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TWO-GRID DEFLATED KRYLOV METHODS FOR LINEAR EQUATIONS∗

RONALD B. MORGAN†, TRAVIS WHYTE‡, WALTER WILCOX§, AND ZHAO YANG†

Abstract. An approach is proposed for solving large linear systems that combines Krylov methods with the use
of two different grid levels. Eigenvectors are computed on the coarse grid and then used to deflate the eigenvalues on
the fine grid with an efficient projection. GMRES-type methods are first used on both the coarse and fine grids. Then
another approach is given that uses a novel restarted BiCGStab (or IDR) method on the fine grid. While BiCGStab is
generally considered to be a non-restarted method, restarting works well in this context. Tests show that this new
approach can be very efficient for difficult linear equations problems.

Key words. linear equations, deflation, GMRES, BiCGStab, eigenvalues, two-grid

AMS subject classifications. 65F10, 15A06

1. Introduction. We look at solving large systems of linear equations Ax = b that result
from discretizations of partial differential equations. There exists a variety of iterative methods
for solving these problems. In particular, multigrid methods [11, 14, 15, 23, 47] are extremely
effective under certain conditions. In other situations, simple multigrid methods do not work
well. However, they can be used as preconditioners for Krylov methods. Here we propose a
new approach for combining multigrid with Krylov subspace methods. We do not compare
our approach with sophisticated multigrid methods and Krylov with multigrid methods and
do not claim that our approach is better. However, we are giving an alternative that is worth
considering.

Convergence of iterative methods is generally affected by the conditioning of the matrix,
or more specifically by the presence of small eigenvalues. One reason why multigrid methods
are effective is that the eigenvectors corresponding to small eigenvalues generally have a
similar shape on different grid levels. Multigrid is able to handle these small eigenvalues
on the coarse grids, where the computations are cheaper. Also, the smaller linear systems
generally involve a better-conditioned matrix.

Krylov subspace methods may sometimes converge slowly. Work has been done on
dealing with the detrimental presence of small eigenvalues for Krylov methods. Restarted
methods such as GMRES are particularly sensitive to the presence of small eigenvalues.
Deflated GMRES methods [7, 16, 17, 24, 25, 26, 28, 32, 34, 40, 44, 45] compute approximate
eigenvectors and use them to remove or deflate the effect of the small eigenvalues. In
particular, we will use the method GMRES-DR [34], which both solves linear equations and
simultaneously computes eigenvectors.

The computation of approximate eigenvectors can be expensive for difficult problems.
The approach in this paper starts with computing eigenvectors on a coarse grid and moving
them to the fine grid. Then these approximate eigenvectors are used for a version of deflated
GMRES on the fine grid (specifically, GMRES-Proj [36], which will be described later).
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For fairly sparse matrices, the GMRES orthogonalization can be a major expense. We
present an approach that substitutes either BiCGStab or IDR in place of GMRES on the
fine-grid. Here we restart the BiCGStab and IDR procedures even though they are normally
non-restarted methods. This may seem risky because of the often erratic convergence of
these nonsymmetric Lanczos methods. However, in our testing, restarted BiCGStab and IDR
converge reliably.

We now discuss the contributions of this paper. The main three are: 1) approximate
eigenvectors are efficiently computed on a coarse grid and then used to deflate linear equations
on the fine grid. Also, the GMRES-DR algorithm is used on the coarse-grid, which allows
us to begin solving the linear equations at the same time as the eigenvalues are computed.
2) On the fine grid there is an efficient way of deflating eigenvalues with a projection, which
allows many eigenvalues to be dealt with. Other approaches that build a preconditioner with
eigenvectors and thus use them at every iterations can become expensive if more than a few
eigenvalues are used. 3) A restarted BiCGStab or IDR method is combined with deflation
for the fine-grid solution. We are not aware of any similar previous methods. The first two
contributions have appeared in some form in other papers, and this will be mentioned in the
next paragraphs. We conclude this paragraph with a couple of smaller contributions of this
paper. Some analysis and discussion is given for how accurate the eigenvectors need to be on
the fine-grid. Mainly it is shown that while high accuracy is not needed, the required amount
of accuracy varies with the size of the smallest eigenvalue and possibly other factors. Also,
some explanation will be given for why BiCGStab is effective even with restarting.

With respect to the first main contribution from the previous paragraph, there have been
works that find eigenvectors on a coarse grid. The papers [4, 39] use approximate eigenvectors
from a coarse grid to deflate for a symmetric matrix and the conjugate gradient method. Most
similar to this paper is Sifuentes’ thesis [42], which involves two-grid deflation but with the
Arnoldi method on the coarse grid and with the more expensive approach of building a deflating
preconditioner for the GMRES method on the fine grid. Instead of using computed approximate
eigenvectors, Erlangga and Nabben [21] deflate using vectors from the interpolation operator
that maps from the coarse to the fine grid. Somewhat related are works using coarse-grid
eigenvectors for eigenvalue problems; see for example [12, 37, 50, 51]. These type of methods
improve the coarse-grid eigenvectors in different ways on the fine grid or on multiple grids.
Not so closely related, but worth noting, are methods that combine multigrid with the GMRES
method; see for example the paper by Elman, Ernst, and O’Leary [20].

As mentioned above, the second contribution is an efficient deflation. This is used
previously in [32, 36] for a deflated GMRES algorithm (see also [46]) but not with two grids.
Many works use an approach of building a preconditioner from approximate eigenvectors [3,
5, 7, 16, 24, 28, 31, 38, 40, 43, 44, 45, 45]. The eigenvectors are used to deflate in many
different situations. As mentioned, this can be much more expensive, but it is generally more
robust. Of particular note amongst these are [3, 5, 31, 38], which deflate from the unrestarted
MINRES and BiCGStab method or, as the last one, from IDR. Also, some of those use the
GMRES-DR method to compute eigenvectors, as this paper does.

Of the three main contributions in the current paper, no previous works have used more
than one of them, and there has been no previous use of the restarted BiCGStab method. So
the new procedure in this paper significantly stands out from previous approaches. Section 2
of this paper reviews some of the previous methods that will be used. Section 3 presents the
two-grid deflated GMRES method. The two-grid deflated BiCGStab/IDR algorithm is then
given in Section 4. Several further examples are presented in Section 5, including a Helmholtz
problem with multigrid preconditioning.
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2. Review. Next, we quickly describe some of the methods that will be used in the rest
of the paper.

2.1. The GMRES-DR method. The GMRES with deflated restarting (GMRES-DR) [34]
method uses Krylov subspaces to both solve linear equations and compute the eigenpairs for
the smallest eigenvalues. Once the eigenvectors converge well enough, their presence in the
subspace can essentially remove or deflate the effect of the small eigenvalues on the linear
equations. Usually only moderate accuracy is needed before the approximate eigenvectors
have a beneficial effect.

