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Abstract. We present a unified numerical method to determine the shapes of multiple Hele-Shaw bubbles in
steady motion, and in the absence of surface tension, in three planar domains: free space, the upper half-plane, and an
infinite channel. Our approach is based on solving the free boundary problem for the bubble boundaries using a fast
and accurate boundary integral method. The main advantage of our method is that it allows for the treatment of a very
high number of bubbles. The presented method is validated by recovering some existing results for steady bubbles in
channels and free space. Several numerical examples are presented, many of which feature configurations of bubbles
that have not appeared in the literature before.
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1. Introduction. Hele-Shaw flows have provided a major source of interest for mathe-
maticians and physicists over the past century since many physical processes involving moving
boundaries can be reduced, after various idealizations, to such flow systems. Indeed, the Hele-
Shaw system is a classical paradigm for Laplacian growth processes [9, 10]. In the laboratory,
the Hele-Shaw cell apparatus consists of sandwiching viscous fluids between two close-to-
touching parallel plates. This configuration enables the study of quasi-two-dimensional fluid
flows. In industry and in nature, Hele-Shaw flows arise in numerous contexts, from dendritic
crystal growth and oil reservoir engineering to pattern formation and bacterial growth in
biological systems. Furthermore, flows in domains such as the upper half-plane or an infinite
channel are highly relevant in both engineering and natural settings, where the interaction of
fluid flow with boundaries plays a critical role.

In the current work we focus on Hele-Shaw bubbles steadily translating in three different
planar geometries: free space, the upper half-plane, and an infinite horizontal channel. We
integrate several different approaches in the literature by presenting a fast unified computa-
tional method for multiple Hele-Shaw bubbles in steady motion in the aforementioned three
geometries. We focus primarily on the solution of the free boundary problems for the bubble
boundary shapes. An important physical assumption that we will make throughout this work
is the absence of surface tension on the bubble boundaries. Without surface tension, there
is a continuum of possible bubble speeds. This absence contrasts with cases where surface
tension is present, which leads to a discrete set of bubble speeds and boundary shapes [6].
The governing equation for the flow is Laplace’s equation, derived from Darcy’s law [9, 10].
By formulating the free boundary problem in terms of complex potentials, we compute the
conformal mapping from a multiply connected circular domain onto the region exterior to
multiple bubbles in a particular geometry, using a simple Galilean transformation to link two
reference frames.
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Over the past few decades, the resolution of Hele-Shaw bubble boundary shapes has
received considerable attention. Taylor and Saffman [19], Tanveer [18], and Vasconcelos [21,
22] considered single bubbles and periodic arrays of bubbles in different configurations.
Crowdy [3] generalized these works by deriving an analytical formula in terms of the Schottky-
Klein prime function [4] to calculate multiple bubble boundary shapes in free space. The
prime function method presented in [3] can also be used to find an explicit formula for bubbles
in the upper half-plane by appealing to the up-down symmetry across the real line and placing
image bubbles in the lower half-plane. Of course, this approach requires considering twice as
many bubbles, and hence more calculations are necessary. An example of this approach for a
single bubble configuration is given in [11]. Green and Vasconcelos [7] also used the function
theory of the prime function to derive analytic formulae for multiple bubbles in channel
domains. Similar analytic formulae could of course be derived using the prime function for
other geometries. While the prime function provides an elegant mathematical framework,
determining the parameters in the associated analytic formulae requires solving nonlinear
systems that become increasingly challenging as the connectivity of the domain increases.
For the numerical computation of the prime function, the reader is referred to [5]. Recently,
Vasconcelos [23] used secondary prime functions to derive steady solutions describing multiple
Hele-Shaw bubbles and fingers in a channel geometry.

In this paper, we employ a well-established boundary integral equation method to calculate
pairs of complex potentials describing the bubble flow regimes, which affords us accuracy,
speed, and the ability to deal with multiply connected domains with a large number of bubbles.
Our proposed method can be used for the three principal planar multiply connected domains
that we have chosen to consider, with only minor modifications needing to be made as we
switch between these domains. For the free-space and the infinite-channel cases, in addition to
the recovery of some of the figures presented in [3, 7, 23], we will also consider configurations
with a large number of bubbles.

This paper has the following layout: In Section 2, we formulate the free boundary
problems governing the shapes of the bubble boundaries using appropriate physical laws.
Section 3 reviews the numerical conformal mapping method that we will employ. We then
consider several examples of bubble configurations in Section 4, each having a different
domain connectivity. To illustrate the effectiveness of our method, we adapt our numerical
procedure to recover several existing results for Hele-Shaw bubbles in free space [3] and in
the channel [7]. Concluding remarks are made in Section 5.

2. Problem formulations. In this section, we review the formulation of the free boundary
problem describing the Hele-Shaw bubble flow in three geometric configurations: free space
with m + 1 bubbles, the upper half-plane with m bubbles, and an infinite channel with m
bubbles, where m > 1. These free boundary problems have been formulated in [3, 11] for the
free-space case and in [2, 7, 18, 19, 22, 23] for the infinite-channel case.

Consider a viscous fluid flow in one of the three geometric configurations mentioned
above, and suppose that there are m Hele-Shaw bubbles in steady motion in this flow, where
the shapes of these bubble boundaries are unknown a priori and must be determined as part of
the solution to a governing free boundary problem. Under certain physical assumptions about
the bubbles and the flow field (as discussed below), our ultimate goal is to solve for the free
boundary shapes of the bubbles. We achieve this by formulating the governing free boundary
problem in terms of a single complex variable and incorporate the appropriate physics by
constructing a pair of complex potential functions in two frames of reference. These complex
potentials, when linked together, then provide a conformal mapping formula which can be
used to reveal the shapes of the bubble boundaries.
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The motion of the viscous fluid in our Hele-Shaw domain is governed by Darcy’s law
v =Vo,

which asserts that the flow velocity potential ¢ is directly proportional to the viscous fluid
pressure p [10]. Assuming fluid incompressibility, V - v = 0, it follows at once that V2¢ = 0,
and hence ¢ is a harmonic function. It is therefore natural to formulate the free boundary
problem for the bubbles boundaries to be solved in a complex z-plane.

