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QUASI-ORTHOGONALIZATION FOR
ALTERNATING NON-NEGATIVE TENSOR FACTORIZATION∗

LARS GRASEDYCK†, MAREN KLEVER†, AND SEBASTIAN KRÄMER†

Abstract. Low-rank tensor formats allow for efficient handling of high-dimensional objects. In many applications,
it is crucial to preserve the non-negativity in the approximation, for instance, by constraining all cores to be non-
negative. Common alternating strategies reduce the high-dimensional problem to a sequence of low-dimensional
subproblems but often suffer from slow convergence and persistence in local minima. In order to counteract this, we
propose a new quasi-orthogonalization strategy as an intermediate step between the alternating minimization steps
that preserves non-negativity. It allows one to improve the expressivity in each individual factor by modifying the
current factorization within the equivalence class representing the same tensor.
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1. Introduction. Non-negative tensor factorization is a concept of decomposing or
approximating a tensor with a set of smaller non-negative factors. Given a linear tensor
operator A ∈ R(n1×···×nd)×(n1×···×nd) and a right-hand side tensor B ∈ Rn1×···×nd , we
address the problem to find X? = τk((X?

µ)µ) ∈ Rn1×···×nd
≥0 with

(X?
µ)µ ∈ argmin

(Xµ)µ

‖A(X)−B‖2F s.t. X = τk((Xµ)µ), Xµ ≥ 0 ∀µ,(1.1)

where ‖ · ‖F is the Frobenius norm, the inequalities are meant entry-wise, and τk(·) is a
multilinear factorization map which specifies a tree tensor format, such as the tensor-train [34]
or hierarchical Tucker format [11, 13]. Here, k quantifies the sizes of the inputs of τk(·) and
X = τk((Xµ)µ) ≥ 0 is implied by Xµ ≥ 0 for all µ.

The general problem (1.1) includes, in particular, the well-known non-negative matrix
factorization problem: for a matrix B ∈ Rn1×n2 , that is, a two-dimensional (d = 2) tensor,
find X? = τk(Y ?, Z?) ∈ Rn1×n2

≥0 with

(Y ?, Z?) ∈ argmin
(Y,Z)

‖X −B‖2F s.t. X = τk(Y,Z), Y, Z ≥ 0,(1.2)

where here τk(Y,Z) = Y ZT for Y ∈ Rn1×k
≥0 and Z ∈ Rn2×k

≥0 with ZT denoting its transpose.
Popular strategies to solve (1.1) and (1.2) are alternating optimization methods. In each
micro-step for one ν, one fixes X 6=ν := (Xµ)µ6=ν and solves

X+
ν ∈ argmin

Xν≥0
‖A(X)−B‖2F s.t. X = τk(X 6=ν ,Xν).(1.3)

This allows one to reduce the large multilinear problem into a sequence of comparatively
small, non-negative least-squares problems.
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1.1. Context and literature. High-dimensional problems with non-negativity constraints
arise naturally in several areas, e.g., for probability distributions over combinatorial state spaces
in stochastic automata networks [24, 35], queueing theory [4, 21], and chemical reaction
networks [1, 27]. By exploiting certain structures of the problem, the curse of dimensionality
can be broken using low-rank tensor formats such as the tensor-train (TT) or matrix product
state (MPS) format [34, 44, 46, 53] or the hierarchical Tucker format [11, 13]. When utilizing
such formats, one often does not obtain an exact representation, but a good approximation.
In many applications, where the target tensor is non-negative, it is crucial to preserve this
in the approximation. A particular class of such are probability distributions, since negative
probabilities may not allow for an interpretation and should therefore be prohibited. Such a
high-dimensional probability distribution, which occurs in tumor progression modeling [37],
is considered in Section 4.3.

One way to deal with non-negativity conditions on a tensor X are so-called non-negative
low-rank approximations X = τk((Xµ)µ), where the individual factors Xµ may have negative
entries and only the represented tensor satisfies X ≥ 0. This approach is less restrictive with
respect to the choice of (Xµ)µ, but fulfilling X ≥ 0 can be restrictively hard. To deal
with this problem, alternating projections between a low-rank manifold and the non-negative
orthant Rn1×···×nd

≥0 may be used. These have recently been extended from matrices [39] to
higher-dimensional tensors [38, 40]. However, even determining if a high-dimensional tensor
X = τk((Xµ)µ) ∈ Rn1×···×nd in a low-rank format satisfies X ≥ 0 without computing all nd

entries is a non-trivial task. In practice, these methods can oftentimes reduce the number and
absolute value of negative entries. However, there is no guarantee that the resulting low-rank
tensor is completely non-negative. As an alternative to alternating projections, there are also
recent works on approximating non-negative objects with low rank based on squaring, i.e.,
using X = (τk((Xµ)µ))2 (with component-wise squaring); see [28]. This naturally guarantees
the non-negativity of X. However, minimizing ‖A(X)−B‖2F over X = (τk((Xµ)µ))2 is not
multilinear any more, which may lead to other issues.

A different way to combine both low-rank tensor formats and non-negativity is non-
negative tensor factorization, where all factors are themselves non-negative, i.e., Xµ ≥ 0 for
all µ. For matrices, the problem is known as non-negative matrix factorization. This approach
is more restrictive, but directly guarantees that X = τk((Xµ)µ) is non-negative. In addition,
the individual non-negative factors Xµ themselves can be interpreted in some applications; for
instance, in the context of graphical probability models [36].

For ordinary low-rank tensor formats, there exist many techniques to solve a linear
system A(X) = B, including iterative and optimization methods; see, e.g., [12] for an
overview. As arithmetic operations typically lead to an increase in the representation ranks of
tensors, applying iterative solvers within low-rank formats essentially relies on a quasi-optimal
truncation, which allows one to reduce the ranks in an error-controlled way [11, 13, 34]. For
non-negative tensor factorization, this boils down to solving (1.1) whenA is the identity, which
is non-trivial even beyond quasi-optimality. There are also strategies that rely on constructions
of suitable manifolds, requiring the identification of equivalence classes of factorizations
that describe the same tensor; see, e.g., [7, 16, 43] for classical low-rank formats. Without
non-negativity constraints on the factors, the degrees of freedom are given by regular transfer
matrices between two neighboring factors each. However, for non-negative factorizations, this
is not straightforward.

In the context of non-negative matrix factorization (1.2), there are also methods that use
certain non-negative functions to describe the entries of the factors. When the target matrix
B contains samples of non-negative smooth (or mostly smooth) functions, formulating the
coefficients of Y and/or Z as certain discretizations of continuous non-negative functions such
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as polynomials [6], splines [50], or rational functions [14] can be beneficial, as they allow for
taking prior, problem-specific information into account.

In the context of non-negative tensor factorizations, there are also optimization approaches
that operate on the entire parameter space; e.g., [45]. This allows one to use more general
methods, for instance, Gauss–Newton-like methods at moderate dimensions [45]. For higher-
dimensional problems, oftentimes alternating optimization strategies are used, splitting (1.1)
into a sequence of micro-steps (1.3). The question of how to solve (1.3) has been studied
extensively in different communities. These include, for instance, multiplicative updates [26],
hierarchical alternating least-squares [51], alternating direction method of multipliers [18]
related to non-negative matrix factorization, or more general interior-point methods [48]
for quadratic programs; see, e.g., [5], [22, Section 5.6], and [10, Chapter 4] for overviews.
Extending vanilla alternating non-negative strategies, further acceleration and extrapolation
methods are developed in order to improve (empirical) convergence speed for alternating
non-negative matrix and tensor factorization; see, e.g., [47, Section 3.4] as well as [29, 31] for
some recent works.

1.2. Motivation. In this work, we address the issue that alternating non-negative tensor
factorization often experiences slow convergence and persistence in local minima [10, Chap-
ter 3 and p. 169 item 1], especially for higher dimensions. One property related to alternating
procedures is the expressivity we define as follows.

DEFINITION 1.1 (Expressivity). Let ν ∈ [d], X 6=ν := (Xµ)µ6=ν , and sizes k be given.
Then the expressivity in the ν-th factor given X 6=ν (without non-negativity constraints) is
defined as the range of Rsizes(Xν) → Rn1×n2×···×nd , Xν 7→ τk(X 6=ν ,Xν).