The GMRES-DR(m,k) method saves k approximate eigenvectors at the restart and con-
structs a subspace of dimension m from these. Specifically, for one restarted cycle it uses the
subspace

Span
{
y1, . . . , yk, r0, Ar0, A

2r0, . . . A
m−k−1r0

}
,

where the yi’s are harmonic Ritz vectors from the previous cycle and r0 is the residual vector
at the start of the cycle. For the GMRES-DR and GMRES methods, a “cycle" is the building
and use of a Krylov subspace in between restarts. The augmented subspace of GMRES-DR is
actually a Krylov subspace itself, and it contains Krylov subspaces with each yi as starting
vector. This makes the eigenvectors generally converge along with the linear equations.

The GMRES-DR method converges faster than the restarted GMRES version for difficult
problems with small eigenvalues. It also often converges faster than the BiCGStab method
in terms of matrix-vector products but has greater orthogonalization costs per matrix-vector
product.

2.2. The GMRES-Proj method. There are situations where approximate eigenvectors
are available at the beginning of the computation of solutions of linear equations. For example,
if there are multiple right-hand sides, then some eigenvectors could have been computed
during the computation for earlier right-hand sides [36, 40, 46]. The method GMRES-Proj [36]
uses these approximate eigenvectors to deflate the corresponding eigenvalues while solving
linear equations. The GMRES(m)-Proj(k) method assumes that k approximate eigenvectors
have been previously computed and alternates projections onto these vectors with cycles of
GMRES(m).

Algorithm 1 GMRES(m)-Proj(k).

0. Let k be the number of approximate eigenvectors that are available. Choose m, the
dimension of subspaces generated by the restarted GMRES method.

1. Alternate between A) and B) until convergence:
A) Apply a Galerkin projection onto the subspace spanned by the k approximate

eigenvectors.
B) Apply one cycle of GMRES(m).

The algorithm for the projection step is given in Algorithm 2. MinRes projection can
be used instead of a Galerkin projection. It is the same as for the Galerkin case except that
H = (AV )TAV and c = (AV )T r0. We have found the Galerkin projection to be more
reliable than the MinRes one. All experiments in this paper use a Galerkin projection.

2.3. The two-grid Arnoldi method. A two-grid method for computing eigenvalues and
eigenvectors is given in [37]. Eigenvectors are computed on a coarse grid with a standard
Arnoldi method, they are transferred to the fine grid (with spline interpolation), and then
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Algorithm 2 Galerkin projection over a set of approximate eigenvectors.

0. Let the current system of linear equations be A(x− x0) = r0.
1. Let V be an n by k orthonormal matrix whose columns span the set of approximate

eigenvectors.
2. Form H = V TAV and c = V T r0.
3. Solve Hd = c, and let x̂ = V d.
4. The new approximate solution is xp = x0 + x̂, and the new residual is
r = r0 −Ax̂ = r0 −AV d.

they are improved on the fine grid with Arnoldi-E [33], a method that can accept initial
approximations.

3. The two-grid deflated GMRES method. Our new methods generate approximate
eigenvectors from the coarse grid and use them to deflate eigenvalues on the fine grid. In this
section, we give a version using GMRES methods. The GMRES-DR procedure is applied
on the coarse grid. This generates eigenvectors and solves the coarse-grid linear equations.
This solution of the equations on the coarse grid is mapped to the fine grid with spline
interpolation or prolongation and used there as the initial guess. Here we use interpolation for
all examples except Example 10. The eigenvectors are similarly moved to the fine grid and, if
necessary, improved on the fine grid. The GMRES-Proj method is applied on the fine grid
using these approximate eigenvectors. This can achieve much faster convergence than using a
restarted GMRES method. Compared to running GMRES-DR on the fine grid, it is cheaper to
implement and can deflate eigenvalues from the beginning.

Algorithm 3 Two-grid deflated GMRES.

0. Choose m and k for the coarse grid. Pick nev, the number of eigenpairs that are
required to converge to an eigenvalue tolerance, say rtolev. For the fine grid, pick
rtol, the linear equations residual tolerance, and pick m3, the number of steps of
when to restart GMRES.

1. Apply GMRES-DR(m,k) on the coarse grid. Map the approximate eigenvectors to
the fine grid (with spline interpolation or a prolongation operator). Map the solution
of the coarse-grid linear equations problem to the fine grid and use it as an initial
guess for the fine-grid problem.

2. (If needed:) Improve the approximate eigenvectors on the fine grid using Arnoldi-
E(m,k) (see the two-grid Arnoldi method in [37]).

3. Apply GMRES(m3)-Proj(k) on the fine grid.

Below, for our first examples, there is no need for phase 2, but it is used in Sections 4.1, 5.2,
and 5.3.

EXAMPLE 1. We consider a system of linear equations from a finite difference discretiza-
tion of the 2-D convection-diffusion equation

− e5xy(uxx + uyy) + 40ux + 40uy = c sin(x) cos(x) exy

on the unit square with zero boundary conditions and c chosen to make the right-hand side
have norm one. Central difference formulas are used for all discretizations. The discretization
size is h = 1

512 , leading to a matrix of dimension n = 5112 = 262,121. The coarse-grid
discretization size is h = 1

64 , giving a matrix of dimension 632 = 3969.
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The first phase on the coarse grid uses GMRES-DR(150,100) and runs until 80 eigenpairs
have converged to drop the level of the residual norm below 10−8. These residual norms are
computed only at the end of the cycles. The eigenvectors are moved to the fine grid and are
there accurate enough to be effective in deflating the eigenvalues (after the Rayleigh-Ritz
procedure is applied to all 100 vectors that are moved from the coarse grid, the smallest 80
Ritz pairs have residual norms at or below 1.4 · 10−3). So as mentioned, the second phase
is not needed. The third phase of solving the fine-grid linear equations is stopped when the
relative residual norm drops below a tolerance of rtol = 10−10. This is also tested only at the
end of each GMRES cycle but of course could be easily monitored during the GMRES runs.

The top of Figure 3.1 illustrates convergence curves for both the linear equations and the
eigenvalues on the coarse grid. The linear equations solution converges well before all 80
eigenpairs become accurate. The linear equations require 19 cycles of GMRES-DR(150,100),
which use 1050 matrix-vector products (150 for the first cycle and 50 each for the next 18).
The eigenvalues require 107 cycles or 5450 matrix-vector products.