We introduce the flow complex potential, w(z), defined by

’U)(Z) = d)('rvy) + i¢($7y)7

where v is the flow streamfunction, in a fixed frame of reference, and where z = x + iy. If
we suppose that the viscous fluid is translating horizontally from left to right with unit speed
V' =1 in the far field, then it follows that

w(z)~z as z— oo.

The complex potential w(z) is analytic everywhere in the viscous fluid domain D,,.

Next, let 7(2) represent the complex potential in a frame of reference co-traveling with the
bubbles. We assume the bubbles are traveling parallel to the x-axis at a constant speed U > 1.
In this moving frame, 7(z) is related to w(z) via [4, p. 393] (see also [3, 7])

(2.1 7(z) =w(z) — Uz.

This Galilean transformation shifts the reference frame to move with the bubbles at constant
speed U. Consequently, assuming that the far field flow has a normalized unit speed, the
behavior of 7(z) at infinity is given by

T(2)=(1-U)z as z— .

2.1. The complex potentials.

2.1.1. Free space. The fluid region D, is the domain exterior to m + 1 bubbles in the
extended complex plane C U {oo} (see Figure 2.1 (left) for m = 5). We shall label the
boundary of the jth bubble by L;, j = 0,1,...,m.

The complex potential w(z) must satisfy the following boundary conditions [4, p. 392]:

(2.2) Relw(z)] = constant forz e L;, j=0,1,...,m.

That is, Re[w(z)] is constant on each bubble boundary L ;, and these constants may be different
for each j, 7 = 0,1, ..., m. (This remark applies to all of the boundary conditions in (2.3),
2.5), (2.7), (2.9), and (2.10), below.) The conditions (2.2) follow from the fact that the
pressure p must be constant on each bubble boundary. From (2.2), one sees that the flow
domain in the w-plane is the free space containing m + 1 vertical rectilinear slits, where each
slit corresponds to a bubble in the z-plane (Figure 2.1 (middle)).

The function 7(z) satisfies the following boundary conditions [4, p. 393]:

(2.3) Im[r(z)] = constant forz e L;, j=1,...,m.
The conditions (2.3) mean that in the co-traveling frame, the bubble boundaries are necessarily
streamlines of the flow. It then follows that the flow domain in the 7-plane is the free space

containing m + 1 horizontal rectilinear slits corresponding to the bubbles (Figure 2.1 (right)).
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FIG. 2.1. On the left, a schematic of a Hele-Shaw flow in free space is displayed containing an assembly of
m + 1 = 6 bubbles steadily translating with constant speed U parallel to the x-axis. The far field fluid speed is
assumed to be V' =1, and the shapes of the bubble boundaries are to be determined. On the middle and on the right,
the schematic illustrates the domains in the w-plane and in the T-plane representing the complex potentials in the
fixed and moving frames, respectively.

2.1.2. Upper half-plane. The fluid region D, is the domain exterior to m bubbles in the
upper half-plane H = {z = x + iy € C : y > 0} (see Figure 2.2 (left) when m = 5). The
domain D, is then bounded by L = Lo U Ly U - - - L,,,, where Lo = R U {oc}.

Similar to the free-space case, the complex potential w(z) here must satisfy the following
boundary conditions:

2.4) Im[w(z)] =0 forzeR
and
(2.5) Re[w(z)] = constant forz e L;, j=1,...,m.

Condition (2.4) asserts that the real line y = 0 is a streamline of the flow. From conditions (2.4)
and (2.5), one sees that the flow domain in the w-plane is the upper half-plane containing m
vertical rectilinear slits, where each slit corresponds to a bubble in the z-plane (Figure 2.2
(middle)). Further, the complex potential function 7(z) in the co-traveling frame with the
bubbles satisfies the following boundary conditions:

(2.6) Im[r(z)] =0 forzeR
and
2.7 Im[r(z)] = constant forz e L;, j=1,...,m.

Noting that 1 — U is negative, it then follows from (2.6) and (2.7) that the flow domain in the
T-plane is the lower half-plane containing m horizontal rectilinear slits corresponding to the
bubbles (Figure 2.2 (right)).

2.1.3. Infinite channel. The fluid region D, is the domain exterior to m bubbles in the
infinite channel S = {z =2z +iy € C : —1 <y < 1} (see Figure 2.3 (left) when m = 5).
The domain D, is then bounded by L = Ly U Ly U - -+ L,,,, where Ly = 0S.

The complex potential w(z) must satisfy the following boundary conditions [7]:

(2.8) Imw(z)] =+1 for Imz = +1
and

(2.9) Relw(z)] = constant forze L;, j=1,...,m.
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FIG. 2.2. On the left, a schematic of a Hele-Shaw flow in the upper half-plane is displayed containing an
assembly of m = 5 bubbles steadily translating with constant speed U parallel to the x-axis. The far field fluid speed
is assumed to be V' = 1, and the shapes of the bubble boundaries are to be determined. On the middle and on the
right, the schematic illustrates the domains in the w-plane and in the T-plane representing the complex potentials in
the fixed and moving frames, respectively.