Given X 6=ν = (Xµ)µ6=ν ≥ 0, the expressivity in the ν-th factor with non-negativity
constraints is the range of Rsizes(Xν)

≥0 → Rn1×n2×···×nd
≥0 , Xν 7→ τk(X 6=ν ,Xν).

Please note that this expressivity is independent of A and B in (1.3) and

X+
ν ∈ argmin

Xν

‖A(X)−B‖2F s.t. X = τk(X 6=ν ,Xν),

respectively. For this reason, we assign the expressivity to a fixed factor (given all other
factors) instead of the micro-step, although they are also related.

In contrast to the classical setting without non-negativity constraints, the expressivity
in each factor ν given X 6=ν = (Xµ)µ6=ν ≥ 0 strongly depends on the choice of the fixed
factors X 6=ν and also on the particular representative of the equivalence class describing the
same tensor X as we will discuss in the following. For this reason, we want to maximize this
expressivity in each intermediate step between consecutive micro-steps (1.3).

By reshaping the factor Xν and the difference A(X)−B into appropriate matrices, the
micro-step (1.3) behaves similarly to those used in non-negative matrix factorization,

Z+ ∈ argmin
Z∈Rn2×k

‖X −B‖2F s.t. X = τk(Y,Z), Z ≥ 0,

for fixed Y ∈ Rn1×k
≥0 (and analogously for Y + with fixed Z ∈ Rn2×k

≥0 ).
For the classical low-rank matrix approximation, i.e., (1.2), without non-negativity con-

straints on Y ∈ Rn1×k and Z ∈ Rn2×k, orthogonalization via QR decomposition is used as
an intermediate step. By replacing Y with Q from its reduced QR decomposition Y = QR,
the set of matrices that can be obtained for fixed Y remains unchanged:

{X ∈ Rn1×n2 : range(X) ⊆ range(Y )} = {X = τk(Y, Z) : Z ∈ Rn2×k}
= {X = τk(Q,W ) : W ∈ Rn2×rank(Y )} = {X ∈ Rn1×n2 : range(X) ⊆ range(Q)}.
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This means that the expressivities in the factor Z given Y ∈ Rn1×k or Q ∈ Rn1×rank(Y ),
respectively, are equal, with range(Y ) = range(Q). When restricting Y,Z ≥ 0,
the expressivity in the factor Z given Y ≥ 0 depends on the non-negative range,
range≥0(Y ) := {Y z : z ∈ Rk≥0}, spanned by the columns in Y ; see Definition 3.1. For
Y without redundant columns, any non-negative factorization Y = V N with V,N ≥ 0 and
a square N that is not a permuted diagonal matrix leads to range≥0(Y ) ( range≥0(V ); see
Theorem 3.10. Thus, the expressivity in the factor Z given Y ≥ 0 relies not only on the choice
for Y , but also on the representative of the equivalence class representing X = τk(Y,Z).

EXAMPLE 1.2. Let n1 = 3, k = 2, and

Y :=

 1 1/2
2 1

3/2 3

 =

1 0
2 0
0 3

[ 1 1/2
1/2 1

]
=: V N.

Then V,N ≥ 0, rank(N) = 2, and {τk(Y, Z) : Z ≥ 0} ( {τk(V,W ) : W ≥ 0} since0
0
1

 ∈ range≥0(V ) \ range≥0(Y ).

Thus, switching to the representation X = τk(V,ZNT ) instead of X = τk(Y, Z) would be
preferable for an update of the second factor.

Similar holds true for higher-dimensional tensors. For instance, let X =
τk(Y1,Y2,Y3) ∈ Rn×n×n≥0 with Y1,Y

T
3 ∈ Rn×k≥0 and Y2 ∈ Rk×n×k≥0 . Then one can modify

the factors (Yµ)µ∈[3] by regular matrices N1, N2 ∈ Rk×k≥0 such that for all i ∈ {1, . . . n} it
holds

V1 := Y1N
−1
1 ≥ 0, V3 := N2Y3 ≥ 0 and (V2):,i,: := N1(Y2):,i,:N

−1
2 ≥ 0 ∀ i ∈ [n]

without changing the represented tensor, that is, X = τk(V1,V2,V3). Again, in contrast to
classical low-rank approximation without non-negativity constraints, the expressivity in the ν-
th factor given Y 6=ν ≥ 0 and V 6=ν ≥ 0, respectively, that is, the ranges of Xν 7→ τk(Y6=ν ,Xν)
and Xν 7→ τk(V 6=ν ,Xν) for Xν ≥ 0 (see Definition 1.1), can be different.

Ordinary orthogonalization in general violates the non-negativity conditions for the
individual factors and thus cannot directly be used here. One common alternative is to
simply rescale the factors by using diagonal transfer matrices whose diagonal entries are all
positive; see Algorithm 2.1. This may help to improve stability, but does not allow for further
improvements with respect to the expressivity as in Example 1.2.

1.3. Main contribution. Based on the fact that the expressivity in each factor for non-
negative factorization relies on the degrees of freedom between two factors (see Example 1.2),
our main contribution is the development of a quasi-orthogonalization. Its aim is to maximize
the non-negative range of each fixed factor while preserving the non-negativity of all factors.
We illustrate this idea in Examples 3.14 and 3.15. In Theorem 3.5, we prove that there
exists a minimal subset of columns that generates the non-negative range. For this reason, all
other columns can either be removed or replaced without decreasing its non-negative range.
Theorem 3.10 shows that, for Y consisting only of such generators, strictly increasing its
non-negative range is equivalent to finding a non-negative factorization Y = V N with square
N not being a permuted diagonal matrix. One way to obtain this factorization is to find
an inverse non-negative transfer matrix such that its application to the current factor retains
non-negativity. Here, we focus on a particular subset of M -matrices; see Notation 3.18. We
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prove that these matrices are inverse non-negative under mild conditions; see Theorems 3.20
and 3.29. In Section 3.4 we introduce a method for finding an appropriate matrix through
modifications of Y in a column-wise manner. Theorem 3.32 proves the equivalence of an
increase in the non-negative range by such column-wise modification and the existence of such
an M -matrix. This allows us to formulate the quasi-orthogonalization in Algorithm 3.1, which
has negligible effort compared to solving a micro-step; see Lemma 3.39 and Remark 3.41.

1.4. Related methods and motivation thereof. One work we would like to highlight
here is [9]: there, a preprocessing strategy for non-negative matrix factorization is proposed
which is based on similar observations. Given a target matrix B ∈ Rn1×n2

≥0 , their goal is to
obtain a more well-posed non-negative matrix factorization problem for BM compared to
B via an M -matrix M ∈ Rn2×n2 . The transfer matrix M is chosen such that M is inverse
non-negative and BM ≥ 0 is sparse. A set of specific M -matrices, which is equivalent to
MB in Notation 3.18, is selected, and conditions for the non-negativity of the inverses are
derived. To ensure sparsity, the Frobenius norm of BM as an approximation of its `0-norm is
minimized. Reference [9] also provides a geometric interpretation of this preprocessing using
some examples, which is consistent with our idea of maximizing the non-negative range. In
contrast to [9], we are interested, in particular, in the behavior of the non-negative range by
changing to representative of the equivalence class of a non-negative factorization.

1.5. Organization of the remainder of the paper. An overview of the notation and
preliminary concepts is given in Section 2, including a brief introduction to the tensor-train
format in Section 2.1 and the alternating non-negative tensor factorization in Section 2.2.
In Section 3 we derive the quasi-orthogonalization strategy and provide an analysis of it.
Section 4 contains detailed numerical experiments on the quasi-orthogonalization for the
non-negative factorization of symmetric polynomials in Section 4.2 and certain probability
distributions for high-dimensional Markov chains in Section 4.3. We conclude in Section 5.

