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Abstract. For antisymmetric tensors, the paper examines a low-rank approximation that is represented via only
three vectors. We describe a suitable low-rank format and propose an alternating least-squares structure-preserving
algorithm for finding such an approximation. Moreover, we show that this approximation problem is equivalent to the
problem of finding the best multilinear low-rank antisymmetric approximation and, consequently, equivalent to the
problem of finding the best unstructured rank-1 approximation. The case of partial antisymmetry is also discussed.
The algorithms are implemented in the Julia programming language and their numerical performance is discussed.
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1. Introduction. Tensor decompositions have been extensively studied in recent years [2,
9, 10, 19, 22]. However, the research has mostly been focused on either unstructured or sym-
metric [7, 21] tensors. In this paper we explore antisymmetric tensors, their CP decomposition,
and algorithms for the low-rank approximation.

The idea of the CP decomposition is to write a tensor as a sum of its rank-1 components.
It was first introduced by Hitchcock [17, 18] in 1927, but it only became popular in the 1970s
as CANDECOMP (canonical decomposition) [5] and PARAFAC (parallel factors) [16]. This
decomposition is closely related to the tensor rank R, which is defined as the minimal number
of rank-1 summands in the exact CP decomposition. Contrary to the matrix case, the rank of a
tensor can exceed its dimension, and it can be different over R and over C. It is known that
the problem of finding the rank of a given tensor is NP-hard.

When computing the CP approximation, the main question is the choice of the number
of rank-1 components. Given the antisymmetric structure of our tensors in question, we
impose an additional constraint on the CP decomposition. This constraint assures that the
resulting tensor is, indeed, antisymmetric, and it gives a bound on the minimal number of
rank-1 components.

We focus on tensors of order 3. For a given antisymmetric tensor A ∈ Rn×n×n our goal
is to find its low-rank antisymmetric approximation that is represented via only three vectors.
In particular, we are looking for the approximation Ã of A such that rank(Ã) ≤ 6 for any n,
and

Ã =
1

6
(x ◦ y ◦ z + y ◦ z ◦ x+ z ◦ x ◦ y − x ◦ z ◦ y − y ◦ x ◦ z − z ◦ y ◦ x),

where x, y, z ∈ Rn. We propose an alternating least-squares structure-preserving algorithm for
solving this problem. The algorithm is based on solving a minimization problem in each tensor
mode. We compare our algorithm with a “naive” idea which uses a posteriori antisymmetriza-
tion. Further on, we show that our approximation problem is equivalent to the problem of
the best multilinear rank-3 structure-preserving antisymmetric tensor approximation from [3]
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and, consequently, equivalent to the problem of the best unstructured rank-1 approximation.
This establishes the equivalence between our algorithm and the higher-order power method
(HOPM). Therefore, the corresponding convergence result for the HOPM from [30] can be
applied.

Additionally, we study tensors with partial antisymmetry, that is, antisymmetry in only
two modes. Similarly to what we do for the tensors that are antisymmetric in all modes, we
first determine a suitable format of the CP decomposition that is going to be simpler for the
partial antisymmetry. Based on this format, for a given tensor C ∈ Rn×n×m antisymmetric in
two modes, we look for its approximation C̃ of the same structure such that C̃ is represented
by three vectors and rank(C̃) = 2.

In Section 2 we introduce the notation and preliminaries. Our problem of antisymmetric
tensor approximation is described in Section 3. In Section 4 we describe the approach with
a posteriori antisymmetrization, while in Section 5 we propose the algorithm for solving the
minimization problem from Section 3. Section 6 deals with the case of partial antisymmetry.
In Section 7 we discuss our numerical results obtained in the Julia programming language;
finally, the conclusion is given in Section 8.

2. Notation and preliminaries. Throughout the paper we denote tensors by calligraphic
letters, e.g.,A. We refer to the tensor dimension as its order. Then, forA ∈ Rn1×n2×···×nd we
say thatA is a tensor of order d. TensorA ∈ Rn1×n2×···×nd is cubical if n1 = n2 = · · · = nd.
Vectors obtained from a tensor by fixing all indices except the mth one are called mode-m
fibers. The fibers of an order-3 tensor are columns (mode-1 fibers), rows (mode-2 fibers), and
tubes (mode-3 fibers). Matrices obtained from a tensor by fixing all indices except two are
called slices. The matrix representation of a tensor A ∈ Rn1×n2×···×nd is called mode-m
matricization and is denoted by A(m). It is obtained by arranging the mode-m fibers of A as
columns of A(m).

The mode-m product of a tensor A ∈ Rn1×n2×···×nd with a matrix M ∈ Rp×nm is a
tensor B ∈ Rn1×···×nm−1×p×nm+1×···×nd , i.e..,

B = A×mM, such that B(m) = MA(m).

The tensor norm is a generalization of the Frobenius norm. For A ∈ Rn1×n2×···×nd we have

‖A‖ =

√√√√ n1∑
i1=1

n2∑
i2=1

· · ·
nd∑
id=1

a2i1i2...id .

The inner product of two tensors A,B ∈ Rn1×n2×···×nd is given by

〈A,B〉 =

n1∑
i1=1

n2∑
i2=1

· · ·
nd∑
id=1

ai1i2...idbi1i2...id .

The vector outer product is denoted by ◦. A tensor A ∈ Rn1×n2×···×nd is a rank-1 tensor if it
can be written as the outer product of d vectors,

A = v(1) ◦ v(2) ◦ · · · ◦ v(d).

Then

ai1i2...id = v
(1)
i1
v
(2)
i2
· · · v(d)id

, 1 ≤ ik ≤ nk, 1 ≤ k ≤ d.

The Khatri–Rao product of two matrices A ∈ Rm×n and B ∈ Rp×n is defined as

A�B =
[
a1 ⊗ b1 a2 ⊗ b2 · · · an ⊗ bn

]
∈ R(mp)×n,
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where ak and bk denote the kth columns of A and B, respectively. The Hadamard (element-
wise) product of two matrices A,B ∈ Rm×n is defined as

A ∗B =


a11b11 a12b12 · · · a1nb1n
a21b21 a22b22 · · · a2nb2n

...
...

. . .
...

am1bm1 am2bm2 · · · amnbmn

 ∈ Rm×n.

The Moore–Penrose inverse of A is denoted by A+.
For a tensor A ∈ Rn1×n2×n3 , its CP approximation takes the form

(2.1) A ≈
r∑
i=1

(xi ◦ yi ◦ zi),

where xi ∈ Rn1 , yi ∈ Rn2 , and zi ∈ Rn3 . If we arrange vectors xi, yi, zi (i = 1, . . . , r) into
matrices

X =
[
x1 x2 · · · xr

]
, Y =

[
y1 y2 · · · yr

]
, Z =

[
z1 z2 · · · zr

]
,

then relation (2.1) can be written as

(2.2) A ≈ [[X,Y, Z]] =

r∑
i=1

(xi ◦ yi ◦ zi).

The smallest number r in the exact CP decomposition (2.2) is called the tensor rank. We write
rank(A) = r.

The most commonly used algorithm for computing the CP approximation is the alternating
least-squares (ALS) algorithm (see, e.g., [22]). In Algorithm 1 we give the CP-ALS algorithm
for order-3 tensors.