The bottom left part of the figure illustrates the convergence of the linear equations on both
grids versus the number of fine-grid-equivalent matrix-vector products. The coarse-grid matrix
is about 64 times smaller than the fine-grid matrix, so we scale the number of matrix-vector
products by a factor of 64 to get the fine-grid equivalents. The coarse-grid linear equations
converge so rapidly that the convergence curve is barely noticeable on the left-hand side of
the graph. Then, there is a small gap for both the convergence of the eigenpairs on the coarse
grid and the matrix-vector products needed to form the projection matrix H for the fine grid.
This gap is visualized more detailed at the bottom right part of the figure, which is a close-up
of the left one. Three different values of m3 are used for GMRES(m3)-Proj(100): 50, 100,
and 200. While the fastest convergence is achieved with GMRES(200), the least expensive
one is for m3 = 100. We define the approximate cost as cost = 5mvp+ vops, where mvp
is the number of matrix-vector products; the value 5 comes from the approximate number of
non-zeros per row, and vops is the number of length-n vector operations such as dot-products
and daxpy’s (so 2n flops for one unit of cost). This approximate cost includes the entire
process, with the cost for the first phase on the coarse grid being scaled according to the length
of the coarse-grid vectors relative to the fine-grid vectors. This cost is cost = 1.10 · 106 for
m3 = 50, 1.06·106 form3 = 100, and finally 1.30·106 form3 = 200. The orthogonalization
expense for GMRES(200) is especially significant with such a sparse matrix.

Next, we consider different sizes for the coarse grid. Smaller coarse-grid matrices means
that less work is needed to find the eigenpairs, however, they may not be as accurate for
the fine-grid case. Table 3.1 has results for coarse grids from sizes 65,025 = 2552 down to
49 = 72. All of the tests use the same type of coarse-grid computation as before and the
GMRES(100)-Proj(100) method on the fine grid. The results show that for this matrix, the
fine-grid convergence is fairly robust with respect to the coarse-grid size. The number of
fine-grid cycles increases by less than half as the coarse grid goes from size 65,025 down to
255. For the 255-case, the accuracy of 80 eigenpairs on the fine grid is 5.7 ·10−3 or better, and
this is enough to be fairly effective. The convergence is 10 times faster than with no deflation,
which is illustrated by the last row of the table. The larger coarse-grid matrices do yield more
accurate eigenvectors on the fine grid, for instance with residual norms 4.4 · 10−5 and below
for the size 65,025. However, this level of accuracy is not needed.

The two-grid deflated GMRES method can be better than the BiCGStab method in terms
of matrix-vector products. So it can be an effective procedure if the matrix is not very sparse
or if an expensive preconditioner is used. Otherwise, the GMRES orthogonalization expense
can be significant. This motivates replacing GMRES with a restarted BiCGStab method on
the fine grid.
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FIG. 3.1. The performance of the two-grid deflated GMRES method is shown for the convection-diffusion
example. The fine-grid matrix size is n = 261,121, and the coarse-grid matrix size is 3969. The top part corresponds
to GMRES-DR(150,100) on the coarse grid; the convergence of the linear equations is shown with circles at the end
of each cycle, and the convergence of 80 eigenpairs is shown with lines. The bottom left part has the coarse-grid
linear equations solution on the very left, scaled by 64 to correspond to fine-grid matrix-vector products. Then this is
followed by GMRES(m3)-Proj(100) on the fine grid, with m3 = 50, 100, 200. The small bottom right part of the
figure is a close-up of the upper left portion of the previous graph.

4. The two-grid deflated BiCGStab method.

4.1. The algorithm. We wish to use approximate eigenvectors from the coarse grid
to deflate eigenvalues from a BiCGStab or IDR method on the fine grid. In [1, 2, 35] a
deflated BiCGStab method is given. A single projection is applied before running BiCGStab
using both right and left eigenvectors. Here a single projection will not be effective because
our eigenvectors are not accurate on the fine grid. So we implement BiCGStab/IDR as a
restarted method with projections at each restart. Not only does this allow us to use less
accurate eigenvectors, but also it does not require left eigenvectors. We use the same Galerkin
projection as for the two-grid deflated GMRES method.

We now give an implementation of this restarted, deflated BiCGStab/IDR method. It
replaces phase 3 in the two-grid deflated GMRES algorithm, Algorithm 3, given earlier and
thus is part of a two-grid deflated BiCGStab/IDR algorithm. The new BiCGStab(ncyc)-Proj(k)
procedure is similar to GMRES(m3)-Proj(k), but ncyc is the total number of BiCGStab cycles,
not the length of the cycles (so there are ncyc − 1 restarts). As before, k gives the number
of approximate eigenvectors that are used in the projection step. The stopping criterion for
the algorithm uses the minimum of two different quantities. First, we require each cycle to
converge to a fraction of the remaining distance to final convergence in terms of orders of
magnitude (the relative distance to convergence in orders of magnitude is given by rtol‖r0‖

‖r‖

since ‖r0‖‖r‖ is the current improvement and rtol is the required final tolerance). This fraction
is determined by the number of remaining cycles (the goal is to equalize the amount of
convergence expected of each cycle). Second, for a cycle icyc we want to reach a point that is
at least the fraction icyc/ncyc away from convergence (again in orders of magnitude). The
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TABLE 3.1
Effect of coarse-grid size.

coarse grid coarse grid accuracy of 80 fine grid cost (millions of
matrix size cycles eigenpairs on fine grid cycles fine grid equiv. )

(max res. norm) vector ops)

65,025 = 2552 1023 4.4 · 10−5 85 8.02
16,129 = 1272 270 3.1 · 10−4 86 1.40
3969 = 632 107 1.4 · 10−3 94 1.06
961 = 312 43 5.8 · 10−3 106 1.15
225 = 152 12 5.7 · 10−3 120 1.30
49 = 72 1 (9.2 · 10−3 for 40) 177 1.91

no coarse grid - - 1255 13.2

first criteria is usually stronger (asking for further convergence), and so it is the one enforced,
but in case the residual norm jumps up during the projection, the second criteria is needed (see
Example 8).

Algorithm 4 Two-grid deflated BiCGStab/IDR.

0. Assume k approximate eigenvectors are provided. Let rtol be the specified relative
residual tolerance for the linear equations solution. Choose ncyc, the requested
number of cycles of BiCGStab/IDR.

1. Apply GMRES-DR(m,k) on the coarse grid. Then transfer the approximate eigenvec-
tors to the fine grid and also transfer the solution of the coarse-grid linear equations
as an initial guess for the fine-grid problem.

2. (If needed:) Improve the eigenvectors on the fine grid using Arnoldi-E (see [37]).
3. For icyc = 1 : ncyc

a) Apply a Galerkin projection onto the approximate eigenvectors.
b) Let ‖r‖ be the current residual. Set the relative residual tolerance for

this cycle, rticyc, to be the minimum (the further convergence point) of
(rtol‖r0‖/‖r‖)(

1
ncyc−icyc+1 ) and (‖r0‖/‖r‖)(rtol)

icyc
ncyc , where r0 be the ini-

tial right-hand side for the fine-grid iteration.
c) Run BiCGStab or IDR with a relative residual tolerance of rticyc.
d) Break out of the loop if ‖r‖ is already below rtol.

We will refer to the last phase of these new methods as BiCGStab(ncyc)-Proj(k) or
IDR(ncyc)-Proj(k). For our tests, the Matlab BiCGStab program is called. For IDR, we use
the program described by van Gijzen and Sonneveld in [48], which is available as a MATLAB
code from the authors. The default version IDR(4) is called.

