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USING LDLT FACTORIZATIONS IN NEWTON’S METHOD FOR SOLVING
GENERAL LARGE-SCALE ALGEBRAIC RICCATI EQUATIONS∗
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Abstract. Continuous-time algebraic Riccati equations can be found in many disciplines in different forms. In
the case of small-scale dense coefficient matrices, stabilizing solutions can be computed to all possible formulations
of the Riccati equation. This is not the case when it comes to large-scale sparse coefficient matrices. In this paper, we
provide a reformulation of the Newton–Kleinman iteration scheme for continuous-time algebraic Riccati equations
using indefinite symmetric low-rank factorizations. This allows the application of the method to the case of general
large-scale sparse coefficient matrices. We provide convergence results for several prominent realizations of the
equation and show in numerical examples the effectiveness of the approach.
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1. Introduction. The solutions to continuous-time algebraic Riccati equations (CAREs)
play essential roles for many concepts in systems and control theory. They occur, for example,
in the design of optimal and robust regulators for dynamical processes [2, 42, 49, 63], model
order reduction methods for dynamical systems [26, 32, 38, 53], network analysis [3], or
applications with differential games [7, 31]. In general, CAREs are quadratic matrix equations
of the form

(1.1) ATXE + ETXA+ CTQC − (BTXE + ST)TR−1(BTXE + ST) = 0,

with A,E ∈ Rn×n, B,S ∈ Rn×m, C ∈ Rp×n, Q = QT ∈ Rp×p, and R = RT ∈ Rm×m
invertible.

For simplicity of illustration, we present the proposed algorithm and results for the case
thatE is invertible; however, we outline modifications for the case of non-invertibleE matrices
in Section 3.5. Among all the solutions to (1.1), the one of particular interest in most cases is
the stabilizing solution, here denoted as X∗ ∈ Rn×n, for which it holds that the eigenvalues
of the generalized matrix pencil

λE − (A−BR−1(BTX∗E + ST))

lie in the open left complex half-plane. Matrix pencils with such an eigenvalue structure are
also referred to as Hurwitz.

In the case of dense coefficient matrices of small dimension n, a variety of different
approaches have been established for the numerical solution of (1.1). Direct methods can be
used to construct the solution via an eigenvalue decomposition of the underlying Hamilto-
nian or even matrix pencils [1, 5, 45]. On the other hand, iterative approaches such as the
matrix sign function iteration and structure-preserving doubling avoid the eigendecomposition
and aim directly for the computation of the eigenspaces of interest [14, 30, 39, 55]. Other
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iterative approaches construct sequences of matrices that converge to the stabilizing solution
[40, 44, 61].

With the problem dimension n increasing, the task of solving (1.1) becomes more com-
plicated. Even if in those cases A and E typically become sparse, the stabilizing solution
X∗ of (1.1) must be expected to be densely populated. Thus, the demands on computational
resources such as time and memory become infeasible when computing X∗ via classical ap-
proaches for n ∈ O(105) and larger. Under the assumption that the dimensions of the factored
coefficients in (1.1) are significantly smaller than the solution dimension, i.e., p,m� n, new
iterative approaches for the solution of (1.1) have been developed for some particular realiza-
tions. The key ingredient in all instances is the use of low-rank factorized approximations
of the solution X∗, typically given as Z∗ZT

∗ ≈ X∗, where Z∗ ∈ Rn×` and ` � n. This is
justified by a fast singular-value decay of the solutions [10, 64].

For the special case that S = 0, Q is symmetric positive semidefinite and R is sym-
metric positive definite, a variety of new approaches have been developed in recent years.
Methods like the Newton and Newton–Kleinman iterations have been extended [17, 21]
employing yet another low-rank solver such as the low-rank alternating direction implicit
(LR-ADI) method [19, 20, 21, 47] for the Lyapunov equations occurring in every Newton
step. Projection-based methods construct approximating subspaces to project the coefficients
of (1.1) onto smaller dimension and then solve small-scale Riccati equations with classical
dense approaches [37, 62]. The Riccati alternating direction implicit (RADI) method [11, 29]
and the incremental low-rank subspace iteration (ILRSI) [48] are among the most successful
low-rank solvers for this variant of the Riccati equation. We refer the reader to [12, 23, 41] for
general overviews and numerical comparisons of these methods.

In other instances of (1.1), the number of established methods decreases significantly.
In the case of Q symmetric positive semidefinite and R symmetric negative definite, only
extensions of the Newton and Newton–Kleinman iteration have been proposed for large-
scale sparse systems [25]. Recently, a new low-rank method has been developed in [16]
that allows one to compute the solution to (1.1) with indefinite R and Q symmetric positive
semidefinite matrices. Under the assumption that the stabilizing solution X∗ is symmetric
positive semidefinite, this new low-rank method iteratively approximates X∗ via accumulating
solutions to classical Riccati equations with positive definite R terms.

In this work, we are lifting all restrictions and investigate the numerical approximation
of the stabilizing solution to the general CARE (1.1). Therefore, we focus on the Newton–
Kleinman method [40] and extend this approach to the case of large-scale sparse coefficient
matrices by utilizing an indefinite symmetric low-rank factorization of the stabilizing solution.
We show that this new approach generalizes existing methods and we provide a theoretical
background for several of the practically occurring scenarios. The theoretical analysis is
supported by multiple numerical experiments.

Throughout this paper, AT denotes the transpose of the matrix A. Also, we denote
symmetric positive (semi)definite matrices A by A > 0 (A ≥ 0) and we write A > B
(A ≥ B) if A−B is symmetric positive (semi)definite. Similarly, we use A < 0 (A ≤ 0) to
denote symmetric negative (semi)definite matrices and write A < B (A ≤ B) if A − B is
symmetric negative (semi)definite. Moreover, 〈·, ·〉 denotes the Frobenius inner product, i.e.,
〈A,B〉 = tr(ATB) for real matrices A and B of compatible dimensions. By In we denote
the n-dimensional identity matrix.

The remainder of this paper is organized as follows. In Section 2, we provide an overview
of different realizations of the continuous-time algebraic Riccati equation from the literature,
with their motivational background and how they fit into the presented general formula-
tion (1.1). In Section 3, we derive the Newton–Kleinman formulation for (1.1), based on
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which we extend the approach to the large-scale sparse setting. Afterwards, we provide a
theoretical analysis of the convergence behavior, formulas for an exact line search procedure in
the Newton iteration, and an extension of the method to non-invertible E matrices. Numerical
experiments to support the theoretical discussions of this paper are conducted in Section 4.
The paper is concluded in Section 5.

2. Example equations from the literature. Several realizations of CAREs are displayed
throughout the literature. The form (1.1) we consider in this work appears to be the most
general formulation of the CARE with factorized terms that allow for low-rank approximations
in the large-scale sparse setting. Some of the most prominent realizations are outlined in the
following. These will also serve as examples in the numerical experiments in Section 4.

2.1. Linear–quadratic regulator problems. First, we consider the CARE formulation
given in (1.1). With the additional assumptions that Q ≥ 0 and R > 0, this realization can be
found in optimal control for the construction of optimal state-feedback regulators [2, 49, 63].
The corresponding optimization problem is given by

min
u stab.

∞∫
0

y(t)TQy(t) + x(t)TS u(t) + u(t)TRu(t) dt(2.1a)

subject to

{
Eẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t).
(2.1b)

The task is to find a controller u that solves the optimization problem (2.1a) while stabilizing
the corresponding dynamical system (2.1b).