2. Notation and preliminary concepts. For the remainder of this paper, we use the
following notation and concepts. We write [n] := {1, . . . , n} for any n ∈ N and R≥0 :=
[0,∞). For a matrix Y ∈ Rn1×k, we denote its entry at (i, j) by Yi,j , its i-th row by
Yi,:, and its j-th column by Y:,j . The matrix without the i-th column (or row) is denoted
by Y:,6=i (or Y6=i,:), the set of its columns by col(Y ) := {Y:,` : ` ∈ [k]}, and its range by
range(Y ) := {Y λ : λ ∈ Rk}. A d-dimensional tensor with mode sizes n1, . . . , nd ∈ N is an
object X ∈ Rn1×···×nd . We write Xi := Xi1,...,id for the evaluation of X at i := (i1, . . . , id).
Inequalities are always meant entry-wise, e.g., X ≥ 0 if and only if Xi ≥ 0 for all i. We denote
the Frobenius norm of X by ‖X‖F :=

√∑n1

i1=1 · · ·
∑nd
id=1 X

2
i1,...,id

. We write ei ∈ {0, 1}n
for the i-th canonical unit tensor, that is, (ei)j = 1 if j = i and (ei)j = 0 otherwise, and
Idn ∈ Rn×n for the identity operator. Further, 0n and 1n ∈ Rn denote the tensors of all
zeros and ones, respectively. We write diag(x1, . . . , xn) ∈ Rn×n for the diagonal matrix with
diagonal entries x1, . . . , xn.

2.1. Low-rank tensor formats: tensor-train format. We briefly introduce the concept
and notation of low-rank tensor formats. A basic idea, on which most tensor formats are based,
is to unfold a high-dimensional tensor into matrices by partitioning its modes, and reshaping
the tensor accordingly; see, e.g., [22, Section 2.4].

DEFINITION 2.1 (Unfolding). The unfolding of a tensor X ∈ Rn1×···×nd with
respect to the row modes γ ⊆ [d] and column modes γc := [d] \ γ is the matrix
X(γ) ∈ R

∏
µ∈γ nµ×

∏
ν∈γc nν with

(X(γ))(iµ)µ∈γ ,(iν)ν∈γc := Xi
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for all indices i = (iµ)µ∈[d]. In particular, X([d]) is the vectorization of X as a column and
X(∅) as a row.

color

shape

size

color

size, shape

X =

X({color}) =
γ = { color }

FIG. 2.1. Unfolding of a three-dimensional tensor X in size × color × shape into a matrix X(γ) with
γ = {color}.

Figure 2.1 shows a schematic example for an unfolding of a three-dimensional tensor into
a matrix. This approach allows one to transfer several concepts and strategies from matrices
back to tensors. For simplicity, we focus on the tensor-train format [34], also known as MPS
format [44, 46]. However, all concepts presented can also be transferred to more general
hierarchical Tucker [11, 13] or tree tensor formats.

DEFINITION 2.2 (Tensor-train representation). A tensor X ∈ Rn1×···×nd has a TT
representation of size k := (k0, k1, . . . , kd) ∈ Nd+1 with k0 = kd = 1 if and only if there
exist (Xµ)µ∈[d], called TT cores, with Xµ ∈ Rkµ−1×nµ×kµ , such that

Xi =

k1∑
`1=1

· · ·
kd−1∑
`d−1=1

(X1)1,i1,`1(X2)`1,i2,`2 · · · (Xd)`d−1,id,1

for all i = (iµ)µ∈[d]. In this case, we call X a TT tensor and identify X = τk((Xµ)µ∈[d]).
Similarly, we define a tensor-train operator as follows.
DEFINITION 2.3 (Tensor-train operator). A linear operator A from Rn1×···×nd to

Rm1×···×md has a TT representation of size K := (K0,K1, . . . ,Kd) ∈ Nd+1 with
K0 = Kd = 1 if and only if there exist TT cores (Aµ)µ∈[d] with Aµ ∈ RKµ−1×mµ×nµ×Kµ

such that

Ai,j =

K1∑
`1=1

· · ·
Kd−1∑
`d−1=1

(A1)1,i1,j1,`1(A2)`1,i2,j2,`2 · · · (Ad)`d−1,id,jd,1

for all i = (iµ)µ∈[d] and j = (jµ)µ∈[d]. In this case, we call A a TT operator and identify
A = τK((Aµ)µ∈[d]).

REMARK 2.4. The TT tensors of size k = (k0, k1, . . . , kd) in Definition 2.2 are
exactly the tensors X whose unfoldings X({1,...,µ}) have ranks of at most kµ [34], i.e.,
rank(X({1,...,µ})) ≤ kµ for all µ ∈ [d]. However, as we are interested in non-negative
factorizations, these rank conditions are less important here.

Analogously to Definition 2.2, we define a non-negative tensor-train factorization as
follows.

DEFINITION 2.5 (Non-negative tensor-train factorization). A TT representation
(Xµ)µ∈[d] is called a non-negative factorization if and only if all TT cores are non-negative,
i.e., Xµ ≥ 0 for all µ ∈ [d].

The main benefits of the tensor-train format are its low storage and computational com-
plexity for performing, for instance, the application of TT operators to TT tensors, inner
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TABLE 2.1
Operations and their costs for TT tensors X and C and a TT operator A each of dimension d with constant

mode sizes n and ranks component-wise bounded by k and K forA, respectively, [32].

Operation Formula Cost

Storage O(dnk2)
Evaluation Xi O(dnk2)
Inner product 〈X,C〉 O(dnk3)
Operator application A(X) O(dn2K2k2)

products between, and evaluations of such [34]. We summarize some of these operations and
their respective cost in Table 2.1. In addition to this formal definition of TT tensors, we also
use a graphical representation of such, so-called tensor networks; similar to, for instance, [17].
Here, individual d-dimensional tensors are represented as nodes with d legs, i.e., half-edges
connected to only one node. Figure 2.2(a) shows some examples of d-dimensional tensors.
Contractions of two tensors over a certain mode are represented as a common edge between
their respective tensor nodes.

a b C D E

scalar vector matrix 3-dim. 5-dim. tensor

(a)

ΣU VC =

(b)

X1 X2 X3 Xd
. . .=X

. . .

1 d2 3 1 d2 3

(c)

A1 A2 A3 Ad
. . .=A

1

2

3

d

...
...

1

2

3

d

1 2 3 d1 2 3 d

(d)

FIG. 2.2. Tensor node networks of (a) d-dimensional tensors with d ∈ {0, . . . , 5}, (b) the singular value
decomposition C = UΣV T = τrank(C)(U,Σ, V ) with orthogonality represented by arrows, (c) a TT tensor
X = τk((Xµ)µ∈[d]), and (d) a TT operatorA = τK((Aµ)µ∈[d]).

2.2. Alternating non-negative tensor factorization. Motivated by the alternating least-
squares strategies for the tensor-train approximation, we introduce alternating non-negative
tensor factorization in the tensor-train format. If A and B are given in the TT format, the
classical minimization problem

(X?
µ)µ∈[d] ∈ argmin

(Xµ)µ∈[d]

‖A(X)−B‖2F s.t. X = τk((Xµ)µ∈[d])(2.1)

can be solved using alternating least-squares; e.g., [17]. One solves the micro-steps

X+
ν ∈ argmin

Xν∈Rkν−1×nν×kν
‖A(X)−B‖2F s.t. X = τk(X6=ν ,Xν)(2.2)

for each ν ∈ [d] while fixing all others X 6=ν = (Xµ)µ6=ν alternately. Before solving (2.2), the
current tensor is typically orthogonalized with respect to the core Xν usingQR decompositions
of the unfoldings Xµ

({1,2}) = QµRµ for µ < ν and Xµ
({1}) = RµQµ for µ > ν. Starting at
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µ = 1, one decomposes Xµ
({1,2}) = QµRµ and moves Rµ to the next core by Xµ

({1,2}) ←
Qµ and Xµ+1

({1}) ← RµXµ+1
({1}). Next, one moves on to the next core µ + 1 until one

reaches ν − 1 (and analogously for η = d to ν + 1 in the opposite direction). Owing to the
specific structure of the TT format, running the cores from ν = 1 to d and back allows for
a more efficient computation of the orthogonalization steps, as the QR decomposition only
needs to be computed for the new updated core. Running one way, i.e., from ν = 1 to d or
back, solving the corresponding micro-steps (2.2) is commonly referred to as a half-sweep,
whereas running it both ways, i.e., from ν = 1 to d and back, is called a sweep.

