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RTSMS: RANDOMIZED TUCKER WITH SINGLE-MODE SKETCHING∗

BEHNAM HASHEMI† AND YUJI NAKATSUKASA‡

Abstract. We propose RTSMS (Randomized Tucker with Single-Mode-Sketching), a randomized algorithm for
approximately computing a low-rank Tucker decomposition of a given tensor. It uses sketching and the least-squares
method to compute the Tucker decomposition in a sequentially truncated manner. RTSMS essentially only sketches
one mode at a time, so the sketch matrices are significantly smaller than for alternative approaches. It uses a rank
estimator to adaptively find an appropriate rank for the Tucker decomposition, without requiring it as input. RTSMS
is demonstrated to be competitive with existing methods, sometimes outperforming them by a large margin.
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1. Introduction. The Tucker decomposition is a family of representations that break up a
given tensorA ∈ Rn1×n2×···×nd into the multilinear product of a core tensor C∈Rr1×r2×···×rd
and a factor matrix Fk ∈ Rnk×rk (rk ≤ nk) along each mode k = 1, 2, . . . d, i.e.,

A = C ×1 F1 ×2 F2 · · · ×d Fd;

see Section 2 for the definition of the mode-k product ×k. The standard shorthand notation
to refer to the above formula is A = [[C;F1, F2, . . . Fd]]. Assuming that A can be well
approximated by a low multilinear rank decomposition (rk � nk for some or all k), one takes
advantage of the fact that the core tensor C can be significantly smaller than A. The canonical
polyadic (CP) decomposition, also very popular in multilinear data analysis, is a special case
of the Tucker decomposition in which the core tensor C has to be diagonal.

The history goes back to the 1960s when Tucker introduced the concept as a tool in quan-
titative psychology [51], as well as algorithms [52] for its computation. The decomposition
has various applications such as dimensionality reduction, face recognition, image compres-
sion [45, 54], etc. Several deterministic and randomized algorithms have been developed for
the computation of a Tucker decomposition [1, 7, 12, 15, 33, 38, 39, 47, 53, 59].

In what follows we give a very short outline of certain aspects of the Tucker decomposition
and refer the reader to the review [28] by Kolda and Bader for other aspects including
citations to several contributions. The higher-order orthogonal iteration (HOOI) by De
Lathauwer, De Moor, and Vandewalle [16] is an alternating least-squares (ALS) method that
uses the SVD to find the best multilinear rank-r approximation of A. The same authors [15]
introduced a generalization of the singular value decomposition of matrices to tensors called
HOSVD. Vannieuwenhoven, Vandebril, and Meerbergen [53] introduced an efficient algorithm
called STHOSVD that computes the HOSVD via a sequential truncation of the tensor taking
advantage of the compressions achieved when processing all of the previous modes.

Cross algorithms constitute a wide class of powerful deterministic algorithms for com-
puting a Tucker decomposition. These algorithms compute Tucker decompositions by in-
terpolating the given tensor on a carefully selected set of pivot elements, also referred to as
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“cross” points. Notable examples include the Cross-3D algorithm of Oseledets, Savostianov,
and Tyrtyshnikov [43] and the fiber sampling methods of Caiafa and Cichocki [10]. Relevant
Tucker decomposition algorithms in the context of 3D function approximation include the
slice-Tucker decomposition [25] and the fiber sampling algorithm of Dolgov, Kressner, and
Strössner [17], which relies on oblique projections using subindices chosen based on the
discrete empirical interpolation (DEIM) [11] method.

In this paper, we introduce RTSMS (Randomized Tucker with Single-Mode-Sketching),
which is based on sequentially finding the factor matrices in the Tucker approximation while
truncating the tensor. In this sense it is similar to STHOSVD [53]. Crucially, RTSMS is based
on sketching the tensor from just one side (mode) at a time, not two (or more), thus avoiding
an operation that can be a computational bottleneck. This is achieved by finding a low-rank
approximation of unfoldings based on the generalized Nyström (GN) method (instead of
randomized SVD [23]), but replacing the second sketch with a subsampling matrix chosen
via the leverage scores of the first sketch for improved efficiency. In addition, we employ
regularization and iterative refinement techniques to improve the numerical stability. While
we are unable to establish useful a priori error bounds for the approximation, we provide
an a posteriori bound that accurately tracks the error, thus enabling us to compute a Tucker
decomposition to a user-defined accuracy.

Another key aspect of RTSMS is its ability to find the rank adaptively, given a required
error tolerance. We do this by blending matrix-rank estimation techniques [36] in the algorithm
to determine the appropriate rank and truncating accordingly, without significant additional
computation.

After reviewing preliminary results in Section 2, we provide an outline of existing random-
ized algorithms for computing Tucker decomposition in Section 3. Section 4 then describes
our algorithm RTSMS, and we illustrate its performance with experiments in Section 5.

2. Preliminaries. Let us begin with a brief overview of basic concepts in deterministic
Tucker decompositions. Throughout the paper we denote n(−k) := Πd

j=1
j 6=k

nj = Πd
j=1nj/nk.

2.1. Modal unfoldings. Let A ∈ Rn1×n2×···×nd be a tensor of order d. The mode-k
unfolding ofA, denoted byA(k), is a matrix of size nk×n(−k) whose columns are the mode-k
fibers of A [21, p. 723].

2.2. Modal product. A simple but important family of contractions are the modal
products. These contractions involve a tensor, a matrix, and a mode. In particular, we have the
following definition:

DEFINITION 2.1 ([21, p. 727]). If A ∈ Rn1×n2×···×nd , M ∈ Rmk×nk , and 1 ≤ k ≤ d,
then

B = A×kM ∈ Rn1×···nk−1×mk×nk+1×···×nd

denotes the mode-k product of A and M defined by B(k) = MA(k).
Note that every mode-k fiber in A is multiplied by the matrix M requiring the condition

size(A, k) = size(M, 2). Here, B(k) is a matrix of size mk × n(−k), hence B is a tensor of
size n1 × . . . nk−1 ×mk × nk+1 · · · × nd.

If A ∈ Rn1×n2×···×nd , F ∈ Rm1×nk , and G ∈ Rm2×m1 , then

(2.1) (A×k F )×k G = A×k (GF )

resulting in a tensor of size n1 × · · · × nk−1 × m2 × nk+1 × · · · × nd. See [28, p. 461]
or [15, Property 3].
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Reformulating matrix multiplications in terms of modal products, the matrix SVD can be
rewritten as follows [2]:

A = UΣV T means that A = Σ×1 U ×2 V.

2.3. Deterministic HOSVD. For an order-d tensor A ∈ Rn1×···×nd , a HOSVD [15] is a
decomposition of the form

(2.2) A = C ×1 U1 ×2 U2 × · · · ×d Ud,

where the factor matrices Uk ∈ Rnk×rk (rk ≤ nk) have orthonormal columns and the core
tensor C = A×1 U

T
1 ×2 U

T
2 · · · ×d UTd ∈ Rr1×r2···×rd is not diagonal in general but enjoys

the so-called all-orthogonality property. Let vec denote the operation of stacking all fibers of a
tensor into a long column vector. The all-orthogonality property of C means that for all possible
values of n ∈ {1, 2, . . . , d}, every two subtensors Cin=α and Cin=β of C obtained by fixing its
n-th index to α and β, respectively, satisfy 〈Cin=α, Cin=β〉 := vec(Cin=α)Tvec(Cin=β) = 0
when α 6= β.

The Tucker (multilinear) rank of A is the vector of ranks of modal unfoldings [21, p. 734]

rank(A) := [r1, r2, . . . , rd],

i.e., rk := rank(A(k)) is the dimension of the space spanned by the columns of A(k), which is
equal to the span of Uk; indeed, Uk is computed via the SVD of A(k).

Note also that the multilinear rank-(r1, r2, . . . , rd) HOSVD truncation of A, while it is
not the best multilinear rank-(r1, r2, . . . , rd) approximation to A in the Frobenius norm, is
quasi-optimal; see (2.3) below.

2.4. Deterministic STHOSVD. This is the sequentially truncated variant of HOSVD,
which, while processing each mode (in a user-defined processing order p = [p1, p2, . . . , pd],
where 1 ≤ pk ≤ d are distinct integers), truncates the tensor. We display its pseudocode in
Algorithm 8 in Appendix A.

Let Ĉ(i) denote the partially truncated core tensor of size r1 × · · · × ri × ni+1 × · · · × nd
(obtained in the i-th step of Algorithm 8, where Ĉ(0) := A and Ĉ(d) := C). Following [53] we
denote the i-th partial approximation of A by

Â(i) := [[Ĉ(i);U1, . . . , Ui, I, . . . , I]] = Ĉ(i) ×1 U1 ×2 U2 · · · ×i Ui,

which, loosely speaking, has rank (r1, . . . , ri, ni+1, . . . , nd) in the sense that this is the size
of Ĉ(i). In particular, we have Â(0) := A, and the final approximation obtained by STHOSVD
is Â(d) := Â. The factor matrix Uk is computed via the SVD of Â(k−1)

(k) , the mode-k

unfolding of Â(k−1). This is an overarching theme in the paper: to find an approximate Tucker
decomposition, we find a low-rank approximation of the unfolding of the tensor Â(k−1).

The following lemma states that the square of the error in approximatingA by STHOSVD
is equal to the sum of the square of the errors committed in the successive approximations and
is bounded by the sum of squares of all the modal singular values that have been discarded1.
The error in both STHOSVD and HOSVD satisfy the same upper bound, and STHOSVD
tends to give a slightly smaller error [53].

1The statement of the lemma uses a specific processing order, but the upper bound remains the same for any other
order.
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LEMMA 2.2 ([39, 53]). Let Â := [[C;U1, U2, . . . , Ud]] be the rank-(r1, r2, . . . , rd)
STHOSVD approximation of A with processing order p = [1, 2, . . . , d]. Then,

‖A − Â‖2F =

d∑
i=1

‖Â(i−1) − Â(i)‖2F ≤
d∑
i=1

‖A ×i (I − UiUTi )‖2F =

d∑
i=1

ni∑
j=ri+1

σ2
j (A(i)).

Note also that approximations obtained by deterministic HOSVD and STHOSVD are
both quasi-optimal in the sense that they satisfy the bound

(2.3) ‖A − Â‖F ≤
√
d‖A − Âopt‖F ,

where Âopt denotes the best rank-(r1, r2, . . . , rd) approximation. A popular method aiming
at finding Âopt is HOOI, a computationally expensive nonlinear iteration [21, pp. 734–735],
whose convergence is not guaranteed [28] but often works well. In many cases, (ST)HOSVD
suffices with the near-optimal accuracy (2.3).

Our method, RTSMS, is similar to STHOSVD in that in each step it truncates the tensor,
but it differs from previous methods in how each factor is computed.

2.5. Tools in randomized linear algebra. We close this section with relevant prelimi-
naries on randomized numerical linear algebra.

Random sketching. A Gaussian sketch Ω ∈ Rn×k is a matrix whose entries are indepen-
dently drawn from the standard normal (Gaussian) distribution with mean zero and variance 1.
A random matrix X ∈ Cn×k, with n ≥ k, is called a subsampled random Fourier transform
(SRFT) if it has the structure X =

√
n
kDFS

∗, where D is an n× n diagonal matrix whose
diagonal entries are independent and are either +1 or −1 with equal probability, F is an n×n
discrete Fourier transform (DFT) matrix, and S in a k × n subsampling matrix whose entries
are all zero except for a single randomly placed 1 in each column. For a general m× n matrix
A, AX can be computed with a cost of O(mn log n) rather than O(mnk). If A is real, then
we take F to be the discrete cosine transform (DCT) matrix instead of the DFT.