Assume that a stabilizing solution X∗ to (1.1) exists. Then the solution to (2.1) is given
by u(t) = K∗x(t), where the feedback matrix is given by K∗ = R−1(BTX∗E + ST). If the
matrix pencil λE −A is stabilizable with respect to B and observable with respect to C, then
a sufficient condition for the existence of the stabilizing solution X∗ is that[

CTQC S

ST R

]
≥ 0

holds; see [42]. Note that, under the assumptions above, the stabilizing solution X∗ is known
to be positive semidefinite.

2.2. Linear–quadratic–Gaussian control and unstable model order reduction. A
different realization of (1.1) relates to the construction of optimal controllers and model order
reduction of unstable dynamical systems. Consider the modified optimal regulator problem

min
u stab.

∞∫
0

y(t)TQ̃ y(t) + u(t)TR̃ u(t) dt

subject to

{
Eẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),

with the feed-through matrix D ∈ Rp×m, Q̃ ≥ 0, and R̃ > 0.
The corresponding CARE, whose stabilizing solution provides the optimal stabilizing

control, is given by

ATXE + ETXA+ CTQ̃ C

− (BTXE +DTC)T(R̃+DTD)−1(BTXE +DTC) = 0.
(2.2)
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Equation (2.2) can be rewritten as (1.1) by setting

Q = Q̃, R = R̃+DTD, S = DTC.

The very same equation (2.2) can also be found in the design of optimal linear–quadratic–
Gaussian (LQG) controllers and in the LQG balanced truncation method that is used for the
computation of reduced-order dynamical systems with unstable dynamics [26, 38].

2.3. H∞ control and robust model order reduction. Another realization related to
controller design and model order reduction comes in the form of theH∞-Riccati equation

(2.3) ATXE + ETXA+ CTQ̃ C − ETX

(
B2R̃

−1BT
2 −

1

γ2
B1B

T
1

)
XE = 0;

see [15, 16, 51]. This equation is typically associated with dynamical systems of the form

Eẋ(t) = Ax(t) +B1w(t) +B2u(t),

y(t) = Cx(t),

where B1 ∈ Rn×m1 models the influence of external disturbances on the control problem,
and B2 ∈ Rn×m2 are the actual control inputs. The dimensions of B1 and B2 are related
to (1.1) via m = m1 + m2. The matrices R̃ > 0 and Q̃ ≥ 0 are weighting matrices from
the associated optimal control problem similar to (2.1a), and γ > 0 is the robustness margin
that is achieved by the constructed regulator/controller. Equations of the form (2.3) can be
rewritten into (1.1) via

B =
[
B1 B2

]
, Q = Q̃, R =

[
−γ2Im1 0

0 R̃

]
, S = 0.

In this case, the quadratic weighting term R in (1.1) is indefinite. As in the previous examples,
one is interested in the stabilizing solution X∗ to (2.3), which might be indefinite, here, due to
the indefiniteness of R.

2.4. Passivity, contractivity, and spectral factorizations. As last examples, we would
like to mention two equations that are related to dynamical system properties such as contrac-
tivity and passivity as well as spectral factorizations of rational functions [26, 32, 36, 53]. The
so-called bounded-real Riccati equation is given as

ATXE + ETXA+ CTC

+ (BTXE +DTC)T(γ2Im −DTD)−1(BTXE +DTC) = 0,
(2.4)

with D ∈ Rp×m and γ > ‖H‖H∞ , where ‖·‖H∞ denotes the H∞ Hardy norm [65] and
H(s) = C(sE −A)

−1
B + D is a rational function in the complex variable s ∈ C. On the

other hand, the positive-real Riccati equation reads

(2.5) ATXE + ETXA+ (BTXE − C)T(DT +D)−1(BTXE − C) = 0,

where the dimensions satisfy m = p. Equation (2.4) can be rewritten as (1.1) by choosing

Q = Ip, R = −(γ2Im −DTD), S = CTD,

and equation (2.5) can be reformulated using

Q = 0, R = −(DT +D), S = CT.

With the assumptions above, the R matrix is symmetric negative definite in both cases, while
Q is either symmetric positive definite or 0. Again only the stabilizing solutions X∗ to (2.4)
or (2.5) are of any interest. Despite the changed definiteness ofR here, the stabilizing solutions
are positive semidefinite [25].
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3. Low-rank inexact Newton–Kleinman iteration with line search. In this section,
we derive the low-rank Newton–Kleinman iteration and provide the formulas for inexact steps,
a line search approach, and projected Riccati equations.

3.1. Derivation of the low-rank Newton–Kleinman scheme. Solving the CARE (1.1)
is a root-finding problem with a nonlinear matrix-valued equation and solution. Therefore,
Newton’s method is a valid approach to compute a solution to the problem [61], and it has
been shown in many cases that the computed solution is the desired stabilizing one. The basic
method can be derived by considering the Fréchet derivative of the Riccati operator

(3.1) R(X) = ATXE + ETXA+ CTQC − (BTXE + ST)TR−1(BTXE + ST),

with respect to the unknown X . The first Fréchet derivative of (3.1) with respect to X and
evaluated in N is given by

R′(X)(N) = (A−BR−1(BTXE + ST))TNE + ETN(A−BR−1(BTXE + ST)),

and the second Fréchet derivative with respect to X evaluated in N1 and N2 is independent of
X and can be written as

R′′(X)(N1, N2) = −ETN1BR
−1BTN2E − ETN2BR

−1BTN1E.

As outlined in [17], the classical Newton approach is usually undesired in the case of
large-scale sparse coefficients when compared to the reformulation given by the Newton–
Kleinman scheme [40]. Either method is based on the solution of a Lyapunov equation in
every iteration step. However, while the classical Newton method computes an update to
the current iterate of the form Xk+1 = Xk + Nk, where Nk is given as the solution to a
Lyapunov equation, the Newton–Kleinman method computes Xk+1 directly as the solution of
the Lyapunov equation that is given by

R′(Xk)(Xk+1) = R′(Xk)(Xk)−R(Xk);

see, for example, [17]. Therefore, the Newton–Kleinman approach for (1.1) is given by solving
the Lyapunov equation

(3.2) AT
kXk+1E + ETXk+1Ak + CTQC +KT

kRKk − SKk − (SKk)T = 0

in every iteration step, withAk = A−BKk andKk = R−1(BTXkE+ST), and starting with
some initial stabilizing feedback K0; see [4, 5]. This K0 is chosen such that all eigenvalues of
λE − (A−BK0) lie in the open left half-plane.