Algorithm 1 CP-ALS.
Input: A ∈ Rn×n×n, r ∈ N
Output: X,Y, Z ∈ Rn×r
Initialize X,Y, Z as leading r left singular vectors of A(i), i = 1, 2, 3, respectively.
repeat

X = A(1)(Z � Y )(Y TY ∗ ZTZ)+

Y = A(2)(Z �X)(XTX ∗ ZTZ)+

Z = A(3)(Y �X)(XTX ∗ Y TY )+

until convergence or maximum number of iterations

3. Problem description. A cubical tensor is symmetric (sometimes also called super-
symmetric) if its elements are invariant to any permutation of indices. On the contrary, a
cubical tensor is antisymmetric if its elements change sign when permuting pairs of indices. In
particular, an order-3 tensor A ∈ Rn×n×n is antisymmetric if

(3.1) aijk = ajki = akij = −aikj = −ajik = −akji, 1 ≤ i, j, k ≤ n.

Such tensors are also called alternating 3-tensors Λ3(Rn) [23], or 3-vectors [14]. The anti-
symmetric tensors appear in applications such as quantum chemistry [27] and electromag-
netism [26]. Besides, they are interesting from the mathematical point of view [3, 15]. From
the definition of the antisymmetric tensor A, it obviously follows that:
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(i) In all modes, all slices of A are antisymmetric matrices.
(ii) In all modes, all slices have one null column and one null row.

(iii) An antisymmetric tensor is data-sparse in the sense that many of its non-zero elements
are the same, up to the sign.

These facts are useful when it comes to the implementation of specific algorithms.
We can define the antisymmetrizer “anti” as the orthogonal projection of a general cubical

order-d tensor B to the subspace of antisymmetric tensors. Then, A = anti(B) is an order-d
tensor given by

A(i1, i2, . . . , id) :=
1

d!

∑
p∈π(d)

sign(p)B(p(i1), p(i2), . . . , p(id)),

where π(d) denotes the set of all permutations of length d. Hence, for d = 3, B ∈ Rn×n×n,
and A = anti(B) we have

(3.2) aijk =
1

6
(bijk + bjki + bkij − bikj − bjik − bkji).

Let A ∈ Rn×n×n be an antisymmetric tensor of order 3. Take a triplet of indices (i, j, k),
1 ≤ i < j < k ≤ n. It follows from (3.1) that a subtensor Â of A obtained at the intersection
of the ith, jth, and kth column, row, and tube is of the form

Â = αE ,

where α ∈ R and E is a 3× 3× 3 tensor such that

E(i1, i2, i3) =


1, if the indices make an even permutation of (1, 2, 3),
−1, if the indices make an odd permutation of (1, 2, 3),

0, if two or more indices are equal.

The tensor E is called the Levi-Civita tensor [12]. We can also write E using its matricization

(3.3) E(1) =

 0 0 0 0 0 −1 0 1 0
0 0 1 0 0 0 −1 0 0
0 −1 0 1 0 0 0 0 0

 .
Obviously, E is the simplest possible antisymmetric non-zero order-3 tensor.

For three given vectors x, y, z ∈ Rn we define an n × n × n antisymmetric tensor
associated to these vectors as

(3.4) A6(x, y, z) :=
1

6
(x ◦ y ◦ z + y ◦ z ◦ x+ z ◦ x ◦ y− x ◦ z ◦ y− y ◦ x ◦ z − z ◦ y ◦ x).

Note that tensor E is a special case of the antisymmetric tensorA6(x, y, z). For x = [6, 0, 0]T ,
y = [0, 1, 0]T , and z = [0, 0, 1]T , we get A6(x, y, z) = E . Moreover, for a rank-1 tensor
T = [[x, y, z]], we have A6(x, y, z) = anti(T ). The tensor format (3.4) can be favorable
because it represents an antisymmetric tensor via only three vectors, that is, 3n entries.
On the other hand, the standard form of an n × n × n antisymmetric tensor contains

(
n
3

)
different entries. Besides, tensor A6(x, y, z) is a low-rank tensor. For any size n, we have
rank(A6(x, y, z)) ≤ 6.

Our goal is to approximate a given antisymmetric tensorA with a low-rank antisymmetric
tensor of the form (3.4). We demonstrate two approaches. The “naive” one is given in Section 4.
Then, in Section 5 we formulate this problem as a minimization problem. For a given non-zero
antisymmetric tensor A ∈ Rn×n×n, we are looking for a tensor Ã = A6(x, y, z), i.e., vectors
x, y, z ∈ Rn, such that

‖A − Ã‖2 → min .
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4. CP-ALS with a posteriori antisymmetrization. First we describe the naive approach.
The process is made up of two steps.

Step 1: Using the CP-ALS algorithm (Algorithm 1), which ignores the tensor structure, find a
rank-1 approximation Ā of A,

Ā = [[x, y, z]], rank(Ā) = 1.

Step 2: Apply the antisymmetrizer (3.2) on Ā to obtain Ã in the form (3.4),

Ã = anti(Ā),

that is,

Ã = A6(x, y, z).

This procedure is given in Algorithm 2. We do not need to form the tensor Ā explicitly.

Algorithm 2 CP with a posteriori antisymmetrization.
Input: A ∈ Rn×n×n antisymmetric
Output: Ã = A6(x, y, z)
Apply Algorithm 1 on A with r = 1 to obtain x, y, z ∈ Rn
Ã = A6(x, y, z)

Obviously, using a rank-1 intermediate tensor produces an unnecessarily large approxima-
tion error. However, it can be easily shown that, if the error of the rank-1 approximation is
bounded by some ε > 0, the resulting error will also be bounded by ε.

5. Antisymmetry-preserving CP algorithm. For a given antisymmetric tensor A ∈
Rn×n×n we are looking for vectors x, y, z ∈ Rn such that

(5.1) ‖A −A6(x, y, z)‖2 → min .

Contrary to Algorithm 1, here we develop a new structure-preserving low-rank approximation
algorithm. Our algorithm uses the ALS approach, that is, we are solving an optimization
problem in each mode. It results in a tensor of the form (3.4) and there is no need to apply the
antisymmetrizer. ALS algorithms are widely used to address different multilinear minimization
problems [8, 29, 11, 13], including the ones regarding the CP approximation [1, 24, 20]. There
is also a very recent extension to the antisymmetric case [28], but both the problem and the
algorithm are different from ours.

Set

a =

xy
z

 ∈ R3n.

Then, similarly to what was done in [1], we define the objective function f : R3n → R as

(5.2) f(a) = 6‖A −A6(x, y, z)‖2.

We consider three partial minimization problems:

(5.3) min
x
f(a), min

y
f(a), min

z
f(a).
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Before we formulate the algorithm, we need to prove Theorem 5.1 below. It gives three
reformulations of the objective function f that we are going to use in order to find the solutions
of the problems (5.3).

Observe that, since A6(x, y, z) is linear in x, y, and z, the objective function is quadratic
in x, y, and z. The approximation problem becomes a quadratic optimization problem. Here
we derive the quadratic forms explicitly. However, it is worth mentioning that the underlying
linearity opens the possibilities of extension to more general settings.

In order to simplify the statement of the theorem, we define the following objects: the
matrices Q(1) = Q(1)(y, z), Q(2) = Q(2)(x, z), Q(3) = Q(3)(x, y) ∈ Rn×n,

Q(1) = 2
(
(‖y‖22‖z‖22 − 〈y, z〉2)In + (yzT − zyT )2

)
,(5.4)

Q(2) = 2
(
(‖z‖22‖x‖22 − 〈z, x〉2)In + (zxT − xzT )2

)
,(5.5)

Q(3) = 2
(
(‖x‖22‖y‖22 − 〈x, y〉2)In + (xyT − yxT )2

)
,(5.6)

the vectors c(1) = c(1)(y, z), c(2) = c(2)(x, z), c(3) = c(3)(x, y) ∈ Rn,

c(1) = −12A×2 y
T ×3 z

T ,(5.7)

c
(2)
i = −12A×2 z

T ×3 x
T ,(5.8)

c
(3)
i = −12A×2 x

T ×3 y
T ,(5.9)

and the real number

(5.10) d = 6‖A‖2.