The alternating procedure for solving (2.1) can easily be adapted to the non-negative case:

(X?
µ)µ∈[d] ∈ argmin

(Xµ)µ∈[d]

‖A(X)−B‖2F s.t. X = τk((Xµ)µ∈[d]), Xµ ≥ 0 ∀µ ∈ [d].(2.3)

To do so, instead of (2.2), one alternately solves the non-negative micro-step

X+
ν ∈ argmin

Xν∈Rkν−1×nν×kν
‖A(X)−B‖2F s.t. X = τk(X 6=ν ,Xν), Xν ≥ 0(2.4)

for ν ∈ [d] and each fixed X 6=ν . Each non-negative micro-step (2.4) is a non-negative least-
squares problem, which can be solved using one of several available methods; see, e.g., [5] for
an overview.

As mentioned before, the orthogonalization steps via QR decompositions cannot be used
any more, as their results typically have negative entries. One common ansatz to improve the
stability of the non-negative micro-step (2.4) and still keep all cores non-negative is to rescale
all cores (Xµ)µ6=ν such that

‖(Xµ
({1,2})):,j‖ = ‖(Xη

({1}))`,:‖ = 1 ∀ j, ` and ∀µ < ν < η(2.5)

for a given vector norm ‖ · ‖. This column-wise normalization can be performed using
diagonal transfer matrices with positive diagonal elements, as formulated in Algorithm 2.1
and illustrated in Figure 2.3.

Algorithm 2.1: diag of X w.r.t. Xν

Input: X = τk((Xµ)µ∈[d]) TT tensor with
Xµ ≥ 0, ν ∈ [d], ‖ · ‖ vector norm

Output: X = τk((Xµ)µ∈[d]) fulfilling (2.5)
1 for µ = 1, . . . , ν − 1 do
2 Dµ := diag(‖(Xµ

({1,2})):,`‖ : ` ∈ [kµ])

3 Xµ
({1,2}) ← Xµ

({1,2})D−1µ
4 Xµ+1

({1}) ← DµXµ+1
({1})

5 end
6 for η = d, . . . , ν + 1 do
7 Dη := diag(‖(Xη

({1}))`,:‖ : ` ∈ [kη−1])

8 Xη
({1}) ← D−1η Xη

({1})

9 Xη−1
({1,2}) ← Xη−1

({1,2})Dη

10 end
11 return X

Xv−1 Xv Xv+1

Xv−1 Xv Xv+1

Xv−1 Xv Xv+1

≥ 0

. . . . . .

. . . . . .

. . . . . .

diag

Xv−1 Xv Xv−1. . . . . .

diag

≥ 0≥ 0

FIG. 2.3. Illustration of diag for a non-
negative TT tensor X = τk((Xµ)µ∈[d]) w.r.t.
Xν .
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Besides stability issues, the expressivity in each non-negative factor ν given X 6=ν =
(Xµ)µ6=ν ≥ 0, i.e., the range of Xν 7→ τk(X 6=ν ,Xν), strongly depends on the representation
chosen for the fixed cores X 6=ν (cf. Example 1.2) resulting in slow convergence and stagnation,
in particular for higher dimensions. Therefore, our idea is to derive a quasi-orthogonalization
strategy that maximizes the expressivity in each factor while preserving the non-negativity of
all cores and not changing the represented tensor.

Given such a strategy, we summarize the resulting alternating non-negative least-
squares method for non-negative tensor trains in Algorithm 2.2 and illustrate the quasi-
orthogonalization step in Figure 2.4. To distinguish quasi-orthogonality from classical orthog-
onality, the arrow heads correspond to small vertical lines.

Algorithm 2.2: TT-ANLS for (2.3)
Input: A TT operator, B TT tensor,

X = τk((Xµ)µ∈[d]) initial TT tensor
with Xµ ≥ 0

Output: X approximate solution of (2.3)
1 while stop criteria are not fulfilled do

/* Half sweep ν = 1 to d */
2 for ν = 1, . . . , d− 1 do
3 Quasi-orthogonalize or normalize X

w.r.t. Xν

4 Solve (2.4) and update Xν

5 end
/* Half sweep ν = d to 1 */

6 for ν = d, . . . , 2 do
7 Quasi-orthogonalize or normalize X

w.r.t. Xν

8 Solve (2.4) and update Xν

9 end
10 end
11 return X

Xv−1 Xv Xv+1

Xv−1 Xv Xv+1

Xv−1 Xv Xv+1

≥ 0

. . . . . .

. . . . . .

. . . . . .

quasi-

Xv−1 Xv Xv−1. . . . . .

quasi-

≥ 0≥ 0

ortho ortho

FIG. 2.4. Illustration of
quasi-ortho for
X = τk((Xµ)µ∈[d]) w.r.t. Xν .

Besides the vanilla version in Algorithm 2.2, also other alternating strategies for non-
negative tensor factorization can benefit from quasi-orthogonalization. As such an example,
we extended the so-called heuristic extrapolation with restarts (HER) strategy from [29] to our
problem (2.3) using tensor trains and an additional quasi-orthogonalization step. The resulting
method is summarized in Algorithm A.1 and applied in Section 4 for comparison. For further
details on HER, we refer the reader to [29].

3. Quasi-orthogonalization strategy. For simplicity, we focus on the classical non-
negative matrix factorization problem in (1.2) to derive our quasi-orthogonalization strategy.
Similar to the classical orthogonalization, also the quasi-orthogonalization can easily be
adapted to higher-dimensional tensors as explained in Remark 3.38 for the TT format.

3.1. Non-negative range of a non-negative matrix. We start with some elementary
definitions and observations motivating the quasi-orthogonalization. We recall the definition
of conical combinations, the non-negative range of a non-negative matrix according to [15,
pp. 101–102] and define an extreme column (analog to an extreme ray).
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DEFINITION 3.1 (Conical combination and non-negative range). A conical combination
c ∈ Rn1

≥0 of non-negative vectors y1, . . . yk ∈ Rn1

≥0 is a linear combination with non-negative
coefficients, i.e.,

c =

k∑
`=1

λ`y` with λ` ≥ 0 ∀ ` ∈ [k].

The non-negative range of a non-negative matrix Y ∈ Rn1×k
≥0 is defined as the set of all conical

combinations of its columns:

range≥0(Y ) :=

{
k∑
`=1

λ`Y:,` : λ` ≥ 0 ∀ ` ∈ [k]

}
= {Y λ : λ ∈ Rk≥0}.

A column Y:,` is called extreme if and only if it is not a conical combination of all others, i.e.,
Y:,` 6∈ range≥0(Y:,6=`).

Note that the non-negative range of Y is a cone; in particular, it is the conical hull of
col(Y ). For fixed Y ≥ 0, all elements in the range of Z 7→ τk(Y, Z) for Z ≥ 0 are column-
wise contained in range≥0(Y ), i.e., col(τk(Y,Z)) ⊆ range≥0(Y ) for all Z ≥ 0. In contrast
to the classical low-rank approximation problem, the range of Z 7→ τk(Y,Z) for Z ≥ 0
strongly depends on the degrees of freedom chosen for the fixed factor Y , as illustrated in
Example 1.2. Based on this observation, we want to increase expressivity in the factor Z by
increasing the non-negative range of Y . Corollary 3.2 shows the equivalence between subset
relations of the non-negative ranges and non-negative matrix factorizations.

COROLLARY 3.2. Let Y, V ∈ Rn1×k
≥0 . Then range≥0(Y ) ⊆ range≥0(V ) if and only if

there exists an N ∈ Rk×k≥0 such that Y = V N .
Proof. Let range≥0(Y ) ⊆ range≥0(V ). Then, for each j ∈ [k] there exists an N:,j ∈

Rk≥0 with Y:,j = Y ej = V N:,j , i.e., Y = V N holds true. Let Y = V N with N ≥ 0. Then
Y z = V (Nz) ∈ range≥0(V ) as Nz ≥ 0 for all z ≥ 0, i.e., range≥0(Y ) ⊆ range≥0(V )
holds true.

Extending [9, Lemma 18], the following subset relation between the (non-negative) ranges
of Y and V holds true.