To extend the scheme (3.2) to the large-scale sparse setting, we must first observe that
the part of the equation that does not contain the current unknown Xk+1, in other words, the
constant term, is an indefinite symmetric matrix. To utilize this form of the constant term,
similar to the argumentation in [43], we propose to approximate the solution matrix to (1.1) by
a symmetric indefinite low-rank factorization of the form

(3.3) LDLT ≈ X,

where L ∈ Rn×` and D ∈ R`×` symmetric. By the low-rank structure of the constant term
coefficient matrices of (1.1), as well as its quadratic terms (since m, p� n), we expect the
solution to have numerically a low rank such that `� n holds [10, 64]. Rewriting the constant
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term of (3.2) into the same shape as (3.3) yields

CTQC +KT
kRKk − SKk − (SKk)T

=
[
CT KT

k S
] Q 0 0

0 R −Im
0 −Im 0

 CKk

ST

 ,(3.4)

where the center matrix has the dimension 2m+ p.
It is possible to avoid the switching term (the two negative identities) in the lower right

corner of the center matrix in (3.4) by making the following reformulations:

CTQC +KT
kRKk − SKk − (SKk)T

= CTQC +KT
kRKk − SKk − (SKk)T − SR−1ST + SR−1ST︸ ︷︷ ︸

= 0

= CTQC − SR−1ST + (Kk −R−1ST)TR(Kk −R−1ST)

=
[
CT (R−1ST)T (Kk −R−1ST)T

] Q 0 0
0 −R 0
0 0 R

 C
R−1ST

Kk −R−1ST

 .(3.5)

The reformulation in (3.5) also has 2m+ p as inner dimension of the factors and features a
block diagonal center matrix, which we believe to be advantageous in the implementation.
Plugging (3.5) into (3.2) yields the final LDLT-factorized Lyapunov equation that we employ
in our new Newton–Kleinman iteration. The resulting method is summarized in Algorithm 1.
Lyapunov equations such as in line 4 of Algorithm 1 can be efficiently solved, for example,
via the LDLT-factorized low-rank ADI method in [43].

3.2. An equivalent reformulation via low-rank updates. The efficient handling of the
low-rank updated operator Ak = A−BKk in the Lyapunov equation in line 4 of Algorithm 1
is essential for computing its solution in the large-scale sparse case. Typically, linear systems
of equations with Ak need to be solved, which can be effectively implemented using the
Sherman–Morrison–Woodbury matrix inversion formula or the augmented matrix approach;
see, for example, [35]. Since the handling of such operators is already implemented in most
software for the solution of matrix equations such as the M-M.E.S.S. library [18], we may use
a reformulation of (1.1) to hide the S inside the other matrices.

First, we observe that, by multiplying out the terms in (1.1), we obtain the equivalent
CARE

(A−BR−1ST)TXE + ETX(A−BR−1ST)

+ (CTQC − SR−1ST)− ETXBR−1BTXE = 0.(3.6)

After some renaming of the terms in (3.6), we obtain

(3.7) ÂTXE + ETXÂ+ Ĉ TQ̂Ĉ − ETXBR−1BTXE = 0,

where

(3.8) Â = A+ UV T, U = −B, V = SR−T, Ĉ =

[
C
ST

]
, Q̂ =

[
Q 0
0 −R−1

]
.
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Algorithm 1: LDLT-factorized low-rank Newton–Kleinman iteration.
Input: Matrices A,B, S,C,Q,R,E from (1.1), stabilizing feedback K0 such that

λE − (A−BK0) is Hurwitz.
Output: Approximation LkDkL

T
k ≈ X∗ to the stabilizing solution of (1.1).

1 Initialize k = 0,

V T = R−1ST and T =

Q 0 0
0 −R 0
0 0 R

 .
2 while not converged do
3 Construct the residual term

Wk =

 C
V T

Kk − V T

 .
4 Solve the Lyapunov equation

AT
kXk+1E + ETXk+1Ak +WT

k T Wk = 0,

for Lk+1Dk+1L
T
k+1 ≈ Xk+1 and where Ak = A−BKk.

5 Update the feedback matrix Kk+1 = R−1(BT(Lk+1Dk+1L
T
k+1)E + ST).

6 Increment k ← k + 1.
7 end

Running Algorithm 1 for the renamed matrices Â, B, Ŝ = 0, Ĉ, Q̂, R, and E will
yield exactly the same iterates computed in every step, while hiding the original S term in
Â and Ĉ. Note here that all the corresponding stabilizing feedbacks K̂k are changed such
that λE − (Â − BK̂k) is stabilized rather than λE − (A − BKk). In particular, the initial
stabilizing feedback must be chosen correctly. On the other hand, the final stabilizing feedback
K̂kmax , corresponding to the final iterate X̂kmax , can easily be modified to stabilize the true
associated matrix pencil λE −A via

Kkmax
= K̂kmax

+ V T.

While the two formulations (1.1) and (3.7) are equivalent, employing the Newton–
Kleinman method for (3.7) rather than (1.1) is expected to be mildly more expensive in
the general case because the dimension of the constant term stays unchanged while the
dimension of the low-rank updates in Ak are increased by m columns. More precisely,
when implementing the Newton–Kleinman method for (3.7), the matrix Ak = A−BKk in
Algorithm 1 changes to

Âk = A+ UV T −BK̂k = A+ [U −B] [V K̂k]T.

It now has two low-rank updates, withm columns each, that can be rewritten into one low-rank
update with 2m columns, instead of only m columns, as before. This Âk can be handled
similarly to the original Ak in the solver of the Lyapunov equation without explicitly forming
the dense matrix Âk; however, this step becomes more expensive since the low-rank update
has more columns.
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On the other hand, considering the example equations from Section 2, we can also see a
reduction in computational costs using (3.7). In equations (2.2), (2.4), and (2.5), the S term
is a multiplication of the constant term C with some appropriately sized matrix D. This fact
allows us some additional dimension reduction of the constant term in (3.7).

As an example, consider the case of the LQG CARE in (2.2): the constant term in (3.7)
can be written as

ĈTQ̂ Ĉ = CTQ̃ C − CTD(R̃+DTD)
−1
DTC

= CT (Q̃−D(R̃+DTD)−1DT)︸ ︷︷ ︸
= Q̌

C = CTQ̌ C.

In such cases, the size of the constant term in (3.7) can be reduced from 2m + p to m + p,
which improves the performance of large-scale sparse solvers that build the solution using
the constant term. We have implemented this version of Algorithm 1 for the reformulated
CARE (3.7) in the M-M.E.S.S. library [18] for our numerical experiments due to the easy
integration into the existing framework of CAREs of the form (3.7).

REMARK 3.1. Projection-type methods such as the extended and rational Krylov subspace
methods [37, 62] naturally construct the solution to Riccati equations (1.1) in the same
symmetric indefinite low-rank factorized form (3.3) that we propose here for the Newton–
Kleinman method. Let V ∈ Rn×r be a basis matrix of a suitable r-dimensional projection
space. In projection methods, the stabilizing solution to (1.1) is approximated via VX̆∗VT ≈
X∗, where X̆∗ ∈ Rr×r is the stabilizing solution to the projected Riccati equation

(3.9) ĂTX̆Ĕ + ĔTX̆Ă+ C̆TQC̆ − (B̆TXĔ + S̆T)TR−1(B̆TXĔ + S̆T) = 0,

where Ă = VTAV ∈ Rr×r, Ĕ = VTE V ∈ Rr×r, B̆ = VTB ∈ Rr×m, S̆ = VTS ∈ Rr×m,
and C̆ = C V ∈ Rp×r. We note that, in the case of Krylov subspace methods, which construct
the projection space adaptively using the matrix pencil λE − A and the constant term, it is
necessary to make use of the extended constant term [CT S] from (3.8) rather than C alone.
Moreover, careful verification that the new definiteness assumptions do not break the residual
formulas would be necessary.

Besides the careful handling of basis extensions to ensure numerical stability, projection
methods for Riccati equations are rather difficult to analyze in terms of their convergence
behavior and, in particular, the solvability of the projected Riccati equation (3.9). This has
been done only recently for the standard equation case (S = 0, Q ≥ 0, R > 0) under
rather restrictive assumptions in [70] and we will not consider these types of methods in the
remainder of this paper.