EXAMPLE 2. We return to the same convection-diffusion problem as in Example 1 with a
dimension n = 262,121 and a coarse-grid matrix of size 3969. Figure 4.1 illustrates how the
convergence of the restarted, deflated BiCGStab method is effected by the number of cycles.
It shows results for BiCGStab(ncyc)-Proj(100) with ncyc = 5, 10, and 20. With ncyc = 5,
the convergence generally slows down during a cycle. The eigenvalue deflation has a good
effect initially, but as the cycle proceeds, the small eigencomponents are not small enough,
and the iterations must deal with them. For ncyc = 20, there are more frequent restarts, so the
deflation is performed more frequently. This allows the BiCGStab iterations to not need to deal
with small eigencomponents, and so the method converges faster. It is surprising that in spite
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TABLE 4.1
Comparing different values of ncyc for BiCGStab(ncyc)-Proj(100). The number of matrix-vector products is

given along with the approximate cost in thousands of vector ops. These are only for the deflated BiCGStab phase.
For the overall cost, add 80.2 thousands for the cost before that phase.

ncyc 5 10 15 20 30 50 100 150 200
(use 99) (140) (168)

mvp’s 9638 7606 6390 5421 5357 5278 5262 5591 5541
cost (th’s) 116.7 93.3 79.7 69.1 70.3 73.4 83.1 93.4 100.4

of the very jagged behavior of the residual norms of BiCGStab, the overall convergence with
ncyc = 20 is quite consistent. With even more frequent restarts, the convergence is similar to
ncyc = 20. These tests are not shown on the figure because they mostly overlie the ncyc = 20
curve. However, see Table 4.1 for the number of matrix-vector products needed with some
other values of ncyc. As ncyc increases, even when the number of matrix-vector products
goes down, the cost may go up due to the more projections onto the approximate eigenvectors
(see the last row of the table). Note that with large values of ncyc, there may be convergence
before all cycles are used, and the break out of the loop in part 3d of the algorithm is activated.
This is shown in parentheses in the table. For example, only 168 runs are needed when 200
are specified. We also tried restarting BiCGStab after 272 matrix-vector products (the average
length for the ncyc = 20 test), and the convergence was a little slower than the ncyc = 20
method, using 5865 matrix-vector products instead of 5421. Probably the ncyc = 20 test has
an advantage because it often restarts after an iteration where the residual norm comes down
significantly. Next, we try the restarted BiCGStab method with ncyc = 20 but no deflation of
the eigenvalues. This requires 31,617 total matrix-vector products and shows that deflation is
very helpful here.

Figure 4.2 presents several methods. The top portion illustrates convergence with respect
to matrix-vector products. The two-grid deflated BiCGStab method uses ncyc = 20 and
has projection over 100 approximate eigenvectors found from GMRES-DR(150,100) on the
coarse grid. This deflated BiCGStab method converges even faster than the two-grid deflated
GMRES version. Both deflated methods are much better than regular BiCGStab. IDR does
not converge and is not shown. Also given is a two-grid deflated BiCGStab result for solving a
second system of linear equations with the same matrix but a different right-hand side (this
right-hand side is generated randomly). It converges similarly as for the first right-hand side
but does not need the coarse-grid work or a formation of the projection matrix. The bottom
of Figure 4.2 provides a plot of convergence versus the approximate cost (calculated as the
sum of all length-n vector operations and five times the number of matrix-vector products,
since there are about five non-zeros per row of the matrix). We note that the two-grid GMRES
method exhibits very slow convergence in this plot because of its orthogonalization. However,
the two-grid BiCGStab method converges faster than regular BiCGStab in spite of getting a
late start due to the cost of the coarse-grid phase. The second right-hand side does not have
this initial cost, and it has less than half the expense of solving the first right-hand side system.
The two-grid method presented in this paper is particularly useful for the case of multiple
right-hand sides.

The next example at first shows that if regular preconditioning is added to the previous
example, then the regular BiCGStab method is less expensive than deflated BiCGStab. So
deflation may not be needed for fairly easy problems. Secondly, if the matrix is shifted to give
an indefinite problem, then deflation can help again.

EXAMPLE 3. We continue the previous example with several changes: we add incom-
plete factorization preconditioning, then shift the diagonal to the left to create more difficult
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FIG. 4.1. Convergence curves for the two-grid deflated BiCGStab method on the fine grid are shown. GMRES-
DR(150,100) is first used on the coarse grid, and then BiCGStab(ncyc)-Proj(100) on the fine grid. The number of
cycles for the restarted BiCGStab phase is ncyc = 5, 10, and 20. The color changes with each new cycle.

0 0.5 1 1.5 2 2.5 3 3.5

fine-grid-equivalent matrix-vector products 104

10-10

10-5

100

re
si

du
al

 n
or

m

BiCGStab
Two-grid GMRES
Two-gr BiCGStab
2-gr BiCGStab, 2nd rhs

0 0.5 1 1.5 2 2.5

approximate cost 105

10-10

10-5

100

re
si

du
al

 n
or

m

FIG. 4.2. Convergence is shown for the two-grid deflated BiCGStab method, with GMRES-DR(150,100) on the
coarse grid and BiCGStab(20)-Proj(100) on the fine grid. This is compared to other methods. The two-grid deflated
GMRES method involves GMRES-DR(150,100) on the coarse grid and GMRES(100)-Proj(100) on the fine grid. A
test of deflated BiCGStab with a second right-hand side is also shown. In the legend, “Two-grid GMRES" refers to
the two-grid deflated GMRES method, “Two-gr BiCGStab" to the two-grid deflated BiCGStab, and “2-gr BiCGStab,
2nd rhs" refers to the two-grid deflated BiCGStab method applied to a second right-hand side but deflated using the
approximate eigenvectors from the first right-hand side.
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TABLE 4.2
Conv-diff with nfg = 262,121 and ncg = 16,129. Compare the two-grid method with regular BiCGStab for

increasingly more indefinite matrices.

shift rtol2 Phase 2 Phase 3 overall BiCGStab BiCGStab
cycles mvps time mvps time

0 10−2 0 212 56 765 7.1
102 10−2 0 360 59 1842 17
152 10−2 0 323 61 12,298 112
202 10−2 0 - - - -
202 10−3 7 384 216 - -
252 10−3 6 - - - -
252 10−4 21 53,949 1031 - -
252 10−5 39 464 970 - -

problems, and finally solve 10 systems with different right-hand sides. The incomplete factor-
ization ILU(0) is used. Also, the size of the coarse-grid matrix is changed to ncg = 16,129.
Again, GMRES-DR(150,100) on the coarse-grid develops the approximate eigenvectors. The
preconditioning makes the problem much easier, and now the regular BiCGStab method is
very effective. The row in Table 4.2 with shift = 0 shows that BiCGStab is converging to a
residual norm below 10−10 with 765 matrix-vector products and in only 7.1 seconds. For the
two-grid method, the cost for developing the approximate eigenvectors on the coarse grid and
moving them to the fine grid is significant enough that even though less matrix-vector products
are needed for the deflated BiCGStab phase on the fine grid, the overall cost is much higher.