The generalized Nyström method. Randomized low-rank approximation is among the
most successful examples of randomized algorithms in numerical linear algebra. The ran-
domized SVD in [23] is a popular and well-understood method for the task, and it is used for
Tucker computations in [39, 59], as we describe in Section 3.1.1.

Our algorithm RTSMS is based more heavily on another class of randomized low-rank
approximation methods, namely the generalized Nyström approximation

(2.4) A ≈ (AΩ)(Ω̃TAΩ)†(Ω̃TA).

Here Ω, Ω̃ are tall-skinny random sketch matrices, usually taken as a Gaussian or SRFT. The
approximation (2.4) has been shown to give a nearly-optimal low-rank approximation of
A when Ω, Ω̃ are (oblivious) subspace embeddings (including Gaussian) [13, 41, 50]. The
implementation based on [41] is summarized in Algorithm 1.

In our context, we will apply (2.4) to successive unfoldings of the tensor A (or its
variant), wherein A in (2.4) is very fat-wide, and we shall take Ω̃ (a small matrix) to be
Gaussian, whereas Ω (very tall skinny) will be a subsampling matrix (up to details, including
regularization).

Randomized algorithms for least-squares problems. Later, when solving least-squares
(LS) problems, we will use (approximate) leverage score sampling. Given an LS problem
minX ‖AX −B‖F involving a tall-skinny m× n matrix A, the leverage score [19, 40] of the
i-th row ofA is li := ‖qi‖22, where qi is the i-th row ofQ in the thin QR factorizationA = QR.
Given s, the number of rows to pick from the index set {1, 2, . . . ,m}, leverage score sampling
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Algorithm 1 GN Generalized Nyström method [41, Algorithm 2.1].
Inputs are a matrix A ∈ Rm×n and (e.g., Gaussian) random matrices Ω ∈ Rn×r and Ω̃ ∈
Rm×r̂, where e.g. r̂ = 1.5r.
Outputs are Û ∈ Rm×r and V̂ ∈ Rn×r such that A ≈ (AΩ)(Ω̃TAΩ)†(Ω̃TA) = Û V̂ T .

1: Compute AX := AΩ.
2: Compute YA := Ω̃TA.
3: Compute YAX := YA Ω.
4: Compute the thin QR decomposition YAX = QR.
5: Compute Û by solving triangular linear systems ÛR = AX.
6: Compute V̂ := QTYA.

then means selecting s rows of A with a probability proportional to the leverage scores of the
rows; see Section 4.4.2 for more details. The sampling is then equivalent to forming a row
submatrix S ∈ Rs×m of Im. We then solve minX̂ ‖S(AX̂ − B)‖F , a problem of reduced
size.

Randomized rank estimation. The focus of this paper is on rank-adaptive Tucker de-
composition: Given a tolerance on the relative residual, our main algorithm computes the
corresponding Tucker rank adaptively. This is done by invoking the randomized matrix
rank-estimation algorithm of [36, Algorithm 1] to a modal unfolding of the current partial
approximation of the tensor A. More specifically, the estimation of the i-th numerical Tucker
rank ri of A exploits the observation that the decay of the modal singular values of Â(i) can
be reliably estimated by monitoring the decay of the corresponding modal singular values of
the sketched Â(i). See Steps 6–19 of Algorithm 5, where the size of the sketches is initialized
with a small quantity and increased adaptively if required.

3. Existing randomized algorithms for Tucker decomposition. A number of random-
ized algorithms have been proposed for computing an approximate Tucker decomposition. In
what follows we explain some of those techniques with focus on the ones for which implemen-
tations are publicly available and divide them into two categories: fixed-rank algorithms that
require the multilinear rank to be given as an input and those that are adaptive in rank, which
are the main goal of this paper.

3.1. Fixed-rank algorithms. Here we suppose that the output target Tucker rank
(r1, r2, . . . , rd) is given. The first candidate to consider is a randomized analogue of the
standard HOSVD algorithm.

3.1.1. Randomized HOSVD/STHOSVD. A natural idea to speed up the computation
of HOSVD or STHOSVD is to use randomized SVD [23] (Algorithm 2) in the computation of
the SVD of the unfoldings. This has been done in [59, Algorithm 2] and [39, Algorithms 3.1,
3.2], and Minster, Saibaba, and Kilmer [39] in particular present extensive analysis of its
approximation quality. We display the randomized STHOSVD in Algorithm 3 and compare
it against our algorithm in numerical experiments, as it is usually more efficient than the
randomized HOSVD.

A well-known technique to improve the quality of the approximation obtained by ran-
domized matrix SVD is to run a few iterations of the power method [23]. Mathematically, this
means that Y in Algorithm 2 is replaced with A(ATA)q for an integer q.

A note on sketching. An important aspect of any randomized algorithm utilizing a random
sketch is: which sketch should be used? In [39] and [59, Algorithm 2], they are taken to be
Gaussian matrices. This class of random matrices usually comes with the strongest theoretical
guarantees and robustness. Other more structured random sketches have been proposed and
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Algorithm 2 Randomized matrix SVD without power iteration (Halko-Martinsson-Tropp [23].
See also [39, Algorithm 2.1])
Inputs are a matrix A ∈ Rm×n, a target rank r, and possibly also a sketch matrix Ω.
Output is an SVD A ≈ Û Σ̂V̂ T with Û ∈ Rm×r, Σ̂ ∈ Rr×r, and V̂ ∈ Rn×r.

1: Draw a sketch (e.g., Gaussian) matrix Ω ∈ Rn×r̂ (if not given as input), and compute
Y := AΩ.

2: Compute the thin QR decomposition Y := QR. {Q: approximate range(A)}
3: Compute B := QTA.
4: Compute the thin SVD B := ÛBΣ̂V̂ T . {ÛB and Σ̂ are r̂ × r̂ while V̂ is n× r̂.}
5: Output Û := QÛB(:, 1 : r), Σ̂ := Σ̂(1 : r, 1 : r), and V̂ := V̂ (:, 1 : r).

Algorithm 3 Randomized STHOSVD [39, Algorithm 3.2].
Inputs areA ∈ Rn1×n2×···×nd , a multilinear rank (r1, r2, . . . , rd), an oversampling parameter
p̃, and a processing order p of the modes.
Output is A ≈ [[C;U1, U2, . . . , Ud]].

1: Set C := A.
2: for i = p1, . . . , pd do

3:
Draw a sketch (e.g., Gaussian) matrix Ωi of size zi× r̂i, where r̂i := ri + p̃
and zi := (Πi−1

j=1r̂j)(Π
d
j=i+1nj).

4:
Set Ui as the left singular vectors computed with RandSVD(C(i), ri,Ωi)
using Algorithm 2.

5: Update C(i) := UTi C(i). {Overwriting C(i) overwrites C.}
6: end for

shown to be effective, including sparse [55] and FFT-based [49] sketches, and in the tensor
sketching context, those employing Khatri-Rao products [47].

In this paper we mostly focus on Gaussian sketches, unless specified otherwise—while
other sketches may well be more efficient in theory, the smallness of our sketches (an important
feature of our algorithm RTSMS) means that the advantages offered by structured sketches are
likely to be limited.

The one-pass algorithms of Malik and Becker. Tucker-TS and Tucker-TTMTS are two
algorithms for Tucker decomposition [33, Algorithm 2] that rely on the TensorSketch frame-
work [44] and can handle tensors whose elements are streamed, i.e., they are lost once
processed. These algorithms are variants of the standard ALS (HOOI) and iteratively employ
sketching for computing solutions to large overdetermined least-squares problems and for
efficiently approximating chains of tensor-matrix products that are Kronecker products of
smaller matrices. Inherited from the characteristics of TensorSketch, these algorithms only
require a single pass of the input tensor.

The one-pass algorithm of Sun, Guo, Luo, Tropp, and Udell. Another single-pass sketch-
ing algorithm targeting streaming Tucker decomposition is introduced in [47], where a rigorous
theoretical guarantee for the approximation error was also provided. Treating the tensor as
a multilinear operator, it employs the Khatri-Rao product of random matrices to identify a
low-dimensional subspace for each mode of the tensor that captures the action of the operator
along that mode and then produces a low-rank operator with the same action on the identified
low-dimensional tensor product space, which is helpful especially when storage cost is a
potential bottleneck.
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The leverage-score-sampling approach of Fahrbach, Fu, and Ghadiri. Another fixed-rank
algorithm for Tucker decomposition was introduced in [20]. While designed within the ALS
architecture, it aims at minimizing

‖A − C ×1 F1 ×2 F2 · · · ×d Fd‖2F + λ

(
‖C‖2F +

d∑
k=1

‖Fk‖2F
)
,

where λ is a regularization parameter. It combines leverage score sampling and Richardson
iterations when solving the sketched problem with an approach for multiplying sparsified
Kronecker product matrices to improve the running time of all steps of ALS for a Tucker
decomposition.

3.2. Rank-adaptive algorithms. We now turn to existing algorithms that are rank-
adaptive, i.e., they are able to determine the appropriate rank on the fly to achieve a prescribed
approximation tolerance. Although the first natural candidate to consider is the randomized
adaptive variant of the standard HOSVD algorithm [39, Algorithm 4.1], in what follows we
focus on its sequentially truncated version [39, Algorithm 4.2], which is more efficient in
practice.

3.2.1. Adaptive R-STHOSVD. For the sake of completeness, we outline the adaptive
randomized STHOSVD method [39, Algorithm 4.2] below in Algorithm 4.

Algorithm 4 Adaptive R-STHOSVD [39, Algorithm 4.2].
Inputs are A ∈ Rn1×n2×···×nd , a tolerance tol ≥ 0, a blocking parameter b ≥ 1, and a
processing order p of the modes.
Output is A ≈ [[C; Û1, Û2, . . . , Ûd]].

1: Set C := A.
2: for i = p1, . . . , pd do

3:
Compute
Ûi = AdaptRandRangeFinder(C(i),

tol√
d
, b).

{Error-controlled range finder.
We use svdsketch.}

4: Update C(i) = ÛTi C(i). {Overwriting C(i) overwrites C.}
5: end for
6: Return C by tensorizing C(i).

At the heart of Algorithm 4 is an adaptive randomized matrix range finder. Numerous
techniques have been introduced in the literature for this task [23, 35, 57]. Given a matrix A
and a positive tolerance tol, the primary objective is to find a (tall) matrix Q with orthonormal
columns such that the relative residual in approximating the range of A by Q is bounded from
above by tol, i.e.,

(3.1) ‖A−QQTA‖ ≤ tol ‖A‖.
The rank of the low-rank approximation then corresponds to the number of columns in Q. The
idea of adaptive randomized range finders is to start with a limited number of columns in the
random matrix Ω in order to estimate the rangeQ. Then, the number of random columns drawn
is gradually increased until Q satisfies (3.1). Among the current state-of-the-art randomized
range finders is the randQB_EI_auto algorithm of [57], which is a variant of an algorithm
originally introduced in [23]. randQB_EI_auto has been integrated into MATLAB since
release 2020b as the svdsketch function. We will compare RTSMS with Algorithm 4,
whose Step 4 calls svdsketch. See Section 5 for more details.
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4. Randomized Tucker with single-mode sketching (RTSMS). We now describe
RTSMS, our new randomized algorithm for computing a Tucker decomposition and HOSVD.
RTSMS follows the basic structure of R-STHOSVD of sequentially finding a low-rank ap-
proximation to the unfoldings, but crucially, it only applies a random sketch on one mode at
each step, resulting in a dramatically smaller sketch matrix. RTSMS can thus offer speedup
over existing algorithms, especially when sketching the large dimensions is costly.