THEOREM 5.1. The function f defined by (5.2) can be written as

f(a) = d+ (c(1))Tx+
1

2
xTQ(1)x,(5.11)

= d+ (c(2))T y +
1

2
yTQ(2)y,(5.12)

= d+ (c(3))T z +
1

2
zTQ(3)z,(5.13)

for Q(1), Q(2), Q(3) ∈ Rn×n, c(1), c(2), c(3) ∈ Rn, and d ∈ R defined by the relations (5.4)–
(5.10).

Proof. First, we can write the function f from (5.2) as

f(a) = 6‖A‖2 − 2〈A, 6A6(x, y, z)〉+
1

6
‖6A6(x, y, z)‖2

= 6f1(a)− 2f2(a) +
1

6
f3(a),(5.14)

where

f1(a) = ‖A‖2,
f2(a) = 〈A, x ◦ y ◦ z + y ◦ z ◦ x+ z ◦ x ◦ y − x ◦ z ◦ y − y ◦ x ◦ z − z ◦ y ◦ x〉,(5.15)

f3(a) = ‖x ◦ y ◦ z + y ◦ z ◦ x+ z ◦ x ◦ y − x ◦ z ◦ y − y ◦ x ◦ z − z ◦ y ◦ x‖2.(5.16)

For the function f2 we have

f2(a) =

n∑
i,j,k=1

aijk(xiyjzk + yizjxk + zixjyk − xizjyk − yixjzk − ziyjxk)
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=

n∑
i=1

xi

n∑
j,k=1

aijkyjzk +

n∑
k=1

xk

n∑
i,j=1

aijkyizj

+

n∑
j=1

xj

n∑
i,k=1

aijkziyk +

n∑
i=1

xi

n∑
j,k=1

(−aijk)zjyk

+

n∑
k=1

xk

n∑
i,j=1

(−aijk)ziyj +

n∑
j=1

xj

n∑
i,k=1

(−aijk)yizk.

We rename the indices in the upper expression and use the fact that A is antisymmetric. We
get

f2(a) =

n∑
i=1

xi

n∑
j,k=1

aijkyjzk +

n∑
i=1

xi

n∑
j,k=1

ajkiyjzk

+

n∑
i=1

xi

n∑
j,k=1

akijyjzk +

n∑
i=1

xi

n∑
j,k=1

(−aikj)yjzk

+

n∑
i=1

xi

n∑
j,k=1

(−akji)yjzk +

n∑
i=1

xi

n∑
j,k=1

(−ajik)yjzk

= 6

n∑
i=1

xi

n∑
j,k=1

aijkyjzk.(5.17)

Next, we write the function f3 as

(5.18) f3(a) =

n∑
i,j,k=1

(xiyjzk + yizjxk + zixjyk − xizjyk − yixjzk − ziyjxk)2.

After regrouping the summands and renaming the indices, as we did for f2, it follows
from (5.18) that

f3(a) = 6

n∑
i=1

x2i

(
n∑

j,k=1

y2j z
2
k

)
− 6

n∑
i=1

x2i

(
n∑

j,k=1

yjykzjzk

)

+ 12

n∑
i,j=1

xixj

(
n∑
k=1

yiykzjzk

)
− 6

n∑
i,j=1

xixj

(
n∑
k=1

yiyjz
2
k

)

− 6

n∑
i,j=1

xixj

(
n∑
k=1

y2kzizj

)

=

n∑
i=1

x2i

(
6

n∑
j=1

y2j

n∑
k=1

z2k − 6

(
n∑
j=1

yjzj

)2)

+

n∑
i,j=1

xixj

(
12

n∑
k=1

yiykzjzk − 6

n∑
k=1

yiyjz
2
k − 6

n∑
k=1

y2kzizj

)

=

n∑
i=1

x2i

(
6

n∑
j=1

y2j

n∑
k=1

z2k − 6

(
n∑
j=1

yjzj

)2
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+ 12yizi

n∑
k=1

ykzk − 6y2i

n∑
k=1

z2k − 6z2i

n∑
k=1

y2k

)

+

n∑
i,j=1
i<j

xixj

(
12yizj

n∑
k=1

ykzk + 12ziyj

n∑
k=1

ykzk

− 12yiyj

n∑
k=1

z2k − 12zizj

n∑
k=1

y2k

)
.

That is,

f3(a) =

n∑
i=1

x2i
(
6‖y‖22‖z‖22 − 6〈y, z〉2 + 12yizi〈y, z〉 − 6y2i ‖z‖22 − 6z2i ‖y‖22

)
+

n∑
i,j=1
i<j

xixj
(
12(yizj + ziyj)〈y, z〉 − 12yiyj‖z‖22 − 12zizj‖y‖22

)
.(5.19)

Then, we can set

d = 6f1(a),

(c(1))Tx = −2f2(a),

1

2
xTQ(1)x =

1

6
f3(a).

From the relations (5.14), (5.17), and (5.19) we get the assertion (5.11) where

(5.20) c
(1)
i = −12

n∑
j,k=1

aijkyjzk, 1 ≤ i ≤ n,

q
(1)
ii = 2‖y‖22‖z‖22 − 2〈y, z〉2 + 4yizi〈y, z〉 − 2y2i ‖z‖22 − 2z2i ‖y‖22,

q
(1)
ij = 2(yizj + ziyj)〈y, z〉 − 2yiyj‖z‖22 − 2zizj‖y‖22, 1 ≤ i, j ≤ n, i 6= j,(5.21)

and d is as given in (5.10). It follows from the expressions in (5.21) that

Q(1) = 2
(
‖y‖22‖z‖22 − 〈y, z〉2

)
In + 2

(
(yzT + zyT )〈y, z〉 − yyT ‖z‖22 − zzT ‖y‖22

)
= 2

(
(‖y‖22‖z‖22 − 〈y, z〉2)In + (yzT − zyT )2

)
,

while the vector given element-wise by (5.20) is equal to that from relation (5.7).
Similarly, using a different regrouping of the summands in equations (5.15) and (5.16),

we obtain the assertions (5.12) and (5.13). We get Q(2) and c(2), as in the relations (5.5)
and (5.8), respectively, as well as Q(3) and c(3), as in (5.6) and (5.9), respectively.

The minimization problem of the form

min
v

{
d+ cT v +

1

2
vTQv

}
is a problem of quadratic programming with no constraints. Its solution v is given by the linear
system

Qv = −c.
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Therefore, in order to find the solutions of the minimization problems

(5.22)


min
x
d+ (c(1))Tx+

1

2
xTQ(1)x,

min
y
d+ (c(2))T y +

1

2
yTQ(2)y,

min
z
d+ (c(3))T z +

1

2
zTQ(3)z,

we need to solve the linear systems 
Q(1)x = −c(1),
Q(2)y = −c(2),
Q(3)z = −c(3),

respectively.
Here we come to an obstacle because the matrices Q(1), Q(2), and Q(3) are singular. Take

Q(1). From the relation (5.4) we see that Q(1) is defined by two vectors y and z and we have

(5.23) Q(1)y = 0, Q(1)z = 0.