Conditions (2.8) assert that the channel walls Im z = +1 are streamlines of the flow. From
conditions (2.8) and (2.9), one sees that the flow domain in the w-plane is a channel of width
2 containing m vertical rectilinear slits, where each slit corresponds to a bubble in the z-plane
(Figure 2.3 (middle)).

The function 7(z) satisfies the following boundary conditions [7]:

Im[r(z)]=+(1—-U) for Imz=+1
and
(2.10) Im[7(z)] = constant forze€ L;, j=1,...,m.

Since U > 1, then 1 — U < 0, and it follows from (2.6) and (2.7) that the flow domain in the
7-plane is a channel of width 2(U — 1) containing m horizontal rectilinear slits corresponding
to the bubbles (see Figure 2.3 (right) for U = 1.75).

)
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FIG. 2.3. On the left, a schematic of a Hele-Shaw flow in an infinite channel is displayed containing an assembly
of m = 5 bubbles steadily translating with constant speed U = 1.75 parallel to the x-axis. The far field fluid speed
is assumed to be V' = 1, and the shapes of the bubble boundaries are to be determined. On the middle and on the
right, the schematic illustrates the domains in the w-plane and in the T-plane representing the complex potentials in
the fixed and moving frames, respectively.

2.2. The conformal mappings. Let us now introduce z(¢) to be the conformal mapping
from a bounded (m + 1)-connected circular domain D¢ in a complex ¢-plane (Figure 2.4)
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onto the (m + 1)-connected fluid region D, . For the domain D, we label the unit circle by
Cyp and the m inner circular boundaries by C', . .., C,,, where the bubble boundary L; is the
image of C; under the conformal mapping z({). The center and radius of the circle C; will be
denoted by z; and r;, respectively.

i

{ OO
SO

-1 -0.5 0 0.5 1

i

FI1G. 2.4. The circular domain D¢ in the auxiliary complex (-plane.

We define the functions W (¢) and T'(¢) through the following compositions:

W(CQ) = w(=(¢)) and T(¢) = 7(2(C))-
It then follows from (2.1) that the conformal mapping z({) is given by

(211 Q) =7 W) =T(C) -

The functions W (¢) and T'(¢) are analytic in the circular domain D, except at a given point
¢ = a € D¢ in the free-space case (see [3, 4, 7] for more details). We have therefore reduced
the original free boundary problem in the fluid region D, to the more manageable task of
computing two analytic functions W (({) and T'(¢) in the circular domain D, that map D,
onto D.. These functions can be computed using a boundary integral equation method, as we
will discuss in the following section.

It is important to set an appropriate length scale of the problem. Using Green’s theorem,
the area A; of the bubble with boundary L; is given by

1 [ —
3 4 30 <<>d<] ,

J

Aj:Re

where z(({) is the conformal mapping in (2.11). For bubbles in free space and the upper
half-plane domains, note that multiplying the conformal mapping from the circular domain
onto the flow domain by a positive real constant will not change the shape of the bubbles but
will affect the scaling and hence the bubble areas. This approach can be used for these two
domains to scale the bubbles so that one of these bubbles has a fixed area. For the channel with
width 2, we can not use this procedure since doing so would affect the width of the channel.

3. Computing the conformal mappings. Let D; be the above mentioned bounded
multiply connected circular domain of connectivity m + 1 (see Figure 2.4). In this section,
we review a boundary integral equation method from [14, 15, 17] for computing conformal
mappings from the circular domain D, onto each of the following three canonical slit domains:
the free space with m + 1 rectilinear slits, the upper half-plane with m rectilinear slits, and an
infinite channel with m rectilinear slits.
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3.1. The integral equation. Let Cyy be parametrized by (o(t) = €'t, fort € Jy = [0, 27],
and let C; be parametrized by (;(t) = z; +rje ', t € J; = [0,27], for j = 1,2,...,m.
Let J be the disjoint union of the m + 1 intervals J; = [0,27], j = 0,1,..., m. We define a
parametrization of the whole boundary C' = U;.n:O Cj on J by

Co(t), te o,

J
(=0 e
Cn(t), t€ .

Let 6(t) also be the piecewise constant real-valued function defined on .J by
0t)=06;, teld;, j=0,1,...,m,

where 0; is the angle between the slit S; and the positive real axis, i.e., #; = 0 for a horizontal
slit and 8; = /2 for a vertical slit. For the upper half-plane and the infinite-channel case, we
choose 6y = 0.

With the parametrization ((t) of the whole boundary C' and with the above piecewise
constant function 6(t), we define a complex function A by

A(t) = dE0) (1) —a), te
where « is a given point in the domain D. The generalized Neumann kernel N (s, t) is defined

for (s,t) € J x J by
1 (A )
N@”‘wl(chm«@>

We also define the following kernel:

Als) (1)
A(t) ¢(t) — ¢(s)
Let v be a fixed number with 0 < v < 1. In what follows, Holder continuity always

means Holder continuity with this fixed Holder exponent v. Let H be the space of all real
functions y(t), t € J, of the form

M(s,t):ere( ) (s,6) € J x J.

’YO(t)v te JOv
Y1 (t), te Jl,
V() = 9.
Ym(t), t€ Jpm,
with real Holder continuous 27-periodic functions ~g, v1, - - . , Vm. In view of the smoothness

of the parametrization {(t) of the boundary C, any Holder continuous real-valued function 4
on the boundary C' can be interpreted via y(t) = 4(((¢)), t € J, as a function v € H, and
vice versa.

