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RELAXATION OF THE RANK-1 TENSOR APPROXIMATION USING DIFFERENT
NORMS*

HASSAN BOZORGMANESH'

Abstract. The best rank-1 approximation of a real mth-order tensor is equal to solving m 2-norm optimization
problems that each corresponds to a factor of the best rank-1 approximation. In this paper, these problems are
relaxed by using the Frobenius and L1-norms instead of the 2-norm. It is shown that the solution for the Frobenius
relaxation of optimization problems is the leading eigenvector of a positive semi-definite matrix which is closely
related to higher-order singular value decomposition and the solution of the L1-relaxation can be obtained efficiently
by summing over all modes of the associated tensor but one. The numerical examples show that these relaxations
can be used to initialize the alternating least-squares (ALS) method and they are reasonably close to the solutions
obtained by the ALS method.
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1. Introduction. When dealing with high-dimensional data, using matrices and vectors
to represent the data in a model can cause the loss of meaningful information and patterns,
since we need to flatten the data. Tensors, as the extension of vectors and matrices, provide
the natural tool for representing high-dimensional data [14, 21]. Similar to the matrix case,
in order to extract the important patterns and to discard the redundant information, there is a
need for dimensionality reduction techniques. Decomposing tensors and using the low-rank
forms is one of these approaches. Using low-rank tensors is usual in applications like signal
processing [7, 29, 45, 49] and optimal control [16, 44]. Of particular interest is the use of
the canonical polyadic (CP) rank-1 approximation due to its lower complexity and because,
unlike general CP decompositions, it always exists [35]. Its use in linear and nonlinear signal
processing has generated some success [39, 43].

The study of different tensor decompositions and especially the best rank-1 approximation
of a tensor has attracted the attention of many researchers in recent decades [3, 5, 11, 24, 25,
26, 30].

As an example, consider Volterra series which are widely used in signal processing for
representing nonlinear systems [37, 39] and defined as follows:

(1.1) y(i) =yo+ Y _uk(i)
k=1
with

M—-1
ye(i) = Y Hlin, ... ig)x(i — i) - 2(i — ix),

1,36 =0

where y(i) and x(%), respectively, are the output and input signals, yq is a constant, M is the
memory length, and H is the kth-order Volterra kernel. In practice, only a truncated expansion
is used, that is, instead of infinity, a large enough integer is used in equation (1.1). Calculating
a Volterra kernel can be significantly costly: one approach that is used in the literature in order
to reduce the cost is approximating the Volterra kernel with a rank-1 tensor [13, 39].
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It is known that the problem of finding the best (CP) rank-1 approximation is NP-hard [23].
In this paper, the best (CP) rank-1 approximation of a real tensor is considered, that is, for an
mth-order tensor A in R™ X72XX"m we consider the following problem:

(1.2) min A= exM o ox(™||p,

& IxM L2 =[x @ [|g=---=[lx™)]]2=1

where c is a real scalar, x() ¢ Rni (1 < i < m) are real vectors, and o denotes the vector
outer product. If the scalar x and vectors al) € R" with |a® |, = 1 (1 < i < m) are
solutions of this problem, then pa ca(® o...o0al™ is called the best rank-1 approximation

of A.

Here, we use two relaxations for the best rank-1 approximation of a real tensor in order
to create cost-effective methods. The purpose of a relaxation of an optimization problem is
to approximate it by weakening the constraints or the objective function in order to have an
easier-to-solve problem that approximates the optimal solution of the original problem [34, 42].
The optimal solution of the relaxed maximization (minimization) problem is a lower bound
(upper bound) for the optimal solution of the original problem.

In this paper, using relaxations leads to having simpler algorithms to calculate the best
rank-1 approximation of a tensor. Also, the output of one of the relaxations (L) can be used
to initialize alternating least-squares (ALS) and create a faster and more accurate version of
ALS than with random initialization.

In the next section, we show that every best rank-1 approximation problem is equal to m
2-norm optimization subproblems. In Section 3, we relax these subproblems using Frobenius
and L;-norms, and provide how their solutions can be obtained. In Section 4, numerical
results for tensors with random and real data are presented and, lastly, in Section 5 concluding
remarks are given.