We now shift the matrix, first as A− 102I . The results are presented in the second row of
Table 4.2. The matrix-vector products for the regular BiCGStab method goes up to 1842, but it
still runs quickly in 17 seconds (Matlab timing). However, the next row has a shift of 152, and
BiCGStab takes much longer. The two-grid approach converges in about half the time. The
reduction in matrix-vector products is even greater, down from 12,298 to 323. With further
shifting, BiCGStab does not converge. The two-grid method needs some phase 2-improvement
of the eigenvectors. For a shift of 252, the eigenvectors need to be improved to accuracy below
residual norms of 10−5, and then the deflated BiCGStab phase is very fast. This is expensive
because of the time spent in phase 2. Table 4.3 includes some details for the shifts 152 and
252 (with the eigenvalue improvement just mentioned included for the 252-case). Also, the
last two columns have results for nine additional right-hand sides. Unlike the first right-hand
side, these are generated randomly from a normal distribution and then normed to one. For
these shifts, the two-grid method is better for the first right-hand side and is much faster for
additional right-hand sides. With the shift 252, solving an additional right-hand side takes
only an average of 6.8 seconds compared to 357 seconds for the regular BiCGStab method.
We also note that the two-grid method gives accurate answers for all cases, while the regular
BiCGStab method is not able to (only three of the right-hand sides have solutions with residual
norms below 10−6).

4.2. Accuracy of the eigenvectors. Here we discuss whether an improvement of the
approximate eigenvectors is needed in phase 2 and if so, how accurate the eigenvectors need
to be. The main conclusion is negative in the sense that it is difficult to know a priori whether
phase 2 is necessary. We have seen this in the previous example where with the shift 152, an
accuracy of 10−2 is sufficient for the approximate eigenvectors and no phase 2-improvement
is needed. Meanwhile, for a shift of 252, a significant improvement is needed so that there is a
residual accuracy below 10−5. Next, we show that even for a simple 2 by 2 case, the needed
accuracy varies.
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TABLE 4.3
Conv-diff with nfg = 262,121 and ncg = 16,129. Compare two-grid method with regular BiCGStab for

indefinite matrices and multiple right-hand sides. The “Total mvps" column give the fine-grid-equivalent matrix-vector
products for the whole process, while the columns with “BiCGSt mvps" and “mvps" are for just the deflated BiCGStab
or regular BiCGStab method.

First rhs Average for other 9 rhs’s
shift Total mvps BiCGSt mvps time mvps time

152 2-grid 564 323 61 285 5.5
BiCGSt 12,298 12,298 112 11,401 103

252 2-grid 6655 464 970 457 6.8
BiCGSt - - - 37,741 357

EXAMPLE 4. We consider the diagonal 2 by 2 matrix A with diagonal entries α and
10. The current residual (or right-hand side) for the linear equations is r = [1 1]T . The
approximate eigenvector is y = [1 y2]

T . We do a projection over the approximate eigenvector
and look at how accurate the eigenvector needs to be for the residual to be improved. The
goal of the deflation is to reduce the first component of the residual because this is the more
difficult one corresponding to the small eigenvalue. We say that the residual is improved if the
first component is reduced more in terms of orders of magnitude than the second component
is increased. For an improvement with α = 0.01, the accuracy of the approximate eigenvector
needs to approximately have a residual norm below 0.1. But for α = 0.001, the accuracy
needs to be below 0.02. Jumping to much smaller α, with α = 0.000001, the eigenvector
residual norm needs to be below 0.0002. So the point is that with a smaller eigenvalue, a more
accurate approximation of the eigenvector is needed for successful deflation. We have seen in
past deflation work that eigenvalue residual norms below 10−2 are needed for many matrices,
but here for some difficult matrices, a higher accuracy is required. An important point is that
in the actual solution of large systems of equations, it may not be possible to know ahead of
time how accurate the approximate eigenvectors need to be. Some experimentation with the
particular linear equations may be necessary.

4.3. Effectiveness of the restarted BiCGStab method. Table 4.1 shows something
remarkable for the deflated, restarted BiCGStab method. For ncyc ≥ 20, the results are fairly
close to being invariant of the number of cycles. This is in spite of much smaller subspaces
being used for the larger values of ncyc. Also, the convergence is at a very consistent pace
considering the usual erratic convergence of BiCGStab. The deflated GMRES method in
Figure 3.1 is very sensitive to the subspace sizes, with m3 = 50 converging three times slower
than for m3 = 200. The deflated BiCGStab method is not so sensitive: with 20 cycles, it uses
an average of 271 matrix-vector products per cycle, while with ncyc = 100, an average of 53
per cycle converges slightly faster.

We next investigate the reason for this effectiveness of the restarted BiCGStab method.
First, we illustrate that this is not due to the deflation. To show this, the next example does not
use deflation and still exhibits a similar phenomenon for the restarted BiCGStab method.

EXAMPLE 5. The matrix is the same as in the previous examples, except the size is
1272 = 16,129, and there is no coarse-grid matrix. We use a random right-hand side to try to
make the example more general, though usually there is not much influence coming from the
right-hand side. We run the restarted BiCGStab method with no deflation between the cycles.
Table 4.4 shows results for tests with different numbers of cycles. Surprisingly, even for a large
numbers of cycles, the results are similar and often better than for the regular non-restarted
BiCGStab method. For example, with ncyc specified to be 400, the method ends up using 198
cycles, 3452 matrix-vector products, and an average number of matrix-vector products per
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TABLE 4.4
The restarted BiCGStab method with different numbers of cycles (no deflation is used). The number of matrix-

vector products is given.

ncyc 1 (no 5 10 25 50 75 150 250 400
restart) (use 74) (118) (171) (198)

mvp’s 3969 3755 4371 3968 3386 3578 4049 3764 3452

cycle of 17 1
2 . This compares to 3969 matrix-vector products with the non-restarted BiCGStab

method. Also for the GMRES(18) method, 28,838 matrix-vector products are required.
It has been proposed that the GMRES method should involve changing cycle lengths [8].

We suggest that variable cycle lengths is the main reason that the restarted BiCGStab method
is so effective even with small subspace sizes. Table 4.5 provides results for the restarted
BiCGStab method with average subspace dimensions of approximately 50, 35, and 18 (the
lowest dimension we could achieve was about 18 because when a high number of cycles is
specified, the algorithm finishes in far fewer cycles than requested). The number of matrix-
vector products is similar for each of the three average subspace sizes (these three numbers
come from Table 4.4 with ncyc to be 75, 150, and 400).