LEMMA 3.3. Let Y, V ∈ Rn1×k
≥0 and N ∈ Rk×k≥0 be regular such that Y = V N . Then

range≥0(Y ) ⊆ range≥0(V ) ⊆ range(Y ) ∩ Rn1

≥0 and range(Y ) = range(V ) hold true.
Proof. First, range≥0(Y ) ⊆ range≥0(V ) follows directly from Corollary 3.2. Similarly,

for any w ∈ Rk≥0 we have V w = Y (N−1w) ∈ range(Y ). The identity range(Y ) =
range(V ) follows directly from the regularity of N .

Furthermore, we formulate a specific variant of the general vertex-representation theorem
for polytopes [52, Theorem 2.15] for the non-negative range in Theorem 3.5.

THEOREM 3.4 (Vertex representation of polytopes [52]). Any polytope P = conv(S) :=
{∑v∈S λvv : λv ≥ 0,

∑
v∈S λv = 1} for a finite set S ⊆ Rn is the convex hull of its vertices

T ⊆ P , that is, P = conv(T ).
THEOREM 3.5. Let Y ∈ Rn1×k

≥0 be non-zero. Then the following statements hold true:
(i) There exists a non-empty subset I ⊆ [k] of columns with minimal number of elements

such that range≥0(Y ) = range≥0(Y:,I).
(ii) All columns of Y:,I are extreme with respect to Y:,I .

(iii) If no column of Y is a multiple of another one, i.e., Y:,i 6= λY:,j for all λ ≥ 0 and
i 6= j, then I 6= ∅ is uniquely defined as the index set of all extreme columns in Y .

(iv) If Y contains only extreme columns, then I = [k] is already minimal in the above
sense.
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Proof. The statement can be derived as a special case of the vertex representation
theorem [52, Theorem 2.15] above. For the complete proof and explicit construction of the
index set I, we refer to Appendix C.

Moreover, two matrices spanning the same non-negative range are equal up to a specific
type of transformation matrix, called monomial, also known as generalized permutations:

DEFINITION 3.6 (Monomial matrix). A regular matrix M ∈ Rk×k≥0 is called a
monomial matrix if and only if M = PD, where P ∈ {0, 1}k×k is a permutation and
D = diag(m1, . . . ,mk) is a diagonal matrix with m` > 0 for all ` ∈ [k]. We denote the set
of all k × k monomial matrices as

Monok := {M ∈ Rk×k≥0 : M is monomial}.

Non-negative matrices with non-negative inverse are exactly the monomial ones; see,
e.g., [30, Lemma 1.1].

LEMMA 3.7 ([30]). A regular non-negative matrix M ∈ Rk×k≥0 is inverse non-negative if
and only if M is a monomial matrix.

As motivated above, the non-negative range is invariant under monomial transformation.
LEMMA 3.8. Let Y ∈ Rn1×k

≥0 have only extreme columns. Then each non-zero element
of its kernel, x ∈ kernel(Y ) := {x ∈ Rk : Y x = 0n1

}, x 6= 0k, has at least two negative
entries, i.e., there exist j 6= ` with xj , x` < 0.

Proof. As Y ≥ 0 has no zero column, each element x 6= 0k of its kernel must have at
least one negative entry x` < 0 for an ` ∈ [k]. Assume that xi ≥ 0 for all i 6= `. Then due to
x ∈ kernel(Y ), we can write

Y:,` =
∑
i 6=`

xi
|x`|

Y:,i,

which contradicts the assumption that Y:,` 6∈ range≥0(Y:,6=`).
LEMMA 3.9. Let Y ∈ Rn1×k

≥0 have only extreme columns and let V ∈ Rn1×k
≥0 . Then

range≥0(Y ) = range≥0(V ) holds true if and only if there exists a monomial matrix M ∈
Monok such that Y = VM .

Proof. “⇒” Let range≥0(Y ) = range≥0(V ). Using Corollary 3.2, there exists an
N ∈ Rk×k≥0 such that Y = V N and similarly M ∈ Rk×k≥0 with V = YM . Thus, we have

Y = V N = YMN ⇐⇒ Y (MN − Idk) = 0n1×k.

For any fixed ` ∈ [k], we show that x := (MN − Idk):,` ∈ kernel(Y ) has at most one
negative entry, which by Lemma 3.8 implies that x is already zero. By construction and the
fact that M,N ≥ 0, directly x` ≥ −1 and xi ≥ 0 for all i 6= ` follow. Thus, x ∈ kernel(Y )
has at most one negative entry, which implies that x = 0k must hold true. As ` ∈ [k] was
chosen arbitrarily, it follows that MN = Idk. Due to M,N ≥ 0, Lemma 3.7 implies that M
and N are monomial matrices.

“⇐” Let Y = VM , then directly range≥0(Y ) ⊆ range≥0(V ) holds true as M ≥ 0 and
range≥0(V ) ⊆ range≥0(Y ) with M−1 ≥ 0, i.e., range≥0(Y ) = range≥0(V ) follows.

THEOREM 3.10. Let Y ∈ Rn1×k
≥0 have only extreme columns and V ∈ Rn1×k

≥0 . Then
range≥0(Y ) ( range≥0(V ) holds true if and only if there exists a non-monomial N ∈ Rk×k≥0
with Y = V N . In this case, N has only extreme columns.
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Proof. “⇒” Let range≥0(Y ) ( range≥0(V ). By Corollary 3.2, there exists an N ∈
Rk×k≥0 with Y = V N using Corollary 3.2. Using Lemma 3.9, N is non-monomial. Assume N
has a non-extreme column N:,` =

∑
j 6=` λjN:,j ≥ 0 with λj ≥ 0. Then also Y:,` = V N:,` =∑

j 6=` λjV N:,j =
∑
j 6=` λjY:,j would be non-extreme.

“⇐” Let Y = V N for a non-monomial N ∈ Rk×k≥0 . Corollary 3.2 directly implies that
range≥0(Y ) ⊆ range≥0(V ) holds true. Assuming range≥0(Y ) = range≥0(V ), Lemma 3.9
would imply that N is monomial, which contradicts the assumptions.

In the context of (exact) non-negative matrix factorization B = Y ZT , Lemma 3.11
describes the relationship between maximizing the non-negative range of Y and minimizing
the non-negative range of Z:

LEMMA 3.11. Let Y ∈ Rn1×k
≥0 , Z ∈ Rn2×k

≥0 with rank(Z) = k, and B = Y ZT .
Then there exists V ∈ Rn1×k

≥0 with range≥0(Y ) ( range≥0(V ) if and only if there exists
W ∈ Rn2×k with col(BT ) ⊆ range≥0(W ) ( range≥0(Z).

Proof. “⇒” Assume there exists such V . Then due to range≥0(Y ) ⊂ range≥0(V ), there
is a non-monomial N ∈ Rk×k≥0 with Y = V N and hence Y ZT = V (ZNT )T holds true. We
define W := ZNT . With BT = WV T and V ≥ 0, it follows that col(BT ) ⊂ range≥0(W ).
As NT is non-monomial, we have shown the existence of W as required.

“⇐” Assume there exist a non-monomialN ∈ Rk×k≥0 withW = ZNT and a non-negative
V ∈ Rn1×k

≥0 with BT = WV T . Let Z† be the pseudo-inverse of ZT . As rank(Z) = k, we
have ZTZ† = Idk, and, by assumption, Y = Y ZTZ† = BZ† = VWTV = V NZTZ† =
V N follows. As N is non-monomial, range≥0(Y ) ( range≥0(V ) must hold true.

REMARK 3.12 (On Lemma 3.11). Note that, in Lemma 3.11, the statements col(B) ⊆
range≥0(V ) and W ≥ 0 are each redundant, following from col(B) ⊆ range≥0(Y ) ⊆
range≥0(V ) and col(W ) ⊆ range≥0(Z) ⊆ Rn2

≥0.
Lemma 3.11 can also be applied to Y = V N with regular N . Then, in the sense

of Lemma 3.11, maximizing the non-negative range of V is equivalent to minimizing the
non-negative range of N under the above constraints.

Further, Lemma 3.11 characterizes the (essential) uniqueness of the non-negative matrix
factorization B = Y ZT and thus relates, for example, to [25, Theorem 1] (for rank(B) = k)
and [19]. There, the uniqueness of non-negative matrix factorizations is studied based on the
non-negative range and its dual space.