REMARK 3.2. While the previous remark was concerned with direct application of
the projection method to the algebraic Riccati equation (ARE), it would also be possible to
integrate our proposed Newton loop with the extended Krylov subspace method (EKSM)
along the lines of [54]. Then, only projected Lyapunov equations need to be solved in every
step, whose solvability is easier to decide. However, verification that the same recycling of the
EKSM spaces across the Newton steps is still possible and careful implementation are beyond
the scope of this paper. Further, the RADI method [11] could be extended to AREs (1.1). Its
equivalence to Krylov projection methods for the case (S = 0, Q ≥ 0, R > 0) would need
to be verified for the new situation. While first numerical experiments with RADI for S = 0
look promising, results need further research and will be reported separately.
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3.3. Convergence results. In the following theorem, we collect the convergence results
for two distinct cases of (1.1), depending on the definiteness of the quadratic term. The results
are formulated for the exact iterates Xk of the Newton–Kleinman iteration in Algorithm 1
rather than the low-rank approximations LkDkL

T
k since the approximation errors introduced

by the numerical solution of the Lyapunov equations and truncation of the solution factors
to small numerical ranks may render the results wrong. However, for accurate enough
approximations, the results remain true in practice.

THEOREM 3.3. Assume (1.1) has a unique stabilizing solution X∗. Let K0 be a feedback
matrix such that the eigenvalues of λE − (A−BK0) lie in the open left complex half-plane
and let either R > 0 or R < 0 be true. Then, for the exact solutions Xk = LkDkL

T
k to the

Lyapunov equations in line 4 of Algorithm 1, it holds that:
(i) the closed-loop pencils λE −Ak with Ak = A−BKk are stable for all k ≥ 0;

(ii) limk→∞Xk = X∗ and limk→∞R(Xk) = 0;
(iii) the iterates Xk converge globally and quadratically to X∗; and
(iv) if R > 0, then

X1 ≥ · · · ≥ Xk ≥ Xk+1 ≥ · · · ≥ X∗,

and if R < 0, then

X1 ≤ · · · ≤ Xk ≤ Xk+1 ≤ · · · ≤ X∗.

Proof. The results have been proven for the case R > 0 in [4]. In the case of R < 0,
we may use the convergence results from [25, Thm. 3.2], which are based on earlier results
from [9, 68]. Therefore, we consider the equivalent reformulation of the CARE into the
classical form (3.7). Since R < 0, it holds that −R > 0 and, therefore, we may write (3.7) as

ÂTXE + ETXÂ+ Ĉ TQ̂ Ĉ + ETXBR̂−1BTXE = 0,

where R̂ = −R > 0. With K̂0 = K0−R−1ST, the matrix pencil λE− (Â−BK̂0) is stable,
and since R̂ > 0, we have that BR̂−1BT ≥ 0. Thus, the assumptions of [25, Thm. 3.2] are
satisfied, which proves the results of this theorem.

Theorem 3.3 shows that the general convergence behavior of Algorithm 1 changes with
the definiteness of the quadratic term. The other terms C, Q, and S only affect the definiteness
of the stabilizing solution X∗ to which the method converges. Beyond the convergence
theory, the reformulations made in Section 3.1 and in the proof of Theorem 3.3 show that, in
exact arithmetic, the proposed Algorithm 1 provides exactly the same iterates as the Newton–
Kleinman methods developed in [4, 25].

The techniques used to show all the convergence results in the proofs in [4, 25] are based
on the main observation that the difference of two consecutive steps in the Newton–Kleinman
scheme is given as the unique solution of the Lyapunov equation

Xk −Xk+1 =

∫ ∞
0

(e(AE−1−BKk)t)T(Kk−1 −Kk)
T
R(Kk−1 −Kk)e(AE−1−BKk)t dt.

The definiteness of the difference Xk −Xk+1 depends thereby on the definiteness of the R
matrix resulting in the monotonic convergence behavior described in Theorem 3.3. In the
case of indefinite R, this monotonic behavior is likely to be lost, as we will demonstrate later
in Section 4. However, we were not able to construct a case for which a stabilizing solution
X∗ exists while the Newton–Kleinman method (Algorithm 1) diverges or converges to the
wrong solution. In fact, Algorithm 1 only diverged in experiments in which there was no
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stabilizing X∗. This indicates that Algorithm 1 may always converge to the correct solution;
however, most of the convergence results in Theorem 3.3 will not be true any more for the
case of indefinite R.

A different approach that provides a convergence theory for the case of indefinite R is
the Riccati iteration [16, 44]. This method has been designed to solve Riccati equations with
indefinite quadratic terms of the form

(3.10) ATXE + ETXA+ CTC − ETX(B2B
T
2 −B1B

T
1 )XE = 0.

Note that this Riccati equation (3.10) is contained in the general case (1.1) that we consider here.
The method iterates on stabilizing solutions to Riccati equations with positive semidefinite
quadratic terms of the form

(3.11) AT
kNk+1E+ETNk+1Ak−ETNk+1B2B

T
2Nk+1E+(ETNkB1)(ETNkB1)T = 0,

withAk = A−(B2B
T
2 −B1B

T
1 )XRI

k E and where the iterates are then given via accumulation
such that XRI

k+1 = XRI
k +Nk+1. For the complete Riccati iteration (RI), including the first

initialization step, implementational reformulations, and convergence theory, see [16]. Under
the additional assumption that X∗ ≥ 0 holds, the iterates constructed by the Riccati iteration
converge monotonically towards X∗ as

XRI
0 ≤ · · · ≤ XRI

k ≤ XRI
k+1 ≤ X∗.

Since each of these iterates is computed via a CARE of the form (3.11) with R > 0, this
overall iteration scheme can be interpreted as splitting the two opposing convergence behaviors
for (3.10) in Theorem 3.3 into an inner and an outer iteration. Similar to the Newton methods,
the Riccati iteration provides global quadratic convergence. The main difference from the
results in Theorem 3.3 is that the closed-loop matrix pencils constructed in the outer loop of
the iteration are not guaranteed to be stable, such that additional stabilization might be needed
to employ an inner CARE solver in the large-scale sparse case.

3.4. Inexact Newton with exact line search. Newton’s method with exact line search
was first discussed for dense generalized algebraic Riccati equations in [13]. Based on this
work, Weichelt et al. [17, 69] formulated an inexact low-rank Newton–ADI method with exact
line search, focusing on the representation of solutions in the form X ≈ ZZT. Since, in
this work, we are pointing out advantages of the X ≈ LDLT representation, we provide the
required formulas in this context and show that they can also be evaluated at low cost.

To this end, we may call the kth and (k + 1)th classic Newton–Kleinman iterates Xk

and Xk+1, and note that they are connected via the step matrix Nk, since Xk+1 = Xk +Nk.
Further, we denote the (k + 1)th iterate after line search with the resulting step size ξk as
Xk+1,ξk = Xk + ξkNk. In [69, Chap. 6], using earlier results from [8, 13] for the dense case,
the author shows that the dependence on the step size ξk of the squared Riccati residual norm,
in the kth Newton step, forms a quartic polynomial

(3.12)

fR,k(ξ) = ‖R(Xk+1,ξ)‖2F
= (1− ξ)2

v
(k)
1 + ξ2v

(k)
2 + ξ4v

(k)
3 + 2ξ(1− ξ)v(k)

4

− 2ξ2(1− ξ)v(k)
5 − 2ξ3v

(k)
6 .

