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A GENERAL CLASS OF ITERATIVE SPLITTING METHODS
FOR SOLVING LINEAR SYSTEMS∗
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Abstract. Recently Ahmadi et al. [IEEE Trans. Parallel Distrib. Syst., 32 (2021), pp. 1452–1464] and Tagliaferro
[Research Square (2022)] proposed some iterative methods for the numerical solution of linear systems which, under
the classical hypothesis of strict diagonal dominance, typically converge faster than the Jacobi method but slower than
the forward/backward Gauss–Seidel one. In this paper we introduce a general class of iterative methods, based on
suitable splittings of the matrix that defines the system, which include all of the methods mentioned above and have
the same cost per iteration in a sequential computation environment. We also introduce a partial order relation in the
set of splittings and, partly theoretically and partly on the basis of a number of examples, we show that such partial
order is typically connected to the speed of convergence of the corresponding methods. We pay particular attention
to the case of linear systems for which the Jacobi iteration matrix is nonnegative, in which case we give a rigorous
proof of the correspondence between the partial order relation and the magnitude of the spectral radius of the iteration
matrices. Within the considered general class, some new specific promising methods are proposed as well.
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1. Introduction. Iterative methods for the numerical solution of a linear system

(1.1) Ax = b,

where A ∈ Rn×n and b ∈ Rn, constitute a widely investigated field of research. Various
efficient methods have been developed, taking into account the dimension of the problem and
the features of the matrix A. Moreover, also the architecture of the employed computers is
carefully taken into consideration, with particular attention to parallel implementations.

Some of the most popular iterative methods are the Jacobi method and the (forward or
backward or symmetric) Gauss–Seidel methods (see, e.g., Stoer and Bulirsch [4] or Golub and
Van Loan [3]), designed based on splittings of the coefficient matrix A as

A = C +D + E,

where C and E are the strictly lower and the strictly upper triangular parts of A, respectively,
and D is its diagonal, whose elements are required to be all 6= 0.

Starting from an initial approximation x(0) to the solution, these methods take the form

(1.2) x(k+1) = Bx(k) + c,

with

B = BJ := −D−1(C + E) and c = cJ := D−1b

for the Jacobi method,

B = BfGS := −(D + C)−1E and c = cfGS := (D + C)−1b
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for the forward Gauss–Seidel method,

B = BbGS := −(D + E)−1C and c = cbGS := (D + E)−1b

for the backward Gauss–Seidel method, and

B = BsGS := (D+E)−1C(D+C)−1E and c = csGS := (D+E)−1[I−C(D+C)−1]b

or

B = B′sGS := (D+C)−1E(D+E)−1C and c = c′sGS := (D+C)−1[I−E(D+E)−1]b

for the symmetric Gauss–Seidel method.
We remark that, even if the forward and backward Gauss–Seidel iterations look more

elaborate (as they require the solution of a triangular system, which may be solved by forward
or backward substitution, respectively), their computational complexity is the same as that of
the Jacobi iteration. Moreover, also the symmetric Gauss–Seidel iteration, which just gathers
sequentially one iteration of the forward and one of the backward Gauss–Seidel method, can
be suitably rearranged in order to reach the same computational cost (see the related discussion
in Section 6.3). Therefore, in a standard sequential environment, the efficiency comparison
among all the above mentioned methods is based on their respective speed of convergence.

It is well known that an iterative method of type (1.2) is convergent if and only if
ρ(B) < 1, where ρ(·) denotes the spectral radius, and that the smaller ρ(B) is, the faster is
the convergence. It is also known that a sufficient condition for the convergence of the
aforementioned methods is that the matrix A be strictly diagonally dominant either by
rows (i.e., if the condition ‖D−1(C + E)‖∞ = ‖BJ‖∞ < 1 holds) or by columns (i.e.,
if ‖(C + E)D−1‖1 = ‖DBJD−1‖1 < 1). As is customary, ‖ · ‖∞ and ‖ · ‖1 stand for the
well-known matrix infinity- and 1-norm, respectively.

Although not being a general rule, in most cases of practical interest and when all of such
methods converge, the symmetric Gauss–Seidel iteration is faster than both the forward and
backward Gauss–Seidel one, and, in turn, these last two methods are faster than the Jacobi
iteration. One important practical case, typically produced by a finite difference method
applied to a linear system of differential equations, is that of a system characterized by a
matrix A (also called L-matrix [8]), for which the diagonal elements (those of D) are strictly
positive and C +E ≤ O elementwise (see the well-known Stein–Rosenberg theorem and its
generalizations [2, 7]).

Nevertheless, the Jacobi method is much better suited to exploit the potential speedup of a
parallel computer environment than the Gauss–Seidel methods, and this fact may often change
the balance of efficiency into its favour.

Recently, Ahmadi et al. [1] and, subsequently, Tagliaferro [5] proposed some iterative
methods which are a kind of halfway house between the Jacobi and the forward and backward
Gauss–Seidel iterations. More precisely, in [1] the Jacobi iteration matrix BJ is split into two
or more sets of rows, and one passes from the previous iterate to the next one by applying
one after the other the various selected sets of rows in a certain order fixed a priori, each time
working on the already modified components. Differently, in [5] the Jacobi iteration matrix
BJ is split into the lower and the upper triangular parts, and one passes from the previous
iterate to the next one by applying first the upper triangle and then, on the so modified vector,
the lower triangle. These two strategies are different from each other in the way of choosing
the splittings of BJ , but both of them may be embedded in the more general methodology that
we want to present in this paper.

The methods introduced in [1], which we shall call AMKS-methods, will be carefully
analyzed in Section 5, whereas the method introduced in [5], which we shall call TU -method,
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will be considered soon as an inspiring model to define our general splitting technique.
This method looks like a usual iterative method (1.2) in the doubled dimension space R2n.
Starting from a pair of initial approximations {x(0)1 , x

(0)
2 }, a sequence of pairs of vectors

{x(k)1 , x
(k)
2 }k≥1 is defined by setting

(1.3)

{
x
(k+1)
1 = Ux

(k)
1 + Lx

(k)
2 + c,

x
(k+1)
2 = Ux

(k+1)
1 + Lx

(k)
2 + c,

where

(1.4) L = −D−1C, U = −D−1E, c = D−1b.

Denoting by I andO the identity and the zero (n×n)-matrix, respectively, it is immediate
to see that the iterative scheme (1.3) may be reformulated in the more compact form

(1.5) X(k+1) = BTU
X(k) + ΓTU

,

where

BTU
=

[
I O
−U I

]−1
·
[
U L
O L

]
=

[
U L
U2 UL+ L

]
∈ R2n×2n

and

X(k) =

[
x
(k)
1

x
(k)
2

]
∈ R2n, k ≥ 0, and ΓTU

=

[
c

(U + I)c

]
∈ R2n.

The fixed point of (1.5) is given by X = [xT , xT ]T , where x is the solution of (1.1).
Looking carefully at (1.3) reveals that it is possible to carry out the iterations just by proceeding
with the pair of n-vectors {Ux(k)1 , x

(k)
2 } and that the computational complexity of one iteration

still is the same as for the Jacobi or the Gauss–Seidel methods. In a parallel computer
environment, the situation might instead change to the detriment of the TU -method (1.3)
only if the number of parallel processors available becomes large enough. Just to give a
rough, and also pessimistic, idea of the situation: if we assume that each processor can handle
the product of a matrix row times a vector in a certain time τ , with n processors or more
available, the Jacobi method can perform an iteration by computing a matrix-vector product
all together in the same amount of time τ , whereas the TU -method needs the computation of
two matrix-vector products in succession, taking the total time of about 2τ . Anyway, such
a number of available processors is often unrealistic when dealing with very large systems
of equations arising from practical applications. However, in this paper we do not consider
any parallel computation issues any longer and confine ourselves to evaluate the sequential
complexity only.

Again without being a general rule, in many cases of practical interest it has been
experimentally observed that, when all the three methods converge, the asymptotic rate of
convergence of the TU -method lies between the Jacobi and Gauss–Seidel ones.

Below we introduce a general class of iterative methods based on an arbitrary splitting of
the matrix BJ , that is, BJ = B1 + . . .+Bd (in (1.3) we simply have B1 = U , B2 = L).

The paper is organized as follows. In Section 2 we define the iterative method correspond-
ing to a given splitting, show the important property of cyclicity of the splittings, and introduce
the partial order relation of refinement. We also give the notion of essentiality and define
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the concept of potentially optimal splittings. In Section 3 we treat the case of linear systems
for which BJ is nonnegative. In this setting we prove that the more refined the splitting is,
the smaller the spectral radius of the corresponding iteration matrix. We also briefly treat
the opposite case of BJ nonpositive. In Section 4 we extend the convergence theorem under
the hypothesis of strict diagonal dominance to the whole class of splitting methods that we
propose. In Section 5 we prove the inclusion of the methods defined by Ahmadi et al. [1] in
our general class. In Section 6 we consider again the TU -method and some specific types
of refinements which include, in particular, all the Gauss–Seidel methods. In Section 7 we
propose a new family of splitting methods, which seem to have a good potential for fast
convergence, in competition with the symmetric Gauss–Seidel method. Finally, in Section 8
some numerical illustrative examples are given, and in Section 9 some conclusions are drawn.

2. A general class of iterative methods. To begin with, we observe that, possibly at
the cost of an initial preconditioning and a final diagonal-matrix/vector multiplication, it is
not restrictive to assume that the diagonal of the coefficient matrix A be equal to the identity
matrix I , that is, D = I in (1.4), so that

(2.1) A = I − (L+ U) = I −BJ .

In fact, many important properties of the coefficient matrix A, if present, are not compro-
mised by this assumption. For example, diagonal dominance by rows is preserved from A to
D−1A, dominance by columns is preserved fromA toAD−1, symmetry together with positive
(semi-)definiteness are preserved from A to D−1/2AD−1/2. In all cases it is immediate to
define the modified system, equivalent to (1.1).

DEFINITION 2.1. Given a matrix B ∈ Rn×n, we say that the d-tuple of matrices
B(d) = {B1, . . . , Bd}, Bp ∈ Rn×n, is a splitting of B of order d if

• Bp 6= O for all p = 1, . . . , d;
• B =

∑d
p=1Bp;

• the Hadamard product Bp ◦Bq = O for all p, q = 1, . . . , d with p 6= q.
Given a splitting B(d) = {B1, . . . , Bd} of BJ , we define the corresponding iterative

scheme

(2.2) x
(k+1)
i =

∑i−1

j=1
Bjx

(k+1)
j +

∑d

j=i
Bjx

(k)
j + c, i = 1, . . . , d,

which starts from a given d-tuple {x(0)1 , . . . , x
(0)
d } of n-vectors. It is straightforward to see

that such a scheme may be reformulated in the more compact form

(2.3) X(k+1) = B(d)X(k) + Γ(d)

with

(2.4) B(d) = (I(d) − L(d))
−1U(d) =

(
I(d) +

d−1∑
h=1

L(d))
h

)
U(d) ∈ Rdn×dn

(which, without any risk of misunderstanding, we denote by the same symbol used for the
corresponding splitting), where I(d) = blockdiag(I, . . . , I) ∈ Rdn×dn,

L(d) =


O · · · · · · O
B1 O · · · · · · O
... B2

. . .
...

...
...

. . . O
...

B1 B2 · · · Bd−1 O

 , U(d) =


B1 B2 · · · Bd−1 Bd
O B2 · · · Bd−1 Bd
... O

. . .
...

...
...

. . . . . .
...

O O · · · O Bd

 ,
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L(d), U(d) ∈ Rdn×dn, and

X(k) =



x
(k)
1

x
(k)
2
...
...

x
(k)
d


, Γ(d) = (I(d) − L(d))

−1


c
c
...
...
c

 =


c

(B1 + I)c
...
...