Precisely,

Q(1)y = ‖y‖22‖z‖22y − 〈y, z〉2y + yzT yzT y + zyT zyT y − yzT zyT y − zyT yzT y
= ‖y‖22‖z‖22y − 〈y, z〉2y + y〈y, z〉2 + z〈y, z〉‖y‖22 − y‖z‖22‖y‖22 − z‖y‖22〈y, z〉 = 0,

and similarly for z. Assuming that y and z are linearly independent vectors, this means that
rank(Q(1)) ≤ n− 2. On the other hand, Q(1) is defined as an identity matrix minus a rank-2
matrix. This implies that rank(Q(1)) = n− 2. However, the linear system Q(1)x = −c(1) is
consistent because rank([Q(1)c(1)]) = rank(Q(1)), which can be seen from the relations (5.4)
and (5.7). Hence, the linear system Q(1)x = −c(1) can be solved using the Moore–Penrose
inverse,

x = −
(
Q(1)

)+
c(1).

The vector x obtained in this way will be orthogonal to the vectors y and z, because of
the form of the matrix Q(1) given in (5.4). The next proposition clarifies this.

PROPOSITION 5.2. Let y, z ∈ Rn be linearly independent vectors and let Q(1) =

Q(1)(y, z) be as in relation (5.4). The vector x =
(
Q(1)

)+
c is orthogonal to the vectors y and

z, for any c ∈ Rn.
Proof. First, we show that

(5.24) Q(1) = αP,

where P is an orthogonal projector onto {y, z}⊥ and α = 2(‖y‖22‖z‖22 − 〈y, z〉2) 6= 0. Take
u ∈ {y, z}⊥. We have u ⊥ y and u ⊥ z, that is, yTu = zTu = 0. Then,

Q(1)u = αu+ 2(yzT yzTu+ zyT zyTu− yzT zyTu− zyT yzTu) = αu.

This, together with (5.23), implies (5.24).
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Hence,
(
Q(1)

)+
= (1/α)P . Using the fact that P is a projector, along with the rela-

tions (5.24) and (5.23), it follows that

〈x, y〉 = − 1

α
〈Pc(1), y〉 = − 1

α
〈c(1), Py〉 = − 1

α2
〈c(1), Q(1)y〉 = 0,

that is, x ⊥ y. In the same way we get x ⊥ z.

Analogous reasoning holds for the linear systems for y and z.
Now, we can write the algorithm for solving the minimization problem (5.1). The

algorithm is based on solving three minimization problems (5.22).

Algorithm 3 Antisymmetry-preserving CP.
Input: A ∈ Rn×n×n antisymmetric
Output: Ã = A6(x, y, z)
Initialize x, y, z ∈ Rn as random vectors.
repeat

For c(1) as in (5.7) and Q(1) as in (5.4), x = −
(
Q(1)

)+
c(1).

For c(2) as in (5.8) and Q(2) as in (5.5), y = −
(
Q(2)

)+
c(2).

For c(3) as in (5.9) and Q(3) as in (5.6), z = −
(
Q(3)

)+
c(3).

until convergence or maximum number of iterations
Ã = A6(x, y, z)

Note that, as shown in Proposition 5.2, Algorithm 3 results in mutually orthogonal vectors
x, y, and z, as a consequence of how the vectors are computed. Since the minimization
problem (5.1) does not require orthogonal vectors, this may seem restrictive. Proposition 5.3
justifies the choice of orthogonal vectors.

PROPOSITION 5.3. For the minimization problem (5.1), the equality

(5.25) min
x,y,z
‖A −A6(x, y, z)‖ = min

x̃,ỹ,z̃ orthogonal
‖A −A6(x̃, ỹ, z̃)‖

holds.
Proof. First, note that, if x, y, and z are linearly dependent, then A6(x, y, z) = 0. That is

easily seen from the definition (3.4). If we take a linearly dependent triplet of vectors, e.g.,
(αy+βz, y, z), we haveA6(αy+βz, y, z) = αA6(y, y, z) +βA6(z, y, z) and all summands
on the right-hand side will be canceled. Thus, any linearly independent triplet of vectors will
give a smaller value of the objective function f defined by the relation (5.2).

The objective function f is invariant under very general transformations. Due to multi-
linearity, for α, β ∈ R, we have

A6(x+ αy + βz, y, z) = A6(αy + βz, y, z) +A6(x, y, z) = A6(x, y, z),

where A6(αy + βz, y, z) = 0. Let us consider an arbitrary matrix B = (bij) ∈ R3×3. Using
the arguments of multilinearity and antisymmetry as above, we have

A6(b11x+ b12y + b13z, b21x+ b22y + b23z, b31x+ b32y + b33z)

= b11b22b33A6(x, y, z) + b11b23b32A6(x, z, y) + b12b21b33A6(y, x, z)

+ b12b23b31A6(y, z, x) + b13b21b32A6(z, x, y) + b13b22b31A6(z, y, x)

= (b11b22b33 − b11b23b32 − b12b21b33 + b12b23b31 + b13b21b32 − b13b22b31)A6(x, y, z)
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= det(B)A6(x, y, z).

Therefore, if det(B) = 1, we have

‖A −A6(b11x+ b12y + b13z, b21x+ b22y + b23z, b31x+ b32y + b33z)‖
= ‖A −A6(x, y, z)‖,

and the value of the objective function f stays the same.
Set V = [x, y, z] ∈ Rn×3. Take the thin QR decomposition V = Ṽ R, such that

det(R) = 1 and Ṽ = [x̃, ỹ, z̃] ∈ Rn×3 has orthogonal columns. Then, following the same
reasoning, we have

A6(x̃, ỹ, z̃) = A6(x, y, z),

which implies (5.25).

5.1. Equivalence of Algorithm 3 and the HOPM. Here we are going to show that
Algorithm 3 is equivalent to the higher-order power method (HOPM) for unstructured rank-1
approximation and see what implications it has.

Due to multilinearity, the minimization problem (5.25) can be modified into a minimiza-
tion problem on unitary vectors, ‖x‖2 = ‖y‖2 = ‖z‖2 = 1, i.e.,

(5.26) min
x̃,ỹ,z̃ orthonormal,

λ∈R

‖A − λA6(x̃, ỹ, z̃)‖2,

so it becomes a minimization problem on the Stiefel manifold. Since the expression in (5.26)
does not depend on the basis, it is a minimization problem on the Grassmann manifold, which
makes sense as the antisymmetric tensors are connected to the Grassmannians; see, e.g., [23].

We can rewrite (5.26) as

(5.27) min
x̃,ỹ,z̃ orthonormal,

λ∈R

{
‖A‖2 − 2λ〈A,A6(x̃, ỹ, z̃)〉+ λ2‖A6(x̃, ỹ, z̃)‖2

}
.

Set

(5.28) V =
[
x̃ ỹ z̃

]
.

Observe that

A6(x̃, ỹ, z̃) = E ×1 V ×2 V ×3 V,

where E is given by the relation (3.3). Then,

‖A6(x̃, ỹ, z̃)‖2 = ‖E‖2 = 6,

because x̃, ỹ, and z̃ are orthonormal and the Frobenius norm is unitary invariant. In this way,
the minimization problem (5.27) is simplified to

min
x̃,ỹ,z̃ orthonormal,

λ∈R

{
‖A‖2 − 2λ〈A,A6(x̃, ỹ, z̃)〉+ 6λ2

}
.

Take the objective function

(5.29) f̃(λ, x̃, ỹ, z̃) = ‖A‖2 − 2λ〈A,A6(x̃, ỹ, z̃)〉+ 6λ2.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

CP DECOMPOSITION AND LOW-RANK APPROXIMATION OF ANTISYMMETRIC TENSORS 83

In order to find the optimal λ∗ for f̃ , we set the partial derivative of f̃ to zero. We have

∂

∂λ
f̃(λ, x̃, ỹ, z̃) = 12λ− 2〈A,A6(x̃, ỹ, z̃)〉 = 0,

that is,

λ∗ =
〈A,A6(x̃, ỹ, z̃)〉

6
.