The integral operators defined on H with the kernels N (s,t) and M (s, t) are denoted
by N and M, respectively. The kernel N (s,t) is continuous while the kernel M (s, t) is
singular, and its singular part is (up to the sign) the Hilbert cotangent kernel [25, Lemma 1].
Thus, the operator N is compact, and the operator M is singular. Moreover, it follows
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from [25, Lemma 2] that both operators N and M are bounded in H, and both operators map
H into H (see the paragraph below the proof of Lemma 2 in [24]). Further details can be
found in [24, 25].

For a given v € H, there exists a unique solution € H of the boundary integral
equation [13, Theorem 2]

3.1 (I-N)u=—My

and a unique function

(3.2) h=[Mp— (I-N)y]/2
such that
(3.3) FC@) = (v(t) + h(t) +iu(t) /A(?)

are the boundary values of an analytic function f(¢) in the bounded domain D.. The real-
valued function h(t) is a piecewise constant function, i.e.,

h(t)=h;, ted;, j=0,1,...,m,

with real constants hg, h1, ..., h,,. By computing the real functions x and h, we obtain the
boundary values of the analytic function f(¢), and then the values of the function f({) for
¢ € D¢ can be computed by the Cauchy integral formula.

Note that the Fredholm operator N and the singular operator M are both bounded on
H and map H onto itself [25]. Thus, when v € H, the right-hand side —My of the integral
equation (3.1) is also in H. Note also that both kernels M (s, t) and N(s,t) depend on the
function A, which, in turn, depends on the constants 0, 01, . .., 8,,. Further, the solvability of
the integral equation (3.1) does not depend on these constants; however, the eigenvalues of the
kernel N (s,t) do depend on the values of these constants. See [16] for details.

3.2. Free space with m + 1 rectilinear slits. Let ®(¢) be the conformal mapping from
the circular domain D¢ onto the slit domain {2 consisting of the entire extended complex plane
with m + 1 rectilinear slits such that

(3.4) B(a) =0, lim[®(¢) /(¢ ~ a)] =0,

for a given point « in the circular domain D.. Each circle C; is mapped onto a rectilinear slit
S;,7=0,1,...,m. An example of such a configuration with m = 5 is shown in Figure 2.1.
To compute the conformal mapping ®(¢), we define a function ~y(¢) on J by

A(t) = Tm [0/ (¢(t) — )|

Let u be the unique solution of the integral equation (3.1), let the function h be given by (3.2),
and let f(¢) be the analytic function in the domain D¢ with the boundary values (3.3). Then
the conformal mapping ®(() is given by

(3.5 () =1/(C—a)+(C(—a)f(¢), (€D UC.
For more details, we refer the reader to [14].

By computing the conformal mapping ®(¢) in (3.5) with 6y =6, = --- =6, = 7/2,
the function W (¢) in (2.11) is then given by W ({) = ®((¢). To determine the function T'(¢)
in (2.11), we compute the conformal mapping ®(¢) with g = 6; = --- = 0,,, = 0, and

then T'({) = ®(¢). By computing both functions W (¢) and T'(¢), we obtain the conformal
mapping z(¢) from the circular domain D, onto the fluid domain D..
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3.3. Upper half-plane with m rectilinear slits. Let ®(¢) be the conformal mapping
from the circular domain D¢ onto the slit domain €2 consisting of the upper half-plane with m
rectilinear slits such that

z(i) = 0.

We refer to Figure 2.2 (middle) for an example of such a domain €2 when m = 5. The external
circle Cp will be mapped onto the real line, and each inner circle C; will be mapped onto a
rectilinear slit S;, j = 1,2,...,m.

To compute the conformal mapping ®(¢), we need the Mobius transformation

W(Q) =it

which maps the unit circle onto the real line and the interior of the unit circle onto the upper
half-plane with ¥ (i) = co. We define a function +(t) on J by

(f) _ 0, t e Jy,
) = Im [e—iejqj(gj(t))]v ted;, j=12,...,m.

Let 1 be the unique solution of the integral equation (3.1), let the function h be given
by (3.2), and let f(¢) be the analytic function in the domain D, with the boundary values (3.3).
Then the conformal mapping ®(() is given by

(3.6) () =¥(() + (€ =) f(¢) +1ho, (€ GUTL.
For more details, we refer the reader to [15].

By computing the conformal mapping ®(¢) in (3.6) withyp =0and 6y = --- =0,, =
/2, the function W (¢) in (2.11) is then given by W (¢) = ®((). The function 7'(¢) in (2.11)
is determined by computing the conformal mapping ®(¢) with 6y = 6, =--- =6, =0, and

then T'({) = ®(¢). Once we obtain both functions W (¢) and T'({), the conformal mapping
z(¢) from the circular domain D, onto the fluid domain D, is obtained through (2.11).

3.4. Infinite channel with m rectilinear slits. Let ®(() be the conformal mapping from
the circular domain D, onto the slit domain §2 consisting of the infinite channel |Im z| < 1
with m rectilinear slits such that

2(£1) = +oo0 + 0i, z(1) =1.

We refer to Figure 2.3 for an example of such a domain €2 when m = 5. The upper half of
the external circle Cjy will be mapped onto the line Im w = 1, and the lower half of the circle
Cp will be mapped onto the line Imw = —1. Each inner circle C; will be mapped onto a
rectilinear slit S;, j = 1,2,...,m.

To compute the conformal mapping ®((), we need the transformation

#(0) = 210z (1),

which maps the unit disk onto the infinite channel —1 < Im z < 1 with ¥(£1) = o0 + 0i
and ¥ (i) = i. We define a function (t) on J by

(t)_ 0, t e Jy,
T = N\ [e0w(e )], ted;, j=12....m
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Let 1 be the unique solution of the integral equation (3.1), let the function h be given
by(3.2), and let f(¢) be the analytic function in the domain D, with the boundary values (3.3).
Then the conformal mapping ®(() is given by

3.7 B(Q) = T(Q) + (C—~a)f(Q)~ (-a)f()), (E€GUT.

For more details, we refer the reader to [17].