The coefficients are expressed in terms of the norms of the Riccati residual and its derivatives
evaluated in the above quantities, and expressed in low-rank form.
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In the context of the equations investigated here, the previous terms become

v
(k)
1 = ‖R(Xk)‖2F = tr((UkPkU

T
k )2) = tr((UT

k UkPk)2),

v
(k)
2 = ‖L(Xk+1)‖2F = tr((Fk+1Gk+1F

T
k+1)2) = tr((FT

k+1Fk+1Gk+1)2),

v
(k)
3 =

∥∥ 1
2R
′′(Xk+1)(Nk, Nk)

∥∥2

F
=
∥∥ETNkBR

−1BTNkE
∥∥2

F

= tr((∆Kk+1R∆KT
k+1)2) = tr((∆KT

k+1∆Kk+1R)2),

v
(k)
4 = 〈R(Xk),L(Xk+1)〉 = tr(UkPkU

T
k Fk+1Gk+1F

T
k+1)

= tr(FT
k+1UkPkU

T
k Fk+1Gk+1),

v
(k)
5 = 〈R(Xk),R′′(Xk+1)(Nk, Nk)〉 = tr(UkPkU

T
k ∆Kk+1R∆KT

k+1)

= tr(∆KT
k+1UkPkU

T
k ∆Kk+1R),

and

v
(k)
6 = 〈L(Xk+1),R′′(Xk+1)(Nk, Nk)〉 = tr(Fk+1Gk+1F

T
k+1∆Kk+1R∆KT

k+1)

= tr(∆KT
k+1Fk+1Gk+1F

T
k+1∆Kk+1R).

This employs the Fréchet derivatives from Section 3.1, and we use that Nk = Xk+1 −Xk.
Consequently, R−1BTNkE = Kk+1 − Kk = ∆Kk+1 holds. Further, we have defined
Uk = [Fk ∆Kk] and

Pk =

[
Gk 0
0 −R

]
to express the Riccati residual in the kth Newton step asR(Xk) = UkPkU

T
k , extending [69,

eq. (6.33b)] to non-trivial center matrices. Here, L(Xk) = FkGkF
T
k denotes the final

Lyapunov residual of the kth Newton step equations. Observe how the cyclic permutation
property of the trace allows one to turn all arguments into the final small dense matrices.

Sorting terms by the powers of ξ in (3.12) leads to five coefficients of the fourth-order
polynomial in standard form. The minimizing argument ξk is computed from the zeros of
dfR,k/dξ. Then, the actual step size is

ξk = argminξ∈Λ(Ã,Ẽ)∩(0,2] fR,k(ξ)

for the 3× 3 generalized eigenvalue problem for the matrix pencil

(Ã, Ẽ) =

 1 0 0
0 1 0
a1 a2 a3

,
1 0 0

0 1 0
0 0 a4

 ,

where a = â/‖â‖ and â ∈ R4 with the components

â1 = 2(v
(k)
4 − v(k)

1 ),

â2 = 2(v
(k)
1 + v

(k)
2 − 2(v

(k)
4 + v

(k)
5 )),

â3 = 6(v
(k)
5 − v(k)

6 ),

â4 = 4v
(k)
3 .

These last steps are exactly identical to the presentation in [17, 69]. Note that additional
care is necessary when multiple consecutive iteration steps use line search since the Riccati
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residual factors grow with the number of consecutive line searches and also ∆Kk+1 appends
a new block of columns, equal to its own size, with each additional line search iteration. See
the discussion in [17] after equation (5.4) for details. In our context, the corresponding center
matrix Pk then block-diagonally accumulates the corresponding center matrices rather than
simple signed identities. Note further that alternatively an Armijo line search can be used, but
then the step size is limited to the interval (0, 1].

While the line search can help reduce the total number of Newton steps required, the cost
of the single steps can be reduced by an inexact Newton approach. The above considerations
ensure the sufficient decrease condition

‖R(Xk+1,ξ)‖F < (1− ξkβ) ‖R(Xk)‖F

for a certain positive safety parameter β. The inexact Newton acceleration, on the other hand,
is controlled by

‖L(Xk+1)‖F < τk ‖R(Xk)‖F

for an appropriate forcing sequence (τk)k∈N. In [69], the author suggests τk = 1/(k3 + 1) to
achieve super-linear convergence and τk = min{0.1, 0.9 ‖R(Xk)‖F } to preserve quadratic
convergence; see [69, Table 6.1]. In general, any sequence τk → 0 for k → ∞ would
guarantee super-linear convergence, while τk ∈ O(R(Xk)) ensures quadratic convergence.
However, note that, while the general low-rank inexact Newton framework builds on the theory
in [33], certain definiteness conditions required in their central theorem cannot be guaranteed
in general in the low-rank case such that the low-rank inexact Newton–Kleinman method may
break down. Implementations need to check this and potentially restart the method without
inexactness.

3.5. Non-invertible E matrices and projected Riccati equations. The examples for
CAREs we have considered in Section 2 are all based on or associated with linear dynamical
systems. A regularly occurring situation is that these dynamical systems are described by
differential–algebraic rather than ordinary differential equations, in which case the E matrix
in (1.1) becomes non-invertible. Assume that the matrix pencil λE −A is regular, i.e., there
exists a λ ∈ C such that det(λE −A) 6= 0. Then, one typically considers the solution of (1.1)
over the subspace of finite eigenvalues of λE −A via the projected Riccati equation

(3.13)

ATXE + ETXA+ PT
r C

TQC Pr
− (BTXE + STPr)TR−1(BTXE + STPr) = 0,

PT
` XP` = X,

where Pr and P` are the right and left projectors onto the subspace of finite eigenvalues
of λE − A. In general, these are given as spectral projectors via the Weierstrass canonical
form of λE − A; see, for example, [25]. While the necessary computations to obtain these
spectral projectors are typically undesired in the large-scale sparse case, for several practically
occurring matrix structures, the projectors have been formulated explicitly in terms of parts of
the coefficient matrices [25, 66].

In practice, a more efficient approach than explicitly forming Pr and P` is the implicit
application of equivalent structural projectors. In this case, the stabilizing solution of (3.13) is
directly computed on the correct lower-dimensional subspace. Similar to the use of the spectral
projectors, the implicit projection can, in practice, only be realized for certain matrix structures,
for which the projectors onto the correct subspaces and truncation of the coefficient matrices
are known by construction; see, for example, [6, 34, 59]. In all cases, it needs to be noted
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that the steps in Algorithm 1 do not change for (3.13). The case of non-invertible E matrices
can typically be implemented by simply modifying the matrix–matrix and matrix–vector
operations needed in Algorithm 1 to work on the correct subspaces.

4. Numerical experiments. The experiments reported here have been executed on a
machine with an AMD Ryzen Threadripper PRO 5975WX 32-core processor running at
4.02 GHz and equipped with 252 GB total main memory. The computer is running on Ubuntu
22.04.3 LTS and uses MATLAB 23.2.0.2365128 (R2023b). The proposed low-rank Newton–
Kleinman method in Algorithm 1 has been implemented for dense equations using MORLAB
version 6.0 [24, 28] and for large-scale sparse equations using M-M.E.S.S. version 3.0 [18, 58].
The resulting modified versions of these two toolboxes as well as the source code, data, and
results of the numerical experiments can be found at [60]. The implementations of Algorithm 1
will be incorporated into the upcoming releases of M-M.E.S.S. and MORLAB.

TABLE 4.1
Overview of example data, matrix dimensions, considered equation setups, and the stability properties of the

matrix pencil λE −A. The first three examples are treated as dense and the last three as large-scale sparse.