4.1. RTSMS outline. To illustrate the high-level ideas, let us provide an overview of
RTSMS when applied to compute a Tucker decomposition of a tensor A of size n1 × n2 × n3
with the processing order of p = [1 2 3], where a multilinear rank (r1, r2, r3) is also given.
The last assumption merely serves the purpose of simplifying the explanation enabling us to
momentarily set aside the rank-adaptivity feature of RTSMS (Steps 1 and 6–19 of Algorithm 5)
and concentrate on the other core aspects of the algorithm. We illustrate the process in
Figure 4.1. In RTSMS, a Tucker decomposition A ≈ [[C;F1, F2, F3]] is computed where the
i-th factor matrix Fi is of size ni × r̂i (where r̂i ≈ 1.5ri to account for oversampling, which
improves robustness) rather than ni × ri, and which does not have orthonormal columns in
general. The size of the final core tensor C is r̂1 × r̂2 × r̂3.

During the execution of RTSMS, the core tensor is being updated, which is why it has
a “temporary nature”. We therefore use both Bold and Bnew to refer to the core tensor. More
specifically, in the beginning, we initialize Bold with the given tensor A, and once a new core
is computed within each iteration, we denote it with Bnew. Figure 4.1 illustrates this visually.

From the full tensor A to Tucker1. At the beginning, i = p1 = 1, Bold is initialized with
A, and a Gaussian sketch Ω1 of size r̂1 × n1 is utilized while the overall goal is to compute a
Tucker1 decomposition

Bold ≈ Bnew ×1 F1,

which is a decomposition with only one factor matrix, or equivalently, a Tucker decomposition
which sets d − 1 = 2 of the factor matrices to be the identity matrix. See [28, 52] and [30,
Section 4.5.1]. See also the top panel of Figure 4.1. Importantly, we directly compute the
“temporary core tensor” Bnew = A×1 Ω1 as the sketch of A in Steps 20–21 and then find the
factor matrix F1 in Step 22 of Algorithm 5. This is in contrast to existing approaches, e.g.,
(R-)STHOSVD, where F1 is computed and orthonormalized first and then Bnew is taken to be
A×1 F

T
1 ; see Steps 4 and 5 of Algorithm 3. This means that RTSMS is almost single-pass,

i.e., it does not need to revisit A once the sketch A×1 Ω1 is computed, aside from the need to
subsample a small number of fibers of A; see Section 4.4.2.

In Steps 20–21, we find an approximate row space of A(1) using a randomized sketch.
We first compute the mode-1 product of A and Ω1, which is equivalent to Bnew

(1) = Ω1B
old
(1) .

Here, Bold
(1) = A(1) is a matrix of size n1 × (n2n3), Ω1 is r̂1 × n1, and so Bnew is a tensor of

size r̂1 × n2 × n3, where r̂1 ≈ 1.5r1 accounts for oversampling and r1 is either given as an
input or found by the adaptive rank estimation (Steps 6–19). The cost of computing Bnew is
O(n1n2n3r̂1), which is cubic in terms of the size of the original tensorA. Since Ω1 is random
by construction, provided that σr1(A(1)) < tol σ1(A(1)), with high-probability the row space
of Bnew

(1) is a good approximation of the dominant row space of A(1).
The theory in randomized low-rank approximation [23, Section 10] indicates that there

exists a factor matrix F1 such that Bnew ×1 F1 ≈ Bold. In Step 22 we aim at solving the
least-squares problem

(4.1) min
F1

‖Bnew ×1 F1 − Bold‖F .

Its efficient and robust solution proves to be subtle, and we defer the discussion to Section 4.4.
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FIG. 4.1. Illustration of RTSMS for 3D tensors, Tucker rank (r1, r2, r3), and mode-processing order [1 2 3].
Top: Tucker1 decomposition A ≈ Bnew ×1 F1, where A =: Bold ∈ Rn1×n2×n3 , Bnew = A ×1 Ω1 ∈
Rr̂1×n2×n3 , and F1 ∈ Rn1×r̂1 . In RTSMS, Bnew is computed before F1. Middle: Tucker2 decomposition
A ≈ Bnew ×1 F1 ×2 F2, where Bnew ∈ Rr̂1×r̂2×n3 and F2 ∈ Rn2×r̂2 . Note that Bnew here is overwritten on
Bnew from top and therefore represents a different tensor. Bottom: Tucker3 decompositionA ≈ Bnew ×1 F1 ×2

F2 ×3 F3, where this time Bnew ∈ Rr̂1×r̂2×r̂3 is the final core tensor C computed once Step 24 of Algorithm 5 is
executed and F3 ∈ Rn3×r̂3 . Figure generated using Tensor_tikz [29].

From Tucker1 to Tucker2. Next, i = p2 = 2, and we aim at decomposing the updated
Bold from the previous round (see Step 23 in Algorithm 5), hence eventually computing a
Tucker2 decomposition of the original tensor A. This is a decomposition with two factor
matrices or equivalently a Tucker decomposition which sets d− 2 = 1 factor to be the identity
matrix [30, Section 4.5.2]. See the middle picture of Figure 4.1. This is done by essentially
repeating the process in the previous round for the second mode of the temporary core tensor
Bold: In Steps 20–21 we sketch to find the row space of Bold

(2) . We first compute the mode-2
product of Bold and Ω2, which is equivalent to Bnew

(2) = Ω2B
old
(2) . Here, Bold

(2) is a matrix of
size n2 × (n3r̂1), Ω2 is r̂2 × n2, and so the updated temporary core tensor Bnew is a tensor of
size r̂1 × r̂2 × n3. This process shrinks the dimension of the row space of A(2) from the large
n2 to the smaller r̂2 and is the first task in computing a decomposition of the temporary core
tensor and, equivalently, a Tucker2 decomposition of A. As before, the row space of Bnew

(2)

approximates that of A(2) with high probability, provided r2 (either given as input or found by
the adaptive rank estimation) is appropriate. Here again r̂2 ≈ 1.5r2 accounts for oversampling.
Step 22 then solves the least-squares problem minF2

‖Bnew ×2 F2 − Bold‖F .
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From Tucker2 to Tucker3. Finally, i = p3 = 3, and we aim at decomposing the updated
Bold from the previous step, hence eventually computing a Tucker3 (or simply a Tucker)
decomposition of the original tensor A. See [30, Chapter. 4.5.3] and Figure 4.1, bottom
(adapted from [29]).

The computational complexity of the entire algorithm is dominated by the first tensor-
matrix multiplication A×1 Ω1, which is equivalent to computing Ω1A(1). When r1 ≈ n1, the
need to sketch r1 vectors of dimension n2n3 · · ·nd needed in the least-squares problem can
be significant; we discuss this again in Section 4.7.

4.2. Details on RTSMS. We now discuss RTSMS in full generality. Its pseudocode is
given in Algorithm 5. In a nutshell, we find low-rank approximations of the unfolding matrices
A(i) (or more precisely the unfolding of the current core tensor Bold) via a single-mode
sketch. Namely, to approximate A(1) ∈ Rn1×n(−1) , we sketch from the left by an operation
equivalent to computing Ω1A(1), where Ω1 ∈ Rr̂1×n1 , and then find F1 ∈ Rn1×r̂1 such
that F1Ω1A(1) ≈ A(1) by solving a massively overdetermined least-squares problem with
many right-hand sides, minF1

‖AT(1)ΩT1 FT1 −AT(1)‖F , which we do by randomized row subset
selection, regularization, and iterative refinement. We discuss the details of the least-squares
solution in Section 4.4.

Rank adaptivity. Another key component of RTSMS, which we did not describe above, is
the rank adaptivity. In Steps 6–19, we find an appropriate Tucker rank on the fly by employing
a fast rank estimator [36, Algorithm 1] on each unfolding, which are truncated in turn. The
rank is estimated by applying random sketches on both sides of the matrix, and the key idea
is that the magnitudes of the leading singular values are preserved in this process. Moreover,
much of these sketches needed for rank estimation can be reused within RTSMS; for example,
the first min(r̃i, r̂i) rows of Ωi and ΩiM in Steps 21 and 22 are identical to those of Steps 8
and 9, and the QR factorization (Ω̃iMYi)

T = QR can be reused by Algorithm 6. Overall, the
process is more efficient than svdsketch. Alternatively, RTSMS is also able to take the
rank as a user-defined input. The effectiveness of this adaptive multilinear rank estimation
strategy is demonstrated in Section 5, particularly in Example 5.4.

Single-mode vs. multi-mode sketch. As far as we know, existing randomized algorithms
for Tucker decomposition require applying dimension reduction maps to the tensor unfoldings
from the right (i.e., the larger dimension). Focusing on mode-1, one faces A(1), which is a
short fat matrix of size n1 × n(−1). Sketching from the right then involves computations with
a tall skinny randomized matrix whose size is n(−1) × r̂1. R-STHOSVD and R-HOSVD are
among the examples, as are most algorithms we mentioned. Considering the fact that n(−1)
could be huge, generating or even storing the randomized sketch matrix could be problematic.
The focus of the single-pass techniques [33, 47] mentioned in Section 3.1.1 has therefore been
on designing algorithms which do not need generating and storing a tall skinny dimension
reduction map. Instead, the fat side of the unfolding is sketched by skillfully employing Khatri-
Rao products of smaller random matrices so as to avoid explicitly forming random matrices
which have n(−1) rows. In this sense, one can classify all the aforementioned algorithms as
those which sketch in all-but-one modes when processing each of the modes.

In Algorithm 5, the original tensor A, which is potentially large in all dimensions, is
directly used only in the first recursion i = p1. The updating of Bold in Step 23 is where
sequential truncation takes place, making sure that subsequent computations proceed with
the potentially much smaller truncated tensors. This truncation can improve the efficiency
significantly, just as STHOSVD does over HOSVD. Notice however that, due to the oversam-
pling aspect common to many randomized algorithms in numerical linear algebra, the output
Tucker rank will be r̂, which is slightly larger than r. See Section 4.5 as well as the last two
paragraphs in Section 4.8 entitled Further rank truncation for relevant details.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

RTSMS 257

Algorithm 5 RTSMS: Randomized Tucker with single-mode sketching
Inputs areA ∈ Rn1×n2×···×nd , the target tolerance tol on the relative residual, and a processing
order p of the modes.
Output is a Tucker decomposition A ≈ [[C;F1, F2, . . . , Fd]].