As in the half-plane case, the function W (¢) in (2.11) can be determined through
W(¢) = ®(¢), where ®(() is the conformal mapping in (3.7) and is computed with 6y = 0
and 6y = --- = 0,, = 7/2. The function T'(¢) in (2.11) is found by computing the conformal
mapping ®(¢) with 6y = 6; = --- = 0, = 0, and then T'({) = ®(¢). Once both functions
W (¢) and T'(¢) are determined, the conformal mapping z(¢) from the circular domain D,
onto the fluid domain D, is obtained through (2.11).

3.5. The numerical solution of the integral equation. The integrands in the integral
equation (3.1) and in the formula (3.2) are 27-periodic functions. The smoothness of these
integrands depends on the smoothness of the boundary of the computational domain D¢. In
this paper, the boundary components of the computational domain D, are circles, and the
integrands in (3.1) and (3.2) can be analytically extended to some parallel strip | Im¢| < o
in the complex plane. Hence, the trapezoidal rule will then converge exponentially with
O(e~7™) [20] when it is used to discretize the integrals in (3.1) and (3.2).

The function My on the right-hand side of the integral equation (3.1) is continuous since
the function v is Holder continuous. Further, since the integrals in (3.1) are over 27-periodic
functions, the integral operator IN can be best discretized by the Nystrom method with the
trapezoidal rule [1]. The stability and convergence of the Nystrom method is based on the
compactness of the operator N in the space of continuous functions equipped with the sup-
norm, on the convergence of the trapezoidal rule for all continuous functions, and on the
theory of collectively compact operator sequences (cf. [1]). In this paper, we use the MATLAB
function fbie from [16] to numerically solve the integral equation (3.1) and to compute the
function / in (3.2). In fbie, the integral equation (3.1) is discretized by the Nystrom method
with the trapezoidal rule to obtain an (m-+1)n x (m+1)n linear system, where n is the number
of discretization points in each boundary component. The numerical solution of the integral
equation will then converge with a similar rate of convergence as the trapezoidal rule [1, p. 322].
The linear system obtained by discretizing the integral equation (3.1) is then solved by the
Generalized Minimal Residual (GMRES) method using the MATLAB function gmre s, where
the matrix-vector product in gmres is computed by the Fast Multipole Method (FMM) via
the MATLAB function zfmm2dpart from the MATLAB toolbox FMMLIB2D [8]. The
GMRES method is used without restart, with tolerance 10—, and with 100 as the maximal
number of allowed iterations. The tolerance of the FMM in z fmm2dpart is chosen to be
0.5 x 10—, By computing the functions x and h numerically, we obtain approximations
of the boundary values of the analytic function f(¢) through (3.3). The values of f(({) for
¢ € D¢ can be computed by the Cauchy integral formula, and then the values of the conformal
mapping ®(¢) can be computed via (3.5), (3.6), or (3.7). See [16] for details.

4. Examples. In this section, we present several examples of Hele-Shaw bubble flow in
the three domains of interest, computed using the numerical method described above. These
examples aim to showcase the versatility and accuracy of our method in handling a wide range
of bubble configurations.

4.1. Free space. In the first example, we recover the bubbles in an unbounded Hele-Shaw
cell as described by Crowdy in [3]. The parameters of the circular domain D, used to generate
the bubbles in this example are the same as in [3, Figures 2—4].
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EXAMPLE 4.1 (Two bubbles). We consider two bubbles which are obtained using the
following parameters of the circular domain D¢: r; = 0.4 and z; = 0. When we choose
a = i,/ry in (3.4), the two bubbles will have equal area. The bubbles can then be scaled
so that their areas are both 7. Figure 4.1 displays the configurations of the two bubbles for
several values of U. As the speed U increases, the deformation of the bubbles becomes more
pronounced, with the bubbles becoming elongated in the direction of the flow.

In Figure 4.2, the streamlines are superposed in the frame of reference co-traveling with
the bubbles for U = 2 (left) and U = 4 (right). The pair of stagnation points on each bubble
is easily identified by a particular streamline. This example illustrates how the shape of the
bubbles and the flow field evolve as the speed U increases.

S

—_—U=12
4+ —U =1.5|4
—_—U =
— =
—U=6
21 —U =38

-4 -2 0 2 4

FIG. 4.1. The configurations of two bubbles in free space in Example 4.1 corresponding to several values of U.
The area of each bubble is always .

>

FIG. 4.2. The configurations of two bubbles in free space in Example 4.1 with a set of streamlines superposed
in the frame of reference co-traveling with the bubbles when U = 2 (left) and U = 4 (right).

EXAMPLE 4.2 (Twenty-five bubbles). To illustrate the versatility and effectiveness of
our numerical method, we now examine a more complicated setup involving 25 bubbles in
free space. The parameters of the circular domain D, used to produce both configurations illus-
trated in Figure 4.3 can be found in the MATLAB codes available at
https://github.com/mmsnasser/bubbles.
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Figure 4.3 presents two configurations of bubbles for speeds U = 2 (left) and U = 6
(right), with streamlines superimposed in the frame of reference co-moving with the bubbles.
At the higher speed, the bubbles become more horizontally elongated along the flow direction,
and the streamline patterns around them simplify. This simplification is likely due to the fluid
flow becoming more uniform at higher velocities, with fewer disturbances around the bubbles.