(Bd−1 + I) · · · (B1 + I)c



are dn-vectors. The fixed point of (2.3) is given by the dn-vector X = [xT , . . . , xT ]T , where
x is the solution of (1.1), and convergence obviously holds if and only if ρ(B(d)) < 1.

We remark that the computational complexity of one iteration is the same as for the Jacobi
or the Gauss–Seidel methods, at least with respect to the number of multiplications. This fact
might be better realized by looking at the two-step iterative scheme

x
(k+1)
1 = x

(k)
d +Bd(x

(k)
d − x

(k−1)
d )

x
(k+1)
i ,= x

(k+1)
i−1 +Bi−1(x

(k+1)
i−1 − x(k)i−1), i = 2, . . . , d,

which is equivalent to (2.2) for k ≥ 1. At least from a formal point of view, the necessary
amount of memory involved in the computations seems to strongly depend on the order d of
the splitting B(d), since the dimension of the problem grows up to dn. However, the increase
of the dimension is mostly due to the adopted formalism, and a smart organization of the data
together with a smart formulation of the implementation algorithm may fix this inconvenience.
In any case, in this paper we do not consider this practical aspect any more.

2.1. Cyclicity of the splittings. The results of this section are particularly important for
analyzing the convergence properties of the proposed class of methods.

DEFINITION 2.2. Given a matrix B ∈ Rn×n, we define the cyclic shifting map

S : Spl(B) −→ Spl(B)

on the set Spl(B) of its splittings by setting

S(B(d)) := {Bd, B1, . . . , Bd−1}

for any splitting B(d) = {B1, . . . , Bd}. Moreover, we say that the splitting S(B(d)) is the
cyclic shift of B(d).

REMARK 2.3. Note that, for the limit case d = 1, we have S({B)}) = {B}. Moreover,
for each d ≥ 1 it obviously holds that Sd(B(d)) = B(d).
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LEMMA 2.4 (Cyclicity). Let B(d) = {B1, . . . , Bd} be a splitting of the matrix BJ , and
let B′(d) = S(B(d)). If λ 6= 0 is an eigenvalue of (the iteration matrix corresponding to) B(d)
and

[
αT1 , . . . , α

T
d

]T
is one of its related eigenvectors, then λ and

[
αTd , λα

T
1 , . . . , λα

T
d−1
]T

are
an eigenvalue and the related eigenvector, respectively, of (the iteration matrix corresponding
to) B′(d).

Proof. By (2.4), the assumed hypothesis is equivalent to

(λL(d) + U(d))α = λα,

which, in expanded form, reads

(2.5)
∑i−1

j=1
λBjαj +

∑d

j=i
Bjαj = λαi, i = 1, . . . , d.

Rearranging this set of equations as

Bdαd +
∑i−1

j=1
λBjαj +

∑d−1

j=i
Bjαj = λαi, i = 1, . . . , d,

and performing a cyclic shift of the equations, we obtainBdαd +
∑d−1
j=1 λBjαj = λαd,

Bdαd +
∑i−1
j=1 λBjαj +

∑d−2
j=i Bjαj = λαi, i = 1, . . . , d− 1.

The result then follows by multiplying by λ the set of equations for i = 1, . . . , d− 1.
In view of the forthcoming statement and similar ones that will be made throughout the

paper, we need to give the following definition:
DEFINITION 2.5. We say that two iterative methods are spectrum-equivalent if their

respective iteration matrices B and B′, possibly of different dimensions n and n′, have the
same nonzero eigenvalues.

REMARK 2.6. Two spectrum-equivalent iterative methods have the same asymptotic speed
of convergence since their respective iteration matrices B and B′ are such that ρ(B) = ρ(B′).

In the light of Remark 2.3, it is clear that the iterated application of the Cyclicity Lemma
d times implies the following corollary:

COROLLARY 2.7. Let B(d) = {B1, . . . , Bd} be a splitting of the Jacobi iteration matrix
BJ of order d. Then the iterative methods corresponding to the iteration matrices B(d) and
Sr(B(d)) are spectrum-equivalent.

It is interesting to observe that the (iterated) use of the cyclic shifting map S not only
leads to splittings with the same nonzero eigenvalues of the corresponding iteration matrices
but also leaves the original iterative methods substantially unchanged. In fact, by writing twice
the equations (2.2) for k and k + 1 in sequence and then by neglecting the first k − 1 and the
last of the resulting 2k equations, we obtain
x
(k+1)
d = Bdx

(k)
d +

∑d−1
j=1 Bjx

(k+1)
j + c,

x
(k+2)
1 = Bdx

(k+1)
d +

∑d−1
j=1 Bjx

(k+1)
j + c,

x
(k+2)
i = Bdx

(k+1)
d +

∑i−1
j=1Bjx

(k+2)
j +

∑d−1
j=i Bjx

(k+1)
j + c, i = 2, . . . , d− 1.

Now, by setting

y
(k)
1 := x

(k)
d and y

(k)
i := x

(k+1)
i−1 , k ≥ 0,
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we get the iteration (2.2) for the sequence {y(k)1 , . . . , y
(k)
d }, with B(d) replaced by S(B(d)).

The Cyclicity Lemma also simplifies significantly the proof of the next result which
considers the eigenvectors of the iteration matrices.

PROPOSITION 2.8. Let B(d) = {B1, . . . , Bd} be a splitting of BJ . Let λ 6= 0 be

an eigenvalue of (the iteration matrix) B(d), and let
[
αT1 , . . . , α

T
d

]T
be one of its related

eigenvectors. Then it holds that

αp 6= 0 for all p = 1, . . . , d.

Proof. Possibly by applying the Cyclicity Lemma 2.4 the necessary number of times, we
can confine ourselves to prove that assuming α1 = 0 leads to a contradiction. Indeed, if it
were so, then the first equation of (2.5) would imply

B2α2 + · · ·+Bd−1αd−1 +Bdαd = 0.

Then substituting into the second equation would yield λα2 = 0, and thus, being λ 6= 0,
α2 = 0 as well. By recursively repeating the analogous substitutions into all the remaining
equations of (2.5), we could prove that αp = 0, for all p = 1, . . . , d, which is impossible.

2.2. Refinement of splittings and essentiality. Starting from a given splitting B(d), in
this section, we suggest a procedure that allows us to define a new splitting B′(d′) that may lead
to a faster method.

DEFINITION 2.9. Given two splittings

B(d) = {B1, . . . , Bd} and B′(d+1) = {B′1, . . . , B′d+1}

of a matrix B ∈ Rn×n of orders d and d+ 1, respectively, we say that B′(d+1) is a refinement
of B(d) and write B′(d+1) � B(d), if there exist two integers r, s with 0 ≤ r ≤ d − 1 and
0 ≤ s ≤ d such that, with

C(d) = {C1, . . . , Cd} := Sr(B(d))

and

C′(d+1) = {C ′1, . . . , C ′d, C ′d+1} := Ss(B′(d+1)),

the following conditions are satisfied:
(I) C ′p = Cp for all p = 1, . . . , d− 1;

(II) the pair of matrices {C ′d, C ′d+1} ⊆ C′(d+1) is a splitting of Cd ∈ C(d);
(III) C ′d+1C

′
d 6= O.

DEFINITION 2.10. Given two splittings B(d) and B′(d′) of a matrix B ∈ Rn×n of orders
d and d′, respectively, with d′ ≥ d + 2, we say that B′(d′) is a refinement of B(d) and write
B′(d′) � B(d), if there exists a chain of d′ − d − 1 splittings B′(d+1), B

′
(d+2), . . . , B′(d′−1) of

increasing orders d+ 1, d+ 2, . . . , d′ − 1, respectively, such that

B′(d′) � B
′
(d′−1) � · · · � B

′
(d+1) � B(d)

in the sense of Definition 2.9.
It is immediate to realize that the strict partial ordering introduced by Definitions 2.9

and 2.10 on Spl(B) is compatible with the cyclic shifting map S in the sense that

B′(d′) � B(d) ⇐⇒ Sr(B′(d′)) � S
s(B(d))
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for all nonnegative integers r, s. Clearly, the unique element of order d = 1, i.e., B(1) = {B},
is always a minimal element in such a strict partial ordering.

Now we show that condition (III) in Definition 2.9 is essential in order to hope for an
effective improvement of a given splitting B(d).

PROPOSITION 2.11. With reference to Definition 2.9, we assume that two splittings
B(d) = {B1, . . . , Bd} and B′(d+1) = {B′1, . . . , B′d+1} of BJ satisfy conditions (I) and (II)
(without shifts for the sake of simplicity) but do not satisfy (III), i.e.,

(2.6) B′d+1B
′
d = O.

Then the corresponding iterative methods are spectrum-equivalent.
Proof. First assume that λ 6= 0 is an eigenvalue of B(d), and let

[
αT1 , . . . , α

T
d

]T
be a

related eigenvector. Then we set

(2.7) α′p := αp, p = 1, . . . , d, α′d+1 := αd −
1− λ
λ

B′dαd,

so that by (2.6)

(2.8) B′d+1α
′
d+1 = B′d+1α

′
d.

On the other hand, our hypothesis is equivalent to the set of equalities (2.5) for the splitting
B(d), and hence, taking into account (I) and (II) along with (2.7) and (2.8), we get

(2.9)
∑i−1

j=1
λB′jα

′
j +

∑d+1

j=i
B′jα

′
j = λα′i, i = 1, . . . , d+ 1,

which is equivalent to λ being an eigenvalue of B′(d+1).
Vice versa, now we assume that λ 6= 0 is an eigenvalue of B′(d+1) and that the vector[

α′1
T
, . . . , α′d+1

T ]T is a related eigenvector, i.e., that (2.9) holds true. Therefore, subtracting
the last two equalities from one another yields

(2.10) λ(α′d+1 − α′d) = (λ− 1)B′dα
′
d,

so that by setting

αp := α′p, for all p = 1, . . . , d,

we get (2.7). Moreover, using (2.6) and multiplying both sides of (2.7) by B′d+1 lead us
to (2.8) (with α′d = αd).

Finally, conditions (I) and (II) of Definition 2.9 allow us to state that the first d equal-
ities of (2.9) coincide with the set of equalities (2.5) for the splitting B(d). In addition, by

Proposition 2.8 we can claim that
[
αT1 , . . . , α

T
d

]T 6= [0T , . . . , 0T ]T .
Similarly to what happens when applying the cyclic shifting map S, now we shall see

that, under the above hypotheses on the splittings B(d) and B′(d+1), not only the corresponding
iteration matrices share the same nonzero eigenvalues but also, from a practical point of view,
that the corresponding iterative schemes coincide.

PROPOSITION 2.12. Under the hypotheses of Proposition 2.11, with the initial choices

(2.11) y(0)p = x(0)p , for all p = 1, . . . , d,

and

(2.12) y
(0)
d+1 = x

(0)
d + B′(d)u = y

(0)
d + B′(d)u, with u ∈ Rn,
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the iterative schemes corresponding to the splittings

B(d) = {B1, . . . , Bd} and B′(d+1) = {B′1, . . . , B′d+1}

give rise to the sequences of approximations

X(k) =
[
x
(k)
1

T
, . . . , x

(k)
d

T ]T
and Y (k) =

[
y
(k)
1

T
, . . . , y

(k)
d

T
, y

(k)
d+1

T ]T
, k ≥ 0,

to the solution x of (1.1), respectively, where the equalities

(2.13) y(k)p = x(k)p , for all p = 1, . . . , d,

and

(2.14) y
(k)
d+1 = x

(k)
d + B′(d)

(
x
(k)
d − x

(k−1)
d

)
= y

(k)
d + B′(d)

(
y
(k)
d − y

(k−1)
d

)
hold for all k ≥ 1.