It follows from (5.29) that

f̃(λ∗, x̃, ỹ, z̃) = ‖A‖2 − 1

6
〈A,A6(x̃, ỹ, z̃)〉2.

Thus, minimizing f̃(λ∗, x̃, ỹ, z̃) is equivalent to maximizing |〈A,A6(x̃, ỹ, z̃)〉| over the Stiefel
manifold.

Define the compressed tensor

(5.30) Ac(V ) := A×1 V
T ×2 V

T ×3 V
T ,

where V is as in relation (5.28). This is a 3× 3× 3 tensor. It is very similar to tensor E , except
that in place of 1 and −1 it has (Ac(V ))123 and −(Ac(V ))123, respectively. Using this tensor
we obtain

|〈A,A6(x̃, ỹ, z̃)〉| = |〈A, E ×1 V ×2 V ×3 V 〉| = |〈Ac(V ), E〉|

= 6|(Ac(V ))123| =
√

6‖Ac(V )‖.

In the last equation we used the norm of the compressed tensor, ‖Ac(V )‖2 = 6((Ac(V ))123)2.
Therefore, maximization of |〈A,A6(x̃, ỹ, z̃)〉| is equivalent to maximization of ‖Ac(V )‖. This
corresponds to the best structure-preserving multilinear rank-r approximation from [3] for
r = 3.

The problem of finding the best antisymmetric multilinear rank-r approximation is equiv-
alent to the problem of finding the best unstructured rank-1 approximation of an antisymmetric
tensor; see [3, Theorem 4.2]. This implies the equivalence between our Algorithm 3 and
the HOPM used for finding the best unstructured rank-1 approximation. Finally, the global
convergence result for the HOPM given in [30] – namely, the iterates of the ALS algorithm for
the HOPM converge to the stationary point of the corresponding objective function – applies
to our algorithm as well.

6. Partial antisymmetry. Regarding the antisymmetric tensors, we can ask what happens
if a tensor has only partial antisymmetry. We observe order-3 tensors. Note that partially
antisymmetric tensors do not need to be cubical.

The tensor C ∈ Rn×n×m is antisymmetric in modes 1 and 2 if all its frontal slices are
antisymmetric. Without loss of generality, we assume that tensor C is antisymmetric in the
first two modes. That is,

(6.1) cijk = −cjik, 1 ≤ i, j ≤ n, 1 ≤ k ≤ m.

Tensors that are antisymmetric in modes 2 and 3, or in modes 1 and 3, are defined correspond-
ingly. The partial antisymmetrizer that results in the antisymmetry in modes 1 and 2 can be
defined as the operator anti1,2 such that, for B ∈ Rn×n×m and C = anti1,2(B), we have

cijk =
1

2
(bijk − bjik).
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For a pair of indices (i, j), with 1 ≤ i < j ≤ n, the subtensor G of C obtained at the
intersection of the ith and jth column, row, and tube is a 2× 2× 2 tensor of the form

G(i1, i2, i3) =



α, if (i1, i2, i3) = (1, 2, 1),
−α, if (i1, i2, i3) = (2, 1, 1),
β, if (i1, i2, i3) = (1, 2, 2),
−β, if (i1, i2, i3) = (2, 1, 2),

0, if i1 = i2,

for α, β ∈ R. Its mode-1 matricization is given by

G(1) =

[
0 α 0 β
−α 0 −β 0

]
.

Here, the tensor G plays the role analogous to the Levi-Civita tensor (3.3) in Section 3.
Analogously to the tensor format (3.4), for three vectors x, y ∈ Rn and z ∈ Rm, we can

define an n× n×m tensor

(6.2) C2(x, y, z) :=
1

2
(x ◦ y ◦ z − y ◦ x ◦ z).

If we take x = [1, 0]T , y = [0, 1]T , and z = [α, β]T , then C2(x, y, z) = G. Besides, if T =
[[x, y, z]] is a rank-1 tensor, then C2(x, y, z) = anti1,2(T ). Obviously, rank(C2(x, y, z)) ≤ 2.
For the fixed third index, each slice of C2(x, y, z) is a skew-symmetric matrix and, therefore,
has an even rank. Hence,

rank(C2(x, y, z)) = 2.

Considering all this, for a given non-zero tensor C ∈ Rn×n×m that is antisymmetric in the
first two modes, we are looking for its rank-2 approximation C̃ of the same structure. Again,
we examine two approaches. The first one is analogous to Section 4. In the second approach
we find a tensor C̃ = C2(x, y, z) defined by the vectors x, y ∈ Rn and z ∈ Rm, such that

(6.3) ‖C − C̃‖2 → min .

6.1. Ignoring the structure. Let C ∈ Rn×n×m be a tensor with partial antisymmetry.
We first approximate C with a rank-1 tensor C̄ by using the CP-ALS algorithm (Algorithm 1)
with r = 1. Then, we apply the operator anti1,2 on C̄ to get a rank-2 tensor C̃ that is
antisymmetric in modes 1 and 2. We have

C̄ = [[x, y, z]], x, y ∈ Rn, z ∈ Rm,

C̃ = anti1,2(C̄),

or, equivalently, C̃ = C2(x, y, z). The algorithm with partial a posteriori antisymmetrization is
a simple modification of Algorithm 2.

6.2. Preserving the structure. Now we are going to construct an iterative structure-
preserving minimization algorithm. Again, let C ∈ Rn×n×m be a tensor with partial anti-
symmetry. We are looking for tensor C̃ ∈ Rn×n×m that is a solution of the minimization
problem (6.3). In particular, we are looking for vectors x, y ∈ Rn and z ∈ Rm such that

(6.4) ‖C − C2(x, y, z)‖2 → min .
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Algorithm 4 CP with partial a posteriori antisymmetrization.
Input: C ∈ Rn×n×m antisymmetric in modes 1 and 2
Output: C̃ = C2(x, y, z)
Apply Algorithm 1 on A with r = 1 to obtain x, y ∈ Rn, z ∈ Rm
C̃ = C2(x, y, z)

We set

v =

xy
z

 ∈ R2n+m,

and define the objective function g : R2n+m → R as

(6.5) g(v) = 2‖C − C2(x, y, z)‖2.

We formulate the ALS algorithm based on three minimization problems:

min
x
g(v), min

y
g(v), min

z
g(v).

To this end, we need Theorem 6.1. Before the statement of the theorem, we define the
appropriate objects: matrices Q(1) = Q(1)(y, z), Q(2) = Q(2)(x, z) ∈ Rn×n,

Q(1) = 2‖y‖22‖z‖22In − 2yyT ‖z‖22,(6.6)

Q(2) = 2‖x‖22‖z‖22In − 2xxT ‖z‖22;(6.7)

vectors b(1) = b(1)(y, z), b(2) = b(2)(x, z) ∈ Rn, and b(3) = b(3)(x, y) ∈ Rm,

b(1) = −4C ×2 y
T ×3 z

T ,(6.8)

b(2) = −4C ×2 x
T ×3 z

T ,(6.9)

b(3) = −2(C ×1 x
T ×2 y

T − C ×1 y
T ×2 x

T ),(6.10)

and numbers q(3) = q(3)(x, y) and d ∈ R,

q(3) = ‖xyT − yxT ‖22,(6.11)

d = 2‖C‖2.(6.12)

THEOREM 6.1. The function g defined by (6.5) can be written as

g(v) = d+ (b(1))Tx+
1

2
xTQ(1)x(6.13)

= d+ (b(2))T y +
1

2
yTQ(2)y(6.14)

= d+ (b(3))T z +
1

2
q(3)zT z,(6.15)

for Q(1), Q(2) ∈ Rn×n, b(1), b(2) ∈ Rn, b(3) ∈ Rm, and q(3) ∈ R defined by the rela-
tions (6.6)–(6.12).