2. Preliminaries. We first need to define the tensor—vector product and 2-norm for
tensors.

DEFINITION 2.1. If A € R™*™2X"X%m s gn mth-order tensor and ' y € R™ is

a vector, then A Xy denotes the mode-k product of A with y. This product is of size
Ny X - - X Ng—1 X N1 X -+ X Ny, and each element of this product is defined as follows:

ng
(A Xk y)i1~~ik—lik+1-»~im = ZA(ilv ig,. .. 7Zm)y(7’k)

in=1

DEFINITION 2.2. For an mth-order tensor like A in Rt *"2XX"m  the spectral norm
or 2-norm is defined as

HAHQ |A X1 X(l) X9 X(Z) Xm X(m)|

= max
D [l2=([x @) [|g=---=]xm)|]2=1

It is clear that if 4 is a matrix, then the previous norm reduces to the 2-norm of a ma-
trix and it gives the largest singular value, since | A x; x(1) x5 x(?)| = [(x()! Ax?)| =
[xM]2||Ax P ||2|cos 8], where  is the angle between the vectors x(1) and Ax(?).

Parts of the proof of the next theorem have been repeated several times in the literature
(for example see [15, 40]).
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THEOREM 2.3. If A is an mth-order tensor in R™*"2%X"m then to find the best
rank-1 approximation of A (problem (1.2) above), we have

a® = argmax||A x; x|
lx(®]l2=1

fori=1,2,... . mand p=A x,, al™ ... xya® x;al).
Proof. Suppose pa®) o a® o ... 0al™ is the best rank-1 approximation of .A. By
expanding the minimization problem (1.2), we can rewrite it as

2.1 max (A Xpm x(M) . xy x3) ><1X(1))2.
[x® [l2=[[x @) |la=--=]|x(m)[|2=1
Using the definition of the spectral norm, the result follows. |

The next corollary is the basis of the alternating least-squares (ALS) method [15].

COROLLARY 2.4. For the best rank-1 approximation (1.2) of A € R™M1>n2XX0m e
have

2.2) ald — (.A Xom alm ... Xi_1 ali—1) X i1 ali+l) ... X1 a(l)) . {1 m}
. B HA xma(m)'~~xz‘—1 a(i—l) Xit1 a(i+1)"'X1a(1)||27 - yeeey .

Proof. The result can be obtained by writing the Karush—Kuhn—Tucker (KKT) condition
for every a¥) in (2.1). O

3. Relaxation of the best rank-1 approximation of tensors.

3.1. Relaxation using the Frobenius norm. As stated in Theorem 2.3, the best rank-1
tensor approximation can be found by solving

3.1 max  ||A x; x5
[ l2=1
fori =1,2,...,m. As arelaxation, we use different norms for the objective function of (3.1).
Fix ani € {1,2,...,m} and consider the maximization problem
3.2) max || A x; x| 5.
llx][2=1

Since, for any tensor B, we have || B||2 < ||B|| » [32] and the feasible domains of (3.1) and (3.2)
are equal, then problem (3.2) is a relaxation of (3.1).

PROPOSITION 3.1. Suppose A € RM*"2xXm_Forani € {1,2,...,m}, the optimal
solution of optimization problem (3.2) is the eigenvector associated with the largest eigenvalue
of the following symmetric positive semi-definite matrix in R™ *™i;

3.3)
Bi(j,T’) = Z ZA(kl, PN 7]€i_1,j7 ki+17 ey km)A(kh N 7ki—17r7 ki+17 o ,km),
t=1, k=1
t#i

wherej,r € {1,...,n;}.
Proof. Considering the matricized form of A x; x(), we can get the result. a
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REMARK 3.2. Calculating the matrix B is equal to computing the singular vector
associated with the leading singular value of the mode-i matricization of a tensor .A, which
is closely related to the higher-order singular value decomposition (HOSVD) of a tensor.
Therefore, it can be said that the truncated HOSVD is the relaxation of the best rank-1 CP
approximation of a tensor. This sheds more light on the fact that left singular vectors have
been used for initializing ALS [27] or other methods [6, 8, 26] for many years. SVD-based
methods have been popular for calculating low-rank approximation of tensors. They have
been modified to be used alternatively in a similar manner to ALS in order to calculate the best
rank-1 approximation [15], albeit they update two factors in each iteration. Also, a variant
based on different strategies for permutation of factor vectors for the symmetric best rank-1
approximation of tensors was proposed [20] with a convergence result. Another version of this
method was used for non-symmetric tensors [19]. In addition, the SVD of matrix flattening of
a tensor has been used to find a rank-1 decomposition that approximates its nuclear norm [31].