Proof. The iterative scheme associated with the splitting B′(d+1) is given by

(2.15) y
(k+1)
i =

∑i−1

j=1
B′jy

(k+1)
j +

∑d+1

j=i
B′jy

(k)
j + c, i = 1, . . . , d+ 1.

Therefore, since (2.12) and (2.6) imply

B′d+1y
(0)
d+1 = B′d+1y

(0)
d ,

substituting (2.11) in (2.15) for k = 0 and using the conditions (I) and (II) of Definition 2.9
make the first d equalities coincide with the iterative scheme (2.2) for k = 0. Conse-
quently, (2.13) is proved for k = 1. Furthermore, computing the difference between the
last two equalities clearly yields (2.14) for k = 1 as well. Since the same computations may
be done to perform the general induction step from k to k + 1, the proof is complete.

In light of Propositions 2.11 and 2.12 it makes sense to concentrate on splittings that enjoy
the following essentiality property:

DEFINITION 2.13. We say that a splitting B(d) = {B1, . . . , Bd} of a matrix B of order d
is nonessential if there exists an integer r with 0 ≤ r ≤ d− 1 such that, with

C(d) = {C1, . . . , Cd} := Sr(B(d)),

we have

Cd Cd−1 = O.

Otherwise B(d) is said to be essential.
Without being necessarily a general rule, later in this paper we shall see that if the spectral

radius satisfies ρ(BJ) < 1, then two splittings B′(d′) and B(d) of BJ of orders d′ and d (with
d′ ≥ d + 1 ≥ 2), respectively, that satisfy the condition B′(d′) � B(d) � {BJ} very often
enjoy the property that ρ(B′(d′)) < ρ(B(d)) < ρ(BJ). In this sense, it is worth giving the
following qualitative definition:

DEFINITION 2.14. We say that a splitting B(d) = {B1, . . . , Bd} of BJ is potentially
optimal if it is both essential and maximal in the strict partial ordering "�".
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2.3. A general necessary condition for convergence. Now we look for a necessary and
sufficient condition for the presence of the eigenvalue λ = 1 in the spectrum of the iteration
matrix of a given splitting B(d) ∈ Spl(BJ).

LEMMA 2.15. With reference to Definition 2.9, we assume that two splittings
B(d) = {B1, . . . , Bd} and B′(d+1) = {B′1, . . . , B′d+1} of BJ satisfy conditions (I) and (II).
Then, no matter whether they also satisfy condition (III) or not, it holds that λ = 1 is an
eigenvalue of (the iteration matrix) B(d) if and only if λ = 1 is an eigenvalue of (the iteration
matrix) B′(d+1).

Proof. If condition (III) does not hold, then the statement is just a particular case of
Proposition 2.11. On the other hand, if condition (III) is satisfied, assuming λ = 1 allows us
to repeat the same proof of Proposition 2.11, the only difference being that (2.7) and (2.10)
directly become α′d+1 := αd and α′d+1 = α′d, respectively.

PROPOSITION 2.16. Let B(d) = {B1, . . . , Bd} be a splitting of BJ . Then λ = 1 is an
eigenvalue of (the iteration matrix) B(d) if and only if λ = 1 is an eigenvalue of BJ .

Proof. We consider the chain of splittings of increasing order

(2.16) B(p) = {B1, . . . , Bp−1, Bp + . . .+Bd}, p = 2, . . . , d− 1,

connectingBJ = B(1) and B(d). Since condition (III) may well fail to hold, it is not necessarily
ordered in the sense of Definition 2.9. On the other hand, each pair of two consecutive splittings
B(p) and B(p+1), p = 1, . . . , d− 1, satisfies all the other properties involved in Definition 2.9,
and therefore the application of Lemma 2.15 d− 1 times along the above chain concludes the
proof.

COROLLARY 2.17. Let B(d) = {B1, . . . , Bd} be a splitting of BJ . Then a necessary
condition for the convergence of the corresponding iterative scheme (2.2) is that λ = 1 be not
an eigenvalue of BJ .

It is worth stressing that the foregoing results consider the sole case of the eigenvalue
λ = 1 and do not generalize to other eigenvalues of unitary modulus. We illustrate this fact by
means of the following counterexample:

EXAMPLE 2.18. Consider the 3× 3 Jacobi iteration matrix

BJ = γ

 0 −1 −1
0.5 0 0
0 0.5 0

 with γ = 1.241706082017 . . .

having three distinct eigenvalues, two of which being complex conjugate with unitary modulus
(namely, 0.23931 . . .± 0.97094 . . . i) and the third one being real (namely, −0.47862 . . .), so
that ρ(BJ) = 1. A few elementary calculations show that the corresponding TU -method (1.5)
has a 6× 6 iteration matrix BTU

with three distinct eigenvalues as well, one of which being
equal to 0 with multiplicity 4 and the remaining two eigenvalues being complex conjugate
(namely, 0.38545 . . .± 0.57449 . . . i) with a modulus strictly less than 1, so that ρ(BTU

) < 1.

3. The case of irreducible nonnegative Jacobi iteration matrices. In this section we
consider the particular case of matrices A for which the matrix BJ satisfies the nonnegativity
condition

(3.1) BJ ≥ O elementwise.

Assuming the matrixA to be irreducible, it is immediate to see that the matrixBJ is irreducible
as well (and vice versa). Therefore, the well-known Perron-Frobenius theorem assures that the
spectral radius ρ(BJ) is the simple leading eigenvalue ofBJ , whose corresponding eigenvector
α may be chosen to be positive, i.e., α > 0 elementwise.
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3.1. Splittings of nonnegative Jacobi iteration matrices. Let us consider a splitting
B(d) = {B1, . . . , Bd} of BJ . It is immediate to see that condition (3.1) implies

(3.2) B(d) ≥ O elementwise.

Unfortunately, the possible irreducibility of BJ is not inherited by B(d), so that, in principle,
the general Perron-Frobenius theory only assures that ρ(B(d)) is an eigenvalue of B(d), not
necessarily simple, and that there exists a nonnegative eigenvector α(d) associated with it, not
necessarily positive. Nevertheless, we will see that, if BJ is irreducible, then the positivity of
α(d) is assured.

LEMMA 3.1. Let BJ satisfy condition (3.1), and let B(d) = {B1, . . . , Bd} be a splitting
of BJ . Then the iteration matrix (2.4) has a nonnegative leading eigenvector
α(d) =

[
αT1 , . . . , α

T
d

]T
corresponding to the eigenvalue λ := ρ(B(d)) (assumed to be > 0)

such that

(3.3) 0 ≤ λα1 ≤ αd ≤ αd−1 ≤ . . . ≤ α2 ≤ α1 elementwise

if λ ≤ 1 and

(3.4) 0 ≤ α1 ≤ α2 ≤ . . . ≤ αd−1 ≤ αd ≤ λα1 elementwise

if λ ≥ 1.
Proof. Taking the difference of each pair of consecutive equations in (2.5), we get

λ(αp+1 − αp) = (λ− 1)Bpαp, p = 1, . . . , d− 1,

that is,

(3.5) αp+1 = (I − σBp)αp, p = 1, . . . , d− 1,

where σ := (1− λ)/λ. Moreover, subtracting the last equation from the first one yields

(3.6) λα1 = (I − σBd)αd,

and, because of (3.2), we can assume

(3.7) αp ≥ 0, p = 1, . . . , d, elementwise.

In conclusion, if λ ≤ 1, then σ ≥ 0, and consequently, since Bp ≥ O for all p = 1, . . . , d
elementwise, the equalities (3.5) and (3.6) and the inequality (3.7) imply (3.3). Analogously,
if λ ≥ 1, then σ ≤ 0, and consequently, (3.5), (3.6), and (3.7) imply (3.4).

COROLLARY 3.2. Let the hypotheses of Lemma 3.1 hold. Then the nonnegative leading
eigenvector α(d) =

[
αT1 , . . . , α

T
d

]T
corresponding to the eigenvalue ρ(B(d)) satisfies the

following zero components property:
(z.c.) if for some i ∈ {1, . . . , n} and some q ∈ {1, . . . , d} we have that the i-th component

(αq)i = 0, then (αp)i = 0 for all p = 1, . . . , d.
Now we are in a position to state the mentioned positivity result for the leading eigenvector

α(d) of the iteration matrix B(d) under the hypothesis of irreducibility of the matrix BJ .
PROPOSITION 3.3. Let BJ be irreducible and satisfy condition (3.1), and let

B(d) = {B1, . . . , Bd} be a splitting of BJ . Then the corresponding iteration matrix has

a positive leading eigenvector α(d) =
[
αT1 , . . . , α

T
d

]T
satisfying

(3.8) 0 < λα1 ≤ αd ≤ αd−1 ≤ . . . ≤ α2 ≤ α1 elementwise

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

210 P. NOVATI, F. TAGLIAFERRO, AND M. ZENNARO

if λ ≤ 1 and

(3.9) 0 < α1 ≤ α2 ≤ . . . ≤ αd−1 ≤ αd ≤ λα1 elementwise

if λ ≥ 1, which are stronger than (3.3) and (3.4).
Proof. By contradiction, let us assume that α(d) is not positive but just nonnegative

(see Lemma 3.1). Then there exist two indices i ∈ {1, . . . , n} and q ∈ {1, . . . , d} such that
(αq)i = 0, and thus, Corollary 3.2 implies (αp)i = 0, p = 1, . . . , d. Consequently, the first
equality in (2.5) yields

(3.10) (B1α1 +B2α2 + · · ·+Bd−1αd−1 +Bdαd)i = 0.

On the other hand, the assumed irreducibility ofBJ assures that for any k ∈ {1, . . . , n}, k 6= i,
there exists a chain of indices h1, . . . , hr ∈ {1, . . . , n}, all different from each other and also
from i and k, such that

(3.11) bih1 > 0, bh1h2 > 0, . . . , bhr−1hr > 0, bhrk > 0.

Hence, in view of Definition 2.1, using the fact that Bp ≥ O elementwise, p = 1, . . . , d, using
the nonnegativity of α(d) and again Corollary 3.2, by (3.10) we get (αp)h1

= 0, p = 1, . . . , d.
Therefore, using (3.11) we can repeat the same reasoning for another r times and arrive at
(αp)k = 0, p = 1, . . . , d. The arbitrariness of k let us conclude that αp = 0, p = 1, . . . , d,
that is, α(d) = 0, which yields a contradiction. Finally, we just observe that the positivity of
α(d) along with (3.3) and (3.4) obviously leads to (3.8) and (3.9).

3.2. Monotonicity of the splittings. Let BJ and B̃J be two Jacobi iteration matrices
such that

(3.12) O ≤ BJ ≤ B̃J elementwise.

Then, let B(d) = {B1, . . . , Bd} be a splitting of BJ and B̃(d) = {B̃1, . . . , B̃d} be the corre-
sponding splitting of B̃J . Clearly Bp ≤ B̃p, p = 1, . . . , d, elementwise.

Therefore, by using (2.4) for both the related iteration matrices B(d) and B̃(d), since it
clearly holds that L(d) ≤ L̃(d) and U(d) ≤ Ũ(d) elementwise, we easily get

(3.13) O ≤ B(d) ≤ B̃(d) elementwise.

By applying the Gelfand spectral radius theorem using the matrix infinity norm ‖ · ‖∞
(which is monotone with respect to the “elementwise ≤” order relation) to the inequali-
ties (3.12) and (3.13), we easily obtain

(3.14) ρ(BJ) ≤ ρ(B̃J) and ρ(B(d)) ≤ ρ(B̃(d)).