The next column has results for GMRES(m) for m = 50, 35, and 18. As mentioned, the
number of matrix-vector products is very large for small m. The third result is for the GMRES
method restarted exactly as for BiCGStab (so with the same number of matrix-vector products
for each corresponding cycle, though it does not necessarily need all of the cycles). Now the
GMRES method uses even less matrix-vector products than BiCGStab. This is a remarkable
improvement over the regular restarted GMRES method. The regular GMRES(m) method can
get stuck in a pattern [9, 52], and changing the sizes of the subspaces can break the pattern.

The final column of the table involves results for a different way of implementing a
variable restarting for the GMRES procedure. A maximum cycle length is specified, and the
length of each individual cycle is randomly chosen between 1 and the maximal length (for
example, a maximal cycle length of 36 is used in the last test because it gives an average of
18). This approach performs much better than the fixed cycle length approach, but it is not
as good as using the BiCGStab lengths. We conclude from these tests that our BiCGStab
method restarts in a surprisingly effective way. It is important for the new two-grid deflated
BiCGStab method that frequent restarts still give an effective method because if only a few
restarts are used, then there may not be frequent enough deflations, as seen in Figure 4.1 with
the ncyc = 5- and 10-cases.

Tables 4.4 and 4.5 make it seem like the sizes of the subspaces used for the BiCGStab
and GMRES method, restarted as for BiCGStab, do not have much effect for this example.
This would be surprising since it is well known that large subspaces can be an advantage
for Krylov methods. And indeed, even though the GMRES procedure does well with these
small subspaces, it performs significantly better without restarting, using 1383 matrix-vector
products. Since the non-restarted BiCGStab method has 3969 matrix-vector products, we
see that here the GMRES method is better capable to take advantage of a large non-restarted
Krylov subspace.

5. Further experiments.

5.1. Helmholtz matrix.
EXAMPLE 6. We next test using the Helmholtz matrix from a finite difference discretiza-

tion of the differential equation

−uxx − uyy − 1002u = f
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TABLE 4.5
Matrix-vector products for the restarting BiCGStab and GMRES methods.

average restarted GMRES(m), GMRES restarted GMRES with
cycle length BiCGStab m fixed as was BiCGStab random restarts

50 3578 6250 3266 3498
35 4049 11,760 3244 3733
18 3452 28,838 3411 5013

on the unit square with zero boundary conditions. The discretization size is again h = 1
512

resulting again in n = 262,121. The value of rtol is 10−10. The right-hand side is generated
randomly from a normal distribution. The coarse-grid discretization size is h = 1

128 , giving
a matrix of dimension 1272 = 16,129. This problem is difficult because of the significantly
indefinite spectrum. See [10, 19, 30, 47] for work on multigrid methods for indefinite problems.
Perhaps an easier option is to use multigrid as part of a preconditioner; see the next example.

Figure 5.1 illustrates the convergence of Krylov methods plotted against matrix-vector
products. We have found that the IDR method performs better than BiCGStab for indefinite
matrices, and only this one is shown in the figure, but even here, IDR does not converge.
GMRES-DR(200,150) converges eventually (though not quite to the requested rtol), however,
it is expensive due to orthogonalization costs. Our two-grid deflated GMRES method first
uses GMRES-DR(200,150) on the coarse grid until 120 eigenvalues converge to a residual
norm below 10−8. This requires 285 cycles. Then, on the fine grid GMRES(100)-Proj(150)
is employed. This method converges faster than GMRES-DR(200,150) and is much less
expensive because on the fine grid, GMRES(100) has less orthogonalization. However, two-
grid deflated IDR is the best method. It uses IDR(20)-Proj(150) on the fine grid. It converges
faster in terms of matrix-vector products and is also much less expensive per matrix-vector
product.

We did try deflating only 100 eigenvalues, as was used in the previous examples. However,
in this case the deflated IDR method converges more than twice as slow. For this difficult
indefinite problem, many eigenvalues are needed for an effective deflation.

Helmholtz problems are fairly complicated. For example, if the wave number is increased
and the fine grid uses the same discretization, then the coarse grid may need to be finer than in
Example 6 in order to have good enough eigenvector approximations. Our goal here is merely
to demonstrate the potential for the new approach; much more work is needed on Helmholtz
problems for a thorough study.

EXAMPLE 7. For this example, the problem is the same as in the previous one, but we
now use multigrid preconditioning. Since a standard multigrid method does not converge for
this matrix, we instead use a preconditioner from the solution of linear equations with the
positive shifted Laplacian with the operator−uxx−uyy +1002u [29]. With this positive shift,
multigrid easily converges and thus can precondition the Helmholtz matrix (the negatively
shifted Laplacian). This preconditioning is used on both the fine grid and the coarse grid and
makes the problem easier to solve; see Figure 5.2. The problem is still indefinite, and while the
BiCGStab method still does not converge, now IDR does. GMRES-DR(150,100) converges
in less than half the number of matrix+preconditioner applications than IDR, but it has more
orthogonalization expense. The two-grid deflated methods use GMRES-DR(150,100) on the
coarse grid and a stopping when 80 eigenpairs have converged to a residual norm 10−8. Then
on the fine grid, the deflated GMRES method uses GMRES(100)-Proj(100) and the deflated
IDR method uses IDR(5)-Proj(100) (the IDR method converges almost 25% slower with
ncyc = 20 instead of 5). Both deflated methods converge faster than the other methods, but
the deflated IDR method has much less orthogonalization costs.
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FIG. 5.1. The matrix is from the simple Helmholtz equation with κ = 100. The two-grid deflated GMRES
method uses GMRES-DR(200,150) on the coarse grid and GMRES(100)-Proj(150) on the fine grid. The two-grid
deflated IDR method uses GMRES-DR(200,150) on the coarse grid and IDR(20)-Proj(150) on the fine grid; diamonds
show the residual norm at the end of each of the 20 cycles. Also compared are IDR and GMRES-DR(200,150). In the
legend, “G-DR" refers to GMRES-DR, “Two-grid GMRES" to two-grid deflated GMRES, and “Two-grid IDR" to the
two-grid deflated IDR method.

In this experiment, the positively shifted Laplacian linear equations are solved accurately.
However, one can relax this and apply the multigrid method only until partial convergence.
The methods still work, but the results vary to some extent. We also tried complex shifts for
the multigrid preconditioner [22]. Faster convergence is observed at a higher cost per iteration
due to the subspaces becoming complex. For a complex Helmholtz problem, this would not
be a disadvantage and should be further studied.

5.2. Biharmonic Matrix. We next consider matrices from discretizing a biharmonic dif-
ferential equation. Matrices from this differential equation quickly become very ill-conditioned
as the discretization size gets small. The biharmonic examples demonstrate first that the resid-
ual norms can jump up during the projection onto the approximate eigenvectors. The second
example illustrates faster convergence if the approximate eigenvectors are improved on the
fine grid.

EXAMPLE 8. The partial differential equation is

−uxxxx − uyyyy + 40uxxx = f .