Therefore, to find the best rank-1 approximation of a tensor, we have the following
relaxation scheme, which we call Frobenius relaxation.

Algorithm 1 Frobenius relaxation for best rank-1 approximation of a tensor.

InPUt: A (S Rnlxnzx'“xn'm.
Output: pa®oa®o.. oal™),

1: Choose one j € {1,...,m} such that j = argmax {n;}.
ie{l,...,m}

2: for i =1,...,m,i # jdo

3. Calculate a(?) as the eigenvector associated with the largest eigenvalue of B;, defined
in (3.3).

4: end for

5: Calculate a/) from (2.2).

6: Let = A x,,al™ . . xya® x;al,

REMARK 3.3. Since every a(® is calculated separately, for a non-cubic tensor like
A € R100x200x50 e choose j = 2 in Step 1, because it is faster to first obtain a(!) and
a(® by Step 3 and then using (2.2) to obtain a(?). The purpose of this is to solve eigenvalue
problems with smaller sizes. Using Step 5 can make the Frobenius relaxation in one factor
vector different than the corresponding leading left singular vector. In addition, the numerator
of (2.2) can be used for calculating p in Step 6. Therefore, it can be stated that Algorithm 1 is
a variant of the truncated HOSVD [10] except for Step 5.

3.2. Relaxation using L;-norm. Another relaxation can be defined for problem (3.1)
by using the Li-norm. The L;-norm [31] of the tensor A € R™*"2X " X"m g defined as

AL, =D Ay iz, i)

t=1 =1
Therefore, the L;-relaxation of problem (3.1) is as follows for every ¢ € {1,2,...,m}:
(3.4) ‘ Ra‘ux A x; x|,

[x(D][2=1

Since for non-negative scalars {h1, ..., hx}, we have
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then for every tensor B, it follows that ||B]|2 < ||B|lr < ||B||z, and therefore (3.4) is a
relaxation of (3.1).
THEOREM 3.4. If A is a non-negative tensor in R™>™2X"X"m qnd for an i €

{1,2,...,m}, a9 is the optimal solution of optimization (3.4), then
ZzAkla Z 177ki+17'~'7km)
t=1, k,=1
3.5) a® = 7L :
ZZAk17 1 177ki+17"'7km)
t=1, k;=1
t#i 9
where A(ky, ..., ki—1,:,kit1, ..., km) is a vector obtained by fixing all indices of tensor A

but the kth one.

Proof. We only consider the case i = 1. Like before, since max|x,=1 [ (A x1 x)[|7, =
max |, <1 || (A x1 x)||7,, the KKT condition is necessary and sufficient.

Since A is a non-negative tensor, we need only to consider non-negative solutions, and
therefore

N (Axix) iz, = (Zzzmkz,..., )ZZAJ,kg,..., .
J =2 ky=1r=1

t=2 k,=1

Hence, the KKT condition is as follows:

i iA(:,k‘g,...,km) _9xa® =

t=2 k,=1
SON AG k) DY D AG ke, Em)
— a(i) =2 k=1 =2 k=1
- 2) N
Z A(:akQa 7km)
t=2 k=1

Thus, the proof is completed. a

Unlike the Frobenius relaxation, the L-relaxation is defined for non-negative (or non-
positive) tensors, but, as we are going to see in the numerical experiments, the L, -relaxation
is much faster and it also can be used for tensors containing negative and positive elements
with loss of some accuracy.

The L;-relaxation is formally formulated as follows:

Algorithm 2 L-relaxation for best rank-1 approximation of a tensor.