3.3. Acceleration of convergence. We have collected all the necessary tools to establish
the relationships between the partial order introduced by Definition 2.9 on Spl(BJ) and
the possible acceleration of convergence of the related iterative schemes for the case of BJ
irreducible and nonnegative. We first analyze the more general case in which the matrix BJ
may be reducible.
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LEMMA 3.4. LetBJ with ρ(BJ) > 0 satisfy condition (3.1), and letB(d) = {B1, . . . , Bd}
be a splitting of BJ of order d ≥ 2. Then the following implications hold:

(a1) ρ(BJ) < 1 ⇐⇒ ρ(B(d)) < 1;
(a2) ρ(BJ) = 1 ⇐⇒ ρ(B(d)) = 1;
(a3) ρ(BJ) > 1 ⇐⇒ ρ(B(d)) > 1.

Proof. For γ ∈ [0,+∞) we define the function

f(γ) := ρ(B̃(d)(γ)),

where B̃(d)(γ) is the iteration matrix of the splitting corresponding to the Jacobi matrix
B̃J(γ) := γBJ (in particular, f(1) = ρ(B(d))). The function f(γ) is clearly nondecreasing
(see (3.13) and (3.14)), continuous, and such that f(0) = 0.

Now assume that ρ(BJ) ≤ 1 and, by contradiction, that ρ(B(d)) > 1. Therefore, since
f(1) = ρ(B(d)) > 1, there exists a γ̄ < 1 such that f(γ̄) = ρ(B̃(d)(γ̄)) = 1. On the other
hand, the nonnegativity of B̃(d)(γ̄) implies that f(γ̄) = 1 is one of its eigenvalues, and
consequently, Proposition 2.16 implies the absurd chain of inequalities

1 ≥ ρ(BJ) > γ̄ρ(BJ) = ρ(γ̄BJ) = ρ(B̃J(γ̄)) ≥ 1.

Summarizing, we have proved that

(3.15) ρ(BJ) ≤ 1 =⇒ ρ(B(d)) ≤ 1.

Now assume that ρ(BJ) ≥ 1 and, by contradiction, that ρ(B(d)) < 1. It obviously holds
that ρ(BJ/ρ(BJ)) = 1, and thus, like before, by the nonnegativity of BJ (which implies that
ρ(BJ) is one of its eigenvalues) and by using Proposition 2.16 in the opposite direction, we
obtain the absurd chain of inequalities

1 > ρ(B(d)) = f(1) ≥ f( ¯1/ρ(BJ)) = ρ(B̃(d)(1/ρ(BJ))) ≥ 1.

Summarizing, we have also proved that

ρ(BJ) ≥ 1 =⇒ ρ(B(d)) ≥ 1,

which, along with (3.15), the nonnegativity of BJ and B(d), and again Proposition 2.16,
implies (a1), (a2), (a3).

THEOREM 3.5. Let BJ with ρ(BJ) > 0 satisfy condition (3.1), and let
B(d) = {B1, . . . , Bd} and B′(d+1) = {B′1, . . . , B′d+1} be two splittings of BJ of orders
d and d + 1, respectively. Moreover, with reference to Definition 2.9, let B(d) and B′(d+1)

satisfy conditions (I) and (II) (but not necessarily (III)).
Then the following implications hold:

(b1) if ρ(BJ) < 1, then ρ(B′(d+1)) ≤ ρ(B(d)) ≤ ρ(BJ);
(b2) if ρ(BJ) = 1, then ρ(B′(d+1)) = ρ(B(d)) = 1;
(b3) if ρ(BJ) > 1, then ρ(B′(d+1)) ≥ ρ(B(d)) ≥ ρ(BJ).

Proof. Since BJ satisfies condition (3.1), we have that B′(d+1) ≥ O elementwise. If
condition (III) is not satisfied, i.e., if B′d+1B

′
d = O, by Proposition 2.11 we immediately get

ρ(B′(d+1)) = ρ(B(d)). On the other hand, if condition (III) is satisfied, then Proposition 2.11
can not be used and we must proceed in a different way. For this aim, we observe that, by
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Lemma 3.1, λ := ρ(B′(d+1)) (assumed to be > 0 without loss of generality) is one of the
eigenvalues of B′(d+1) and that a corresponding eigenvector has the form

α′(d+1) =
[
α′1

T
, . . . , α′d+1

T ]T ≥ [0T , . . . , 0T ]T elementwise.

So, similarly to (2.5), we get

(3.16)
∑i−1

j=1
λB′jα

′
j +

∑d+1

j=i
B′jα

′
j = λα′i, i = 1, . . . , d+ 1.

Now we assume that ρ(BJ) ≤ 1, so that Lemma 3.4 yields λ ≤ 1 as well. Thus, by
conditions (I)–(II), using (3.3) we arrive at∑i−1

j=1
λBjα

′
j +

∑d

j=i
Bjα

′
j ≥ λα′i, i = 1, . . . , d,

elementwise, which is the expanded form of

(λL(d) + U(d))
[
α′1

T
, . . . , α′d

T ]T ≥ λ[α′1T , . . . , α′dT ]T elementwise.

By using (2.4) and the fact that condition (3.1) yields

(I(d) − L(d))
−1 ≥ O and U(d) ≥ O elementwise,

we finally get

λ
[
α′1

T
, . . . , α′d

T ]T ≤ B(d)[α′1T , . . . , α′dT ]T elementwise.

In turn, we easily obtain

λk
[
α′1

T
, . . . , α′d

T ]T ≤ Bk(d)[α′1T , . . . , α′dT ]T elementwise for all k ≥ 1,

and thus, since
[
α′1

T
, . . . , α′d

T ]T 6= [0T , . . . , 0T ]T , by computing the infinity norm ‖ · ‖∞ of
both sides and by applying the Gelfand spectral radius theorem, we can conclude that

λ = ρ(B′(d+1)) ≤ ρ(B(d)).

Summarizing, using again Lemma 3.4 also for B(d), we have proved that

(3.17) ρ(BJ) ≤ 1 =⇒ ρ(B′(d+1)) ≤ ρ(B(d)) ≤ 1,

no matter whether condition (III) is satisfied or not. Now we consider again the chain
of splittings (2.16) introduced in the proof of Proposition 2.16, where each pair of two
consecutive splittings B(p) and B(p+1), p = 1, . . . , d− 1, satisfies all the properties involved
by Definition 2.9, possibly except condition (III) . Therefore, starting with the pair of splittings
B(1) = ({BJ},B(2)), if condition (III) is not satisfied, then we apply Proposition 2.11 and get
ρ(B(2)) = ρ(BJ). If condition (III) is satisfied, then we can repeat the previous procedure for
such a pair and get

(3.18) ρ(B(2)) ≤ ρ(BJ).

In any case (3.18) holds true. By successively repeating the procedure for all the pairs
(B(p),B(p+1)), p = 1, . . . , d− 1, we arrive at

ρ(B(d)) ≤ ρ(BJ)
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and hence, together with (3.17), at

(3.19) ρ(BJ) ≤ 1 =⇒ ρ(B′(d+1)) ≤ ρ(B(d)) ≤ ρ(BJ).

Conversely, if ρ(BJ) ≥ 1, by using (3.4), we similarly arrive at

ρ(B′(d+1)) ≥ ρ(B(d)) ≥ 1,

and then, by employing once again the chain of splittings (2.16), we obtain the symmetric
implication of (3.19)

ρ(BJ) ≥ 1 =⇒ ρ(B′(d+1)) ≥ ρ(B(d)) ≥ ρ(BJ).

The next corollary is straightforward (its proof is included in the previous one).
COROLLARY 3.6. Let BJ with ρ(BJ) > 0 satisfy condition (3.1), and let

B(d) = {B1, . . . , Bd} be a splitting of BJ of order d ≥ 2. The following implications
hold:

(c1) if ρ(BJ) ≤ 1, then ρ(B(d)) ≤ ρ(BJ);
(c2) if ρ(BJ) ≥ 1, then ρ(B(d)) ≥ ρ(BJ).

Now we refine our analysis by assuming that the matrix A, and thus also BJ , is irre-
ducible and obtain, as a corollary, the generalization of the classical Stein-Rosenberg theorem
(regarding the Gauss–Seidel methods) to any generic splitting B′(d+1) that is a refinement of
BJ .

THEOREM 3.7. Let BJ with ρ(BJ) > 0 be irreducible and satisfy condition (3.1), and
let B(d) = {B1, . . . , Bd} and B′(d+1) = {B′1, . . . , B′d+1} be two splittings of BJ . Then if
B′(d+1) � B(d) the following implications hold:
(d1) if ρ(BJ) < 1, then ρ(B′(d+1)) < ρ(B(d)) ≤ ρ(BJ);
(d2) if ρ(BJ) = 1, then ρ(B′(d+1)) = ρ(B(d)) = 1;
(d3) if ρ(BJ) > 1, then ρ(B′(d+1)) > ρ(B(d)) ≥ ρ(BJ).

Proof. Without loss of generality we assume that conditions (I), (II), and (III) of Defini-
tion 2.9 are satisfied by B(d) and B′(d+1). It is clear that (d2) holds as it is nothing but (b2).
Then, in order to prove (d1), we assume that ρ(BJ) < 1 and, by contradiction, that

(3.20) λ := ρ(B′(d+1)) = ρ(B(d)) > 0.

By Proposition 3.3 both the iteration matrices B(d) and B′(d+1) have a positive leading eigen-

vector α(d) =
[
α1

T , . . . , αd
T
]T

and α′(d+1) =
[
α′1

T
, . . . , α′d

T
, α′d+1

T ]T , respectively, which
satisfy the recursive relations

(3.21) αp+1 = (I − σBp)αp, p = 1, . . . , d− 1,

and, in view of (I),

(3.22) α′p+1 = (I − σBp)α′p, p = 1, . . . , d− 1, and α′d+1 = (I − σB′d)α′d,

respectively, where σ = (1− λ)/λ > 0 (see the proof of Lemma 3.1).
Since the eigenvectors are defined up to a multiplicative constant 6= 0, the positivity of

α(d) allows us to assume that α′p ≤ αp, p = 1, . . . , d, elementwise, which implies

(3.23) δp := αp − α′p ≥ 0, p = 1, . . . , d, elementwise.
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Therefore, (3.21), (3.22), and the nonnegativity of the Bp’s yield

0 ≤ δp+1 = (I − σBp)δp ≤ δp, p = 1, . . . , d− 1, elementwise

and, in turn,

(3.24) 0 ≤ δd ≤ . . . ≤ δ1 elementwise.

Finally, by substituting the last equality of (3.22) into the last but first equality of (3.16), by
using (II) and (3.23) and by subtracting the last equality of (2.5), we get

(3.25) 0 ≤ λB1δ1 + · · ·+ λBd−1δd−1 +Bdδd + σB′d+1B
′
dα
′
d = λδd elementwise.

Now, again by the arbitrariness of the multiplicative constant of α(d), the chain of
inequalities (3.24) allows us to suppose that

(δd)i = 0 for some i ∈ {1, . . . , n},

and, consequently, by (3.25) we get

(λB1δ1 + · · ·+ λBd−1δd−1 +Bdδd)i = 0

and

(B′d+1B
′
dα
′
d)i = 0.

On the other hand, being λ 6= 0, the irreducibility of BJ is clearly transmitted to the
matrix λB1 + · · ·+ λBd−1 +Bd. Therefore, since (3.24) yields

(δp)h = 0 for some p ∈ {1, . . . , d− 1} =⇒ (δd)h = 0,

following the same steps as in the proof of Proposition 3.3, we can show that (δd)k = 0 for
any k ∈ {1, . . . , n}, k 6= i, and consequently that

(B′d+1B
′
dα
′
d)k = 0.