Example n m m1 m2 p LQG HINF BR PR Stability

aircraft 55 5 2 3 5 X X — — unstable
rail(1) 371 7 3 4 6 X X X X stable
triplechain(1) 602 1 — — 1 — — X X stable

msd 12 001 1 — — 3 — — X — stable
triplechain(2) 12 002 1 — — 1 — — X X stable
rail(6) 317 377 7 3 4 6 X X X X stable

4.1. Experimental setup. An overview of the used example data with the computed
equation setups and corresponding dimensions is shown in Table 4.1. The used example data
are:

aircraft is the AC10 data set from [46] modeling the linearized vertical-plane dynamics
of an aircraft;

msd is a mass–spring–damper system with a holonomic constraint as described in [50];
rail(1,6) models a heat transfer problem for optimal cooling of steel profiles in two differ-

ently accurate discretizations [22, 52] using the re-implementation [56, 57]; and
triplechain(1,2) is the triplechain oscillator benchmark introduced in [67] with two

different sets of parameters and numbers of masses.

The data set msd has a non-invertible E matrix and is handled via structured implicit
projections as outlined in Section 3.5, following the theory in [59]. To test different scenarios
of matrix pencil properties paired with different weighting terms, we have set up the different
formulations of CAREs as motivated in Section 2. Further on, we denote examples for
equation (2.2) as LQG, equation (2.3) as HINF, equation (2.4) as BR, and equation (2.5) as PR.
The modifications of the example data from the literature to fit into the described equation
types can be found in the accompanying code package [60].
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To compare the solutions of different computational approaches, we evaluate three types
of scaled residual norms that have been used for similar purposes in the literature:

res1(X) =
‖R(X)‖2
‖Ĉ TQ̂ Ĉ‖2

,

res2(X) =
‖R(X)‖2

‖Â‖2‖E‖2‖X‖2 + ‖BR−1BT‖2
,

res3(X) =
‖R(X)‖2

2‖Â‖2‖E‖2‖X‖2 + ‖Ĉ TQ̂ Ĉ‖2 + ‖E‖22‖X‖22‖BR−1BT‖2
,

whereR(·) is the Riccati operator from (3.1),

Ĉ TQ̂ Ĉ = CTQC − SR−1ST and Â = A−BR−1ST.

In the case that multiple algorithms have been used to compute the stabilizing solution to (1.1),
we also compare the relative differences between these solutions via

reldiff(X1, X2) :=
‖X1 −X2‖2

0.5(‖X1‖2 + ‖X2‖2)
.

For compactness of presentation, we introduce the following notation for the different
methods used in the numerical experiments:

NEWTON denotes the Newton–Kleinman method from Algorithm 1;
ICARE is the built-in function from MATLAB for the solution of (1.1) implementing the

algorithm in [5];
SIGN denotes the sign function iteration method for Riccati equations as described in [14];

and
RI is the Riccati iteration for the solution of CAREs with indefinite quadratic terms; see [16].

Independent of the employed algorithm and the resulting format of the computed results, e.g.,
factorized or unfactorized, we denote the final approximation to the stabilizing solution X∗ by
any of the algorithms as Xkmax

.

4.2. Convergence behavior for indefinite terms. Before we test the proposed method on
higher-dimensional data sets against other approaches, we want to investigate the convergence
behavior of Algorithm 1 for the case of indefinite quadratic and constant terms. In particular,
the former case is not covered by any convergence theory for NEWTON.

First, consider the CARE (1.1) with the following matrices

(4.1)
A =

[
2 1
1 −3

]
, B =

[
1 1
0 2

]
, R =

[
−1 0
0 1.5

]
, C =

[
1 1

]
,

E = I2, S = 0, Q = 1.

In this example, we have an unstable matrix pencil λE −A with one eigenvalue in the right
open and one eigenvalue in the left open half-plane. The quadratic weighting term R is
indefinite but the constant weighting term Q is symmetric positive definite. For the stabilizing
solution, it holds that X∗ > 0 such that, besides NEWTON, RI can be used in this example.
Due to the instability, a stabilizing initial feedback K0 is constructed for NEWTON; see [60]
for details. The convergence behavior of NEWTON for (4.1) is shown in Table 4.2. We observe
that, despite the indefinite quadratic term, the iteration provides quadratic convergence and the
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TABLE 4.2
Convergence behavior of the Newton–Kleinman method (NEWTON) for the example (4.1): For each iteration

step, the columns show the normalized residuals, the two eigenvalues of the current closed-loop matrix and the two
eigenvalues of the difference of two consecutive iterates.

Iter. step k res1(Xk) Λ(Ak) Λ(Xk −Xk−1)

1 5.3610e-01 −1.1049, −4.5676 —
2 3.5593e-02 −1.4100, −4.2395 3.7386e+00, −1.9830e-03
3 6.0872e-05 −1.4068, −4.2451 −5.0004e-02, 2.6109e-05
4 1.5903e-10 −1.4068, −4.2451 6.6211e-05, 1.1112e-09
5 2.1316e-14 −1.4068, −4.2451 −1.3313e-10, −1.8760e-15

TABLE 4.3
Residual norms for all test examples and comparison methods in Section 4.2. NEWTON provides as accurate

or even more accurate solutions compared to the standard approach ICARE. RI only works for the first considered
scenario and diverges for the second one.

Example Method res1(Xkmax) res2(Xkmax) res3(Xkmax)

NEWTON 9.5151e-15 2.2825e-16 8.7894e-18
(4.1) ICARE 3.5804e-15 8.5887e-17 3.3073e-18

RI 3.1979e-12 7.6713e-14 2.9540e-15

NEWTON 1.9453e-14 3.4368e-16 1.2723e-17
(4.2) ICARE 6.0957e-13 1.0770e-14 3.9870e-16

RI 1.7227e+40 2.5740e+19 8.3380e-02

(4.3) NEWTON 3.2437e-17 3.0279e-17 9.9467e-18
ICARE 1.9624e-16 1.8318e-16 6.0177e-17

intermediate closed-loop matrices Ak = A − BKk are all stable. However, the monotonic
convergence behavior that is theoretically shown for definite R matrices is clearly not present
in this example, since the eigenvalues of Xk − Xk−1 have different signs for two of the
iteration steps. Also, the definiteness of Xk −Xk−1 fully changes from step 4 to 5.

As additional verification that Algorithm 1 computes the correct, stabilizing solution, we
compare it to solutions obtained via ICARE and RI. The corresponding residuals are given in
the first block of Table 4.3 and the relative differences are

reldiff(XNEWTON
kmax

, XICARE
kmax

) = 8.8968e-15,

reldiff(XNEWTON
kmax

, XRI
kmax

) = 1.0286e-13,

reldiff(XICARE
kmax

, XRI
kmax

) = 1.1175e-13.

This clearly shows that all methods approximate the same stabilizing solution.
Now, we modify the example data by increasing the positive definite part of the R matrix

in (4.1) such that we have now

(4.2)
A =

[
2 1
1 −3

]
, B =

[
1 1
0 2

]
, R =

[
−1 0
0 2

]
, C =

[
1 1

]
,

E = I2, S = 0, Q = 1.
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TABLE 4.4
Convergence behavior of the Newton–Kleinman method (NEWTON) for the example (4.2): For each iteration

step, the columns show the normalized residuals, the two eigenvalues of the current closed-loop matrix, and the two
eigenvalues of the difference of two consecutive iterates.