Input: A € RM1Xn2X.Xnm
Output: pa® ca®@o.. . ocal™,
for i=1,...,mdo
Calculate a() by (3.5).
end for
Let = A x,,, ™) ... x5 a2 x; al

b

1)'
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REMARK 3.5. It should be noted that, unlike most previous algorithms for calculating the
best rank-1 approximation of a tensor, the Frobenius and L -relaxations calculate every a(?)
separately. This can be really helpful when we know a tensor is symmetric; in this case we
need only to obtain one a(*) and put it equal to the rest. Therefore, in the case of mth-order
symmetric tensors, the calculation of the best rank-1 approximation by the Frobenius and
L -relaxations can become m times faster.

REMARK 3.6. Considering that the Frobenius relaxation is based on calculating the
eigenvalues of some matrices and L-relaxation is based on summing over all indices of
tensors but one, both relaxations are of Nick’s Class [52, p. 29]. Especially, for the Frobenius
relaxation, the cost is O(k2-376) while for L-relaxation it is O(k), where k here is the largest
mode of the tensor.

4. Numerical experiments. In this section, the two proposed relaxation methods are
compared with the method given by He, Li, and Zhang (HLZ) [22], which is a relaxation; since
this method is not iterative, it is possible to carry out comparisons. The ALS with initialization
using random and relaxation methods are also compared here. By initialization using a
relaxation method, we mean using the solution given by a relaxation method to initialize the
ALS method. For running the ALS method, the Tensor Toolbox 3.6 is used [2, 28]. The
stopping criterion for ALS is when the improvement is less than 10, In the following, ALSr
is used to denote ALS with random initialization.

The computations were made in MATLAB 2024a with an Intel® Core™ i7-13700H CPU
2.40 GHz and 16 GB RAM.

Suppose we have an algorithm named K for calculating the best rank-1 approximation. In
the following, T'(K') denotes the timings of the algorithm K. Also, if R (.A) is the computed
best rank-1 approximations of a tensor A by the algorithm K, then

A= ReAlp = A =Rars-(Allp
1Al 7

4.1

is used as a measure of the error for the algorithm K, denoted then by E(K'). We note that if
E(K) is negative, that means the algorithm is more accurate than the ALSr method.

EXAMPLE 4.1. For this example, random tensors are used. For tensors of a given size,
the timings and errors are averages over 100 runs of the algorithms. First, we consider tensors
whose every element is a uniformly distributed random number in [0, 1]. The results for third-
order and fourth-order tensors are given in Table 4.1(A) and Table 4.2(A), respectively. As we
know, the best rank-1 approximation of a non-negative tensor is almost always unique [41].
All algorithms are close to the same rank-1 tensor. It can be seen that the relative accuracy of
both relaxations and HLZ increase as the size of the tensors increases. However, if we do not
divide the fraction in (4.1), that is, if we only consider the absolute error, then the errors of
random tensors are going to be around the values given by the second row of Table 4.1(A)
for non-negative random tensors and Table 4.1(B) for tensors containing both negative and
positive elements.

The Frobenius relaxation is fastest for tensors with small sizes; the L-relaxation is more
accurate than the Frobenius relaxation and HLZ, and it is also the fastest method except
for small-sized tensors. For large tensors, the L;-relaxation has a clear advantage over the
Frobenius relaxation and HLZ in timing due to the cost of building matrices and calculating
eigenvalues. HLZ is a bit faster than Frobenius relaxation but less accurate.
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TABLE 4.1
Comparing Frobenius relaxation, L1 -relaxation, and HLZ for third-order random tensors. All algorithms are
run 100 times for each row. All times T are in seconds.

A) Each member of the tensors is a uniformly distributed random number in [0, 1].