In conclusion, since α′d > 0 and B′d+1B
′
d ≥ O elementwise, we get

B′d+1B
′
d = O,

which contradicts (III) . Hence, (3.20) cannot be true, and so, in view of (b1), the stronger
implication (d1) is proved. The proof of (d3) is analogous.

3.4. Some remarks on the case of nonpositive Jacobi iteration matrices. In this
section we briefly consider the opposite particular case of matrices A for which the Jacobi
iteration matrix BJ satisfies the nonpositivity condition

(3.26) BJ ≤ O elementwise.

As is usually done, if B = [bi,j ]
n
i,j=1 is an (n× n)-matrix, we shall denote by

|B| = [|bi,j |]ni,j=1

the matrix made up by the absolute values of the entries of B. Clearly BJ ≤ O elementwise if
and only if |BJ | = −BJ . Consequently, we have the following obvious result for the spectrum
of BJ .

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

ITERATIVE SPLITTING METHODS FOR LINEAR SYSTEMS 215

PROPOSITION 3.8. Let BJ satisfy (3.26). Then λ is an eigenvalue of BJ if and only if
−λ is an eigenvalue of |BJ |, and the related eigenvectors coincide. In particular, it holds that
ρ(BJ) = ρ(|BJ |).

From a practical point of view, this means that passing from the nonnegative to the
nonpositive case for the iteration matrix BJ does not change the convergence properties of the
Jacobi method. On the contrary, in general, this is not the case of any splitting method more
refined than the Jacobi one. From a heuristic point of view, this fact seems to be clear enough.
In fact, if B(d) = {B1, . . . , Bd} is a splitting of order d of BJ ≤ O elementwise, we consider
the corresponding splitting

(3.27) B′(d) := {|B1|, . . . , |Bd|}

of |BJ |. By (2.4) applied to both the related iteration matrices B′(d) and B(d), we immediately
obtain |B(d)| ≤ B′(d) elementwise and consequently,

(3.28) ρ(B(d)) ≤ ρ(B′(d))

(see the analogous derivation of (3.14) from (3.13)).
Now, due to possible cancellation of positive and negative terms, a splitting that is more

refined than the Jacobi one, starting already from those with just two elements (i.e., of the
type B(2) = {B1, B2}), gives rise to an iteration matrix in which some elements of |B(d)|
are very likely strictly less than the corresponding elements in B′(d). Therefore, the weak
inequality in (3.28) is very likely to become a strict inequality. Indeed it often happens
that the more refined the splitting is, the bigger is its hope of success in attaining a strict
inequality in (3.28). This fact becomes particularly interesting when the Jacobi method
does not converge (i.e., when ρ(BJ) = ρ(|BJ |) ≥ 1) and when at the same time, although
(obviously) not converging if applied to the system related to the opposite Jacobi iteration
matrix |BJ | = −BJ , some more refined splitting methods do converge instead. Nevertheless,
there exist also interesting examples, like that of the symmetric tridiagonal matrices A, in
which the particular position of the few nonzero elements in the corresponding Jacobi iteration
matrix BJ cause the failure of the above heuristic reasoning. However, it is not a purpose of
this paper to state rigorous sufficient conditions for the success of the strict inequality in (3.28).
Some illustrative numerical results will be given in Section 8.

4. The case of strictly diagonally dominant matrices. In this section we show that the
condition of strict diagonal dominance by rows of the coefficient matrix A, that is,

‖BJ‖∞ = ‖L+ U‖∞ < 1,

implies convergence of all the splitting methods of the type (2.2).
PROPOSITION 4.1. Let B(d) = {B1, . . . , Bd} be a splitting of order d of BJ . Then the

corresponding iteration matrix (2.4) is such that:
• ‖BJ‖∞ ≤ 1 =⇒ ‖B(d)‖∞ = ‖BJ‖∞;
• ‖BJ‖∞ > 1 =⇒ ‖BJ‖∞ ≤ ‖B(d)‖∞ ≤ ‖BJ‖d∞.

Proof. The first n rows of the (dn × dn)-matrix B(d) are given by the (n × dn)-matrix
[B1 . . . Bd], and hence,

‖B(d)‖∞ ≥ ‖[B1 . . . Bd]‖∞.

On the other hand, clearly

(4.1) ‖[B1 . . . Bd]‖∞ = ‖BJ‖∞,
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and therefore

‖B(d)‖∞ ≥ ‖BJ‖∞.

Now consider the transformation

y := [yT1 , . . . , y
T
d ]T := B(d)x with x := [xT1 , . . . , x

T
d ]T ,

where y1, . . . , yd, x1, . . . , xd ∈ Rn, and the iterative scheme (2.2), which suggests the equiva-
lent system of equalities

(4.2) yi :=
∑i−1

j=1
Bjyj +

∑d

j=i
Bjxj , i = 1, . . . , d.

Observe that (4.1) and the first of the above equalities ensure that

(4.3) ‖y1‖∞ ≤ ‖BJ‖∞ ‖x‖∞.

We start with the case ‖BJ‖∞ ≤ 1. Let 1 ≤ k ≤ d − 1, and assume by induction
hypothesis that

(4.4) ‖yi‖∞ ≤ ‖BJ‖∞ ‖x‖∞ ≤ ‖x‖∞, i = 1, . . . , k,

which is true for k = 1 thanks to (4.3). Then (4.1) and the (k + 1)-st equality of (4.2) clearly
imply

‖yk+1‖∞ ≤ ‖BJ‖∞ ‖x‖∞,

too. Therefore, (4.4) holds up to k = d, that is,

‖y‖∞ = ‖B(d)x‖∞ ≤ ‖BJ‖∞ ‖x‖∞,

and consequently,

‖B(d)‖∞ = ‖BJ‖∞.

Then we consider the case ‖BJ‖∞ > 1. As before, let 1 ≤ k ≤ d − 1, and assume by
induction hypothesis that

(4.5) ‖yi‖∞ ≤ ‖BJ‖k∞ ‖x‖∞, i = 1, . . . , k,

which, again, is true for k = 1 thanks to (4.3). Then (4.1) and the (k + 1)-st equality of (4.2)
clearly imply

‖yk+1‖∞ ≤ ‖BJ‖∞ max{‖BJ‖k∞ ‖x‖∞, ‖x‖∞} = ‖BJ‖k+1
∞ ‖x‖∞,

too. Therefore, (4.5) also holds for k = d and this concludes the proof.
COROLLARY 4.2. Let B(d) = {B1, . . . , Bd} be a splitting of BJ . If A is strictly

diagonally dominant by rows, then ρ(B(d)) < 1.
It is interesting to remark that a result analogous to Proposition 4.1 does not hold for the

1-norm as is shown by the following simple counterexample:
EXAMPLE 4.3. Consider the 2× 2 matrix

BJ =

[
0 1
1 0

]
,
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for which ‖BJ‖∞ = ‖BJ‖1 = 1. The iteration matrix of the corresponding TU -method (1.3)
is

BT =


0 1 0 0
0 0 1 0
0 0 1 0
0 0 1 0

 ,
for which ‖BT ‖∞ = 1, as assured by Proposition 4.1, but ‖BT ‖1 = 3.

However, in spite of the foregoing counterexample, an analogous result to Corollary 4.2
does hold also for the strict diagonal dominance by columns, i.e., when

(4.6) ‖BJ‖1 = ‖L+ U‖1 < 1.

PROPOSITION 4.4. Let B(d) = {B1, . . . , Bd} be a splitting of BJ . If the matrix A is
strictly diagonally dominant by columns, then ρ(B(d)) < 1.

Proof. We consider the splitting B′(d) defined by (3.27), for which (3.28) holds. On the
other hand, by applying Corollary 3.6 to |BJ | and B′(d), from (4.6) and since ‖ |B| ‖1 = ‖B‖1,
we get

ρ(B′(d)) ≤ ρ(|BJ |) ≤ ‖BJ‖1 < 1.

5. The AMKS-methods. In this section we consider the class of AMKS-methods intro-
duced by Ahmadi et al. [1], and, for the sake of clarity, we briefly recall their formulation.

DEFINITION 5.1. We say that the d-tuple of matrices P(d) = {P1, . . . , Pd}, Pp ∈ Rn×n,
1 ≤ d ≤ n, is a decomposition of the identity (DoI) in Rn if the following three conditions
hold:

• Pp 6= O for all p = 1, . . . , d;
• the Pp’s are logical matrices, i.e., (Pp)i,j ∈ {0, 1} for all p = 1, . . . , d and
i, j = 1, . . . , n;

•
∑d
p=1 Pp = I , where I is the identity matrix.

The corresponding iterative AMKS-method is given by

(5.1)


x
(k+1)
0 = x̄(k),

x
(k+1)
p = Pp(BJx

(k+1)
p−1 + c) + (I − Pp)x(k+1)

p−1 , p = 1, . . . , d,

x̄(k+1) = x
(k+1)
d ,

with iteration matrix

P(d) =
∏1

p=d
(PpBJ + I − Pp).

We remark that, as anticipated in Section 1, the matrices PpBJ involved in (5.1) are made
up by some rows of the Jacobi iteration matrix BJ . Now we will show that, substantially, the
above class of methods is part of the more general class of methods introduced by Definition 2.1.
More precisely, we have the following result:

PROPOSITION 5.2. The AMKS-method (5.1) for the DoI P(d) = {P1, . . . , Pd} and
the method (2.3) corresponding to the splitting B(d) = {P1BJ , . . . , PdBJ} are spectrum-
equivalent.
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Proof. First we assume that λ 6= 0 be an eigenvalue of the iteration matrix P(d) and
x ∈ Rn a corresponding eigenvector. Let

α1 := x

αp := λ(P1x+ · · ·+ Pp−1x) + Ppx+ · · ·+ Pdx, p = 2, . . . , d.

By using the properties of the DoI P(d), it is easy to verify that the above definitions all
together are equivalent to

(5.2) λPpα1 = · · · = λPpαp = Ppαp+1 = · · · = Ppαd, p = 1, . . . , d.

Moreover, since λ 6= 0, it is clear that

(5.3) Ppα1 = · · · = Ppαp, p = 2, . . . , d.

Consequently, if we apply the matrices Pp to the equation P(d)x = λx, each of them separately
for p = 1, . . . , d, by using the properties of P(d), long but easy calculations allow us to
conclude that

(5.4) PpBJαp = λPpα1, p = 1, . . . , d.

Finally, with Bp = PpBJ , p = 1, . . . , d, it is immediate to see that (5.2), (5.3), and (5.4)
imply the validity of (2.5), meaning that λ is an eigenvalue of the iteration matrix B(d) as well.

Vice versa, now assume that λ 6= 0 is an eigenvalue of the iteration matrix B(d). Then

there exists a related eigenvector
[
αT1 , . . . , α

T
d

]T ∈ Rdn with αp 6= 0, p = 1, . . . , d, (see
Proposition 2.8), and the eigenvalue equation (2.5) holds true with Bp = PpBJ , p = 1, . . . , d.
Now, by applying all the matrices Pp to (2.5), each of them separately for p = 1, . . . , d, similar
calculations as before allow us to prove the validity of the equalities (5.2), (5.3), and (5.4).

In turn, by using such sets of equalities in the iteration matrix P(d) of the AMKS-
method (5.1) starting from the last factor P1BJ + I − P1 and going backward up to the first
factor PdBJ + I − Pd, we can easily prove that

P(d)α1 =
[∏q

p=d
(PpBJ + I − Pp)

]
αq, q = 2, . . . , d.

In particular, for q = d we get

P(d)α1 = (PdBJ + I − Pd)αd.

The final step shows that P(d)α1 = λα1 and hence, since α1 6= 0, to conclude that λ is an
eigenvalue P(d) as well.