1: Initialize r with a small ambitious rank estimate like (10, 10, . . . , 10).
2: Set Bold := A.
3: for i = p1, . . . , pd do
4: Set flagi to ‘unhappy’.
5: Find M , the i-th modal unfolding of Bold.
6: while flagi is ‘unhappy’ do {rank estimation}
7: Set r̃i := round(1.1 ri).
8: Draw a standard random Gaussian matrix Ω̃i of size r̃i × ni.
9: Form the matrix Ω̃iM of size r̃i × zi where zi := (Πi−1

j=1r̃j)(Π
d
j=i+1nj).

10: Set si := kr̃i (e.g., k = 4), draw SRFT Yi ∈ Rzi×si , and form Ω̃iMYi ∈ Rr̃i×si .
11: Compute the thin QR factorization (Ω̃iMYi)

T = QR.
12: Find the smallest ` such that σ`+1(R) ≤ tol σ1(R).
13: if ` < ri then
14: Change flagi to ‘happy’, set the i-th multilinear rank estimate ri to `.
15: Update Bold to be Ω̃iM tensorized in the i-th mode.
16: else if ` is ‘empty’ or ` = r̃i implying the sketch was full-rank then
17: Increase the rank estimate, e.g., ri := round(1.7ri).
18: end if
19: end while
20: Draw a r̂i × ni Gaussian matrix Ωi, where r̂i := round(1.5 ri). {low-rank approx}
21: Compute Bnew = Bold ×i Ωi (reusing Ω̃iM from step 9)
22: Find Fi of size ni × r̂i to minimize ‖Bnew ×i Fi − Bold‖F , using Algorithm 6
23: Update Bold := Bnew.
24: end for
25: Set C := Bnew.

Parallel, non-sequential variant. We have emphasized the advantages of RTSMS, most
notably the fact that the sketches are small. One possible advantage of a non-sequential
algorithm is that they are highly parallelizable and suitable for distributed computation, as
discussed, e.g., in [59, p. 6]. It is possible to design a variant of RTSMS that works parallelly:
run the first step (i = p1 in Algorithm 5) to find the factor matrices Fi for each i from A. We
then find the core tensor as follows: compute the thin QR factorizations Fi = UiRi for each i,
and project them onto A, i.e., C = A×1 U

T
1 · · · ×d UTd . We do not discuss this further, as in

our sequential experiments the standard RTSMS is more efficient with a lower computational
cost.

4.3. Analysis of RTSMS. Let us explain why RTSMS is able to find an approximate
Tucker decomposition. We focus on the first step i = 1 (and assume without loss of generality
p1 = 1), as the other cases are essentially a repetition.

Suppose that A has an approximate HOSVD (here we assume the factors Fi are orthonor-
mal and denote them by Ui, which simplifies the theory but is not necessary in the algorithm),

(4.2) A = C ×1 U1 ×2 U2 × · · · ×d Ud + E ,
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where each Uk ∈ Rnk×rk is orthonormal UTk Uk = Irk and E is small in norm; that is, A has
an approximate Tucker decomposition of rank (r1, r2, . . . , rd). Then in the first step of the
algorithm Bnew = A×1 Ω1, one obtains Bnew = C ×1 (Ω1U1)×2U2×· · ·×dUd+E ×1 Ω1.
Note that ‖E ×1 Ω1‖F ≤ O(‖E‖F ) because multiplication by Gaussian matrices roughly
preserves the norm [23, Section 10] (the O notation hides constant multiples of

√
n1). Now

since Ω1 is Gaussian, so is Ω1U1 by orthogonal invariance, and it is a (tall) r̂1× r1 rectangular
Gaussian matrix and therefore well-conditioned with high probability by the Marchenko-Pastur
rule [46] or more specifically Davidson-Szarek’s result [14, Theorem II.13].

In terms of the mode-1 unfolding, we have (A×1 Ω1)(1) = Ω1A(1). Now recalling (4.2),
note that the unfolding of C ×1 U1 ×2 U2 × · · · ×d Ud can be written as U1G1 for some
G1 ∈ Rr1×n(−1) , so by assumption the mode-1 unfolding of A is A(1) = U1G1 + Ẽ, where
‖Ẽ‖F = ‖E‖F . As U1 is n1 × r1, this implies that the matrix A(1) can be approximated in
the Frobenius norm by a rank-r1 matrix up to ‖Ẽ‖F .

This is precisely the situation where randomized algorithms for low-rank approximation
are highly effective. In particular by the analysis in [23, Section 10] (applied to AT(1) rather
than A(1)), it follows that by taking Ω1 to have r̂1 > r1 rows (say r̂1 = 1.2r1), the row space
of Ω1A(1) captures that of A(1) up to a small multiple of ‖Ẽ‖F . This implies that using the
thin QR factorization (Ω1A(1))

T = QR, the rank-r̂1 matrix

(4.3) A(1)QQ
T ≈ A(1)

approximates A(1) up to a modest multiple of ‖Ẽ‖F and hence of ‖E‖F .
Note that this discussion shows that minU1∈Rn1×r̂1 ‖U1(Ω1A(1))−A(1)‖F = O(‖E‖F ),

because QT and Ω1A(1) have the same row space. This is equivalent to the least-squares
problem (4.1).

4.4. Algorithm to minimizeF̂i
‖Bnew ×i F̂i − Bold‖F. In RTSMS, we do not form

Q or A(1)QQ
T as these operations can be expensive and dominate the computation2. In

particular, the computation of A(1)Q involves the large dimension n(−1) and can be expensive.
Instead, in RTSMS we attempt to directly find the factor matrix F̂1 ∈ Rn1×r̂1 via minimizing
‖F̂1(Ω1A(1))−A(1)‖F , which we rewrite in the standard form of a least-squares (LS) problem
as

(4.4) minimize
F̂1∈Rn1×r̂1

‖(AT(1)ΩT1 )F̂T1 −AT(1)‖F .

This LS problem has several important features worth noting: (i) it is massively overdetermined
AT(1)Ω

T
1 ∈ Rn(−1)×r̂1 , (ii) it has many (n1) right-hand sides, and (iii) the coefficient matrix

AT(1)Ω
T
1 is ill-conditioned and numerically rank-deficient (by design, assuming tol is close

to machine precision). Solving (4.4) exactly via the classic QR-based approach gives the
approximation QQTAT(1) ≈ AT(1), which is equivalent to (4.3). We employ three techniques to
devise a more efficient (yet robust) approximation algorithm.

4.4.1. Randomized sketching. In order to speed up the computation, we solve the LS
problem (4.4) using randomization. This is now a standard technique for solving highly-
overdetermined least-squares problems of which (4.4) is one good example.

2Here we again focus on the first step i = 1, for which A(i) = Bold
(i)

and ΩiA(i) = Bnew
(i)

. However, with an

abuse of notation, allowing A to always denote the current core tensor Bold, the discussion extends to any i with
minimal changes.
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Among the most successful ideas in the randomized solution of LS problems is sketching,
wherein instead of (4.4) one solves the sketched problem

(4.5) minimize
F̂1∈Rn1×r̂1

‖S(AT(1)Ω
T
1 F̂

T
1 −AT(1))‖F ,

where S ∈ Rs1×n(−1) (s1 ≥ r̂1) is a random matrix, called the sketching matrix. Effec-
tive choices of S include Gaussian (not necessarily the most efficient choice), FFT-based
(e.g., SRFT) sketches [49], and sparse sketches [13]. The solution of the problem (4.5) is
F̂T1 = (SAT(1)Ω

T
1 )†(SAT(1)).

The choice of S that is the easiest to analyze is when it is taken to be a random Gaussian
matrix. Then the resulting rank-r̂1 approximation A(1) ≈ F̂1Ω1A(1) obtained by solving (4.5)
becomes equal to the generalized Nyström (GN) approximation [13, 41, 56], which takes
A(1) ≈ A(1)X(Y A(1)X)†Y A(1), where X,Y are random sketches of appropriate sizes.
To see this, note that with the solution of (4.5), F̂1 = A(1)S

T (Ω1A(1)S
T )†, we have the

identity F̂1Ω1A(1) = A(1)S
T (Ω1A(1)S

T )†Ω1A(1), i.e., they coincide by taking ST = X and
Ω1 = Y .

Despite the close connection, an important difference here is that in RTSMS, ST = X
will be generated using Ω1A(1) as we describe in Section 4.4.2, so it depends on Ω1 = Y ,
unlike the standard GN approximation, where X,Y are independent. Furthermore, taking X
to be an independent sketch necessitates sketching A(1) from the right, which violates our
‘single-mode-sketch’ approach and results in inefficiency.

4.4.2. Solving LS via row subset selection. An important aspect of the problem (4.5)
is the large number n1 of right-hand sides, which makes it crucial that the sketching cost for
these is kept low. In fact, experiments suggest that the use of an SRFT sketch often results in
the computation being dominated by sketching the right-hand sides.

To circumvent this and to enhance efficiency in RTSMS, we choose S to be (instead of
Gaussian) a column subselection matrix, i.e., S is a column submatrix of the identity. We
suggest the use of subsampling, i.e., S is a row subset of the identity. This way the cost of
sketching (i.e., computing S(AT(1)Ω

T
1 ) and SAT(1)) becomes minimal.

To choose the subsampled indices we use the leverage scores [19], which is a common
technique in randomized LS problems and beyond [40]. These are the squared row-norms of
the orthogonal factor of the orthonormal column space of the coefficient matrix (Ω1A(1))

T

and can be approximated using sketching [19, 32] with O(Nr̂1 logN) operations (with an
SRFT sketch) for an r̂1×N coefficient matrix; here, N = n(−1). We note that leverage scores
are not the only way to find subsampling indices; however, most alternatives (such as QR with
column pivoting) are either slower and/or do not allow oversampling.

In brief, approximate leverage scores are computed as follows [19]: First sketch the matrix
to compute Y T (Ω1A(1))

T and its thin QR decomposition Y T (Ω1A(1))
T = QR, where Y

is an N × O(r̂1) SRFT sketch. Then (Ω1A(1))
TR−1 is well-conditioned, so we estimate

its row norms via sampling, i.e., the row norms of (Ω1A(1))
TR−1G, where G is a Gaussian

matrix with O(1) columns. Importantly, the SRFT sketch Y T (Ω1A(1))
T (which requires

O(Nr1 logN) operations) is needed also in the rank estimation process, so this computation
incurs no additional cost. Note that it is cheaper than computing A(1)Y (i.e., sketching the
right-hand side of (4.5) with Y ), because r̂1 < n1. We then choose s = O(r̂1 log r̂1) indices
from {1, . . . , z1} by randomly sampling without replacements, with the i-th row chosen with
probability `i/(

∑z1
j=1 `j). We then form the resulting subsample matrix S ∈ Rs×z1 , which is

a column-submatrix of the identity In(−1)
. We then solve the subsampled problem (4.5).
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To understand the role of leverage scores, let us state a result on the residual for a sketched
least-squares problem (4.4) for a general S (not necessarily a subsampling matrix), which we
state in terms of a standard least-squares problem minX ‖AX −B‖F .

PROPOSITION 4.1. Consider the m × n LS problem minX ‖AX − B‖F with
A ∈ Rm×n(m ≥ n), B ∈ Rm×n1 . LetA = QR be the thin QR factorization withQ ∈ Rm×n,
and consider SQ ∈ Rs×n with s ≥ n. Let X̂∗ denote the solution for minX ‖S(AX −B)‖F .
Then we have

‖AX̂∗ −B‖F ≤
‖S‖2

σmin(SQ)
min
X
‖AX −B‖F .