Proof. We start by writing the function g as

g(v) = 2‖C‖2 − 2〈C, x ◦ y ◦ z − y ◦ x ◦ z〉+
1

2
‖x ◦ y ◦ z − y ◦ x ◦ z‖2
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= 2g1(v)− 2g2(v) +
1

2
g3(v),

for

g1(v) = ‖C‖2,
g2(v) = 〈C, x ◦ y ◦ z − y ◦ x ◦ z〉,(6.16)

g3(v) = ‖x ◦ y ◦ z − y ◦ x ◦ z‖2.(6.17)

Function g2 can be written as

g2(v) =

n∑
i,j=1

m∑
k=1

cijk(xiyjzk − yixjzk)

=

n∑
i=1

xi

(
n∑
j=1

m∑
k=1

cijkyjzk

)
+

n∑
j=1

xj

(
n∑
i=1

m∑
k=1

(−cijk)yizk

)
.

Using the partial antisymmetry property (6.1), after renaming the indices we get

g2(v) = 2

n∑
i=1

xi

(
n∑
j=1

m∑
k=1

cijkyjzk

)
.

For the function g3 we have

g3(v) =

n∑
i,j=1

m∑
k=1

(xiyjzk − xjyizk)2

=

n∑
i=1

x2i

(
n∑
j=1

m∑
k=1

y2j z
2
k

)
− 2

n∑
i,j=1

xixjyiyj

(
m∑
k=1

z2k

)
+

n∑
j=1

x2j

(
n∑
i=1

m∑
k=1

y2i z
2
k

)

= 2

n∑
i=1

x2i ‖y‖22‖z‖22 − 2

n∑
i,j=1

xixjyiyj‖z‖22

=

n∑
i=1

x2i (2‖y‖22‖z‖22 − 2y2i ‖z‖22) +

n∑
i,j=1
i 6=j

xixj(−2yiyj‖z‖22).

In the same way as in the proof of Theorem 5.1, we set

d = 2g1(v),

(b(1))Tx = −2g2(v),

1

2
xTQ(1)x =

1

2
g3(v),

where

(6.18) b
(1)
i = −4

n∑
j=1

m∑
k=1

cijkyjzk, 1 ≤ i ≤ n,

and

q
(1)
ii = 2‖y‖2‖z‖2 − 2y2i ‖z‖2,
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q
(1)
ij = −2yiyj‖z‖2, 1 ≤ i, j ≤ n, i 6= j.(6.19)

The vector b(1) from (6.18) can be written in the more compact form (6.8) and matrix Q(1)

from (6.19) is equivalent to (6.6), while d is like in the relation (6.12). This is how we get the
assertion (6.13).

With different regrouping of the summands in the relations (6.16) and (6.17) we get
equation (6.14) with b(2) and Q(2) as in (6.9) and (6.7), respectively.

To get equation (6.15) we write

g2(v) =

m∑
k=1

zk

(
n∑

i,j=1

cijk(xiyj − yixj)

)

and

g3(v) =

m∑
k=1

z2k

(
n∑

i,j=1

(xiyj − xjyi)2
)
.

Then, we set

b
(3)
k = −2

n∑
i,j=1

cijk(xiyj − yixj), 1 ≤ k ≤ m,

q(3) =

n∑
i,j=1

(xiyj − xjyi)2 = ‖xyT − yxT ‖22.

The compact form of the vector b(3) corresponds to (6.10).

Therefore, as in Section 5, our algorithm is based on finding the solutions of the mini-
mization problems 

min
x
d+ (b(1))Tx+

1

2
xTQ(1)x,

min
y
d+ (b(2))T y +

1

2
yTQ(2)y,

min
z
d+ (b(3))T z +

1

2
q(3)zT z.

Those solutions are obtained, respectively, from the following equations:
Q(1)x = −b(1),
Q(2)y = −b(2),

z = − 1

q(3)
b(3).

The situation regarding these linear systems is similar to that for the fully antisymmetric
case. Matrices Q(1) and Q(2) are not of full rank. From their definitions (6.6) and (6.7) we
see that both are given as the identity minus a rank-1 matrix and

Q(1)x = 0, Q(2)y = 0.

Thus, rank(Q(1)) = rank(Q(2)) = n − 1. Still, we have rank([Q(1)b(1)]) = rank(Q(1)) and
rank([Q(2)b(2)]) = rank(Q(2)), so the linear systems are consistent and can be solved using
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Algorithm 5 CP preserving partial antisymmetry.
Input: C ∈ Rn×n×m antisymmetric in modes 1 and 2
Output: C̃ = C2(x, y, z)
Initialize x, y ∈ Rn, z ∈ Rm as random vectors.
repeat

For b(1) as in (6.8) and Q(1) as in (6.6), x = −(Q(1))+b(1).
For b(2) as in (6.9) and Q(2) as in (6.7), y = −(Q(2))+b(2).
For b(3) as in (6.10) and q(3) as in (6.11), z = −b(3)/q(3).

until convergence or maximum number of iterations
C̃ = C2(x, y, z)

the Moore–Penrose inverse. Additionally, we get that the vectors x and y must be orthogonal.
Note that, for x 6= y, we have q(3) 6= 0 and z is well defined.

The algorithm for solving the minimization problem (6.4) is very similar to Algorithm 3.
As in the fully antisymmetric case, we can additionally observe that C2(x, y, z) = 0 if x

and y are linearly dependent and

C2(b11x+ b12y, b21x+ b22y, z) = detBC2(x, y, z), B =

[
b11 b12
b21 b22

]
.

Then we can rescale our optimization problem such that we are looking for

min
‖x̃‖=‖ỹ‖=‖z̃‖=1,

x⊥y, λ∈R

{‖C − λC2(x̃, ỹ, z̃)‖2}.

Set

g̃(λ, x̃, ỹ, z̃) = ‖C‖2 − 2λ〈C, C2(x̃, ỹ, z̃)〉+ λ2‖C2(x̃, ỹ, z̃)‖2.

From the shape of C2 and the fact that ‖x̃‖ = ‖ỹ‖ = ‖z̃‖ = 1 and x ⊥ y, after a short
calculation we get ‖C2(x̃, ỹ, z̃)‖2 = 1

2 . Thus,

g̃(λ, x̃, ỹ, z̃) = ‖C‖2 − 2λ〈C, C2(x̃, ỹ, z̃)〉+
1

2
λ2.

The optimal λ for g̃ is

λ∗ = 2〈C, C2(x̃, ỹ, z̃)〉

and

g̃(λ∗, x̃, ỹ, z̃)) = ‖C‖2 − 2〈C, C2(x̃, ỹ, z̃)〉2.

Therefore, minimizing g̃(λ∗, x̃, ỹ, z̃)) is equivalent to maximizing |〈C, C2(x̃, ỹ, z̃)〉|.
Now we can set

W =
[
x̃ ỹ

]
and define the compressed matrix

(6.20) Cc(W, z̃) := C ×1 W
T ×2 W

T ×3 z̃
T ,
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which is an analogue of the compressed tensor (5.30). The matrix Cc(W, z̃) is a 2 × 2
skew-symmetric matrix [

0 (Cc(W, z̃))12
−(Cc(W, z̃))12 0

]
,

where

(6.21) |(Cc(W, z̃))12| = |C ×1 x̃
T ×2 ỹ

T ×3 z̃
T |.