A first interesting consequence of the foregoing result is that, substantially, even the
forward Gauss–Seidel method is included in the class of methods (2.3). In fact, [1, Proposi-
tion 5] shows that it may be obtained as the AMKS-method corresponding to the complete
DoI P(n) = {P1, . . . , Pn}, where (Pp)p,p = 1 for all p = 1, . . . , n and all the other elements
vanish.

Conversely, we remark that, since any splitting method (2.3) that is spectrum-equivalent to
an AMKS-method (5.1) is a refinement of the Jacobi method (if different from it), Theorem 3.7
implies, for the case of irreducible nonnegative Jacobi iteration matrices BJ , the result of [1,
Proposition 10] as a particular instance.

We conclude this section by observing that an analogous class of methods could be
considered, where the Jacobi matrix BJ is split into sets of columns (instead of rows). This
might be done by using the splitting B(d) = {BJP1, . . . , BJPd}. However, we are not going
to propose and study these methods in this paper.
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6. The TU -method and its refinements. In this section we reconsider the TU -meth-
od (1.3), associated with the splitting BTU

= {U,L} and the method associated with its cyclic
shift S(BTU

) = {L,U}, which we call the TL-method. Moreover, we introduce and analyze
some of their refinements of particular interest. From now on we shall often refer to the
TU - and the TL-method and to their refinements as triangular methods. Note that, in most
cases, a triangular method and a splitting method equivalent to some AMKS-method are not
comparable in the partial ordering "�".

LEMMA 6.1. Let BJ be such that ρ(BJ) > 0, and let L 6= O and U 6= O. Then it holds
UL 6= O and LU 6= O.

Proof. We assume by contradiction that UL = O. Then an easy calculation shows that

(L+ U)2n =
∑2n

h=0
LhU2n−h,

and thus, since Ln = Un = O (recall that L,U are triangular n × n-matrices), we get
(L+ U)2n = O. Consequently, we obtain the contradicting equality

ρ(BJ) = ρ(L+ U) = 0.

We arrive at the same conclusion if we assume that LU = O.
The previous lemma leads to the following result:
PROPOSITION 6.2. LetBJ be such that ρ(BJ) > 0, and let L 6= O and U 6= O. Then the

TU -method and the TL-method are refinements of the Jacobi method, i.e.,
BTU

= {U,L} � {BJ} and BTL
= {L,U} � {BJ}.

6.1. Upper and lower triangular column methods. We define the upper triangular
column (UTC) methods by considering the TU -method associated with BTU

= {U,L} and by
further splitting the upper triangle U only into some subsets of columns. This idea is the basis
for the possible generation of many methods. To this purpose let us consider again the complete
DoI P(n) = {P1, . . . , Pn}, where (Pj)j,j = 1, for j = 1, . . . , n, and let U (j)

c = UPj , for
j = 2, . . . , n. For the sake of simplicity (and without loss of generality) we assume that
L 6= O and U (j)

c 6= O, j = 2, . . . , n. Since

(6.1) U (j)
c U (k)

c = O, for 2 ≤ k ≤ j ≤ n,

in light of Proposition 2.11, the above relations tell us that, in order to get an effective improve-
ment by splitting the upper triangle U , its columns must be selected in decreasing order with
respect to the column index. In particular, as a limit case, the splitting {U (2)

c , . . . , U
(n)
c , L}

determines a method which is equivalent to the TU -method itself without any improvement. In
the opposite direction, we define the full upper triangular column (FUTC) method when work-
ing with the splitting BFUTC := {U (n)

c , . . . , U
(2)
c , L}. We have the following equivalence

result.
THEOREM 6.3. The FUTC-method and the backward Gauss–Seidel method are spectrum-

equivalent.
Proof. First assume that λ 6= 0 is an eigenvalue of BFUTC and that

[
αT1 , . . . , α

T
n−1, β

T
]T

is a related eigenvector. Then by (2.5) we get

(6.2)


∑i−1
j=1 λU

(n−j+1)
c αj +

∑n−1
j=i U

(n−j+1)
c αj + Lβ = λαi, i = 1, . . . , n− 1,∑n−1

j=1 λU
(n−j+1)
c αj + Lβ = λβ.

Multiplying the first n− 1 equalities by U (n)
c , . . . , U

(2)
c , respectively, and using (6.1) yield
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(6.3) U (n−i+1)
c

(∑i−1

j=1
λU (n−j+1)

c αj + Lβ

)
= λU (n−i+1)

c αi, i = 1, . . . , n− 1.

Analogously, multiplying the last equality of (6.2) by U (n)
c , . . . , U

(2)
c successively one after

the other yields

(6.4) U (n−i+1)
c

(∑i−1

j=1
λU (n−j+1)

c αj + Lβ

)
= λU (n−i+1)

c β, i = 1, . . . , n− 1.

Therefore, since λ 6= 0, comparing (6.3) to (6.4) leads to

(6.5) U (n−i+1)
c αi = U (n−i+1)

c β, i = 1, . . . , n− 1.

Consequently, substitution into the last equality of (6.2) yields

(6.6) λ
(∑n

j=2
U (j)
c

)
β + Lβ = λUβ + Lβ = λβ,

which is equivalent to BbGSβ = λβ. Since β 6= 0 (see Proposition 2.8), we can conclude that
λ is an eigenvalue of the iteration matrix BbGS .

Vice versa, let λ 6= 0 be an eigenvalue of BbGS . Then (6.6) holds for some β 6= 0.
Defining σ := (1− λ)/λ, we set

(6.7) αi := β + σ
(
U (n−i+1)
c + · · ·+ U (2)

c

)
β, i = 1, . . . , n− 1,

so that, by multiplying each equality byU (n−i+1)
c , respectively, and by using (6.1), we get (6.5)

as well. Now, it is easy to verify that (6.5), (6.6), and (6.7) together imply all the equalities
of (6.2). Thus, λ is an eigenvalue of BFUTC , and

[
αT1 , . . . , α

T
n−1, β

T
]T

is the corresponding
eigenvector.

REMARK 6.4. Since U is strictly upper triangular, β 6= 0, and (1− λ)/λ 6= 0, in (6.7), it
must be the case that αi 6= 0 for all i = 1, . . . , n−1, in perfect agreement with Proposition 2.8.

The equivalence between the FUTC-method and the backward Gauss–Seidel method is
not limited to having the same spectrum of the corresponding iteration matrix. Indeed, also
the sequences of the respective approximate solutions are the same.

THEOREM 6.5. Let {y(k)}k≥1 be the sequence of approximations produced by the
backward Gauss–Seidel method starting from the initial value y(0), i.e.,

y(k+1) = BbGSy
(k) + cbGS = (I − U)−1

(
Ly(k) + c

)
, k ≥ 0.

Then the sequence of approximations
{[
x
(k)
1

T
, . . . , x

(k)
n−1

T
, x

(k)
n

T ]T}
k≥1 produced by the

FUTC-method with initial value
[
x
(0)
1

T
, . . . , x

(0)
n−1

T
, y(0)

T ]T
is such that

(6.8) x(k)n = y(k) for all k ≥ 0

independently of the first n− 1 initial vector-components x(0)i , i = 1, . . . , n− 1.
Proof. The equality (6.8) is true for k = 0 by hypothesis, and we assume, by induction,

that it holds for a given k ≥ 1. Then, as in the proof of Theorem 6.3, we multiply the first
n− 1 equalities of the FUTC-method

(6.9) x(k+1)
i =

∑i−1

j=1
U (n−j+1)
c x

(k+1)
j +

∑n−1

j=i
U (n−j+1)
c x

(k)
j + Lx(k)n , i = 1, . . . , n,
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by U (n)
c , . . . , U

(2)
c , respectively, and the last again by U (n)

c , . . . , U
(2)
c successively one after

the other to obtain

U (n−i+1)
c x

(k+1)
i = U (n−i+1)

c x(k+1)
n , i = 1, . . . , n− 1.

Therefore, by using again the last equality of (6.9), we can conclude that

x(k+1)
n =

(
U (2)
c + · · ·+ U (n)

c

)
x(k+1)
n + Ly(k) + c = Ux(k+1)

n + Ly(k) + c,

which is equivalent to

x(k+1)
n = (I − U)−1

(
Ly(k) + c

)
= y(k+1).

Now we briefly treat the symmetric case of the lower triangular column (LTC) methods
by considering the TL-method associated with BTL

= {L,U} and by further splitting the
lower triangle L only into some subsets of columns. Everything is completely analogous to the
previous case of the UTC-methods, and hence, no proof needs to be repeated. Let L(j)

c = LPj ,
j = 1, . . . , n− 1, and assume as before that U 6= O and L(j)

c 6= O, j = 1, . . . , n− 1. Since

(6.10) L(j)
c L(k)

c = O, for all 1 ≤ j ≤ k ≤ n− 1,

using again Proposition 2.11, the above relations tell us that, in order to get an effective
improvement by splitting the lower triangle L, its columns must be selected in increasing order
with respect to the column index. It is easy to verify that the symmetric full lower triangular
column (FLTC) method, based on the splitting BFLTC := {L(1)

c , . . . , L
(n−1)
c , U}, gives rise

to an iterative scheme which is spectrum-equivalent to the forward Gauss–Seidel method and
that the analogous results to Theorems 6.3 and 6.5 hold.

It is worth remarking that, in the light of the results of this section, any UTC-method
lies in between the TU - and the backward Gauss–Seidel method with respect to the partial
order relation of refinement "�" introduced for the corresponding splittings in Definitions 2.9
and 2.10. Consequently, a generic UTC-method often (but not always) performs faster then
the TU -method and slower than the backward Gauss–Seidel method. In particular, such a
behaviour is assured if the methods are applied to linear systems characterized by an irreducible
nonnegative Jacobi iteration matrix (see Section 3).

6.2. Upper and lower triangular row methods. Similarly to what we did in the previous
Section 6.1, we can define the upper triangular row (UTR) methods by considering the TU -
method associated with BTU

= {U,L} and by further splitting the upper triangle U only into
some subsets of rows. We can also define the symmetric case of the lower triangular row (LTR)
method by considering the TL-method associated with BTL

= {L,U} and by splitting further
the lower triangle L only into some set of rows. Following the arguments of Section 6.1,
in the former case, the splitting {U (1)

r , . . . , U
(n−1)
r , L}, U (i)

r = PiU , i = 1, . . . , n − 1,
determines a method that is spectrum-equivalent to the TU -method itself, whereas the full upper
triangular row (FUTR) splitting BFUTR := {U (n−1)

r , . . . , U
(1)
r , L} gives rise to a method that

is spectrum-equivalent to the backward Gauss–Seidel method. As for the LTR methods, by
considering the splitting {L(n)

r , . . . , L
(2)
r , U}, L(i)

r = PiL, i = 2, . . . , n, we obtain a method
that is spectrum-equivalent to the TL-method. On the other side, the symmetric full lower
triangular row (FLTR) splitting BFLTR := {L(2)

r , . . . , L
(n)
r , U} leads to a method that is

spectrum-equivalent to the forward Gauss–Seidel method.
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6.3. The triangular column and row methods. We define the triangular column (TC)
methods by considering the TL-method associated with BTL

= {L,U} and by further splitting
both the lower and the upper triangles L and U , the former before the latter separately, into
some subsets of columns. Analogously, we define the triangular row (TR) methods by further
splitting both the lower and the upper triangles L and U , the former before the latter separately,
into some subsets of rows.

Now we propose one of the simplest possible choices of TC- and TR-methods, but one
which is already somehow significant as we shall see in Section 8 by means of some numerical
experiments. In order to simplify the subsequent notation, we set

(6.11) ν :=

{
n
2 − 1 if n is even,
n−1
2 if n is odd.