Proof. This can be seen as a repeated application of a bound for a subsampled least-squares
problem, as, e.g., in [11], slightly generalized to multiple right-hand sides. For completeness
we give a full proof.

Consider the i-th column, which for simplicity we write minx ‖Ax − b‖2. Then
‖S(Ax − b)‖2 = ‖(SQ)Rx − Sb‖2, for which the solution is x∗ = R−1(SQ)†Sb, and
hence,

‖Ax∗ − b‖2 = ‖QRR−1(SQ)†Sb− b‖2 = ‖(I −Q(SQ)†S)b‖2.

Now note that Q(SQ)†S is an (oblique) projection matrix (Q(SQ)†S)2 = Q(SQ)†S onto
the span of Q, and so I −Q(SQ)†S is also a projection. It hence follows that

‖(I −Q(SQ)†S)b‖2 = ‖(I −Q(SQ)†S)Q⊥Q
T
⊥b‖2

≤ ‖(I −Q(SQ)†S)‖2‖QT⊥b‖2 = ‖Q(SQ)†S‖2‖QT⊥b‖2,

where the last equality holds because Q(SQ)†S is a projection [48].
Finally, noting that ‖Q⊥b‖2 = minx ‖Ax− b‖2, we conclude that

‖Ax∗ − b‖2 ≤ ‖Q(SQ)†S‖2 min
x
‖Ax− b‖2 ≤

‖S‖2
σmin(SQ)

min
x
‖Ax− b‖2.

The claim follows by repeating the argument for every column i = 1, . . . , n.
Let us discuss Proposition 4.1 when S is a subsampling matrix generated via approximate

leverage scores. First, we note that the use of leverage scores for the LS problem here is
different from classical ones [55] in two ways: First, usually, leverage scores are computed for
the subspace of the augmented matrix [A,B], including the right-hand side (and usually there
is a single right-hand side). We avoid this because this necessitates sketching the right-hand
sides, of which there are many (n1) of them; this becomes the computational bottleneck, which
is precisely why we opted to finding an appropriate row subsample to reduce the cost. The
by-product is that the suboptimality of the computed solution is governed by ‖S‖2

σmin(SQ) instead
of the subspace embedding constant (which can be < 1) as in standard methods. This leads
to the second difference: we do not scale the entries of S inverse-proportionally with the
leverage scores `i, so as to avoid ‖S‖2 � 1, which can happen when a row with low leverage
score happens to be chosen. For the same reason we sample rows without replacements.
We thus ensure ‖S‖2 = 1, which guarantees a good solution as long as 1/σmin(SQ) is
not large3. Note that this means that the standard theory for leverage scores do not hold
directly. However, by choosing large rows of Q with high probability, we tend to increase

3We should be content with σmin(SQ) = O(1/
√
z1), which is what we expect if Q was Haar distributed; it is

important to note that Proposition 4.1 is an upper bound and typically an overestimate by a factor ≈ √zi.
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the singular values of SQ, and with a modest number of oversampling, we typically have
a modest (σmin(SQ))−1. If it is desirable to ensure this condition, then we can use the
estimate σi(SQ) ≈ σi(S(Ω1A(1))

TR−1), which follows from the fact that (Ω1A(1))
TR−1

is well-conditioned with high probability by the construction of R (this is also known as
whitening [42]).

We note that LS problems with many right-hand sides were studied by Clarkson and
Woodruff [13] and Larsen and Kolda [31], who show that leverage-score sampling based
on A (and not b) gives solutions with good residuals. However, the failure probability
decays only algebraically in s, not exponentially. By contrast, in standard leverage score
theory, SQ becomes well-conditioned with failure probability decaying exponentially in
s [40, Chapter 6]. However, the guarantee is weaker, related to 1/σmin(SQ) rather than
κ2(SQ). To our knowledge, there is no subsampling strategy that simultaneously guarantees
high accuracy (O(1) suboptimality in the residual) and has exponentially low failure probability
in the presence of many or unknown right-hand sides. Here we prefer to keep the failure
probability exponentially low.

It is worth noting that leverage score sampling is just one of many methods available for
column/row subset selection. Other methods include pivoted LU and QR [18, 22] and the BSS
method originally developed for graph sparsification [4]. We chose leverage score sampling
to avoid the zin2i cost required by deterministic methods and because Proposition 4.1 and
experiments suggest that oversampling (selecting more than r̂i rows) can help improve the
accuracy.

The complexity of the approach is O(sr1n(−1) + sr21): sr21 for the QR factorization
(Ω1A(1)S)T = QR ∈ Rs×r1 and4 sr1n1 for computing R−1QTA(1). Together with the cost
for leverage score estimation, the overall cost for solving the least-squares problem (4.4) is
O(n(−1)r̂1 log n(−1) + sr1n1 + sr21).

Our experiments suggest that the above process of solving (4.4) via (4.5), which can be
seen as an instance of a sketch-and-solve approach for LS problems, does not always yield
satisfactory results: the solution accuracy was worse by a few digits than existing algorithms
such as STHOSVD. The likely reason is numerical instability; qualitatively, the matrix Ω1A(1)

is highly ill-conditioned, and hence the computation of its sketch also comes with potentially
large relative error (that is, significantly larger than the error with A(1)QQ

T in (4.3); the
cause is likely numerical errors, as the theory shows that the residual of sketch-and-solve
methods is within a modest constant of optimality [55]). The situation does not improve with
a sketch-to-precondition method [37].

In RTSMS we employ two techniques to remedy the instability: regularization and
iterative refinement.

4.4.3. Regularization and refinement. To improve the solution quality of the subsam-
pled LS problem minF̂1

‖S(AT(1)Ω
T
1 F̂

T
1 − AT(1))‖F , we introduce a common technique of

Tikhonov regularization [24], also known as ridge regression. That is, instead of (4.4) we
solve for a fixed λ > 0

(4.6) min
F̂1

‖S1(AT(1)Ω
T
1 F̂

T
1 −AT(1))‖2F + λ‖F̂1‖2F .

This is still equivalent to an LS problem with multiple independent right-hand sides

min
F̂1

∥∥∥∥[S1A
T
(1)Ω

T
1√

λI

]
F̂T1 −

[
S1A

T
(1)

0

]∥∥∥∥2
F

4While Ω1A(1)S is simply an extraction of the columns of Ω1A(1) specified by S, this step is not always
negligible in an actual execution. It is nonetheless significantly faster than sketching Ω1A(1) from the right.
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and can be solved in O(sr1n(−1) + sr21) operations. We take λ = O(u‖Ω1A(1)S1‖). Reg-
ularization is known to attenuate the effect of solution blowing up due to the presence of
excessively small singular values in the coefficient matrix (some of which can be numerical
artifacts).

The second technique we employ is iterative refinement [26, Chapter 12]. The idea
is to simply solve the problem twice, but we found that resampling can be helpful: de-
noting by F̂ (1)

1 the computed solution of (4.6), we compute the residual in a different set
of subsampled columns, also obtained by the leverage scores (the two sets S1, S2 are al-
lowed to overlap but they differ substantially), update the (unsketched) right-hand side matrix
B := AT(1) −AT(1)ΩT1 (F̂

(1)
1 )T , and solve

(4.7) min
F̂

(2)
1

‖S2(AT(1)Ω
T
1 (F̂

(2)
1 )T −B)‖2F + λ‖F̂1‖2F .

We then take the overall solution to be F̂ (1)
1 + F̂

(2)
1 . It is important in practice that the same

λ is used in (4.6) and (4.7), even though the right-hand sides A(1) and B are typically vastly
different in norm ‖A(1)‖F � ‖B‖F . This is because the goal of the second problem (4.7) is
to add a correction term and not to solve (4.7) itself accurately.

Algorithm 6 Algorithm for the least-squares problem minF̂i∈Rni×r̂i ‖Bnew ×i F̂i − Bold‖F
as in (4.4) arising in RTSMS.
Inputs are Bold

(i) ∈ Rzi×ni and Ωi ∈ Rr̂i×zi , with zi := (Πi−1
j=1r̂j)(Π

d
j=i+1nj).

1: Compute approximate leverage scores `i:

2:
Using the QR factorization (ΩiMYi)

T = QR from Algorithm 5, `i is the i-
th row-norm of (ΩiB

old
(i) Yi)

T (R−1i G), for a standard Gaussian G ∈ Rr̂i×5.
3: If i = p1, choose si = 4kr̂i indices, otherwise choose si = 3kr̂i indices from {1, . . . , zi},

the i-th row is chosen with probability `i/(
∑zi
j=1 `j) without repetition. Form the resulting

subsample matrices S1, S2 ∈ Rsi×zi .
4: Use Tikhonov regularization with S1 to compute F̂ (1)

i solving (4.6).
5: Use iterative refinement with S2 to compute F̂ (2)

i solving (4.7).
6: Compute F̂i := F̂

(1)
i + F̂

(2)
i .

It is perhaps surprising that a standard sketch-and-solve (even with regularization) does
not always yield satisfactory solutions. While the algorithm presented here always gave good
computed outputs in our experiments, it is an open problem to prove its stability or the lack of
it (in which case alternative methods are needed that would guarantee stability). The stability
of randomized least-squares solvers is generally a delicate topic [37], particularly when the
coefficient matrix is numerically rank-deficient.

We close the section with a result on the error with RTSMS.
THEOREM 4.2. Let Â := [[C; F̂1, F̂2, . . . , F̂d]] be the output of RTSMS (Algorithm 5),

where for each i, we compute F̂i such that5 ‖Bnew,i ×i F̂i − Bold,i‖F = εi. Then

(4.8) ‖Â − A‖F ≤
d∑
i=1

i−1∏
j=1

‖F̂j‖2

 εi.

5Here we add the superscript i in Bnew,i to indicate which RTSMS step it refers to. We do not introduce i in the
superscripts elsewhere to avoid complicated notation especially where we mention mode-i unfolding of Bold and
Bnew.
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Proof. Without loss of generality, assume pi = i for all i. In the first step i = 1, the
approximation error ‖A − Bnew,1 ×1 F̂1‖F is equivalent to the error in the LS problem
‖Bold − Bnew ×i F̂i‖F = ε1, which in turn is equal to the low-rank approximation error for
the unfolding. At this point we have an approximate tensor in Tucker1 format Bnew,1 ×1 F̂1,
whose error is ε1.

In the next step, we work on Bnew,1 and effectively find its approximant of the form
Bnew,1 ≈ Bnew,2 ×2 F̂2. An important aspect here is that the error in this approximation
ε2 := ‖Bnew,1 ≈ Bnew,2×2 F̂2‖F is not identical to the resulting error in approximatingA, as
the first factor matrix F̂1 is not orthonormal. To bound the approximation error for A having
computed F̂1, F̂2, we use the triangle inequality

‖E2‖F : = ‖A − Bnew,2 ×1 F̂1 ×2 F̂2‖F
≤ ‖A− Bnew,1 ×1 F̂1‖F + ‖Bnew,1 ×1 F̂1 − Bnew,2 ×1 F̂1 ×2 F̂2‖F
= ε1 + ‖(Bnew,1 − Bnew,2 ×2 F̂2)×1 F̂1‖F
≤ ε1 + ε2‖F̂1‖2.