Moreover, we can write

C2(x̃, ỹ, z̃) = M ×1 W ×2 W ×3 z̃,

for M =

[
0 1

2
− 1

2 0

]
. It follows that

|〈C, C2(x̃, ỹ, z̃)〉| = |〈Cc(W, z̃),M〉| =
√

2

2
‖Cc(W, z̃)‖F

and we conclude that maximization of |〈C, C2(x̃, ỹ, z̃)〉| is equivalent to maximization of
‖Cc(W, z̃)‖F .

Maximization of ‖Cc(W, z̃)‖F corresponds to the multilinear rank-(2, 2,m) structure-
preserving approximation of C. Similarly as in [3] for the best antisymmetric multilinear rank-
r approximation, we can establish an equivalence between the best partially antisymmetric
multilinear rank-(2, 2,m) approximation and the best unstructured rank-1 approximation of a
partially antisymmetric tensor.

PROPOSITION 6.2. Let C ∈ Rn×n×m be a partially antisymmetric tensor. Then

max{‖C ×1 U
T ×2 U

T ×3 z
T ‖ : U ∈ Rn×2, UTU = I2, ‖z‖2 = 1}

=
√

2 max{|C ×1 u
T
1 ×2 u

T
2 ×3 z

T | :

‖u1‖2 = ‖u2‖2 = ‖z‖2 = 1, [u1u2]T [u1u2] = I2}
(6.22)

=
√

2 max{|C ×1 v
T
1 ×2 v

T
2 ×3 z

T | : ‖v1‖2 = ‖v2‖2 = ‖z‖2 = 1}.(6.23)

Proof. Take α = C ×1 u
T
1 ×2 u

T
2 ×3 z

T . From the relations (6.20) and (6.21) we see that,
for every partially antisymmetric tensor C and for U = [u1u2],

‖C ×1 U
T ×2 U

T ×3 z
T ‖2 =

∥∥∥∥[ 0 α
−α 0

]∥∥∥∥2
F

= 2α2,

which proves (6.22).
Obviously, expression (6.22) is less than or equal to (6.23). Take the vectors v1, v2, and

z that maximize (6.23). There is an upper-triangular 2 × 2 matrix R such that |r11| ≤ 1,
|r22| ≤ 1, and [

v1 v2
]

=
[
u1 u2

]
R

is the thin QR decomposition of [v1v2]. Using the antisymmetry in two modes, we have

|C ×1 v
T
1 ×2 v

T
2 ×3 z

T | = |C ×1 r11u
T
1 ×2 (r12u

T
1 + r22u

T
2 )×3 z

T |
= |C ×1 r11u

T
1 ×2 r22u

T
2 ×3 z

T |
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= |r11r22| |C ×1 u
T
1 ×2 u

T
2 ×3 z

T | ≤ |C ×1 u
T
1 ×2 u

T
2 ×3 z

T |

This proves that the value of (6.22) is equal to the value of (6.23).

Therefore, following the previous discussion and the result of Proposition 6.2, we have
obtained the equivalence between our Algorithm 5 and the best unstructured rank-1 approx-
imation. Then, the same as in the fully antisymmetric case, the convergence result for the
HOPM from [30] holds.

7. Numerical experiments. We provide numerical examples for the comparison of
the CP rank-1 approximation with a posteriori antisymmetrization (Algorithm 2) and the
antisymmetry-preserving CP (Algorithm 3). Additionally, for the sake of completeness,
we compare these algorithms with the CP-ALS algorithm (Algorithm 1) with r = 6, the
algorithm that does not preserve antisymmetry. As we will show, antisymmetry-preserving
CP outperforms CP with a posteriori antisymmetrization in terms of accuracy, which was
expected, but also in execution time, while CP-ALS has been shown to be much slower than
the other two algorithms, and it also completely destroys the antisymmetric property.

All the algorithms are implemented and tested in the Julia programming language [4], ver-
sion 1.8.1, on a personal computer, with the BenchmarkTools [6] package, used for deter-
mining the execution times of the algorithms (function @btime) and the TensorToolbox
[25] package for tensor calculations.

For a given tensor A and an approximation Ã, we are looking at the relative error
‖A − Ã‖/‖A‖. We run the CP-ALS algorithm, both on its own and within CP with a pos-
teriori antisymmetrization with tolerance 10−8, and we stop the antisymmetry-preserving
CP algorithm when either the relative error or the difference between relative errors in two
consecutive iterations falls below 10−8.

7.1. Example 1. First we generate an antisymmetric tensor A of size n × n × n and
rank 6, by randomly selecting three vectors x, y, z of size n and defining A = 6A6(x, y, z),
where A6(x, y, z) is defined in (3.4). In this example we know that A has the proposed
structure. We evaluate and compare the accuracy and the speed of our algorithms. The results
for different n are presented in Table 7.1. The best result in each column is shown in bold.

TABLE 7.1
Evaluation of the CP algorithm with a posteriori antisymmetrization (CP+antisym – Algorithm 2), antisymmetry-

preserving CP (antisymCP – Algorithm 3), and CP-ALS with r = 6 (Algorithm 1) in terms of the relative error
‖A − Ã‖/‖A‖ and execution times obtained by function @btime.

n = 10 n = 25 n = 50

error time error time error time
CP+antisym 0.8333 224µs 0.8333 905.9µs 0.8333 3.983ms

antisymCP 8.21×10−16 69.9µs 1.34×10−15 502.5µs 1.66×10−15 8.283ms
CP-ALS 5.27×10−6 8.472ms 1.998×10−7 26.282ms 8.43×108 187.625ms

Even though the execution time of CP with a posteriori antisymmetrization is comparable
to that for antisymmetry-preserving CP, by first approximating with a non-antisymmetric tensor
of rank 1, CP with a posteriori antisymmetrization loses the underlying structure, and results
in an approximation with large error. CP-ALS manages to find a good non-antisymmetric
approximation, but it requires much more time, so disregarding the antisymmetric property
did not help either with accuracy or with execution times. Overall, antisymmetry-preserving
CP achieves best results.

Here, as in the following examples, the initial vectors in Algorithm 3 are taken as random
vectors. If we initialize the algorithm using a higher-order singular value decomposition

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

CP DECOMPOSITION AND LOW-RANK APPROXIMATION OF ANTISYMMETRIC TENSORS 91

(HOSVD), the number of iterations decreases, but the execution time increases because of the
additional time needed to perform the HOSVD.

7.2. Example 2. Now we construct an antisymmetric tensor element-wise as

A(i, j, k) = sin(xi) sin(yj) sin(zk) + sin(yi) sin(zj) sin(xk) + sin(zi) sin(xj) sin(yk)

− sin(yi) sin(xj) sin(zk)− sin(xi) sin(zj) sin(yk) + sin(zi) sin(yj) sin(xk),

where xi, yj , and zk are sets of n equidistant points on the intervals [0, 1], [2, 10], and [1, 3],
respectively. This type of tensor appears in signal processing applications. The accuracy and
speed of our algorithms for different n are presented in Table 7.2. The best result in each
column is shown in bold.