ni | nz | ns | T(Fro) | T(Ly) | THLZ) | E(Fro) E(Ly) EMLZ) | T(ALSr)
10 | 10 | 10 | 7e—04 | 9e—04 | 8e—04 | 1.11e—04 | 4.07e—05 | 0.0046 0.0036
20 | 20 | 20 | 0.0021 | 0.0012 | 0.0015 | 1.68¢—05 | 2.87e—06 | 0.0012 0.0046
50 | 50 | 50 | 0.0028 | 0.0019 | 0.0027 | 1.23e—06 | 7.62¢—08 | 1.90e—04 | 0.0065
100 | 100 | 100 | 0.0067 | 0.0024 | 0.0073 | 1.59e—07 | 4.60e—09 | 4.93e—05 | 0.0089
150 | 150 | 150 | 0.0149 | 0.0059 | 0.0142 | 4.82e—08 | 9.18e—10 | 2.18¢—05 | 0.0155
200 | 200 | 200 | 0.0412 | 0.0108 | 0.0323 | 2.04e—08 | 2.96e—10 | 1.25¢—05 | 0.0296
500 | 500 | 500 | 0.7694 | 0.1038 | 0.5479 | 1.31e—09 | 7.54e—12 | 2.01e—06 | 0.3345

50 75 100 | 0.0042 | 0.0019 | 0.0041 4.18e—07 | 1.77e—08 | 9.79e—05 0.0068
10 50 200 | 0.0016 | 0.0013 0.0016 1.44e—06 | 2.02e—07 | 2.49e—04 0.0048
100 | 200 | 500 | 0.0363 | 0.0117 0.0358 1.64e—08 | 2.73e—10 | 1.01e—05 0.0339
150 | 300 | 600 | 0.1064 | 0.0311 0.0877 6.04e—09 | 6.94e—11 | 5.52e—06 0.0804
100 | 300 | 700 | 0.0791 | 0.0250 | 0.0707 7.78e—09 | 1.16e—10 | 7.14e—06 0.0640
200 | 400 | 800 | 0.3094 | 0.0641 0.2871 2.56e—09 | 2.2le—11 | 3.08e—06 0.1791
100 | 200 | 1000 | 0.0748 | 0.0254 | 0.0740 8.10e—09 | 1.30e—10 | 4.89e—06 0.0653

B) Each member of the tensors is a uniformly distributed random number in [—1, 1].

n1 n2 n3 T'(Fro) | T(L1) | T(HLZ) E(Fro) E(Ly) E(HLZ) T'(ALSr)
10 10 10 8e—04 | 9e—04 8e—04 0.0133 0.0288 0.0138 0.0081
20 20 20 0.0018 | 0.0011 0.0017 0.0046 0.0078 0.0034 0.0109

50 50 50 0.0029 | 0.0019 | 0.0032 | 7.38e—04 0.0011 3.71e—-04 0.0094
100 | 100 100 | 0.0061 | 0.0024 | 0.0069 1.48e—04 | 2.24e—04 | 3.01e—05 0.0090
150 | 150 150 | 0.0188 | 0.0056 | 0.0156 | 6.89e—05 | 9.96e—05 | 1.37e—05 0.0167
200 | 200 | 200 | 0.0384 | 0.0106 | 0.0303 3.90e—05 | 5.58e—05 | 7.36e—06 0.0290
500 | 500 | 500 | 0.7661 | 0.1121 0.5397 6.64e—06 | 9.00e—06 | 1.12e—06 0.3453

50 75 100 | 0.0043 | 0.0020 | 0.0043 3.93e—04 | 5.11e—04 | 1.44e—04 0.0078
10 50 200 | 0.0039 | 0.0017 0.0021 0.0018 0.0021 6.87e—04 0.0081
100 | 200 | 500 | 0.0403 | 0.0132 | 0.0333 | 4.90e—05 | 5.69e—05 | 5.47e—06 0.0350
150 | 300 | 600 | 0.1069 | 0.0326 | 0.0915 2.42e—05 | 2.80e—05 | 3.49¢e—06 0.0822
100 | 300 | 700 | 0.0878 | 0.0282 | 0.0773 3.35e—05 | 3.67e—05 | 5.87e—06 0.0702
200 | 400 | 800 | 0.3449 | 0.0726 | 0.3276 1.37e—05 | 1.59e—05 | 1.94e—06 0.1985
100 | 200 | 1000 | 0.0774 | 0.0246 | 0.0755 3.87e—05 | 4.26e—05 | 1.25e—07 0.0659

log(Time)

L1 I I I I I I I I I l
0 50 100 150 200 250 300 350 400 450 500
n

FIG. 4.1. Log(Time) versus n for cubic random third-order tensors in R™*"Xxn,
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TABLE 4.2
Comparing Frobenius relaxation, L1 -relaxation, and HLZ for fourth-order random tensors. All algorithms are
run 100 times for each row. All times T are in seconds.