Here we used the norm inequality ‖AB‖F ≤ ‖A‖F ‖B‖2 [27, Section B.7] for the final
inequality. A similar argument shows that after k outer iterations of RTSMS and having
computed F̂1, . . . , F̂k, we have

‖Ek‖F : = ‖A − Bnew,k ×1 F̂1 ×2 F̂2 × · · · ×k F̂k‖F
≤ ε1 + ε2‖F̂1‖2 + ε3‖F̂1‖2‖F̂2‖2 + · · ·+ εk‖F̂1‖2 · · · ‖F̂k−1‖2.

The result follows from setting k = d.
In view of the bound (4.8), at each step one can normalize F̂j such that ‖F̂j‖2 = 1

and accordingly scale Bnew. This way we have direct control over the (bound for the) error
committed at each step.

Theorem 4.2 is somewhat inconvenient in two ways: first, it is not as clean as the bounds
found for, e.g., STHOSVD [53, Theorem 5.1], where the approximation error is bounded
with respect to the best Tucker approximation of a given rank. Second, while the situation is
similar to [39, Section 5.2], it is arguably worse here, as unlike in [39], the temporary core
tensors Bnew,i are not a subtensor of A, which leads to significant difficulties for an a priori
error analysis. The result is the bound (4.8), which is not directly related to the error of the
best Tucker approximation (unlike previous results), and the bound involves the product of
the norms of the factor matrices

∏d−1
j=1 ‖F̂Tj ‖2, which is unknown in advance but become

available as the computation proceeds.
Despite these caveats, in practice, the result is useful: First, as illustrated in the ex-

periments, the bounds are quite tight in practice, providing useful guidance on the actual
error of the output approximation. Second, fortunately, the factor matrices are seen to be
modest in norm; in all our experiments, the values ‖F̂i‖ were bounded by 1. Furthermore,
essentially the same quantity (recall that F̂T1 = (SAT(1)Ω

T
1 )†(SAT(1))) is shown to be O(1)

in [41, Lemma 3.2] when the sketches are assumed to be Gaussian, giving a theoretical support
that these terms are not large.

Moreover, since ‖Fi‖2 is easy to compute, one can ensure that the overall error is bounded
by tol by forcing each low-rank approximation to have an error bounded by
εi ≤ tol/(d

∏d−1
j=1 ‖F̂Tj ‖2). Although, as mentioned above, replacing this with εi ≤ tol/d was

seen to have little to no impact. Moreover, this argument gives another justification for our
use of regularization in the LS solution: it directly forces the solution Fi to have small norm.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

264 B. HASHEMI AND Y. NAKATSUKASA

Finally, despite the lack of connection to the best Tucker approximation error, RTSMS is seen
to compute results with accuracy similar to existing algorithms.

We note that the bound (4.8) is deterministic even though the algorithm involves ran-
domization. This is because it is an a posteriori bound and the randomness is represented by
the εi’s. The behavior of each εi is well studied in the literature [23, Section 10], at least in
the simple context where the sketch matrix is Gaussian and no regularization and iterative
refinement are performed.

4.5. HOSVD variant of RTSMS. Our algorithm can be complemented with a further
conversion to HOSVD such that factor matrices have orthonormal columns and the core tensor
has the so-called all-orthogonality property [15]. One way to do this standard deterministic
step is to apply Algorithm 9 in Appendix C, which has the flexibility of choosing whether a
multilinear singular value thresholding should also be carried out. In our numerical experiments
we denote this variant with RHOSVDSMS.

4.6. Fixed-rank variant of RTSMS. A significant aspect of RTSMS is its rank adap-
tivity; it can automatically adjust the numerical multilinear rank of the tensor according to a
given tolerance for the relative residual. This is the variant of RTSMS in which the multilinear
rank is assumed to be known a priori. Most of the algorithms for the Tucker decomposition in
the literature are of this type. This variant is essentially Steps 20–23 of RTSMS. If desired,
this variant can also be converted to the HOSVD form without thresholding.

4.7. Computational complexity. In Table 4.1 we summarize the number of arithmetic
operations involved in algorithms for computing a Tucker decomposition. For simplicity we
assume that the order-d tensor A is n× n · · · × n and the target rank is r × r · · · × r (we do
not include the cost for rank estimation; it is usually comparable to the algorithm itself). In
addition, we assume without loss of generality that the processing order is 1, 2, . . . , d. The cost
of the single-pass Tucker algorithm [47] is obtained by taking the factor sketching parameters
to be k = 3/2r and the core sketching parameters to be s = 2k = 3r.

It is evident that randomization reduces the exponent of the highest order term by one,
and sequential truncation reduces the corresponding coefficient.

While Table 4.1 does not immediately reveal a cost advantage of RTSMS over R-
STHOSVD and single-pass Tucker, let us repeat that the single-mode nature of the sketching
can be a significant strength. For example, when the sketches are taken to be Gaussian, the cost
of generating the sketches is lower with RTSMS by a factor O(nd−2). Moreover, while we
mainly treat Gaussian sketches, one can reduce the complexity by using structured sketches;
for instance, with an SRFT sketch the complexity becomes O(nd log n) as listed in paren-
thesis6 in the table, which can be lower than rnd. Such reduction is not possible with other
methods based on finding the (orthonormal) factor matrices first, because the computation of
A ×1 F1 necessarily requires rnd operations since F1 is generally dense and unstructured.
Another advantage of RTSMS is that computing Ω1A(1) requires far less communication than
A(1)Ω2, as with Ω1A(1) the local computation (where A(1) is split columnwise) is directly
part of the output.

The table shows a somewhat simplified complexity; for example, RTSMS also requires
O(nd−1rd log n) for finding the leverage scores, which is usually no larger than ndr. Note

6In theory [34, Section 9.3] this can be reduced to O(nd log r), resulting in strictly lower complexity than
O(ndr). However, the corresponding implementation of the fast transform is intricate and often not available. One
can also use sparse sketches [55] to get O(nd) complexity. It is worth emphasizing that while such techniques can in
theory reduce the complexity, in practice we observe that Gaussian sketches tend to be among the fastest, at least
for the values of n (up to O(103)) that we have experimented with. The use of FFT, for example, involves a larger
constant than Gaussian sketches.
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TABLE 4.1
Computational complexity of fixed-rank algorithms for computing a rank-(r, r, . . . , r) Tucker decomposition of

an order-d tensor of size n× n× · · · × n and r � n. r̂ = r+ p, where p is the oversampling factor, e.g., p = 5 or
p = 0.5r.

algorithm dominant sketch dominant operation
cost size

HOSVD dnd+1 SVD of d unfoldings each of size
[15, 52] n× nd−1
STHOSVD nd+1 SVD of A(1) which is n× nd−1.
[53] (Later unfoldings are smaller

due to truncation)
R-HOSVD drnd r̂ × nd−1 computing A(i)Ωi where Ωi of
[39] [39, Tab. 1] size nd−1 × r̂ and then forming

QTi A(i) for all i
R-STHOSVD rnd r̂ × nd−1 forming A(1)Ω1 with Ω1 of size
[39, 59] [39, Tab. 1] nd−1 × r̂. Subsequent unfoldings

and sketching matrices are smaller
single-pass rnd r̂ × nd−1 sketching by structured (Khatri-
[47] (also [33]) [47, Tab. 2] Rao product) dimension

reduction maps
RTSMS rnd r̂ × n computing Ω1A(1) with Ω1 of size

(nd log n) r̂ × n

that this computation requires sketching a large dimension. Fortunately, the number of vectors
to be sketched is r rather than n needed with alternative methods. Nonetheless, this can be the
dominant cost when r ≈ n or d is large.

4.8. Implementation details. Let us address a few points concerning the specifics of our
RTSMS implementation7.

• We noticed that the final residual depends more strongly on the error made in the
least-squares problem in computing the first factor matrix as opposed to the later
modes. An analogous observation was made by Vannieuwenhoven, Vandebril, and
Meerbergen [53, Section 6.1], who emphasized the influence of the error caused by
the first projection on the quality of the STHOSVD approximation in comparison
with the remaining projections. For this reason we take a slightly larger number of
oversamples when processing the first mode.

• Tensor-matrix contraction is a fundamental operation in tensor computation. Such
mathematical operations involve tensor unfoldings and permutations which are
memory-intensive. It is therefore advantageous to decrease the need for unfold-
ing and permutation of large tensors so as to reduce data communication through the
memory hierarchy and among processors. Conventional implementations of tensor-
matrix contractions involve permutation of the tensor (except for mode-1 contraction)
so that the computation can be performed by calling BLAS; see the function tmprod
in TensorLab, for instance. While our implementations employ TensorLab, we adapt
the use of tensorprod, introduced in MATLAB R2022a, in order to accelerate
tensor-matrix contractions by avoiding explicit data permutations.

7Our MATLAB implementation is available at https://github.com/bhashemi/rtsms.
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Further rank truncation. We explored a few different strategies to further truncate the
computed Tucker decomposition and chose the following according to the numerical evidence.
The idea is based on the HOSVD and is applied once the execution of Algorithm 5 is completed.
We first use QR factorizations of the factors Fi and deterministic STHOSVD to convert the
Tucker decomposition

A ≈ [[C;F1, F2, . . . , Fd]]

to a HOSVD of the form

A ≈ [[Č;U1, U2, . . . , Ud]].

We then compute the higher-order modal singular values of A from Č and then compare those
modal singular values with the input tolerance to decide where to truncate the factors as well
as the core tensor. See Algorithm 9 in Appendix C.

This truncation strategy brings the Tucker decomposition into HOSVD and applies a
multilinear singular value thresholding operator, commonly employed in the context of low-
rank matrix recovery; see [9] for instance. In our numerical experiments we observed that this
strategy gives results whose multilinear rank and accuracy are consistent with changes in the
given tolerance. Details are available in a pseudocode in Appendix C (Algorithm 9).

5. Experiments. In all the following experiments we use parameters detailed here. The
oversampling parameter is set to be p̃ = 5 in all randomized techniques of [39] and [33]. In
the randomized techniques of [39], we use [1, 2, . . . , d] as the processing order of the vector
of modes. In the Tucker-TensorSketch [33], we set the sketch dimension parameter K to be
equal to p̃ above, so K = 5, a tolerance of 1× 10−15, and the maximum number of iterations
to be 50. In our experiments we always take the sketches to be Gaussian, as the dimensions ni
and especially ri are not large enough for other sketches (e.g., SRFT) to outperform it. We set
the oversampling parameter k = 4. All experiments were carried out in MATLAB 2022b on a
computer with 16GB memory.

Each experiment for computing a decomposition of the form Ã = [[C;U1, U2, . . . , Ud]]
we repeat five times and report the average CPU time (the variance is not large) as well as the
geometric mean of the relative residuals defined by

relative residual =
‖A − Ã‖F
‖A‖F

·

As our main algorithm is adaptive in rank, in our first four examples we focus on experiments in
which an input tolerance is specified, and, in addition to the average CPU time and residual, we
also report the average numerical multilinear rank (rounded to the nearest integer) as computed
by each algorithm. When the RTSMS relative residuals are plotted (Examples 5.1, 5.2, 5.3,
and 5.7), we also include the corresponding error bound from Theorem 4.2, where the absolute
bound (4.8) is divided by ‖A‖F to render them relative errors. In the first four examples,
we compare RTSMS and RHOSVDSMS (see Section 4.5) with adaptive-rank R-STHOSVD
(Algorithm 4), whose Step 3 incorporates svdsketch. Note that while the only mandatory
input to svdsketch is an m × n input matrix A, it allows specifying the following input
parameters: The input tolerance tol, maximum subspace dimension, blocksize, maximum
number of iterations, and number of power iterations performed (default value: 1). Among
these, it is worth noting that the input tolerance tol is required to satisfy

(5.1)
√

machine epsilon ≈ 1.5× 10−8 ≤ tol < 1
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since svdsketch does not detect errors smaller than the square root of machine epsilon; see
Theorem 3 and Remark 3.3 in [57]. The default value of tol is machine epsilon1/4≈1.2×10−4,
but note that in this paper we will specify different values of tol satisfying (5.1). Also, in our
tensor context the maximum subspace dimension, blocksize, and the maximum number of
iterations are typically m, b0.1mc, and 10, respectively.