TABLE 7.2
Evaluation of the CP algorithm with a posteriori antisymmetrization (CP+antisym – Algorithm 2), antisymmetry-

preserving CP (antisymCP – Algorithm 3), and CP-ALS with r = 6 (Algorithm 1) in terms of the relative error
‖A − Ã‖/‖A‖ and execution times obtained by function @btime.

n = 10 n = 25 n = 50

error time error time error time
CP+antisym 0.8333 220.9µs 0.8333 912.7µs 0.8333 3.95ms

antisymCP 7.55×10−16 111.5µs 9.2×10−16 3.439µs 1.575×10−15 26.898ms
CP-ALS 4.02×10−7 7.659ms 3.91×10−9 29.453ms 8.492×10−7 86.045ms

Similarly as in Example 7.1, antisymmetry-preserving CP beats the other two methods in
terms of accuracy and speed of getting an accurate solution.

In the next two examples we use tensors of smaller size, because the ranks of those tensors
increase with size, and, since we are approximating by a rank-6 tensor, we want to use tensors
for which it makes sense to do this type of approximation.

7.3. Example 3. Now we generate an antisymmetric tensor that does not necessarily
have the structure (3.4), by discretizing the function f(x, y, z) = exp(x2 + 2y2 + 3z2) on a
grid ξi = (i − 1)/(n − 1), with i = 1, . . . , n, and then applying the antisymmetrizer (3.2).
We test for different values of n and show the results in Table 7.3. Again, the best result in
each column is shown in bold.

TABLE 7.3
Evaluation of the CP algorithm with a posteriori antisymmetrization (CP+antisym – Algorithm 2), antisymmetry-

preserving CP (antisymCP – Algorithm 3), and CP-ALS with r = 6 (Algorithm 1) in terms of the relative error
‖A − Ã‖/‖A‖ and execution times obtained by function @btime.

n = 3 n = 5 n = 7

error time error time error time
CP+antisym 0.8333 185µs 0.8339 260.2µs 0.8345 276.6µs

antisymCP 1.61×10−14 17.1µs 0.0557 87.4µs 0.0802 130.4µs
CP-ALS 2.55×10−5 9.875ms 0.0557 26.282ms 0.0802 4.538ms

Antisymmetry-preserving CP achieves the best execution times. When the tensor can
be well approximated by the CP approximation of the form (3.4), it also achieves the best
accuracy (n = 3). Otherwise, it results in the same error as CP-ALS, but much lower execution
times (n = 5, 7).
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7.4. Example 4. We generate a random tensor of size n × n × n and antisymmetrize
it with (3.2). We compare the three algorithms and present the results in Table 7.4. The best
result in each column is shown in bold.

TABLE 7.4
Evaluation of the CP algorithm with a posteriori antisymmetrization (CP+antisym – Algorithm 2), antisymmetry-

preserving CP (antisymCP – Algorithm 3), and CP-ALS with r = 6 (Algorithm 1) in terms of the relative error
‖A − Ã‖/‖A‖ and execution times obtained by function @btime.

n = 3 n = 5 n = 7

error time error time error time
CP+antisym 0.8333 184.6µs 0.8546 336.5µs 0.9242 743.3µs

antisymCP 3.616×10−16 17µs 0.3432 139.9µs 0.723 493.2µs
CP-ALS 8.11×10−8 14.364ms 0.2716 20.172ms 0.6393 421.051ms

Similarly as in the previous example, when a tensor can be well approximated by CP
decomposition with six summands (here for n = 3), antisymmetry-preserving CP achieves the
best results. For n = 5, 7, antisymmetry-preserving CP gives somewhat worse results than
CP-ALS in terms of accuracy, but still gives the approximation in much shorter times, and
CP-ALS does not preserve the antisymmetry. Note that the rank of a random antisymmetric
tensor is much higher than six. This is the reason why all approximations produce high relative
error.

7.5. Example 5. Partial antisymmetry. For the partial antisymmetry, we compare
Algorithm 4, CP with partial a posteriori antisymmetrization, and Algorithm 5, CP preserving
partial antisymmetry, with standard CP-ALS (Algorithm 1) with r = 2, which ignores the
structure.

Here, regardless of how we construct the tensor A, all methods give approximately the
same error. Again, the CP preserving partial antisymmetry stands out in terms of execution
times. We present results in Table 7.5, with tensors A1, A2 and A3 defined as follows:

• A1 is an 8× 8× 10 tensor constructed by randomly selecting vectors x, y, z of sizes
8, 8, 10, respectively, and setting A = 2C2, where C2 is defined in (6.2).

• A2 is a 5×5×7 tensor constructed from the function the same way as in Example 7.3.
• A3 is a 5 × 5 × 4 tensor generated by partially antisymmetrizing a tensor with

randomly selected elements, using the anti1,2 operator.

TABLE 7.5
Evaluation of the CP algorithm with partial a posteriori antisymmetrization (CP+pantisym – Algorithm 5),

antisymmetry-preserving partial CP (pantisymCP – Algorithm 5), and CP-ALS with r = 2 (Algorithm 1) in terms of
the relative error ‖A − Ã‖/‖A‖ and execution times obtained by function @btime.

A1 A2 A3

error time error time error time
CP+pantisym 1.88×10−16 202.7µs 0.1001 269.4µs 0.7175 569.2µs

pantisymCP 5.832×10−16 30.2µs 0.1001 53.70µs 0.7175 106.6µs
CP-ALS 6.774×10−16 1.051ms 0.1001 1.282ms 0.7175 3.026ms

8. Conclusion. We have described an antisymmetric tensor format A6(x, y, z) deter-
mined by only three vectors, x, y, z ∈ Rn. For any n, tensors of the form A6(x, y, z) have
rank at most six. We developed an ALS algorithm for structure-preserving low-rank approx-
imation of an antisymmetric tensor A by a tensor of the form Ã = A6(x, y, z). In order to
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obtain our algorithm, we wrote the objective function as three different quadratic forms, given
explicitly, one for each mode. The algorithm works in such a way that, in each micro-iteration,
a quadratic optimization problem for the corresponding tensor mode is solved.

We showed that our minimization problem

‖A −A6(x, y, z)‖ → min

for x, y, z ∈ Rn can be viewed as a minimization problem for orthonormal vectors
x̃, ỹ, z̃ ∈ Rn,

‖A −A6(x̃, ỹ, z̃)‖ → min .

Further, we demonstrated that this minimization problem is equivalent to the maximization
problem

‖A ×1 V
T ×2 V

T ×3 V
T ‖ → max,

where V ∈ Rn×3 is a matrix with orthonormal columns. The prior maximization problem
corresponds to the problem of the best multilinear low-rank approximation of antisymmetric
tensors. Using the result from [3] stating that antisymmetric multilinear low-rank approxi-
mation is equivalent to the best unstructured rank-1 approximation, we were able relate our
algorithm to the HOPM. Therefore, the global convergence results for the HOPM from [30]
apply here.

For tensors with partial antisymmetry, we established a partially antisymmetric tensor
format C2(x, y, z) determined by three vectors, x, y ∈ Rn and z ∈ Rm. Tensors of the form
C2(x, y, z) have rank 2. We created a similar ALS algorithm for structure-preserving rank-2
approximation of a partially antisymmetric tensor C by a tensor of the form C̃ = C2(x, y, z).
Analogously to the fully antisymmetric case, we verified that the algorithm in question is
equivalent to the HOPM.

The method described in this paper can be generalized to solve the approximation problem
for different antisymmetric structures. Given that the target format can be written as a sum of
multilinear terms, the underlying linearity in each mode would lead to quadratic optimization
problems which would be handled in the same way, with different coefficient matrices and
vectors. For example, instead of antisymmetric rank-6 approximation, this way, one could find
antisymmetric rank-6r approximation represented by 3r vectors. The paper limited its scope
to order-3 tensors. For antisymmetric order-d tensors, analogous rank-d!r approximation
would be represented by dr vectors.
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the resulting vectors and the equivalence to the HOPM.
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