3.2. Geometric perspective on increase of non-negative range. Next, we want to
illustrate our idea of increasing the non-negative range guided by the graphical representations
in [9, Section 4.3] and recap the definition of the unit simplex.

DEFINITION 3.13 (Unit simplex). Let n ∈ N with n > 1. The (n− 1)-dimensional unit
simplex is defined as ∆n−1 := {y ∈ Rn≥0 : ‖y‖1 = 1}.

As the non-negative range is invariant under monomial transformation, see Lemma 3.9,
we can assume that ‖Y:,j‖1 = 1 holds true for all j ∈ [k], i.e., col(Y ) ⊆ ∆n1−1. Then we
can illustrate the non-negative range of Y by plotting the intersection range≥0(Y ) ∩∆n1−1

in Examples 3.14 and 3.15. Note that for col(Y ) ⊆ ∆n1−1, this intersection is the set of all
convex combinations of col(Y ).

EXAMPLE 3.14 (Intersection range≥0(Y ) ∩∆2 for Y ∈ R3×2
≥0 ). Figure 3.1 illustrates

the idea of increasing the non-negative range of Y ∈ R3×2
≥0 : on the left, we have the two

column vectors in black which span the non-negative range. All convex combinations, i.e.,
range≥0(Y ) ∩∆2, are highlighted in dark blue. As we are only interested in the intersection
with the unit simplex, we can zoom in, as shown on the right, where the column vectors of
Y correspond to points in ∆2. If we now want to increase the non-negative range of Y and
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still keep all convex combinations range≥0(Y ) ∩∆2 included, the only possible way is to
move the columns along the dashed line, which is range(Y ) ∩∆2, towards its boundary; see
Lemma 3.3. This leads to V ≥ 0 (highlighted in bordeaux) with maximal non-negative range
such that range≥0(Y ) ⊆ range≥0(V ) holds true.

1

1

1

Y:,1

Y:,2

∆2 unit-simplex

range≥0(Y ) ∩∆2

Y:,1 Y:,2

increase

V:,1

V:,2

V:,1 V:,2

∂(range(Y ) ∩∆2)

FIG. 3.1. Illustration of uniquely maximizing the non-negative range of Y ∈ R3×2
≥0 : range≥0(Y ) (

range≥0(V ).

Note that for k ≤ 2 columns, the maximization of the non-negative range is quite trivial
as the rank of Y is equal to its minimal non-negative factorization size. For k > 2, finding
such a matrix V can be much more complicated. In particular, an optimal V might not be
unique any more, as illustrated in Example 3.15.

EXAMPLE 3.15 (Intersection range≥0(Y )∩∆3 for Y ∈ R4×3
≥0 ). Figures 3.2(a) and 3.2(b)

show two different ways to increase the non-negative range of Y ∈ R4×3
≥0 , where we modify

Y column by column to increase its non-negative range. In Figure 3.2(a) we moved the first,
then the second, and then the third column towards the boundary without losing points in
range≥0(Y ) ∩ ∆3. In Figure 3.2(b) we reverse the ordering of the columns, starting with
the third, then the second, and lastly the first one. Depending on the ordering of moving the
columns, we end up with two different matrices V (a) and V (b), which both increase the non-
negative range. Both matrices V (a) and V (b) are optimal in the sense that their non-negative
range cannot be increased further within range(Y ) ∩ ∆3 without losing other points from
their respective non-negative range.

Note that extreme columns correspond to vertices and non-extreme columns to inner
points of range≥0(Y ) ∩∆n1−1. This gives us further intuition for the existence of a minimal
subset of generating columns in Theorem 3.5.

For all non-negative factorization (V,N) ≥ 0 of Y = V N with range≥0(Y ) ⊆
range≥0(V ), in particular rank(V ) ≥ rank(Y ) must hold true, as otherwise there would be
a column Y:,j 6∈ range(V ), i.e., Y:,j ∈ range≥0(Y ) \ range≥0(V ), which would contradict
the assumption. In [10, Theorem 3.6.], it is shown that finding a non-negative factorization
(V,N) ≥ 0 of Y with rank(V ) = rank(Y ) is NP-hard if rank(Y ) > 3. This motivates us
to focus on the following restriction allowing us to find a suitable non-negative factorization
(V,N) ≥ 0 in practice.

3.3. Restriction to inverse non-negative transfer matrices. Based on Corollary 3.2
and Theorem 3.10, one way to find a matrix V ≥ 0 that increases the non-negative range
of Y is to search for an inverse non-negative matrix M ∈ Rk×k such that V := YM ≥ 0
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∂(range(Y ) ∩∆3)

range≥0(Y ) ∩∆3

Y:,2

Y:,1

Y:,3

V:,1

V:,2

V:,3

3.

2.

1.

range≥0(V ) ∩∆3

(a)

∂(range(Y ) ∩∆3)

range≥0(Y ) ∩∆3

Y:,2

Y:,1

Y:,3

V:,1

V:,2

V:,3

1.

2.

3.

range≥0(V ) ∩∆3

(b)

FIG. 3.2. Illustration of increasing the non-negative range of Y ∈ R4×3
≥0 in two different ways: range≥0(Y ) (

range≥0(V ).

holds true. Then we have Y = V N with N := M−1 ≥ 0. However, optimizing over the set
of inverse non-negative matrices seems to be a challenging task. Explicitly describing this
semi-algebraic set for matrices of size k × k requires k2 polynomial inequalities of degree
less than or equal to k with up to k! terms each [9]. Like [9], we therefore focus on a specific
subset of inverse non-negative matrices denoted byMY .

3.3.1. Construction of ansatz MY . In this context, two important classes are Z- and
M -matrices [3, Chapter 6]:

DEFINITION 3.16 (Z- and M -matrix). A matrix M ∈ Rk×k is called a Z-matrix if and
only if all its off-diagonal entries are non-positive, i.e., Mi,j ≤ 0 for all i 6= j. A Z-matrix M
is called an M -matrix if and only if there exist a constant s ≥ 0 and a non-negative matrix
C ∈ Rk×k≥0 such that M = s Idk −C holds true, where s ≥ |λ| for all eigenvalues λ of C.

Regular M -matrices can be characterized using the following equivalences; see, e.g., [3,
Chapter 6].

LEMMA 3.17 (Inverse non-negative M -matrix). For a Z-matrix M ∈ Rk×k, the follow-
ing statements are equivalent:

(i) M is a regular M -matrix.
(ii) M is regular and inverse non-negative, i.e., M−1 ≥ 0.

(iii) There exists an x ∈ Rk>0 with Mx > 0.
(iv) M has positive diagonal entries and there exists a diagonal matrix D =

diag(m1, . . . ,mk) with m` > 0 for all ` such that MD is strictly diagonal domi-
nant.

Proof. See [3, Chapter 6 (N38)and(I28)].
Similar to [9], we consider the following set of Z-matrices.
NOTATION 3.18. For Y ∈ Rn1×k

≥0 , we denote

MY := {M ∈ Rk×k : M`,` > 0, M`,j ≤ 0 ∀ ` 6= j, Y M ≥ 0}.

REMARK 3.19 (ExpressingMY via linear (in)equality constraints). As the non-negative
range is invariant under monomial transformation (see Lemma 3.9), we can normalize all
matrices M ∈ MY by fixing M`,` = 1 for all ` ∈ [k] (rather than requiring M`,` > 0). All
matrices M ∈MY with unit diagonal can be characterized by k linear equality constraints
and (n1 + k − 1)k linear inequality constraints.

In the following, we derive conditions under which an element M ∈ MY is inverse
non-negative. In this case, we can replace the current non-negative factorization (Y,Z) ≥ 0
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by (YM,ZM−T ) ≥ 0 without changing the represented matrix X = τk(Y,Z) or losing the
non-negativity. To do so, we start with some conditions which are quite easy to check in
practical applications.

3.3.2. Inverse non-negativity of MY : practical perspective. One way to characterize
inverse non-negative matrices inMY , which is quite easy to prove, is given in Theorem 3.20.