5.1. Rank-adaptive experiments.

EXAMPLE 5.1. We take A to be samples of the Runge function

f(x, y, z) =
1

5 + x2 + y2 + z2

on a grid of size 600×600×600 consisting of Chebyshev points on [−1, 1]3. Figure 5.1 reports
the results, in which the top-right panel shows the speed of our algorithm and R-STHOSVD.
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FIG. 5.1. Comparison of rank-adaptive methods in terms of the residual, average multilinear ranks, and time
for a tensorA of size 600× 600× 600 in Example 5.1. The horizontal axes are all the input tolerance.

The default values of the block size b used by svdsketch in R-STHOSVD are
b0.1nic = 60 in modes i = 1 and 2. The corresponding average of the computed multi-
linear ranks is 5 (not 60 or 10 in the two executions of R-STHOSVD) reflecting the fact that
orthogonalizations within randomized matrix range finders performed by MATLAB orth
only keep r columns of the unfoldings, where r is the computed rank. When it comes to
the third mode, the default value of the block size b used in R-STHOSVD is only 25, as
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due to its sequential truncation aspect, the third unfolding matrix turns out to be of size
n3 × (r1r2) = 600× 25. In contrast to the multilinear ranks being always equal to 5 in both
executions of R-STHOSVD in this example, we observe a smooth increase in the computed
ranks as the input tolerance is decreased in both RTSMS and RHOSVDSMS. Our error bound
is remarkably close to the actual RTSMS relative residuals. It is an interesting open problem
to explain why the bound is so sharp.

EXAMPLE 5.2. We take A to be samples of the Wagon function on a grid of size
800 × 1200 × 300 consisting of Chebyshev points on [−1, 1]3. The function appears in a
challenging global minimization problem and is most complicated in the second variable,
which is why we took the second dimension of A to be the largest. See [5] for details.

Figure 5.2 illustrates our comparisons. The relative residuals in both RTSMS and
RHOSVDSMS drops to about machine epsilon already for an input tolerance as large as
10−6 because Wagon’s function, while challenging in its three variables, is intrinsically of
low multilinear rank. RTSMS and RHOSVDSMS are both fast, and again, the RTSMS error
bound closely matches its actual observed residuals.
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FIG. 5.2. Comparison of rank-adaptive methods in terms of the residual, average multilinear ranks, and
computing time for a tensor A of size 800 × 1200 × 300 in Example 5.2. The horizontal axes are all the input
tolerance.

EXAMPLE 5.3. We take A to be samples of the function

f(x, y, z) =
√
x2 + y2 + z2
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on a Chebyshev grid of size 1000×1000×1000 in [−1, 1]3. f is called the Octant function in
cheb.gallery3 in Chebfun3 [25] and has nontrivial ranks. The results of our computations
are presented in Figure 5.3. The size b of blocks used by svdsketch in R-STHOSVD is
b0.1nic = 100, for i = 1, 2, 3, and the corresponding average of the computed multilinear
ranks is 22.
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FIG. 5.3. Comparison of methods in terms of the residual, average multilinear ranks, and computing time for a
tensorA of size 1000× 1000× 1000 in Example 5.3. The horizontal axes are all the input tolerance.

Once again, RTSMS and RHOSVDSMS both perform very well in terms of speed,
accuracy, and adjusting the rank to the given tolerance. Moreover, the RTSMS error bound is
tight and successfully estimates its true residuals.

EXAMPLE 5.4. Our previous experiments involved isotropic functions having similar
multilinear ranks across different modes. This example explores the methods for functions
for which certain modes have higher ranks. We use this example mainly to illustrate the
reliability of our randomized multilinear rank estimator, i.e., Steps 6–19 in Algorithm 5 when
the tensor has different ranks over different direction. We do not plot the ranks computed
with the svdsketch-based Algorithm 4, as the results remain constant for the first two input
tolerances and then abruptly increase to the full tensor size for smaller tolerances.

Starting with the zero function f , we compute f = f + gk, where

gk(x, y, z) =

{
tanh(ky − x

2 ) if k is even,
tanh(ky − z) if k is odd,

where we take the values of k from 10 to 20. The multivariate hyperbolic function is known to
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be challenging, which is why we use it here. While the variables x and z are present in half
of the terms, y is present in all gk’s, hence one anticipates that the rank of f in the second
direction (corresponding to y) is higher than the others. Our tensor A is the discretization of f
on a Chebyshev grid of size n = (100, 500, 100) in the domain [−1,+1]3.
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FIG. 5.4. Different numerical multilinear ranks successfully estimated with the randomized rank estimator of
RTSMS and RHOSVDSMS. A is of size 100 × 500 × 100 in Example 5.4. The horizontal axes are all the input
tolerance.

The results are displayed in Figure 5.4. To confirm the reliability of the computed ranks,
we take advantage of Chebfun3 finding out that f could be approximated up to the default
tolerance of machine epsilon with a discretization of size n = (18, 429, 27) and the numerical
multilinear rank of (r1, r2, r3) = (13, 26, 19). This is in agreement especially with the
ranks truncated by the HOSVD-variant of RTSMS, i.e., RHOSVDSMS, which computed the
multilinear ranks of (12, 25, 18) and (13, 27, 20) for the smallest input tolerances of 10−12

and 10−14, respectively.
EXAMPLE 5.5. We take A to be a 3D tensor of size 483× 720× 1280 containing 483

frames of a video from the international space station. It corresponds to the first 16 seconds
of a color video8 which can be represented as a 4D tensor. However, we converted the color
video to grayscale and only took the first 483 frames, creating an order-3 tensor A.

We try RTSMS with two tolerances 10−2 and 10−3. In the first case, a Tucker de-
composition of multilinear rank (80, 117, 131) is computed in 8.7 seconds with an actual
relative residual of 2.2 × 10−1. With tol = 10−3, we get a Tucker decomposition of rank
(362, 552, 659) after 95.7 seconds with an actual relative residual of 3.9 × 10−2. In this
example we did not apply either of the two truncation strategies explained in Section 4. The

8https://www.youtube.com/watch?v=aIkWx6HGol0 retrieved September 13, 2023.
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variant of R-STHOSVD that, instead of the rank, takes a tolerance as input did not give an
output after 5 minutes, after which we stopped its execution.

original RTSMS with tol = 10 -2 RTSMS with tol = 10 -3

FIG. 5.5. Frames 1 (top), 200 (middle), and 400 (bottom) from the International Space Station video and
approximations obtained by RTSMS with two different tolerances. See Example 5.5. ©Copyrighted content. Creative
commons license does not apply.

The images are displayed in Figure 5.5. A 16-second video is available at
https://etna.ricam.oeaw.ac.at/volumes/2021-2030/vol63/addition/p247.php

as supplementary material showing this comparison for all 483 frames.

EXAMPLE 5.6. In our next example we work with a 3D tensor of size 2048× 256× 256
from the Miranda Turbulent Flow tensor data from the Scientific Data Reduction Bench-
mark (SDRBench) [8, 58]. We acquired the dataset following the methodology outlined
in [3] after which we apply the HOSVD variant of RTSMS with four tolerances, specifically
10−2, 10−3, 10−4, and 10−5.

We report our results in Table 5.1. See also Figures 5.6 and 5.7 for illustrations. Here, the
relative compression is the ratio of the total size of the original tensor X and the total storage
required for the Tucker approximation.

We obtain a compression ratio of 5 requiring 20% of the size of the original tensor when
the tolerance is set to 10−5. On the other hand with a tolerance of 10−2, a compression ratio
of 4189 is achieved, requiring only 0.02% of the storage required for the original tensor. The
rank-adaptive variant of R-STHOSVD is slightly slower but is more conservative giving higher
ranks and hence lower compression ratio and more accuracy.

5.2. Fixed-rank experiments. In the following examples we examine algorithms which
require the multilinear rank as input. While because of oversampling, the numerical Tucker
rank of the approximations computed with RTSMS is more than the input rank r, the method
RHOSVDSMS truncates those approximations to the rank r. As before we run each example
five times and report the average time and residual.
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FIG. 5.6. Compression versus residual obtained with different methods and different tolerances in Example 5.6.
Coordinates are not displayed in the case of R-STHOSVD with the default block size; see also Table 5.1.

TABLE 5.1
Relative error and compressions achieved for different tolerances in Example 5.6 .

tol rel. error Tucker rank compression ratio % of original size
10−2 4× 10−2 (13, 9, 8) 4189 0.02
10−3 2× 10−2 (155, 47, 50) 190 0.53
10−4 7× 10−4 (490, 109, 109) 19.5 5
10−5 4× 10−4 (866, 172, 168) 5 20

EXAMPLE 5.7. We consider the 4-dimensional Hilbert tensor of size 150×150×150×150,
whose entries are

hi,j,k,l =
1

i+ j + k + l − 3
·

We compute Tucker decompositions of multilinear rank (r, r, r, r) for the following six values
of r := 5, 10, 15, 20, 25, 30. The results are depicted in Figure 5.8.

In addition to RTSMS, RHOSVDSMS, and R-STHOSVD (Algorithm 3), we also plot
the results obtained by the multilinear generalized Nyström (MLN) method and its stabilized
variant [7]. All the methods are comparable with RTSMS and RHOSVDSMS in terms of
accuracy, while our algorithms are the best in terms of speed. Although, in comparison with
Examples 5.1, 5.2, and 5.3, here the RTSMS error bound is a bit more conservative, it still
tracks the behaviour of the observed residuals well.

EXAMPLE 5.8. Motivated by demo2 in the implementations accompanying [33], we
construct synthetic data with noise as follows. Using Tensor Toolbox [2], we generate four
n×n×n tensors of true rank (r, r, r), where n = 250, 500, 750, 1000 and r = 10, 12, 14, 16,
respectively. Then, Gaussian noise at the level of 10−7, 10−6, 10−5, 10−4 is added to the
tensors, respectively. More precisely, noise at the level of 10−7 is added to the smallest
tensor (n = 250), and similar noise at the level of 10−4 is applied to the largest tensor
(n = 1000). We then call different methods to compute a Tucker decomposition of the noisy
tensors repeating each experiment five times as before. Tucker-TS and Tucker-ALS require a
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FIG. 5.7. Visualization of four slices in the xy-plane of the original density tensor and compressed representa-
tions obtained with RHOSVDSMS in the numerical simulation of flows with turbulent mixing. Images produced with
the tolerance of 10−5 look the same as those for 10−4 and hence are not displayed here. See Example 5.6.
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10-10
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100
computed residual
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RHOSVDSMS
RTSMS error bound
R-STHOSVD, q=1
MLN
stabilized MLN

5 10 15 20 25 30
rank

0

10

20

30

40

50

60

time (sec)

FIG. 5.8. Comparison of fixed-rank algorithms for the 4D Hilbert tensor in terms of residual (left) and time
(right) in Example 5.7.

few parameters which we set as follows. The tolerance and target ranks are set to the same
noise level and true ranks when generating each tensor as mentioned above. In addition,
as recommended in [33], we set sketch the dimensions to J1 = Kr2 and J2 = Kr3 with
K = 10.
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FIG. 5.9. Comparison of fixed-rank algorithms for noisy synthetic data in terms of residual (left) and time
(right) in Example 5.8.