A) Each member of the tensors is a uniformly distributed random number in [0, 1].

ni | n2 | n3 | na | T@Ero) | T(L1) | T(HLZ) | E(Fro) E(L1) | EMELZ) | T(ALSr)
10| 10| 10 | 10 | 00012 | 9e—04 | 0.0018 | 1.95e—05 | 8.04e—07 | 4.59e—04 | 0.0055
20 | 20 | 20 | 20 | 0.0036 | 0.0023 | 0.0047 | 1.43e—06 | 1.25¢—08 | 5.85¢—05 | 0.0092
40 | 40 | 40 | 40 | 0.0106 | 0.0035 | 0.0128 | 9.11e—08 | 2.06e—10 | 7.79e—06 | 0.0162
100 | 100 | 100 | 100 | 0.3260 | 0.0904 | 0.3092 | 2.45¢—09 | 8.59e—13 | 4.94e—07 | 0.4206
10 | 20 | 30 | 40 | 0.0041 | 0.0018 | 0.0053 | 8.97e—07 | 7.77e—09 | 6.03¢—05 | 0.0084
70 | 80 | 90 | 100 | 0.1514 | 0.0425 | 0.1602 | 4.89e—09 | 2.44e—12 | 8.90e—07 | 0.2062
10 | 20 | 30 | 200 | 0.0079 | 0.0034 | 0.0139 | 1.83e—07 | 1.10e—09 | 1.24e—05 | 0.0137
10 | 50 | 100 | 500 | 0.1067 | 0.0416 | 0.1138 | 9.20e—09 | 1.59e—11 | 1.99e—06 | 0.1608

B) Each member of the tensors is a uniformly distributed random number in [—1, 1].

ny | n2 | n3 | na | T(Fro) | T(L1) | T(HLZ) E(Fro) E(Ly) EMHLZ) | T(ALSr)
10 10 10 10 | 0.0013 | 9e—04 | 0.0019 0.0031 0.0039 0.0014 0.0104
20 | 20 | 20 | 20 | 0.0034 | 0.0016 | 0.0048 | 3.42e—04 | 4.15e—04 | 1.03e—04 | 0.0095
40 | 40 | 40 | 40 | 0.0123 | 0.0045 | 0.0142 | 3.82e—05 | 4.72e—05 | 8.90e—06 | 0.0186
100 | 100 | 100 | 100 | 0.2961 | 0.0817 | 0.2888 | 2.54e—06 | 3.11e—06 | 7.58e—07 | 0.4008
10 | 20 | 30 | 40 | 0.0049 | 0.0022 | 0.0068 | 2.25e—04 | 3.28¢—04 | 1.31e—04 | 0.0121
70 | 80 | 90 | 100 | 0.1463 | 0.0406 | 0.1534 | 4.10e—06 | 5.10e—06 | 1.55e—06 | 0.2130
10 | 20 | 30 | 200 | 0.0057 | 0.0026 | 0.0112 | 4.63e—05 | 1.39e—04 | 6.17e—05 | 0.0108
10 | 50 | 100 | 500 | 0.0999 | 0.0378 | 0.1087 | 6.61e—06 | 1.72e—05 | 1.01e—05 | 0.1576

log(Error)
35
&
T

10710k

1012k I I I I I I 1 1 1
0 50 100 150 200 250 300 350 400 450 500
n

FIG. 4.2. Log(Error) versus n for cubic random third-order tensors in R™*"*™,

Secondly, we consider random tensors whose elements are chosen uniformly distributed
n [—1, 1]. The results are presented in Table 4.1(B) and Table 4.2(B). In this case, since we
do not have a uniqueness result, every method points to a different rank-1 tensor. It can be
seen that the Frobenius relaxation is more accurate than the L-relaxation, but the timings
are similar to the case of non-negative tensors. HLZ for this type of tensor is more accurate
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than the other two methods. The ALSr consumes more time to calculate rank-1 tensors for
small-sized tensors in [—1, 1] in comparison to the case of non-negative tensors.