We consider the splitting

BTC(2,2) := {L(1,ν)
c , L(ν+1,n−1)

c , U (n−ν+1,n)
c , U (2,n−ν)

c },

where

L(1,ν)
c := L(1)

c + · · ·+ L(ν)
c , L(ν+1,n−1)

c := L(ν+1)
c + · · ·+ L(n−1)

c ,

U (2,n−ν)
c := U (2)

c + · · ·+ U (n−ν)
c , U (n−ν+1,n)

c := U (n−ν+1)
c + · · ·+ U (n)

c .

Note that

L(1,ν)
c L(ν+1,n−1)

c = U (n−ν+1,n)
c U (2,n−ν)

c = O,

and therefore the order of the elements in the splitting BTC(2,2) can not be changed. The
specification (2, 2) in BTC(2,2) obviously indicates the number of divisions of L and U .

Analogously, we can consider the splitting

BTR(2,2) := {L(2,n−ν)
r , L(n−ν+1,n)

r , U (ν+1,n−1)
r , U (1,ν)

r },

where

L(2,n−ν)
r := L(2)

r + · · ·+ L(n−ν)
r , L(n−ν+1,n)

r := L(n−ν+1)
r + · · ·+ L(n)

r ,

U (1,ν)
r := U (1)

r + · · ·+ U (ν)
r , U (ν+1,n−1)

r := U (ν+1)
r + · · ·+ U (n−1)

r .

Again, the order can not be changed since

L(2,n−ν)
r L(n−ν+1,n)

r = U (ν+1,n−1)
r U (1,ν)

r = O.

In light of their spectrum-equivalence with the full triangular upper/lower column/row methods,
the natural idea to get a simultaneous improvement of both the backward and forward Gauss–
Seidel methods is that of finding a common refinement of their corresponding splittings,
hopefully maximal in our partial order relation "�". We start by observing that if we split L(i)

c

or L(i)
r into a pair {L′, L′′} in whatever way, then it always holds that L′L′′ = O. Therefore,

the splittings of the lower triangular matrix L employed by the FLTC- and the FLTR-methods
are maximal in the partial order relation. The same holds true also for the FUTC- and the
FUTR-methods.

In conclusion, it is easy to see that the full triangular column (FTC) splitting
BFTC := {L(1)

c , . . . , L
(n−1)
c , U

(n)
c , . . . , U

(2)
c } is a maximal refinement of the full lower
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triangular column splitting BFLTC . Furthermore, since the splitting {L,U (n)
c , . . . , U

(2)
c } is

clearly a cyclic permutation of the full upper triangular column splitting BFUTC , the splitting
BFTC is also a maximal refinement of it modulo a cyclic permutation.

Similarly, the full triangular row (FTR) splitting

BFTR := {L(2)
r , . . . , L(n)

r , U (n−1)
r , . . . , U (1)

r }

is a maximal refinement of the full lower triangular row splitting BFLTR and, modulo a cyclic
permutation, of the full upper triangular row splitting BFUTR as well.

THEOREM 6.6. The FTC-method, the FTR-method, and the symmetric Gauss–Seidel
method are all spectrum-equivalent.

Proof. Writing (2.5) for the splitting BFTC (with respect to the eigenvalue λ and its
related eigenvector [αT1 , . . . , α

T
n−1, β

T
1 , . . . , β

T
n−1]T ) leads to

(6.12)



∑i−1

j=1
λL(j)

c aj +
∑n−1

j=i
L(j)
c aj +

∑n−1

j=1
U (n−j+1)
c βj = λαi,

i = 1, . . . , n− 1,∑n−1

j=1
λL(j)

c aj +
∑i−1

j=1
λU (n−j+1)

c βj +
∑n−1

j=i
U (n−j+1)
c βj = λβi,

i = 1, . . . , n− 1.

Since λ 6= 0, we can consider the constant σ = (1− λ)/λ. Therefore, by taking the difference
of each pair of consecutive equalities in (6.12), we obtain

αp+1 =
(
I − σL(p)

c

)
αp, p = 1, . . . , n− 2,(6.13)

β1 =
(
I − σL(n−1)

c

)
αn−1,(6.14)

βp+1 =
(
I − σU (n+1−p)

c

)
βp, p = 1, . . . , n− 2.(6.15)

By repeatedly and recursively using the above equalities (6.13), (6.14), and (6.15), along
with (6.10), some tedious but easy calculations (which we do not report here for the sake of
brevity) allow us to express all the 2n− 3 vector-components αp, p = 2, . . . , n− 1, and βp,
p = 1, . . . , n− 1, in terms of α1 only.

Furthermore, since Ln = Un = O, it holds that

(6.16) I +
∑n−1

h=1
(−σ)hLh = (I + σL)−1 and I +

∑n−1

h=1
(−σ)hUh = (I + σU)−1.

Therefore, using again (6.1), a subsequent substitution into the first equality of (6.12) yields

(6.17)
[
L+

(
I + σU

)−1
U
](
I + σL

)−1
α1 = λα1,

where α1 6= 0 (see Proposition 2.8).
Vice versa, we assume that (6.17) holds for some λ 6= 0 and α1 6= 0. Then, by imposing

the equalities (6.13), (6.14), and (6.15), we define the vectors αp, p = 2, . . . , n− 1, and βp,
p = 1, . . . , n− 1, and, starting from (6.17) and using (6.16), we can reverse the steps of the
previous calculations so as to arrive at the system (6.12), proving its equivalence to (6.17).

It is immediate to see that, given the identical form of the schemes corresponding to the
splittings BFTC and BFTR, analogous calculations lead to the same equivalent eigenvalue
equation (6.17) also for the iteration matrix BFTR.

To finish, we have to prove that (6.17) is also equivalent to

BsGS α1 = λα1,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

224 P. NOVATI, F. TAGLIAFERRO, AND M. ZENNARO

where BsGS = (I −U)−1L(I −L)−1U . To this purpose, we multiply both sides of (6.17) by
the nonsingular matrix (I + σL)(I + σU), and after some more tedious but easy calculations,
we arrive at the equivalent equality

LUα1 = λ(I − L)(I − U)α1.

Finally, multiplying both sides by (I−U)−1(I−L)−1 immediately concludes the proof.
The equivalence among the FTC- and FTR-methods and the symmetric Gauss–Seidel

method is not limited to having the same spectrum of the corresponding iteration matrix.
Indeed, we shall see that the same sequence of approximations {y(k)}k≥1 produced by the
symmetric Gauss–Seidel method can always be obtained also by means of the FTC- or the
FTR-method.

In order to prove this fact, we first need to introduce an alternative formulation of the
symmetric Gauss–Seidel iteration which, in a sequential computation environment, has the
additional advantage of halving the computational cost of each step with respect to a naive
standard implementation.

LEMMA 6.7. Given the initial value y(0). Consider the symmetric Gauss–Seidel iterative
scheme

(6.18) y(k+1) = BsGS y
(k) + csGS , k ≥ 0,

where csGS = (I − U)−1(I − L)−1c. Then, by setting

(6.19) z(k) := Uy(k), k ≥ 0,

we get

(6.20) y(k+1) = (I − U)−1[(I − L)−1 − I]z(k) + csGS , k ≥ 0,

and the modified symmetric Gauss–Seidel iteration

(6.21) z(k+1) = B∗sGS z
(k) + UcsGS , k ≥ 0,

where

B∗sGS := [(I − U)−1 − I] · [(I − L)−1 − I].

Proof. The proof follows from the equalities

(I − L)−1 = I + L(I − L)−1 and (I − U)−1 = I + U(I − U)−1.

REMARK 6.8. The naive implementation of the method (6.18) for the computation of
the approximation y(h) (for a given h ≥ 1) costs about twice as many h-steps of the Jacobi
(or forward or backward Gauss–Seidel) method. Instead, it is evident that starting with (6.19)
for k = 0, going on with the iteration scheme (6.21) up to the next to last approximation
z(h−1) and concluding with (6.20) for k = h− 1 almost halves the total computational cost
and, thus, reduces it to about the same cost of h steps of the Jacobi (or forward or backward
Gauss–Seidel) method.

THEOREM 6.9. Let {z(k)}k≥1 be the sequence of approximations produced by the
modified symmetric Gauss–Seidel method (6.21) starting from the initial value z(0) := Uy(0).
Then the sequence of approximations{

X(k) =
[
x
(k)
1

T
, . . . , x

(k)
n−1

T
, x(k)n

T
, . . . , x

(k)
2n−2

T ]T}
k≥0
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produced by the FTC-method with initial value

X(0) :=

[
x
(0)
1

T
, . . . , x

(0)
n−1

T
, y(0)

T
, . . . , y(0)

T
]T

is such that

(6.22) U (n)
c x(k)n + · · ·+ U (2)

c x
(k)
2n−2 = z(k) for all k ≥ 0,

independently of the first n− 1 initial vector-components x(0)i , i = 1, . . . , n− 1. Analogously,
for the FTR-method it holds that

(6.23) U (n−1)
r x(k)n + · · ·+ U (1)

r x
(k)
2n−2 = z(k) for all k ≥ 0.

Proof. The proof is carried out by induction and, since it is rather technical but not
difficult, for the sake of brevity we give here an outline only. Since

x(0)n = · · · = x
(0)
2n−2 = y(0),

the identity (6.22) holds for k = 0. Now we assume that it holds for k. By using

I +
∑n−1

h=1
Lh = (I − L)−1

and by taking into account (6.10), long and tedious calculations allow us to express the second

part
[
x
(k+1)
n

T
, . . . , x

(k+1)
2n−2

T ]T
of X(k+1) in terms of the second part

[
x
(k)
n

T
, . . . , x

(k)
2n−2

T ]T
ofX(k) and of the vector c. In particular, as an interesting sample of the new vector components
x
(k+1)
i , i = n, . . . , 2n− 2, we get

x(k+1)
n = (I − L)−1

(
z(k) + c

)
.

Therefore, we have just proved that the second part of all the iterates X(k) is independent of
the first n− 1 initial vector-components x(0)i , i = 1, . . . , n− 1. Finally, using

I +
∑n−1

h=1
Uh = (I − U)−1,

some further computations show that

U (n)
c x(k+1)

n + · · ·+ U (2)
c x

(k+1)
2n−2 = B∗sGS z

(k) + UcsGS .

The proof of (6.23) is analogous.

7. Some further proposals of splitting methods. In this section we propose a few
particular splitting methods which have not been considered already in Section 6 and have
a good potential for possibly attaining faster convergence than the symmetric Gauss–Seidel
method (i.e., the FTC- or FTR-method). Such methods are not comparable in the partial order
relation "�" introduced by Definitions 2.9 and 2.10, either among themselves or with the
methods introduced in Section 6, including the TU - and the TL-method. Therefore, it is not
possible to establish a priori which of them is the fastest, even if applied to a nonnegative
Jacobi iteration matrix.
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7.1. The alternate triangular column and row methods. We define the alternate
triangular column (ATC) methods by considering the TL- or the TU -method and by further
splitting both the lower and the upper triangles L and U separately into the same number
of subsets of columns, which are ordered in an alternate way, one from L and one from U .
Analogously, we define the alternate triangular row (ATR) methods by working by rows.

In particular, as the most promising choice, we consider the splittings

BAFTCL
:= {L(1)

c , U (n)
c , . . . , L(n−1)

c , U (2)
c },

BAFTCU
:= {U (n)

c , L(1)
c , . . . , U (2)

c , L(n−1)
c },

BAFTRL
:= {L(2)

r , U (n−1)
r , . . . , L(n)

r , U (1)
r },

BAFTRU
:= {U (n−1)

r , L(2)
r , . . . , U (1)

r , L(n)
r },

which are obtained by alternating one column (row) of L to one column (row) of U in the
same order used for the FTC- and FTR-methods. We call them the alternate full triangular
column splitting starting from L (AFTCL) or starting from U (AFTCU ) and the alternate full
triangular row splitting starting from L (AFTRL) or starting from U (AFTRU ), respectively.
All the above splittings are not essential since

U (j)
c L(k)

c = O, 2 ≤ j ≤ k ≤ n− 1,

L(j)
c U (k)

c = O, 2 ≤ k ≤ j ≤ n− 1,

U (i)
r L(l)

r = O, 2 ≤ l ≤ i ≤ n− 1,

L(i)
r U (l)

r = O, 2 ≤ i ≤ l ≤ n− 1.