THEOREM 3.20 (Inverse non-negativity ofMY ). Let Y ∈ Rn1×k
≥0 have no zero column

and M ∈MY . Then either
(i) V := YM has at least one zero column, or

(ii) M is an inverse non-negative M -matrix, i.e., M−1 ≥ 0.
Proof. Let x := Y T1. Then x > 0 holds true, as Y ≥ 0 has no zero column. Further,

we have MTx = MTY T1 = V T1 ≥ 0. Then either V has a zero column or MTx > 0.
As M ∈MY , M and MT are Z-matrices. Thus, Lemma 3.17 implies that MT is a regular
inverse non-negative M -matrix, as MTx > 0 holds true for x > 0, and thereby M .

REMARK 3.21. Here, we do not need our transfer matrices to be regular M -matrices, but
inverse non-negative. For this reason, one could also, for instance, use productsM =

∏
µM

(µ)

with regular M (ν) ∈MY
∏ν−1
µ=1M

(µ) for all ν as M−1 ≥ 0.
If V := YM has zero columns, then, analogously to the orthogonalization of rank-

deficient matrices, Theorem 3.20 allows us to delete redundant columns using inverse non-
negative matrices (independent of the regularity of M itself):

LEMMA 3.22. Let Y ∈ Rn1×k
≥0 , M ∈ MY , V := YM , and V:,` = 0 for an ` ∈ [k].

Then the following hold true:
(i) Y:,` ∈ range≥0(Y:,6=`), i.e., range≥0(Y:,6=`) = range≥0(Y ).

(ii) M̃ := Idk + (M:,` − e`) ⊗ e` is an inverse non-negative M -matrix with M̃−1 =

Idk − (M`,`)
−1(M:,` − e`)⊗ e` and Y M̃ =

[
Y:,<` 0 Y:,>`

]
.

Proof.
(i) Due to M`,` > 0 ≥ Mj,` for all j 6= `, we have 0n1

= V:,` = YM:,`,
which is equivalent to Y:,` = M−1`,`

∑
j 6=` |Mj,`|Y:,j ∈ range≥0(Y:,6=`). Thus,

range≥0(Y:,6=`) = range≥0(Y ) follows.
(ii) M̃ is a Z-matrix and for x := 1−∑j 6=`Mj,` e` > 0, we have M̃Tx = 1 + e` > 0.

Due to Lemma 3.17, M̃ is an inverse non-negative M -matrix. The formulas for Y M̃
and M̃−1 follow by simple calculations.

Note that Lemma 3.22(i) together with Theorem 3.20 in particular implies that, if Y has only
extreme columns, then all M ∈MY are inverse non-negative.

REMARK 3.23 (On Lemma 3.22(ii)). On the one hand, Lemma 3.22(ii) allows us to
update V := Y M̃ ≥ 0 and W := ZM̃−T ≥ 0 such that Y ZT = VWT holds true. On
the other hand, as the update V contains at least one zero column V:,` = 0, we can reduce
the factorization size to k − 1 and repeat the quasi-orthogonalization for Ỹ := V:,6=` and
Z̃ := W:,6=`. Alternatively, we can replace this zero column V:,` by a random one, set the
corresponding column in W to zero, and repeat the quasi-orthogonalization for Ỹ := V and
Z̃ := W without reducing the factorization size k. Consequently, we can repeat one of these
strategies until we come to the case (ii) of Theorem 3.20.

Note that, even if V := YM contains at least one zero column (see Theorem 3.20(i)),
M ∈MY can still be inverse non-negative. We will theoretically analyze this further in the
next section, using additional characterizations of the regularity of M -matrices. In practice,
however, it may be easier to proceed as described in Remark 3.23.

3.3.3. Inverse non-negativity of MY : theoretical perspective. Besides the equiva-
lences in Lemma 3.17, inverse non-negativity of a Z-matrix can also be concluded if it is
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irreducible diagonal dominant; see Definition 3.24 and Lemma 3.25 [42, Theorem 3]. We will
use this result to prove inverse non-negativity of M ∈ MY in Theorem 3.29. This idea is
similar to [9, Theorem 21] but in a more general way to allow for its application to M ∈MY .

DEFINITION 3.24 (Irreducible and diagonal dominant matrix). A matrix M ∈ Rk×k is
called irreducible if and only if there does not exist a permutation P ∈ {0, 1}k×k such that

PTMP =

[
M (1,1) M (1,2)

0 M (2,2)

]
with M (i,i) ∈ Rki×ki , k = k1 + k2,

holds true. Matrix M is called diagonal dominant if and only if

M`,` ≥
∑
j 6=`
|Mj,`|(3.1)

holds true for all ` ∈ [k], and it is called strictly diagonal dominant if and only if all inequalities
in (3.1) hold strictly. Finally, matrix M is called irreducible diagonal dominant if and only if
M is irreducible, diagonal dominant, and (3.1) holds strictly for at least one ` ∈ [k].

LEMMA 3.25 ([42]). If a Z-matrix M ∈ Rk×k is irreducible diagonal dominant, then
M is an inverse non-negative M -matrix.

To use Lemma 3.25 for M ∈MY , we replace the diagonal dominance in Lemma 3.26.
LEMMA 3.26. If a Z-matrix M ∈ Rk×k is irreducible and 0k 6= 1TkM ≥ 0 holds true,

then M is an inverse non-negative M -matrix.
Proof. We prove that the condition 0k 6= 1TkM ≥ 0 implies that M is diagonal dominant

and (3.1) holds strictly for at least one ` ∈ [k]. Then Lemma 3.25 implies that M is an inverse
non-negative M -matrix. For ` ∈ [k], it holds true that 0 ≤ 1TkM:,` = M`,` +

∑
j 6=`Mj,`,

which is equivalent to M`,` ≥
∑
j 6=` |Mj,`|, as Mj,` ≤ 0 for all j 6= `. As 1TkM 6= 0k

holds true, there exists at least one i ∈ [k] such that 1TkM:,i > 0, which is equivalent to
Mi,i >

∑
j 6=i |Mj,i|.

We prove that each M ∈MY fulfills the second condition of Lemma 3.26 if Y does not
contain multiple columns.

LEMMA 3.27. Let Y ∈ Rn1×k
≥0 with ‖Y:,j‖1 = 1 for all j ∈ [k]. Then each M ∈ MY

fulfills 1kM ≥ 0.
Proof. Since YM ≥ 0 holds true, we have 1TkM = (1Tn1

Y )M = 1Tn1
(YM) ≥ 0.

COROLLARY 3.28. Let Y ∈ Rn1×k
≥0 have no column which is a multiple of another one.

Then, for each Z-matrix M with M`,` > 0 for all ` ∈ [k], the product YM 6= 0n1×k.
Proof. Using Theorem 3.5 there exists at least one extreme column Y:,j 6∈

range≥0(Y:,6=j). Assume YM:,j = 0n1 . Then, due to Mj,j > 0, it holds true that
0n1

= YM:,j = Mj,jY:,j
∑
` 6=jM`,jY:,`. This is equivalent to Y:,j =

∑
` 6=j |M`,j |/Mj,jY:,`,

i.e., Y:,j ∈ range≥0(Y:,6=j), which contradicts the assumption.
Combining Lemmas 3.26 and 3.27, we conclude the following result on the inverse

non-negativity of M ∈MY .
THEOREM 3.29 (Inverse non-negativity ofMY ). Let Y ∈ Rn1×k

≥0 with ‖Y:,j‖1 = 1 for
all j ∈ [k] and Y:,j 6= Y:,` for all j 6= `. Then each M ∈ MY is an inverse non-negative
M -matrix.