These results highlight the ability of the method to handle large assemblies of bubbles.
The evolution of the bubble deformation and the flow patterns with increasing speed is clearly
visible. Compared to the previous two-bubble example, the presence of 25 asymmetric bubbles
introduces significantly more interactions between the bubbles and the surrounding fluid. The
varying sizes and positions of the bubbles lead to intricate flow patterns across the bubble
array, particularly at lower velocities.

6

-4

‘
éééii%é

-6 T T n 6
-10 -5 0 5 10 -10 -5 0

I3,
=

FIG. 4.3. An example of 25 bubbles in a general asymmetric configuration in free space with a set of streamlines
superposed in the reference frame co-traveling with the bubbles when U = 2 (left) and U = 6 (right).

4.2. Upper half-plane. In this section, we explore Hele-Shaw bubble flows in the upper
half-plane. We consider configurations of bubbles in this region to demonstrate how the
geometry of the domain influences the shape and interaction of the bubbles.

EXAMPLE 4.3 (One bubble). First we start with an example of a single bubble in the
upper half-plane, which constitutes a doubly connected domain. In this case, the circular
domain D, is a concentric annulus, D¢ = {¢ |71 < |¢| < 1}. Here, since we have only one
bubble, it can be scaled such that its area is 7. Figure 4.4 (left) displays the configurations
for several values of the parameter 71 when U = 2, which correspond to different centroid
positions above the real line. It is clear that when the bubble is far from the real line, its shape
is almost purely circular, gradually becoming semi-circular as it approaches the real line, as
expected [10]. It is clearly seen that the primary factor influencing the shape of the bubble
when it is far from the wall is its interaction with the flow field rather than boundary effects. In
this case, the shape of the bubble tends to approximate that one seen in unbounded domains.

With only one bubble in the upper half-plane, we can appeal to the up-down symmetry
across the real line when an image bubble is placed in the lower half-plane. As explained
in [11], one can use the prime function method presented in [3] for bubble configurations
in free space to derive an explicit formula for this single bubble configuration in the upper
half-plane.

EXAMPLE 4.4 (Two bubbles I). Next, we consider an example of two bubbles in the upper
half-plane, forming a triply connected domain. Due to the symmetry, the two bubbles will have
the same area and hence both bubbles can be scaled such that their areas are 7. The parameters
of the circular domain D, are r; = ro = 7 and zo = —z; = (r + 0.1) + ib. We explore
the solutions corresponding to five sets of parameters for r and b: (r,b) = (0.1,—0.88),
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(r,b) = (0.1,-0.8), (r,b) = (0.1,-0.5), (r,b) = (0.082,—0.2), and (r,b) = (0.064,0).
Figure 4.4 (right) displays the configurations for these values of r and b when U = 2, which
correspond to different centroid positions above the real line. It is clear that when the bubbles
are far from the real line but close to each other, their shapes are nearly semi-circular. As the
bubbles move closer to the real line, their shapes become more quarter-circular.

8t r =038 r=0.15 r1 = 0.075] r=0.1,b=—0.88 r=0.082,b = —0.2
r =03 —7r =01 10l r=0.1,b=-08 r=0.064,b =0
—r=0.1,b=-0.5
6 sl
6 L
4 L
4 L
2L
2+
0 0
-4 -2 0 2 4 -6 -4 -2 0 2 4 6

FIG. 4.4. On the left, the configurations are the single bubbles in the upper half-plane in Example 4.3
corresponding to several values of the parameter r1 when U = 2. On the right, the configuration are the two bubbles
in the upper half-plane in Example 4.4 corresponding to several values of the parameters r and b when U = 2. The
area of each of these bubbles is always taken to be .

EXAMPLE 4.5 (Two bubbles II). Figure 4.5 displays the configurations of two bubbles
and several streamlines of the flow field in the co-traveling frame when U = 2 (left) and
U = 4 (right). For this case, the parameters of the circular domain D¢ are r; = 0.0558,
ro = 0.1003, z; = 0.5009i, and zo = 0.3277i. These parameters are chosen such that the two
bubbles have approximately equal area. Note that in this setup, the bubbles are far from the
wall, and their shapes are largely unaffected by the boundary. This leads to a similarity with
the configurations observed in the free-space case, where no significant external influence
(such as proximity to a wall) distorts the boundaries of the bubbles (see Figure 4.2 above).

In contrast, the second case, displayed in Figure 4.6, illustrates the behavior of the bubbles
when they are close to the wall. Here, we observe the interaction between the bubbles and
the wall, which causes noticeable distortions in the bubble shapes compared to when they
are far from the wall. The parameters of the circular domain D, for this configuration are
r1 = 0.1012, 7o = 0.1359, z; = —0.5831i, and 2o = —0.8421i, chosen so that the two
bubbles still have approximately equal area. These configurations reveal the influence of the
proximity to the boundary on the bubble shape, which is more pronounced as the bubbles
approach the wall.

EXAMPLE 4.6 (Two bubbles III). We again consider two bubbles which are obtained by
choosing the parameters of the circular domain D such that the two bubbles have approxi-
mately equal area. The bubbles are scaled such that their areas are approximately 7. Figure 4.7
displays the configurations of the two bubbles for several values of the translation speed U.
The parameters of D¢ are ry = 0.1188288, ro = 0.090724, z; = —0.86i, and z; = —0.62i
for the bubbles on the left and r; = r5 = 0.15, z; = —0.16 — 0.81i, and zo = 0.16 — 0.81i
for the bubbles on the right.