Therefore, using Propositions 2.11 and 2.12, we can conveniently replace them by the
splittings

B′AFTCL
:= {L(1)

c , U (n)
c , . . . , L(n−ν−1)

c , U (ν+2)
c , L(n−ν)

c + U (ν+1)
c , . . . , L(n−1)

c + U (2)
c },

B′AFTCU
:= {U (n)

c , L(1)
c , . . . , U (ν+2)

c , L(n−ν−1)
c , L(n−ν)

c + U (ν+1)
c , . . . , L(n−1)

c + U (2)
c },

B′AFTRL
:= {L(2)

r + U (n−1)
r , . . . , L(ν+1)

r + U (n−ν)
r , L(ν+2)

r , U (n−ν−1)
r , . . . , L(n)

r , U (1)
r },

B′AFTRU
:= {L(2)

r + U (n−1)
r , . . . , L(ν+1)

r + U (n−ν)
r , U (n−ν−1)

r , L(ν+2)
r , . . . , U (1)

r , L(n)
r },

which have 2n − 2 − ν = O(3n/2) elements, where ν is given by (6.11). These splittings
turn out to be maximal in the partial order relation "�". Moreover, differently from the case
of the FTC- and FTR-methods, all four AFTCL-, AFTCU -, AFTRL-, and AFTRU -methods
generally have different speeds of convergence.

8. Numerical examples. In this section we give some numerical examples based on
three classes of matrices A, say, Class 1, Class 2, and Class 3, which do not necessarily play a
particular role in applications but are suitable enough to illustrate the developed theory.

The matrices of Class 1 are constructed by choosing uniformly distributed random
elements such that

ai,j ∈ [−1, 1] ∀ (i, j) with i 6= j.

Moreover, the diagonal elements are computed by using the rule

(8.1) ai,i :=
1

φ

n∑
j=1, j 6=i

|ai,j | ∀ i,
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TABLE 8.1
Experiments with matrices A of Class 1 for φ = 0.9.

method ρ(B) s.d.ρ(B) sp(B) s.d.sp(B)

Jacobi 0.10962 3.85E-03
TU 0.057121 1.90E-03 1.2950 2.12E-02
fGS 0.042714 1.56E-03 1.4296 2.84E-02
bGS 0.042434 1.54E-03 1.4296 2.84E-02

TC(2,2) 0.043724 1.61E-03 1.4160 2.80E-02
TR(2,2) 0.043949 1.58E-03 1.4137 2.76E-02

sGS 0.0075707 5.93E-04 2.2103 5.04E-02
AFTCL 0.032672 1.26E-03 1.5478 2.77E-02
AFTCU 0.032815 1.24E-03 1.5458 2.59E-02
AFTRL 0.032552 1.34E-03 1.5496 3.03E-02
AFTRU 0.032762 1.26E-03 1.5466 2.98E-02

where φ is a given parameter. In this way ‖BJ‖∞ = φ.
For each matrix A of Class 1 we define the corresponding matrix A′ of Class 2 by setting

a′i,j := −|ai,j |, i 6= j, and a′i,i := ai,i,

and the corresponding matrix A′′ of Class 3 by setting

a′′i,j := |ai,j |, i 6= j, and a′i,i := ai,i.

The elements of the matrices being randomly chosen, we repeat each experiment for
N = 100 times. For each matrix A, A′, and A′′, we compute ρ(BJ) along with the spectral
radius ρ(B) of the iteration matrix B of all the other considered methods. Furthermore, we
compute the speedup factors

sp(B) := log(ρ(B))/ log(ρ(BJ))

of the various methods with respect to the Jacobi iteration.
However, since we make many experiments using different matrices A(r), r = 1, . . . , N ,

for each method we only show the average values ρ(B) and sp(B) of the spectral radii and of
the speedup factors, respectively, together with the corresponding standard deviations s.d.ρ(B)
and s.d.sp(B).

The results are reported in Tables 8.1, 8.2, and 8.3. The numerical values of the average
spectral radii and standard deviations are given in fixed point notation, truncated to the 5th
significant digit, whereas the standard deviations are given in floating point notation, truncated
to the 3rd significant digit. Besides the Jacobi method we consider, in the following order,
the methods TU , fGS, bGS, TC(2,2), TR(2,2), sGS, AFTCL, AFTCU , AFTRL, AFTRU in
relation to the value φ = 0.9 in (8.1). The dimension of the matrices is n = 100.

The first general observation is that the standard deviations are always small enough
in comparison to the average values of the various spectral radii and speedup factors. The
second is that the heuristic idea that the more the splitting is refined, the faster the convergence
rate is, seems to be substantially confirmed. Nevertheless, a fixed score among the various
methods cannot be established. It is clear enough that the Jacobi iteration is the slowest
method, followed by the TU -method with a good improvement, especially when applied to
matrices of Class 3. However, these two methods present an evident advantage with respect to
the more refined ones if they are used in a parallel computation environment. Then it looks
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TABLE 8.2
Experiments with matrices A′ of Class 2 for φ = 0.9.

method ρ(B) s.d.ρ(B) sp(B) s.d.sp(B)

Jacobi 0.90000 0
TU 0.85418 1.25E-04 1.4960 1.39E-03
fGS 0.81286 5.82E-04 1.9670 6.77E-03
bGS 0.81282 5.79E-04 1.9670 6.77E-03

TC(2,2) 0.82388 3.22E-04 1.8387 3.71E-03
TR(2,2) 0.82385 3.53E-04 1.8391 4.07E-03

sGS 0.73472 3.50E-04 2.9259 5.08E-03
AFTCL 0.78174 5.80E-04 2.3370 7.04E-03
AFTCU 0.78179 5.88E-04 2.3365 7.14E-03
AFTRL 0.78167 5.43E-04 2.3379 6.59E-03
AFTRU 0.78162 5.45E-04 2.3385 6.62E-03

TABLE 8.3
Experiments with matrices A′′ of Class 3 for φ = 0.9.

method ρ(B) s.d.ρ(B) sp(B) s.d.sp(B)

Jacobi 0.90000 0
TU 0.40932 8.36E-04 8.4782 1.94E-02
fGS 0.19544 2.23E-03 15.498 1.07E-01
bGS 0.19537 2.20E-03 15.498 1.07E-01

TC(2,2) 0.22573 1.87E-03 14.127 7.88E-02
TR(2,2) 0.22555 1.94E-03 14.135 8.19E-02

sGS 0.17146 9.75E-04 16.737 5.39E-02
AFTCL 0.098689 1.78E-03 21.981 1.72E-01
AFTCU 0.098751 1.76E-03 21.975 1.70E-01
AFTRL 0.098327 1.72E-03 22.016 1.66E-01
AFTRU 0.098319 1.70E-03 22.017 1.65E-01

like that the TC(2,2) and TR(2,2) methods could be a good alternative to the forward and
backward Gauss–Seidel method since, although being a little bit slower, they also present a
clear advantage if used in a parallel computation environment.

It also seems to be quite frequent that the symmetric Gauss–Seidel iteration is the fastest
method, closely followed by the four variants of AFTC- and AFTR- methods (see the experi-
ments with matrices of Class 1 and Class 2). The second ones perform better on matrices of
Class 3. In any case, the general better performance of these two types of methods is consistent
with the fact that, among those we have considered, these are the only ones that are potentially
optimal (in the sense of Definition 2.14).

Finally, we remark that the experiments we made within Class 2 clearly confirm the
theoretical speed score implied by Theorem 3.7 and that, given the mutual relation among
the matrices of Class 2 and Class 3, the expected inequality (3.28) is largely verified in the
strict form for all the considered methods except, of course, for the Jacobi iteration (see
Proposition 3.8).

In connection to the observations we made at the end of Section 3.4, now we present some
results that illustrate the evident superiority of all the considered splitting methods with respect
to the Jacobi iteration when they are applied to matrices of Class 3, for different increasing
values of the parameter φ. Again, we consider matrices of dimension n = 100. The results are
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TABLE 8.4
ρ(B) as function of φ = ρ(BJ ) for a matrix A′′ of Class 3.

method φ = 2.0 φ = 3.5 φ = 14.0 φ = 15.0 φ = 15.5

TU 1.0175 1.8977 67.415 78.376 84.160
fGS 0.40715 0.60249 0.95948 1.0509 1.1194
bGS 0.39091 0.57263 1.0043 1.0621 1.1080

TC(2,2) 0.52197 1.2888 387.61 530.03 614.41
TR(2,2) 0.51804 1.2774 378.11 517.14 599.52

sGS 0.43217 0.65676 0.95397 0.94779 1.0011
AFTCL 0.16267 0.45879 0.92226 1.0288 1.0993
AFTCU 0.17824 0.45429 0.92915 1.0644 1.1364
AFTRL 0.18127 0.44260 0.92957 1.0577 1.1346
AFTRU 0.17969 0.44696 0.92392 1.0539 1.1319

TABLE 8.5
ρ(B) for example (8.2).

method TU fGS TC(2,2) sGS AFTCL

ρ(B) 0.68383 0.56821 0.68087 0.35876 0.38260

reported in Table 8.4. We highlight in boldface all the values ρ(B) > 1. This time we do not
need to make any statistics because our goal is to analyze the spectral radii ρ(B) as functions
of the sole parameter φ.

Our experiments suggest that, as the parameter φ increases, the resistance of the methods
to exceed the critical value ρ(B) = 1 is generally stronger for those that are more refined.

Finally, we give some numerical results referred to an application to B-spline approxima-
tion (Wang et al. [6]). The underlying matrix A, still of dimension n = 100, is a particular
instance of matrices of Class 3. In fact, it is symmetric and 9-diagonal with elements

(8.2) [ 0 · · · 0 1 4 1 4 16 4 1 4 1 0 · · · 0 ]

in each row (apart from the first and the last four rows, which are modified in an obvious
way). The particular form of A makes many of the spectral radii of the iteration matrices of
the considered splitting methods to coincide among them. More precisely,

ρ(BfGS) = ρ(BbGS),

ρ(BTC(2,2)) = ρ(BTR(2,2)),

ρ(BAFTCL
) = ρ(BAFTCU

) = ρ(BAFTRL
) = ρ(BAFTRU

).

The matrix A is not diagonally dominant and ρ(BJ) = 1.2464 . . . The spectral radii of
the respective iteration matrices are given in Table 8.5.

9. Conclusions. In this paper we have defined a general class of splitting methods which,
starting from the Jacobi method, include, among others, the TU -method and all the well-known
methods of Gauss–Seidel (forward, backward, and symmetric) and have the property to share
all the same cost in a sequential computation environment.

A theoretical ranking of the convergence properties of all these methods is given on the
basis of a certain refinement partial order relation which definitely works when they are applied
to matrices A such that the corresponding Jacobi iteration matrix BJ is nonnegative (often
called L-matrices).
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Two particular proposals of new methods have been presented, namely the TC(2,2)- and
TR(2,2)-method and the four variants of AFTC- and AFTR-methods that seem to be promising
enough. It is clear that further work could still be done to improve the potential of the proposed
splitting methods such as, for example, the use of a relaxation parameter ω.

Finally, also an accurate comparison of the performances of the various splitting methods
would be worth considering when assuming to work in parallel computation environments.
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