor2, fft_tensor1=True, fft_tensor
2=True): Perform the tensor-tensor product using FFT.

• t_qr(tensor): Perform the QR decomposition of a tensor using FFT.
• t_svd(tensor): Perform the singular value decomposition (SVD) of a tensor

using FFT.
• t_orthogonalize(target_tensor, basis_tensor): Orthogonalize a

tensor with respect to another tensor.
• t_elementwise_left_division(tensor1, tensor2): Perform ele-

ment-wise left division of tensors using a least-squares solution.

8.3. Level 3: Advanced tensor algorithms.

8.3.1. tensor_algorithms module. This module contains advanced tensor algo-
rithms:

• lanczos_tensor(A, m_b, iteration, k, j, a_fft=None, a_tr
ans_fft=None, v=None, w=None, b=None, f=None): Perform Lanc-
zos bidiagonalization on a tensor.

• t_lbr(A, k, tol=1e-07, maxit=1000, m_b=None): Perform Tensor
Lanczos Bidiagonalization Ritz (t-LBR) Algorithm for computing singular triplets.

• t_lbr_last(A, k, tol=0.0001, maxit=1000, augmentation_ty
pe=’ritz’, m_b=None): Perform Tensor Lanczos Bidiagonalization with op-
tional Ritz or Harmonic Ritz augmentation for the last singular triplets.

8.4. Function description. This section provides a detailed technical description of
all functions available in the library. Each function is described in Table 8.1 outlining its
parameters, including the field names, descriptions, and the accepted values.

TABLE 8.1
Descriptions and accepted values for the fields of the functions in the library.

Function Field Description of the Accepted Values
Field

tensor_ tensor Input tensor to be Cn1×n2×n3

transpose transposed.

normalize_ tensor Input tensor to be Cn1×n2×n3

tensor normalized.

tensor_norm tensor Input tensor for Cn1×n2×n3

norm calculation.

diagonal_ tensor A lateral slice tensor Cn×1×n

tensor to be used for diago-
nalization.

upper_ tensor Input tensor to be Cn1×n2×n3

triangular_ converted to upper
tensor triangular form.
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TABLE 8.1 (CONTINUED)
Descriptions and accepted values for the fields of the functions in the library.

Function Field Description of the Accepted Values
Field

generate_ shape The shape of the ten- (n1, n2, n3) ∈ N3

identity_ sor to be generated.
tensor

generate_one_ length The length of the ` ∈ N
tube third dimension of

the tensor.

generate_
canonical_
slice

n_dim The first dimension n ∈ N
of the tensor.

p_dim The third dimension p ∈ N
of the tensor.

tube_index Index of the tube i ∈ {0, 1, . . . , n− 1}
where the first ele-
ment is set to 1.

t_product

tensor1 The first input ten- Cn1×n2×n3

sor.

tensor2 The second input Cn1×n2×n3

tensor.

fft_tensor1 Flag to determine True, False
whether to apply (default: True)
FFT to the first ten-
sor.

fft_tensor2 Flag to determine True, False
whether to apply (default: True)
FFT to the second
tensor.

t_qr tensor The input tensor for Cn1×n2×n3

QR decomposition.

t_svd tensor The input tensor for Cn1×n2×n3

singular value de-
composition (SVD).

t_
orthogonalize

target_tensor The tensor to be or- Cn1×n2×n3

thogonalized.

basis_tensor The basis tensor for Cn1×n2×n3

orthogonalization.
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TABLE 8.1 (CONTINUED)
Descriptions and accepted values for the fields of the functions in the library.

Function Field Description of the Accepted Values
Field

t_
elementwise_
left_division

tensor1 The numerator ten- Cn1×n2×n3

sor (input for left di-
vision).

tensor2 The denominator Cn1×n2×n3

tensor (input for left
division).

lanczos_
tensor

A Input tensor for Cn1×n2×n3

Lanczos bidiagonal-
ization.

m_b Maximum number of m ∈ N
bidiagonalization
steps.

iteration Current iteration i ∈ N
number.

k Starting column in- k ∈ N
dex.

j Current column in- j ∈ N
dex.

a_fft FFT of the input ten- Cn1×n2×n3

sor A (optional). (default: None)

a_trans_fft FFT of the transpose Cn2×n1×n3

of A (optional). (default: None)

v Tensor V in the Cn2×mb×n3

bidiagonalization (default: None)
(optional).

w Tensor W in the Cn1×mb×n3

bidiagonalization (default: None)
(optional).

b Bidiagonal tensor B Cmb×mb×n3

(optional). (default: None)

t_lbr

A Input tensor. Cn1×n2×n3

k Number of desired 0 ≤ k ≤ n1, k ∈ N
singular triplets.

tol Tolerance for con- tol ∈ R
vergence. (default: 1e−07)

maxit Maximum number maxit ∈ N
of iterations. (default: 1000)

m_b Number of Lanczos m ∈ N
steps (optional). (default: None)
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TABLE 8.1 (CONTINUED)
Descriptions and accepted values for the fields of the functions in the library.

Function Field Description of the Accepted Values
Field

t_lbr_last

A Input tensor. Cn1×n2×n3

k Number of desired 0 ≤ k ≤ n1, k ∈ N
singular triplets.

tol Tolerance for con- tol ∈ R
vergence. (default: 0.0001)

maxit Maximum number maxit ∈ N
of iterations. (default: 1000)

augmentation_ Type of augmen- ’ritz’, ’harm’
type tation (‘ritz’ or (default: ’ritz’)

‘harm’).

m_b Number of Lanczos m ∈ N
steps (optional). (default: None)

Supplementary material. The accompanying software is available at
https://etna.ricam.oeaw.ac.at/volumes/2021-2030/vol63/addition/p300.php

in form of a compressed file entitled quicksvd.zip. Installation details are discussed in the file
README.md
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