Comparing with the bubbles in Figure 4.1, where the two bubbles always have the same
shape, the two bubbles in Figure 4.7 (left) no longer have this property owing to the presence
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FIG. 4.5. The two bubbles in the first case of Example 4.5 with a set of streamlines superposed in the reference
frame co-traveling with the bubbles for U = 2 (left) and U = 4 (right).
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FIG. 4.6. The two bubbles in the second case of Example 4.5 with a set of streamlines superposed in the
reference frame co-traveling with the bubbles for U = 2 (left) and U = 4 (right).

of the wall. The bubble closer to the wall exhibits stronger horizontal elongation illustrating
the effect of boundary proximity. However, in Figure 4.7 (right), we present configurations of
two bubbles that have the same shapes. The interactions between the bubbles themselves and
with the wall are again evident.

R— Y —U-=12

6H——U=15 4 6H——U=15
—U=2 —U=2
5L|—U=4 | 5L|—U=4
—U=6 —U=6
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FIG. 4.7. The configurations of the two bubbles in Example 4.6 for various values of U.

EXAMPLE 4.7 (Twenty-five bubbles). We present in Figure 4.8 an asymmetric configura-
tion of 25 bubbles in the upper half-plane. The figure displays two different configurations
with translation speeds U = 2 (left) and U = 6 (right). In both cases, a set of streamlines
is superimposed in the frame co-traveling with the bubbles, which provides insight into the
flow dynamics around the bubble array. The configurations highlight how the bubbles interact
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with the flow field and each other in the upper half-plane. At a higher speed, the interactions
between the bubbles themselves become less pronounced. Since the domain is unbounded in
the vertical direction, the bubbles furthest from the wall exhibit shapes similar to those seen in
free space.

%)

:
E?%?i?}%»)))))»

—

FIG. 4.8. An example of 25 bubbles in a general asymmetric configuration with a set of streamlines superposed
in the reference frame co-traveling with the bubbles when U = 2 (left) and U = 6 (right).

4.3. Infinite horizontal channel. In this section, we explore the behavior and configura-
tions of bubbles within an infinite horizontal Hele-Shaw channel. Some of these configurations
have been investigated in earlier works, such as by Vasconcelos [23], Green and Vasconce-
los [7], and Tanveer [18].

EXAMPLE 4.8. In this example, we recover the bubbles in a Hele-Shaw channel con-
sidered in [7, Fig. 5-7]. The configurations of two, three, and four bubbles for U = 2 are
illustrated in Figure 4.9. We plot the streamlines superposed in the frame co-traveling with
the bubbles. The parameters of the circular domains D, used to generate the bubbles in
Figure 4.9 are the same as in [7, Fig. 5-7]. For two bubbles, the parameters of the circular
domain D¢ are: r1 = 0.2, ro = 0.25, z; = 0.03i, and z; = 0.6 4 0.15i. For three bubbles,
the parameters of the circular domain D¢ are: r; = 0.18, rp = 0.22, r3 = 0.195, 2 = 0,
zo = 0.6 + 0.23i, and z3 = 0.2 + 0.63i. For four bubbles, the parameters of the circular
domain D¢ are: vy = 0.19, ro = 0.235, r3 = 0.2, 74 = 0.175, 21 = 0, 2o = 0.6 + 0.23i,
z3 = 0.2 +0.63i, and z4 = 0.4 — 0.25i.

FIG. 4.9. The configurations of two bubbles (left), three bubbles (middle), and four bubbles (right) in Example 4.8
with U = 2.

EXAMPLE 4.9 (Twenty-five bubbles). Figure 4.10 presents an asymmetric configuration
of 25 bubbles in a horizontal channel of width 2. This example demonstrates our method’s
ability to handle complex, multi-bubble scenarios with irregular arrangements. We compare
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the configurations at two velocities: U = 2 and U = 6. We can again observe an increased
bubble elongation along the flow direction at higher speed and a simplification of streamline
patterns as the speed increases. These configurations demonstrate how increasing the number
of bubbles affects both the flow field and the bubble shapes. The asymmetric positioning of
bubbles leads to interesting interactions, both between the bubbles and with the channel walls.

FIG. 4.10. An example of 25 bubbles in a general up-down symmetric configuration in a channel with a set of
streamlines superposed in the reference frame co-traveling with the bubbles when U = 2 (left) and U = 6 (right).

EXAMPLE 4.10 (Two bubbles I). Figure 4.11 illustrates the effect of the translation speed
U on two bubbles of approximately equal area in three different channel configurations: up-
down symmetric (top left), left-right symmetric (top right), and a third different arrangement
(bottom). These cases demonstrate how symmetry (or the lack thereof) of bubble positioning
influences the shapes of the bubbles as U increases.

1.5+ —U=12 —U=2 U=6
—U=15 —U=4 —U=8

T T T T T
—U=12 —U=2—U=6
—U=15 U=4 —U=38
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T

3 2 -1 0 1 2 3 4 -3 -2 1 0 1 2 3 4
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; —U=12—U=2—U=6
151 —U=15 U=4 —U=38 ]

FIG. 4.11. The configurations of the two bubbles in Example 4.10 for several values of U. The parameters of
D¢ are: 11 = rg = 0.35 and z1 = —z2 = 0.5i (top left), 1 = 72 = 0.35 and z1 = —z2 = 0.5 (top right), and
r1 =1ro = 0.42 and z1 = —z2 = 0.35 4 0.351i (bottom).
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EXAMPLE 4.11 (Two bubbles II). In Example 4.10, we considered two bubbles which
were obtained by fixing the parameters of the circular domain D, and changing the values of
U. Building on this, we now fix U = 2 and vary the parameters of the circular domain D.
The obtained results are illustrated in Figure 4.12 and reveal how the positions and sizes of the
bubbles influence their shapes and interactions at a constant speed.