The matrix sizes are n = 65,025 and ncg = 961. Central difference formulas are used
for discretizing both the third- and fourth-order derivatives. The right-hand side is chosen
randomly from a normal distribution. Due to the ill-conditioning, all biharmonic matrix
tests have residual tolerance for the linear equations of only 10−8. BiCGStab and IDR do
not converge, and GMRES-DR is slow and expensive. We only give results for the deflated
BiCGStab method. The top half of Figure 5.3 displays results with three choices ofm and k for
GMRES-DR(m,k) on the coarse grid. GMRES-DR(100,50) finds 40 eigenpairs with residual
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FIG. 5.2. The matrix is from the simple Helmholtz equation with κ = 100. Now multigrid preconditioning
is used. The two-grid deflated GMRES method uses GMRES-DR(150,100) on the coarse grid and GMRES(100)-
Proj(100) on the fine grid. The two-grid deflated IDR method uses GMRES-DR(150,100) on the coarse grid and
IDR(5)-Proj(100) on the fine grid; diamonds show the residual norm at the end of each of the 5 cycles. These methods
are compared to IDR and GMRES-DR(150,100). In the legend, “G-DR" refers to GMRES-DR, “Two-grid GMRES"
to the two-grid deflated GMRES, and “Two-grid IDR" to the two-grid deflated IDR method.

norms below 10−8, GMRES-DR(150,100) gets 80 to that tolerance, and GMRES(200,150)
stops when 120 have converged. The deflated BiCGStab method is used on the fine grid with
ncyc = 20 cycles. The convergence is plotted against the cost for both coarse- and fine-grid
phases. Here each matrix-vector product is counted as 13 vector operations (the number of non-
zeros in most rows). The cost for the coarse-grid phase is higher when more eigenvalues are
computed, but then convergence is faster on the fine grid. Using 100 approximate eigenvectors
is best overall for this example. If there were multiple right-hand sides, then 150 would be
clearly better for subsequent right-hand sides because of the faster fine-grid convergence.

The lower half of Figure 5.3 shows a portion of the fine-grid restarted BiCGStab residual
curve with k = 150, plotted against matrix-vector products. The residual norm jumps up by a
significant amount during each projection onto the approximate eigenvectors. For instance, it
increases from 2.5 · 10−6 to 1.2 · 10−5 in between the cycles 14 and 15 (at the matrix-vector
product 3415). As a result, the second of the two convergence criteria in part 3b of the
algorithm is activated. Figure 5.4 displays eigencomponents of the residual vectors for a
smaller version of this problem. The matrix is if size n = 961, and the coarse-grid matrix
is of size 49. Here 10 eigenvectors are computed accurately on the coarse grid and moved
to the fine grid. The top of the figure illustrates all 961 eigencomponents during a part of a
deflated BiCGStab run on the fine grid. The (red) circles are obtained from the residual vector
after the projection at the start of the fifth cycle. Then the (black) squares are the results after
BiCGStab has been applied. Finally, the (blue) dots correspond to the results after the next
projection at the start of the sixth cycle, and they mostly overlie the circles but are a little
better on average. Most of the components increase dramatically with the projection. Then,
fortunately they are reduced by the Krylov iteration. The lower part of the figure shows that
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FIG. 5.3. The matrix is from a biharmonic differential equation. The top half corresponds to the deflated
BiCGStab method, with convergence shown on both the coarse and fine grids. The coarse grid involves GMRES-
DR(m,k) for three choices of m and k. The fine grid involves BiCGStab(20)-Proj(k) for the three values of k. The
gap between the two pieces of each of these curves is due to finishing the GMRES-DR iteration for computing the
approximate eigenvectors. The bottom half has a view of part of the fine-grid convergence with k = 150, showing the
jump in the residual norm with each projection. In the legend, “G-DR" is GMRES-DR.

some of the components corresponding to the small eigenvalues are reduced by the projection.
This reduction is important because they are for the most part not reduced by the BiCGStab
iteration. This essential reduction of the small eigencomponents by the projection makes up
for the increase of the other components because overall this deflated method does better than
the regular non-restarted BiCGStab method.

We continue the biharmonic example, but now use an incomplete LU factorization. This
example also involves improving the eigenvectors on the fine grid.

EXAMPLE 9. We use incomplete factorization preconditioning for the biharmonic dif-
ferential equation from the previous example. This is done with Matlab’s “ilu" command
with no fill, after adding 0.5 to all diagonal elements of the matrix (this is needed to make
the preconditioning effective). We choose a finer discretization than in the previous exam-
ple because the preconditioning allows us to solve a harder problem. The matrix has size
n = 5112 = 261,121, and the coarse grid is of size 1272 = 16,129. An ILU preconditioner is
generated for both the fine and coarse grids. As in the previous example, rtol is set to 10−8.

Table 5.1 illustrates the results of a few tests. The second row of the table (“cycles
phase 1") gives the number of GMRES-DR(150,100) cycles on the coarse grid. The third row
gives the cycles of Arnoldi-E on the fine grid used to improve the approximate eigenvectors
(phase 2 of the two-grid algorithm). The fourth row gives the number of cycles on the fine
grid; this happens to be exactly 200 for GMRES-Proj and is specified to be 50 for the restarted
BiCGStab method. The fifth row of the table has the number of applications of matrix-vector
product plus preconditioner on the fine grid. Then the next row adds to this the coarse grid
mvp’s+preconditionings, scaled by 16 to give the fine-grid-equivalent total. The last row gives
the approximate cost, which counts 26 for each matrix-vector product plus preconditioner (13
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FIG. 5.4. Small matrix from a biharmonic differential equation. The top portion of the figure has eigencompo-
nents of the residual vector before applying BiCGStab in the fifth cycle (red circles), then after the BiCGStab method
(black squares), and then after the projection over the approximate eigenvectors (blue dots). The bottom portion has
only the first 20 eigencomponents.

for the mvp and 13 for preconditioning), and then adds the vector ops. The fine-grid-equivalent
coarse-grid costs are included.

The first result in the table (the second column) is for the regular, non-restarted BiCGStab
method. For convergence, this takes 34,907 applications of a matrix-vector product plus a
preconditioning. The next column corresponds to the two-grid deflated GMRES method,
with GMRES-DR(150,100) on the coarse grid and GMRES(50)-Proj(100) on the fine grid.
This method performs much better than BiCGStab in terms of the numbers of applications of
matrix-vector product plus preconditioner, using the fine-grid equivalent of 10,203 of them.
However, the cost estimate in the last row of the table is only little better (854 thousand
compared to 1152 thousand) due to the orthogonalization in the 200 cycles of GMRES(50). If
GMRES(100)-Proj(100) is used instead, then the number of cycles on the fine grid reduces to
73, and thus the fine-grid-equivalent matrix-vector product plus preconditioners goes down
to 7576. However the cost goes up to 988 thousands. The next column corresponds to the
deflated BiCGStab method. The same GMRES-DR run is used on the coarse grid, and then the
fine grid uses BiCGStab(50)-Proj(100), with 50 cycles of BiCGStab and projections over the
100 approximate eigenvectors in between. The cost is significantly reduced compared to the
other methods. We note that with ncyc = 20, there are 12,168 mvp+prec’s. For this example,
more restarts are needed perhaps because the approximate eigenvectors are not as good and
so need to be deflated more often. The next to last column has Arnoldi-E(150,100) applied
to the approximate eigenvectors for 10 cycles with the 10 smallest approximate eigenvectors
used as starting vectors. Then the last column corresponds to the Arnoldi-E method applied as
in [37] until the first 80 approximate eigenvectors have residual norms below 10−3 (before this
improvement, these 80 have residual norms from 3.3 · 10−4 to 2.4 · 10−2). This improvement
takes 41 cycles. Both of these raise the cost but reduce the BiCGStab iterations. For cases
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TABLE 5.1
Results for the biharmonic matrix preconditioned by ILU factorization (in the first column, “mvp +" refers to