Also, we should mention that for non-cubic tensors, Step 1 of Algorithm 1 is vital for
the Frobenius relaxation. It can be seen that j should be selected as 3 and 4 in Step 1 of
Algorithm 1 for third-order and fourth-order non-cubic tensors in Table 4.1 and Table 4.2,
respectively. The plots of the logarithms of calculation times and errors versus the size of
cubic tensors of this example are presented in Figure 4.1 and Figure 4.2, respectively.

EXAMPLE 4.2. In this example, we use six real chemometric data tensors' and two other
tensors, Traffic Speed [33] and Brain Network [48]. The results are given in Table 4.3. The
excitation-emission matrices (EEM), flow injection analysis [36], lipoproteins [12], and fluo-
rescence [4] databases consist of negative and positive elements, the wine gas chromatography—
mass spectrometry (GC-MS) data [46] and Traffic Speed are non-negative, the porphyrin
data [51] is positive, and the Brain Network tensor is binary. Also, only 10.5% of the wine
GC-MS data is non-zero. The outputs of Frobenius relaxation are close to the ALSr, but for the
L -relaxation, unlike random tensors, the error is significantly larger. The Frobenius relaxation,
by using Step 1 of Algorithm 1, can become significantly faster. HLZ performs poorly for
most of the third-order tensors, but it works much better for the fourth-order fluorescence
tensor. Interestingly L-relaxation also performs better for this tensor.

The L;-relaxation is faster than the other two methods, but it is less accurate. Since the
L -relaxation is much faster than the ALSr, we can use it as an initialization for the ALS, that
is, the solution of L;-relaxation is used for initializing the ALS; we call this combination of
these two methods, ALS-L;. The regular ALS uses the random initialization. We also used
Frobenius relaxation (ALSFro) and HLZ (ALSHLZ) for initializing the ALS method; these
four methods are compared in Table 4.4. As can be seen from the table, for some tensors,
ALSFro and ALS-L; managed to get to the solution faster, while the ALSHLZ is always
slower than ALSr. In addition, ALSFro and ALSHLZ could get a more accurate solution for
five out of seven tensors while this number for ALS-L; is six.

The computed time of ALS with a relaxation initialization is the sum of the consumed
time for that relaxation plus the running time of ALS with the initialization using the output of
the relaxation.

EXAMPLE 4.3. As the last example, five large sparse tensors are used from FROSTT [47];
three fourth-order tensors, NIPS [17] (count of words, 1.8e—04% non-zero elements), Chicago
Crime’? (number of crimes, 1.5% non-zero elements), and Flickr [18] (user has tagged an
image, binary); and also, two fifth-order tensors, LBNL-Network [38] (packet length sent
in a timestep, positive, 4e—12% non-zero elements), and VAST2015 MC1 [50] (attendance,
binary, 7.7e—05% non-zero elements).

The results of computations using relaxations are given in Table 4.5. Here, there is a clear
distinction between the computation time of L -relaxations and the other ones, L -relaxation
is much faster and has a similar accuracy to other methods. From an accuracy point of view,
HLZ performs better for this set of tensors than the previous example.

Again, the different initializations of ALS method are compared for this example. Ta-
ble 4.6 shows that the computational cost of Frobenius and HLZ relaxations makes the
corresponding ALS methods unreasonably costly. The only relaxation that could compete
with ALSr computationally and reduce the cost for some tensors is ALS-L;. Accuracy-wise,
ALS-L; also performs better and gives a better accuracy in four out of five tensors, while this
number for ALSFro and ALSHLZ is only one.

L Available at: https://ucphchemometrics.com/datasets/.
2City of Chicago data portal.
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5. Conclusion. In this paper, relaxing the NP-hard tensor best rank-1 approximation

resulted in having simpler algorithms. Also, the initialization of ALS by the L;-relaxation led
to a faster and more accurate version of ALS than with random inputs.

In addition, the proposed algorithms can be used to approximate the maximum Z-

eigenvalue of symmetric tensors and solutions of multivariate quadratic systems [9], since
both have close ties to the problem of best rank-1 approximation of tensors.
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