—r=02 r=03 r=04 =045 \ r=0.1 r=02 r=03 r=04]

. o > >

OO D

difTi<a> > I D)

-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4

7=02 —7r =03 —7 =04 = 0.45]

-3 -2 -1 0 1 2 3 4 5

FIG. 4.12. The configurations of the two bubbles in Example 4.11 with U = 2. The centers of the two inner
circles of D¢ are: z1 = —z2 = 0.5 (top left), z1 = —z2 = 0.5 (top right), and z1 = —z2 = (1 + i)/2v2
(bottom). For the three cases, the radii of the two circles are r1 = ro = r for several values of .

EXAMPLE 4.12 (Three bubbles). We now explore various three-bubble configurations at
U = 2 as shown in Figure 4.13 for several values of the parameters of D.. The configurations
of the bubbles are: up-down and left-right symmetric about the coordinate axes (top), up-down
symmetric about the horizontal channel center line (middle), and a third different configuration
(bottom).

EXAMPLE 4.13. Our final example presents two special cases of three-bubble configu-
rations designed to qualitatively resemble the two-finger, one-bubble configuration studied
by Vasconcelos [23]. These configurations, displayed in Figure 4.14, illustrate how our
method can be applied to study configurations that mimic more complex scenarios, such as
the interplay between bubble and finger-like phenomena in Hele-Shaw flows.

5. Concluding remarks. Using a fast and accurate boundary integral equation method,
combined with conformal mappings, we have presented a unified method for solving the free
boundary problems governing multiple bubble boundary shapes in steady Hele-Shaw flow in
free space, the upper half-plane, and an infinite horizontal channel. Solving each free boundary
problem requires the computation of two conformal mappings (one to a canonical domain
with horizontal slits and the other to a canonical domain with vertical slits). Computing
each conformal mapping requires solving the boundary integral equation (3.1) as explained
briefly in Section 3.5. The computation of the right-hand side of the integral equation requires
O((m+1)nInn) operations, and each iteration of the GMRES method requires O((m + 1)n)
operations, where m + 1 is the connectivity of the multiply connected domain and n is the
number of nodes used in the discretization of each boundary component [16]. To corroborate
this, a plot of the CPU time (in seconds) as a function of n required to solve the governing
free boundary problem for the bubble shapes is provided in Figure 5.1 (left) for the bubbles
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F1G. 4.13. The configurations of the three bubbles in Example 4.12 with U = 2. The centers of the three

inner circles of D¢ are: (a) z1 = —z2 = 0.58i, z3 = 0 (top left), (b) z1 = —z2 = 0.58, 23 = 0 (top
right), (c) z1 = —z2 = 0.51, z3 = 0.45 (middle left), (d) z1 = zZz = —0.41 4+ 0.41i, z3 = 0 (middle right),
(e) z1 = —z2 = 0.41 4 0.41i, z3 = 0 (bottom). For all cases, the radii of the three circles are r1 = ro = r and

r3 = 0.16 for several values of r.

FIG. 4.14. Examples of three bubbles in a horizontal channel whose configurations have been chosen to be
qualitatively similar to the configuration of two fingers and one bubble in Figure 9 of Vasconcelos [23] for U = 2.
In both configurations, we have three bubbles, two of which appear to be finger-like. The parameters of the three
inner circles of D¢ are: z1 = zz = —0.55 + 0.33i, 23 = 0.05 4 0.18i, 71 = ro = 0.31, r3 = 0.33 (left), and
z1 = z2 = —0.56 4+ 0.33i, z3 = 0.05 + 0.18i, r1 = ro = 0.32, r3 = 0.33 (right).
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given in Figures 2.1, 2.2, and 2.3, and in Figure 5.1 (right) for the bubbles in Figures 4.3, 4.8,
and 4.10.

It is clear from these graphs that the CPU time depends almost linearly on n. For the 25-
bubble case in Figure 5.1 (right), note that we have m = 24 for the free-space case and m = 25
for both the upper half-plane and the channel cases, which explains why the computation times
for the free-space case are lower than the others. We also provide in Figure 5.2 the number
of GMRES iterations required to compute the two conformal mappings used to produce the
aforementioned bubble figures. These graphs show that the number of GMRES iterations is
almost independent of n (see also [16]).
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FIG. 5.1. Run time in seconds as a function of n required to produce the bubble shapes shown in Figures 2.1,
2.2, and 2.3 (left) and the bubble shapes shown in Figures 4.3, 4.8, and 4.10 (right).
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FIG. 5.2. The number of GMRES iterations as a function of n required to compute the two conformal mappings
(one to a canonical domain with horizontal slits (H) and the other to a canonical domain with vertical slits (V)) for
the three configurations of interest.

The example presented in this paper illustrate the versatility of our numerical method,
which effectively handles a wide range of bubble configurations in a Hele-Shaw channel,
from simple two-bubble systems to more complex multi-bubble arrangements. As seen in
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Figures 4.3, 4.8, and 4.10, where configurations involving 25 bubbles are depicted, the method
remains effective even for highly connected domains.

In addition to solving problems with complex geometrical configurations, this work
provides valuable insights into the dynamics of bubbles in confined geometries, which offers a
foundation for future studies on more intricate scenarios in Hele-Shaw flows. However, the
free boundary problems considered here have used the major underlying assumption that the
surface tension on the bubble boundaries is zero. Recent investigations into selection problems
associated with having non-zero surface tension, from two different perspectives [0, 12],
suggest that multi-bubble configurations will introduce further selection mechanisms when
surface tension effects are included. This opens additional avenues for exploration in future
work.

The MATLAB codes as well as the parameters of the circular domain D used to produce
the configurations presented in this paper can be found at the link
https://github.com/mmsnasser/bubbles.
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