a matrix-vector product plus an application of the preconditioner). The first method is the regular non-restarted
BiCGStab method. Second is the two-grid deflated GMRES method with GMRES-DR(150,100) on the coarse grid and
GMRES(50)-Proj(100) on the fine grid. The last three columns have the same coarse-grid work and then use restarted
BiCGStab(50)-Proj(100) on the fine grid. The first of these three tests involve no improvement of the approximate
eigenvectors on the fine grid, while the last two have 10 and 41 cycles of improvement, respectively.

fine grid method BiCGSt Defl. Defl. Defl. Defl.
GMRES BiCGSt BiCGSt BiCGSt

cycles phase 1 - 31 31 31 31
cycles phase 2 - 0 0 10 41
cycles phase 3 1 200 50 50 50
fine grid mvp + 34,907 10,000 7877 6074 3069

total mvp + (fine gr. equi.) 34,907 10,203 8080 6827 5372
cost (in thousands) 1152 854 322 801 2369

with multiple right-hand sides, this eigenvector improvement could be worthwhile. Probably
the best way to decide if eigenvectors should be improved is by experimenting.

5.3. QCD problem. An important computational area that especially needs further
development of linear solvers is quantum chromodynamics (QCD). Increasingly large and
difficult systems of equations are developed in QCD, and so the methods need to increase
in effectiveness. Multigrid methods have been developed for QCD [6, 13, 18]. They show
potential but are not as efficient as multigrid for standard PDE’s and are much more complicated
to implement. Currently, multigrid methods are not standard for QCD but are one possible tool.
We wish to add the two-grid deflated BiCGStab method to the pool of possible methods. For
this we will use some of the framework that has been previously developed for QCD multigrid.
Here we do preliminary testing with a moderately sized problem in the simpler QCD situation
of the two-dimensional Schwinger model [41]. It is beyond the scope of this paper to test other
models or to give a full comparison with other QCD methods.

EXAMPLE 10. As mentioned above, the matrix comes from the Schwinger model. It is
of size n = 294,912. A coarse-grid matrix of size n = 9216 is constructed using techniques
described in [49]. Along with this, prolongation operators are formed for moving vectors
from a grid to a finer grid. The original fine-grid matrix has 9 non-zeros per row, while the
coarse-grid matrix has 80. There are significant costs involved in forming the coarse-grid
matrix, including 1128 matrix-vector products with the fine-grid matrix to create very rough
approximations to small eigenvectors that are needed in the process of forming it. There are
of course also costs for GMRES-DR on the coarse grid. However, these costs may not be
significant if many right-hand sides are solved as is common for QCD problems. Therefore,
here we only compare matrix-vector products during the solve phase on the fine grid (phase 3).
The matrix is shifted as A− σI by three different σ-values, 0.061, 0.062, and 0.063. What is
referred to as “critical mass" is roughly at 0.062 and shifting past that point makes the matrix
slightly indefinite and the problem more difficult. See [27] for the physical relevance of such a
shift.

The first row of the results in Table 5.2 is for the regular BiCGStab method, which
does not converge for the most difficult matrix. It is not unusual for BiCGStab to fail for
difficult QCD problems. Then three tests of BiCGStab(20)-Proj(40) are given with increasing
computational work on developing the approximate eigenvectors. The second row of results
has GMRES-DR(80,40) for 20 cycles on the coarse grid and no phase 2-improvement. This
is better than the regular BiCGStab method for the first shift of 0.061, slower for the second
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TABLE 5.2
Linear equations are solved for a 2-D QCD matrix. GMRES(80,40) is used on the coarse grid. Fine grid

matrix-vector products are given for solving one right-hand side, not including set-up costs for forming the coarse-grid
matrix.

XXXXXXXXXXMethod
Shift

0.061 0.062 0.063

non-restarted BiCGStab 4880 6187 -
Defl. Bi., 20 cyc phase 1, 0 cyc phase 2 3589 12,284 -

Defl. Bi., 20 cyc phase 1, 15 cyc phase 2 3247 4002 4519
Defl. Bi., 43 cyc phase 1, 15 cyc phase 2 2725 3354 3055

shift, and also does not converge for the third. The third row of results has an added 15
cycles of phase 2-improvement on the fine grid, targeting only the smallest 5 eigenvalues and
eigenvectors (this is because in testing, it is more important to have accurate eigenvectors for
the eigenvalues near zero). The cost for this improvement is significant for one right-hand
side, but it is not as important if many of them are involved. But also, we are now able to
achieve convergence for the ”difficult“ shift. The last row corresponds to the same method
except there is more computational work on the coarse grid with 43 phase 2-cycles (this is
enough to have the 5 smallest eigenpairs converge to an accuracy of 10−8). These experiments
show that the new approach has potential for difficult problems.

6. Conclusion. We have proposed a two-grid method that finds approximate eigenvectors
with the coarse grid and uses them to deflate the eigenvalues for linear equations on the fine
grid. This includes deflation for the BiCGStab and IDR methods using only approximate
right eigenvectors and a novel use of restarting for these normally non-restarted nonsymmetric
Lanczos methods. This two-grid deflation is a very efficient way to deflate eigenvalues because
the difficult work of finding approximate eigenvectors is done for an easier problem on the
coarse grid. This is particularly useful for multiple right-hand side problems because the
coarse-grid computation only needs to be done once and then can be applied for all right-hand
sides. The new approach can be combined with multigrid preconditioning (see Example 7).

For the deflated, restarted BiCGStab method, one choice that needs to be made is the
number of cycles. We have found that 20 cycles is generally a good choice. However, if the
approximate eigenvectors are not very accurate, then more cycles with more frequent deflation
may help (see Example 9).

Many facets of these two-grid deflated methods could use further investigation. For
instance, three-dimensional problems may have greater potential because the coarse-grid
matrix can be relatively smaller compared to the fine-grid matrix. QCD problems could use
much further investigation, including going to four-dimensional problems. Other possible
future work is to use more grid levels; see [37] for a multiple-grid method for computing
eigenvalues.
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