Iter. step k res1(Xk) Λ(Ak) Λ(Xk −Xk−1)

1 1.3423e+01 2.3071, −7.8315 —
2 3.1646e-01 −4.1113, −1.4164 −1.3696e+02, −7.4641e-04
3 8.2620e-03 −4.0451, −1.4620 −7.8472e-01, 2.3569e-04
4 1.9458e-06 −4.0448, −1.4626 −8.1348e-03, 7.4808e-08
5 3.3469e-14 −4.0448, −1.4626 1.5635e-06, 1.1925e-11

TABLE 4.5
Convergence behavior of the Newton–Kleinman method (NEWTON) for the example (4.3): For each iteration

step, the columns show the normalized residuals, the two eigenvalues of the current closed-loop matrix, and the two
eigenvalues of the difference of two consecutive iterates.

Iter. step k res1(Xk) Λ(Ak) Λ(Xk −Xk−1)

1 1.9109e-01 −3.3289, −0.8111 —
2 1.4573e-02 −3.2914, −0.5227 −3.3630e-01, −1.3069e-02
3 7.0984e-04 −3.2887, −0.4383 −5.9143e-02, −9.6054e-04
4 5.7445e-06 −3.2886, −0.4301 −5.0185e-03, −7.8659e-06
5 5.0562e-10 −3.2886, −0.4300 −4.6517e-05, −4.3494e-09
6 3.0792e-17 −3.2886, −0.4300 −4.2059e-09, −2.1477e-14

Similar to (4.1), we consider the case of an indefinite weighting matrix in the quadratic term
of (1.1); however, the change in the data results in the stabilizing solution X∗ being indefinite.
The convergence behavior of NEWTON for this case is shown in Table 4.4. As in the previous
example, the convergence is quadratic towards the stabilizing solution and the iterates do not
show any monotonicity. Additionally, we do not have the stability of all closed-loop matrices
during the iteration as the one computed in the first step is clearly unstable. We do not expect
RI to work for this case due to X∗ being indefinite and, in fact, we see in the second block
row of Table 4.3 that RI does not converge to a solution of (1.1). However, NEWTON clearly
converges to the correct solution with a relative difference from the solution computed by
ICARE of

reldiff(XNEWTON
kmax

, XICARE
kmax

) = 5.6279e-15.

As the final preliminary example, we want to investigate the effect of an indefinite constant
term. Therefore, we modify the previous example as follows:

(4.3)
A =

[
2 1
1 −3

]
, B =

[
1
1

]
, Q =

[
1 0
0 −2

]
, C =

[
1 1
0 2

]
,

E = I2, S = 0, R = 1.

Since we have already seen the effects of an indefinite quadratic term, we consider here R > 0
for simplicity. The stabilizing solution in this example is indefinite again. Table 4.5 shows the
convergence behavior of NEWTON for this example case. We see exactly what was expected
from Theorem 3.3: the closed-loop matrices are stable in all steps, and the convergence is
quadratic and monotonic. Since RI has not been extended to the case of indefinite constant
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TABLE 4.6
Residual norms for all dense test examples and comparison methods in Section 4.3.1. NEWTON provides

reasonably accurate and often the most accurate approximations compared to SIGN and ICARE.

Example Method res1(Xkmax) res2(Xkmax) res3(Xkmax)

NEWTON 4.1073e-08 1.3682e-20 4.5781e-27
aircraft (LQG) SIGN 2.6483e-05 8.8220e-18 2.9519e-24

ICARE 1.0713e-07 3.5686e-20 1.1941e-26

NEWTON 7.4736e-07 2.4035e-20 9.7826e-26
aircraft (HINF) SIGN 3.0047e-06 9.6631e-20 3.9330e-25

ICARE 1.9949e-05 6.4155e-19 2.6112e-24

NEWTON 7.5678e-14 1.0229e-14 8.8312e-16
rail(1) (LQG) SIGN 3.1905e-10 4.3122e-11 3.7231e-12

ICARE 2.0819e-13 2.8139e-14 2.4294e-15

NEWTON 2.4749e-12 4.0514e-13 8.6384e-16
rail(1) (HINF) SIGN 5.5336e-10 9.0584e-11 1.9314e-13

ICARE 5.4824e-14 8.9746e-15 1.9136e-17

NEWTON 1.5986e-13 1.4855e-14 6.2186e-15
rail(1) (BR) SIGN 3.1304e-14 2.9089e-15 1.2178e-15

ICARE 1.3867e-13 1.2886e-14 5.3943e-15

NEWTON 9.3161e-12 6.4179e-13 2.3614e-13
rail(1) (PR) SIGN 4.3343e-10 2.9859e-11 1.0986e-11

ICARE 6.4693e-14 4.4567e-15 1.6398e-15

NEWTON 3.6923e-11 3.0799e-16 1.5397e-16
triplechain(1)(BR) SIGN 9.2343e-11 7.7027e-16 3.8506e-16

ICARE 1.6221e-10 1.3531e-15 6.7641e-16

NEWTON 6.4378e-12 6.9411e-17 1.4807e-15
triplechain(1)(PR) SIGN 3.6829e-12 3.9708e-17 8.4708e-16

ICARE 1.6286e-11 1.7559e-16 3.7457e-15

terms and the solution is not positive semidefinite, we omit the analogous computations with
this method here and only provide the results of ICARE instead. The residual norms can be
found in the third block row of Table 4.3 and the relative difference between the solutions
computed by NEWTON and ICARE is

reldiff(XNEWTON
kmax

, XICARE
kmax

) = 8.8968e-15.

Both methods appear to approximate the same stabilizing solution.

4.3. Numerical comparisons. In this section, we compare the proposed algorithm with
established solvers on different benchmark data sets from the literature and equation scenarios.
While we concentrate on examples with small-scale dense coefficient matrices in the first
part to establish trust into the proposed NEWTON method, we present results for large-scale
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TABLE 4.7
Relative differences for the dense test examples in Section 4.3.1. All differences are reasonably low such that

numerically we can rely on the results provided by NEWTON.

Example reldiff(XNEWTON
kmax

, XSIGN
kmax

) reldiff(XNEWTON
kmax

, XICARE
kmax

)

aircraft (LQG) 1.5687e-12 5.2915e-14
aircraft (HINF) 3.4874e-13 5.4917e-13
rail(1) (LQG) 3.3423e-10 1.0539e-11
rail(1) (HINF) 8.0362e-10 8.0170e-10
rail(1) (BR) 9.2682e-13 9.2764e-13
rail(1) (PR) 6.4985e-10 6.6590e-10
triplechain(1)(BR) 2.3524e-11 4.8920e-11
triplechain(1)(PR) 1.7659e-12 1.1858e-10

sparse matrices afterwards. The inexact Newton–Kleinman method with line search has been
implemented for the large-scale sparse case. However, we have observed some inconsistent
behavior concerning the considered example setups, due to which we have decided to present
only the results for the exact Newton–Kleinman method.

4.3.1. Examples with dense coefficient matrices. An overview of the experiments
presented in this section is given in the first block row of Table 4.1. We decided to start
by experimenting with small-scale dense coefficient matrices since, for this case, there are
well-established solvers that can handle the general case (1.1), which we consider in this paper.
Such a variety of methods is not given for large-scale sparse matrices; therefore, here, we
numerically establish trust in the solutions obtained by NEWTON and show that they provide
reasonable accuracy in comparison to other approaches.