Figure 5.9 reports the outcome. While RHOSVDSMS gives a residual which is worse than
R-STHOSVD by a factor of four, it is the fastest. In particular for the largest tensor, the average
computing time of 110.5 and 21.2 seconds in Tucker-TS and R-STHOSVD, respectively, is
reduced to 4.8 seconds.

We also note that we encountered errors in MATLAB when computing Khatri-Rao
products involved in Tucker-TS (described in Section 3.1.1), complaining that memory required
to generate the array exceeds the maximum array size preference. This happens, e.g., with
n = 1000 and a rank as small as r = 20, in which case Tucker-TS generates an array
which requires 36 GB of memory. No such errors arise with R-STHOSVD, RTSMS, and
RHOSVDSMS. We tried Tucker-TTMTS as well, but it gave residuals at the constant level of
10−1 for all the four tensors, and that is why Tucker-TTMTS is not shown in the plots.

EXAMPLE 5.9. We take A to be the tensor of 80 snapshots from a computerized tomogra-
phy (CT) kidney dataset of images9. More specifically, A is a tensor of size 512× 512× 80
corresponding to images number 328 to 407 from the cyst directory in the dataset. We set
the Tucker rank to be (250, 250, 50). See Figure 5.10, suggesting that visually, R-STHOSVD
with one power iteration and RTSMS give comparable approximations to the original images.
In fact, RTSMS gives a mean relative residual of 1.21 × 10−1 compared with 1.07 × 10−1

with R-STHOSVD. The average time taken by R-STHOSVD and RTSMS is 4.05 and 2.60
seconds, respectively. We see that the images are approximated with roughly the same quality
by all algorithms.

6. Conclusion. RTSMS incorporates randomized multilinear rank estimation into the
sequential truncation approach for computing a Tucker decomposition. Sequential truncation
implies that at every step, RTSMS computes low-rank approximation of a tensor whose size
is smaller than those in the previous steps. Additionally, RTSMS relies on sketching and a
least-squares framework. The sketch matrices utilized are substantially smaller than alternative

9https://www.kaggle.com/datasets/nazmul0087/ct-kidney-dataset-normal-cyst-tumor-and-stone
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original R-STHOSVD RTSMS

FIG. 5.10. Original images (left) and approximations obtained by R-STHOSVD (middle) and RTSMS (right)
corresponding to snapshots 1 (top row), 25 (middle row), and 50 (bottom row). See Example 5.9. ©Copyrighted
content. Creative commons license does not apply.

methods, leading to considerable performance gains. Within its least-squares framework,
RTSMS takes advantage of approximate leverage scores to subsample efficiently.

On the other hand, error analysis highlights the importance of keeping the norm of the
factor matrices as small as possible. Since factor matrices are solutions to sketched least-
squares subproblems, RTSMS addresses this need by using Tikhonov regularization and
improves the robustness with iterative refinement. Future work includes a stability analysis
of RTSMS and explaining the sharpness of the bound (4.8), as well as its extension to the
streaming model, where the input is given as a stream of structured tensors.

Supplementary material. The supplementary material accompanying this article is a
video (MP4 format) illustrating the results in Figure 5.5 and can be found at
https://etna.ricam.oeaw.ac.at/volumes/2021-2030/vol63/addition/p247.php

Acknowledgments. We would like to thank Tammy Kolda for the insightful discussions
and helpful suggestions, including the experiments in Figure 5.7. We are also grateful to
Daniel Szyld for his encouragement and for suggesting the inclusion of the error bound (4.8)
in the relevant plots.

Appendix A. Deterministic STHOSVD. Here we first recall the basic ideas of HOSVD
and STHOSVD, whose foundations are key to RTSMS. Also, for the sake of completeness, we
present standard deterministic algorithms for HOSVD and STHOSVD as well as our algorithm
for converting Tucker decompositions computed by RTSMS to HOSVD.

Let ni � ri, for i = 1, 2, . . . , d, and let Ui ∈ Rni×ri be any full-rank matrix whose
columns span the column space of A(i), which is a subspace of Rni . Hence, each Ui has a
left-inverse, i.e., U†i Ui = Iri ∈ Rri×ri , and UiU

†
i =: Pi ∈ Rni×ni is a projection onto the
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column space of Ui and A(i). Hence, PiUi = Ui and PiA(i) = A(i). Using Definition 2.1, the
latter formula can be rewritten as

A(i) = (A×i Pi)(i).

Repeating this d times, we therefore have

A = A×1 P1 ×2 P2 · · · ×d Pd
= A×1 U1U

†
1 ×2 U2U

†
2 · · · ×d UdU†d

= (A×1 U
†
1 ×2 U

†
2 · · · ×d U†d)×1 U1 ×2 U2 · · · ×d Ud,(A.1)

where the last equality is based on (2.1). Formula (A.1) implies that if we chose the matrices
Ui as the factor matrices and take

(A.2) C := A×1 U
†
1 ×2 U

†
2 · · · ×d U†d

as an r1 × r2 · · · × rd core tensor, then we have the following Tucker decomposition:

A = C ×1 U1 ×2 U2 · · · ×d Ud,

where the equality is exact as long as ri is larger than or equal to the rank of the column space
of A(i).

The formulation of HOSVD in (2.2) is equivalent to

(A.3) vec(A) = (Ud ⊗ · · · ⊗ U2 ⊗ U1) vec(C).

See [21, Equation (12.4.19)] for instance.
From (A.3) and (A.2) it is clear that the computation of the core tensor C is equivalent to

solving a huge overdetermined linear system of equations of the form

(Ud ⊗ · · · ⊗ U2 ⊗ U1)c = a,

where c := vec(C) is a vector of size (r1r2 . . . rd)× 1, a := vec(A) is a vector of size N × 1,
with N := n1n2 . . . nd, and the coefficient matrix containing Kronecker products is of size
N × (r1r2 . . . rd).

In the case of the deterministic HOSVD, the matrices Ui are chosen to be the left singular
vectors of A(i), and the computation of the core relies on the orthogonality of the columns of
every Ui; see Algorithm 7. In the case of the STHOSVD, Ui is chosen to be the left singular
vectors of the previously-truncated tensor Ĉ(i).

Algorithm 7 Deterministic HOSVD (De Lathauwer, De Moor and Vandewalle, 2000 [15])
Inputs are A ∈ Rn1×n2×···×nd and the truncation rank (r1, r2, . . . , rd).
Output is A ≈ [[C;U1, U2, . . . , Ud]].

1: for i = 1, . . . , d do

2: Compute the thin SVD A(i) =
[
Û1 Û2

] [Σ1

Σ2

] [
V T1
V T2

]
, where Û1 ∈ Rni×ri .

3: Set Ui := Û1.
4: end for
5: Compute C = A×1 U

T
1 ×2 U

T
2 · · · ×d UTd .
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Algorithm 8 Deterministic STHOSVD (Vannieuwenhoven, Vandebril, and Meerbergen,
2012 [53])
Inputs are A ∈ Rn1×n2×···×nd , the truncation rank (r1, r2, . . . , rd), and the processing order
p of the modes (a permutation of [1, 2, . . . , d]).
Output is A ≈ [[C;U1, U2, . . . , Ud]].

1: Set C := A.
2: for i = p1, . . . , pd do

3: Compute the thin SVD C(i) =
[
Û1 Û2

] [Σ1

Σ2

] [
V T1
V T2

]
, where Û1 ∈ Rni×ri .

4: Set Ui := Û1.
5: Compute C(i) = Σ1V

T
1 .

6: end for

Appendix B. Tucker to HOSVD conversion. As mentioned in Section 4.5, converting the
Tucker decomposition computed via RTSMS to the HOSVD format—where factor matrices
possess orthonormal columns and the core tensor is all-orthogonal—is a straightforward
process [15], based on orthonormalizing the factor matrices with a QR factorization, merging
the R factors in the core tensor, and recompressing the updated core tensor for further rank
truncation. Algorithm 9 is a standard deterministic approach to accomplishing this conversion.

Algorithm 9 Tucker2HOSVD (with or without thresholding)
Inputs are a Tucker decomposition A ≈ [[C;F1, F2, . . . , Fd]] whose multilinear rank is r̂ (and
a tolerance tol if thresholding).
Output is HOSVD A ≈ [[Č;U1, U2, . . . , Ud]] whose multilinear rank is either r̂ in case of no
thresholding or l in the case of thresholding with `i ≤ r̂i.

1: for i = 1, 2, . . . , d do
2: Compute thin QR factorizations [Qi, Ri] = qr(Fi).
3: end for
4: Update C := C ×1 R1 ×2 R2 · · · ×d Rd.

5:

Apply a deterministic STHOSVD to C, and compute
[[Č; Ǔ1, Ǔ2, . . . , Ǔd]] ≈ C (and the mode-i higher order singu-
lar values σ(i) if thresholding).

{Both C and Č are
of size
r̂1 × r̂2 · · · × r̂d.}

6: if thresholding then
7: for i = 1, 2, . . . , d do
8: Find the smallest `i such that σ(i)

`i+1 < tol σ(i)
1 .

9: end for
10: else
11: Set li := r̂i for i = 1, 2, . . . , d.
12: end if
13: for i = 1, 2, . . . , d do
14: Compute Ui = Qi Ǔi(:, 1 : `i). {Qi is of size ni × r̂i, Ǔi is r̂i × r̂i, and Ui is ni × `i.}
15: end for
16: Replace Č with Č(1 : `1, 1 : `2, . . . , 1 : `d).

Appendix C. Higher order GN. Algorithm 10 is a higher-order generalized Nyström
method for computing a Tucker decomposition in a sequentially truncated manner. It relies
on the generalized Nyström framework for randomized low-rank approximation of unfolding
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matrices as outlined in Algorithm 1 and is not the same as the multilinear Nyström algorithm
in [7]. See also [6] for a variant of the higher order GN method that is suitable for tensors
given in a streaming format.

Algorithm 10 R-GN-ST-Tucker
Inputs are A ∈ Rn1×n2×···×nd , a target multilinear rank (r1, r2, . . . , rd), and a processing
order p of the modes.
Output is A ≈ [[C;U1, U2, . . . , Ud]].

1: Set C := A.
2: for i = p1, . . . , pd do

3:
Draw two standard random Gaussian matrices Ωi and Ω̃i of size zi × ri and
ni × r̂i, respectively, where r̂i := ri + p with p := [ri/2].

4: Compute [Û , V̂ ] = GN(C(i),Ωi, Ω̃i) using Algorithm 1.
5: Set Ui := Û .
6: Update C(i) = V̂ T . {Overwriting C(i) overwrites C.}
7: end for
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