As inner solver for the occurring Lyapunov equations, we use the LDLT-factorized
sign function iteration method [27, Alg. 7] from the MORLAB toolbox [24, 28]. For the
comparison, we have selected SIGN and ICARE as two well-established approaches for
general CAREs with dense coefficient matrices. The results of the experiments are shown in
Table 4.6 in the form of the residual norms for the different methods and in Table 4.7, which
shows the relative differences between the solutions computed by the different approaches.
For further experimental metrics such as the number of iteration steps taken by NEWTON and
SIGN, computation times, and more, we refer the reader to the log files of the experiments in
the accompanying code package [60].

Overall, we can evaluate that NEWTON performs comparably well or even best among
all those methods. Note that we used 10−12 as convergence tolerance for the normalized
residual norm internally computed by NEWTON such that we do not expect much smaller
values for res1(Xkmax

) in Table 4.6. Despite that, NEWTON shows in various examples up to
one order of magnitude better residuals than ICARE and often several orders of magnitude
better residuals than SIGN. The relative differences in Table 4.7 show numerically that all
three methods approximate the same stabilizing solution to the example equations and provide
similar solutions with many significant digits of accuracy in common. With these results at
hand, we believe that applying NEWTON in the large-scale sparse setting will provide correct
as well as sufficiently accurate solutions.

4.3.2. Examples with large-scale sparse coefficient matrices. Now we consider the
case of CARE examples with large-scale sparse coefficient matrices. An overview of these
experiments is given in the second block row of Table 4.1. Whenever possible, we used RI as
comparison method where we chose RADI as solver for the Riccati equations with positive
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TABLE 4.8
Residual norms for all sparse test examples and comparison methods in Section 4.3.2. NEWTON provides very

accurate approximations throughout all examples with residual norms up to eight orders of magnitude smaller than
RI.

Example Method res1(Xkmax) res2(Xkmax) res3(Xkmax)

msd (BR) NEWTON 2.1781e-13 1.4945e-17 1.8157e-19
RI 1.6943e-08 1.1626e-12 1.4124e-14

triplechain(2)(BR) NEWTON 7.0476e-13 7.5953e-21 3.4138e-21
RI 3.6606e-05 3.9451e-13 1.7732e-13

triplechain(2)(PR) NEWTON 5.0010e-13 4.6881e-21 3.5724e-24
RI 3.4240e-05 3.2098e-13 2.4459e-16

rail(6) (LQG) NEWTON 9.6445e-13 6.6215e-14 2.8035e-14

rail(6) (HINF) NEWTON 4.5192e-13 2.8799e-14 1.4346e-15
RI 1.1576e-10 7.3768e-12 3.6748e-13

rail(6) (BR) NEWTON 8.8948e-14 4.6198e-15 2.2423e-15
RI 1.6442e-10 8.5396e-12 4.1448e-12

rail(6) (PR) NEWTON 2.8870e-13 5.3150e-16 2.6375e-16
RI 5.7022e-09 1.0498e-11 5.2095e-12

TABLE 4.9
Relative differences for all sparse examples in Section 4.3.2. All differences are reasonably low such that

numerically we can rely on the results provided by NEWTON. Due to the lack of comparison methods, relative
differences could not be provided for all test scenarios.

Example reldiff(XNEWTON
kmax

, XRI
kmax

)

msd (BR) 1.8490e-12
triplechain(2)(BR) 6.9416e-11
triplechain(2)(PR) 6.9221e-11
rail(6) (HINF) 5.4646e-10
rail(6) (BR) 4.9422e-08
rail(6) (PR) 8.6206e-10

semidefinite quadratic terms occurring in each step of the iteration. For the implementation of
NEWTON, we use the LDLT-factorized ADI method [43] as the solver of the inner Lyapunov
equations. The iterations are stopped when the implicitly computed res1 are below the
convergence tolerance 10−12. In RI, on the other hand, we use the RADI method [11] to solve
the occurring classical Riccati equations as efficiently as possible.

The residual norms of the computed results are shown in Table 4.8, the relative differences
for examples in which NEWTON and RI could be applied can be found in Table 4.9, and
Table 4.10 shows the number of performed iteration steps for the two compared methods.

The residual norms in Table 4.8 show NEWTON to provide accurate solutions to all
example equations. It is clear that, in all examples, NEWTON provides residual norms that
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TABLE 4.10
Numbers of performed iteration steps for all sparse test examples and comparison methods in Section 4.3.2.

Example # NEWTON iter. steps # RI iter. steps

msd (BR) 6 4
triplechain(2)(BR) 2 2
triplechain(2)(PR) 4 4
rail(6) (LQG) 9 —
rail(6) (HINF) 11 3
rail(6) (BR) 6 3
rail(6) (PR) 7 6

are at least three orders of magnitude better than those of the solutions provided by RI. One
possible explanation for these results is that, in RI, the overall solution is accumulated via
column concatenation and truncation. This easily leads to the loss of numerical accuracy,
especially in the cases when the stabilizing solution is badly conditioned. For rail(6) (LQG),
we could not use RI for the comparison, since the constant term in this example is indefinite
by construction. The stabilizing solution, however, is numerically positive semidefinite.

The convergence behavior of NEWTON and RI for the example equations on the data set
rail(6) is illustrated in Figure 4.1. These and similar plots for the other sparse examples
can be found in the accompanying code package [60]. The plots show that, for the cases for
which RI was applicable, it strongly outperformed NEWTON in terms of computation time.
This is a result of the choice for the internal CARE solver in RI, which in our experiments was
the RADI method [11]. The residuals shown are those that the methods implicitly compute
during the iterations to determine convergence. Comparing these plots with Table 4.8 reveals
that the residuals internally computed by RI strongly diverge from the actual normalized
residual norm res1(Xkmax

), which is several orders of magnitude larger. On the other hand,
for NEWTON the results seem to coincide very well.

5. Conclusions. In this work, we presented a new formulation of the Newton–Kleinman
iteration for solving general continuous-time algebraic Riccati equations with large-scale
sparse coefficient matrices using low-rank indefinite symmetric LDLT factorizations of the
solution. For relevant scenarios from the literature, we could show the theoretical convergence
of the algorithm. We provided updated formulas for an exact line search procedure and inexact
inner solves, and we outlined how to handle the case of projected algebraic Riccati equations
occurring for matrix pencils with infinite eigenvalues. The numerical experiments show that
our proposed algorithm provides reliable and accurate solutions to the considered problem,
and that, even in the cases for which we could not provide a convergence theory, the algorithm
appears to work perfectly fine.

While we were able to provide convergence results for many of the practically occurring
cases, the convergence behavior for the case of indefinite quadratic terms remains unsolved.
The numerical results suggest that, even in this situation, the proposed Newton–Kleinman
method converges to the correct solution. However, the lack of monotonicity in the constructed
iterates prevents the use of established strategies for proving convergence. Also, we have
observed in our experiments that, while the new Newton–Kleinman iteration outperformed all
comparable methods (if there were any at all) in terms of accuracy, it could not compete in the
large-scale sparse case with the computational speed of the Riccati iteration that employed
the RADI method as inner solver. Therefore, we are interested in investigating possible
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FIG. 4.1. Convergence of NEWTON and RI for all example equations with the rail(6) data set: We can see
that, in all examples where it was applicable, RI obtains its final approximation significantly faster than NEWTON.
This comes from the use of RADI as underlying solver. However, the shown implicit residual computed by RI is not
accurate, as shown in Table 4.8.

extensions of other, potentially faster-performing, methods to the case of general algebraic
Riccati equations.
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