Proof. AsM ∈MY is aZ-matrix with positive diagonal, Lemma 3.27 and Corollary 3.28
imply that 0Tk 6= 1TkM ≥ 0. If M is irreducible, then the statement follows directly using
Lemma 3.26. Otherwise, there exists a permutation P ∈ {0, 1}k×k such that

PTMP =

[
M (1,1) M (1,2)

0 M (2,2)

]
.
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Let J` ⊆ [k] denote the corresponding index set such that MJ`,J` = M (`,`) ∈ Rk`×k` .
Hence, the off-diagonal blockM (1,2) = MJ1,J2

≤ 0 and the diagonal blocksM (`,`) are again
Z-matrices with positive diagonal and

Y:,J`M
(`,`) = Y:,J`MJ`,J` ≥ −Y:,6=J`M 6=J`,J` ≥ 0,

i.e., M (`,`) ∈ MY:,J`
follows. Thus, if M (`,`) is irreducible, then Lemma 3.26 implies that

(M (`,`))−1 ≥ 0 holds true. Otherwise, we can also permute M (`,`) into a similar block
structure and argue analogously until all diagonal blocks are irreducible and thus inverse non-
negative. Using the following block inversion recursively for inverse non-negative matrices A
and C and a non-positive B ≤ 0,[

A B
0 C

]−1
=

[
A−1 −A−1BC−1
0 C−1

]
≥ 0,

we also conclude that M is an inverse non-negative M -matrix.
Using Corollary 3.28, Theorem 3.29 can easily be extended to matrices Y where no

column is a multiple of another one.
COROLLARY 3.30. Let Y ∈ Rn1×k

≥0 have no column which is a multiple of another one,
i.e., Y:,j 6= λY:,` holds true for all λ ≥ 0 and j 6= `. Then each M ∈ MY is an inverse
non-negative M -matrix.

Proof. As Y has no zero column, D := diag(‖Y:,1‖1, . . . , ‖Y:,k‖1) is inverse non-
negative. Then Ỹ := Y D−1 ≥ 0 fulfills ‖Ỹ:,j‖1 = 1 and Ỹ:,j 6= Ỹ:,` for all j 6= `. Hence,
Theorem 3.29 implies that each M̃ ∈MỸ is inverse non-negative. Further, each M ∈MY

can be written as M = DM̃ for an M̃ ∈MỸ and is therefore also inverse non-negative.
Theorems 3.29 and 3.20 cover different perspectives: Theorem 3.29 shows the regularity

ofMY for Y with distinct columns, i.e., focusing on Y , and Theorem 3.20 shows the regularity
of a given M if V := YM has no zero column, i.e., focusing on V . However, both indicate
that an M ∈ MY can only be singular if Y contains a non-extreme column, which can be
removed (or replaced) without decreasing its non-negative range; see Remark 3.23. Here, we
are interested in finding not only an inverse non-negative matrix M ∈MY but one that allows
us to improve the expressivity in Z by increasing the non-negative range of V := YM .

3.3.4. Increasing the non-negative range via MY . We prove in Theorem 3.31 that,
for any non-diagonal M ∈ MY and V := YM having no zero column, the corresponding
update V increases the non-negative range compared to Y .

THEOREM 3.31 (Increasing the non-negative range overMY ). Let p ≥ 1, Y ∈ Rn1×k
≥0 ,

M ∈ MY be inverse non-negative, and V := YM with ‖Y:.j‖p = ‖V:.j‖p = 1 for all
j ∈ [k]. Then the following statements hold true:

(i) 0 ≤M−1 ≤ 1 and ‖M−1:,` ‖p ≤ 1 for all ` ∈ [k].
(ii) If p = 1, then also ‖M−1:,` ‖1 = 1 for all ` ∈ [k], i.e., each column of Y is a convex

combination of the columns of V .
(iii) range≥0(Y ) ⊆ range≥0(V ).
(iv) If V has only extreme columns, then either M = Idk or range≥0(Y ) (

range≥0(V ).
Proof.
(i) As Y, V ≥ 0 with ‖Y:.j‖p = ‖V:.j‖p = 1 for all j ∈ [k], and M−1 ≥ 0 holds true,

using Lemma B.2 we have 1 = ‖Y:,`‖p = ‖VM−1:,` ‖p ≥ ‖M−1:,` ‖p for all ` ∈ [k].
Thus, it follows that M−1 ≤ 1.

(ii) For p = 1, the equality follows directly from above with Lemma B.2.
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(iii) We have Y z = VM−1z with M−1z ≥ 0 for all z ∈ Rk≥0, i.e., range≥0(Y ) ⊆
range≥0(V ).

(iv) If V has only extreme columns, then Lemma 3.9 implies that range≥0(Y ) =
range≥0(VM) holds true if and only if M ∈ Monok. Due to Mj,` > 0 ⇔ j = `
and ‖Y:,j‖p = ‖V:,j‖p = 1 for all j, this is equivalent to M = Idk.

Note that Theorem 3.31 requires only non-zero columns in Y , via ‖Y:,j‖p = 1 for all j,
not extreme columns, which differs from the general formula in Theorem 3.10.

Combining Remark 3.23 and Theorem 3.31, there exists a finite sequence of updates
using inverse non-negative matrices and restrictions which increases the non-negative range or
keeps it from decreasing, while removing or replacing non-extreme columns.

As already illustrated in Example 3.15, the subset relation range≥0(Y ) ⊆ range≥0(V )
defines only a partial ordering over the non-negative matrices of size n1 × k with extreme
columns modulo the monomial matrices Monok. For this reason, there can be multiple
matrices with maximal non-negative range in the sense that their non-negative range cannot
be further increased without losing other elements or their non-negativity. For example, the
resulting matrices V (a) and V (b) in Figures 3.2(a) and 3.2(b) both have maximal non-negative
range in this sense. But as neither range≥0(V (a)) ⊆ range≥0(V (b)) nor range≥0(V (b)) ⊆
range≥0(V (a)) holds true, there is no canonical way which one to choose.

Instead, we use a suitable measure µrange≥0
(·) that defines a strict ordering and fulfills

µrange≥0
(Y ) ≤ µrange≥0

(YM) if and only if range≥0(Y ) ⊆ range≥0(YM), as well as
µrange≥0

(Y ) < µrange≥0
(YM) if and only if range≥0(Y ) ( range≥0(YM) for all M ∈

MY . However, it is not clear which measure is the more suitable. We propose a similar
approach as shown in Examples 3.14 and 3.15 in the following section.

3.4. Column-wise increasing the non-negative range. As shown in Examples 3.14
and 3.15, our idea is to successively increase the non-negative range of Y by transforming
Y column by column. In Theorem 3.32 we prove that replacing one extreme column in Y
leads to a rise in its non-negative range if and only if there exists a transfer matrix of a specific
structure (3.2) inMY .

THEOREM 3.32. Let Y, V ∈ Rn1×k
≥0 and let Y have no zero columns. For a fixed

extreme column Y:,` 6∈ range≥0(Y:,6=`) with ` ∈ [k], let V:,6=` = Y:, 6=` be given. Then
range≥0(Y ) ⊆ range≥0(V ) holds true if and only if there exists a vector β ∈ Rk with β` > 0
and βj ≤ 0 for all j 6= ` such that V = YMβ , where

Mβ := Idk + (β − e`)⊗ e` ∈MY with M−1β = Idk −β−1` (β − e`)⊗ e` ≥ 0.(3.2)

In this case, V:,` is also extreme. Further, range≥0(Y ) ( range≥0(V ) holds true if and only
if there exists at least one j 6= ` with βj < 0.

Proof. “⇒” Let range≥0(Y ) ⊆ range≥0(V ) be fulfilled. Then there exists N ∈ Rk×k≥0
such that Y = V N holds true and, due to Y:,6=` = V:,6=`, we have N:,j = ej
for all j 6= `. We define α := N:,` ≥ 0. Assuming α` = 0 would result in
Y:,` = V α =

∑
j 6=` αjY:,j ∈ range≥0(Y:, 6=`), which contradicts the assumption. For this

reason, N is regular with det(N) = α` det(Idk−1) = α` > 0. We define βj := −αj/α` ≤ 0
and β` := 1/α` > 0. Then we can write M−1β := N ≥ 0 and Mβ := N−1 as above.
The fact that Mβ ∈MY is inverse non-negative follows directly from (3.2). Assuming that
V:,` ∈ range≥0(V:,6=`), there exists a λ ∈ Rk≥0 such that V:,` =

∑
j 6=` λjV:,j due to α ≥ 0

and Y:, 6=` = V:,6=`. But then

Y:,` = V N:,` = α`V:,` +
∑
j 6=`

αjV;,j =
∑
j 6=`

(α`λj + αj)Y;,j ∈ range≥0(Y:,6=`)
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contradicts the assumption, i.e., V:,` is an extreme column. Using Lemma 3.9, range≥0(Y ) (
range≥0(V ) implies βj < 0 for at least one j 6= `, as otherwise Mβ would be monomial.

“⇐” Let V = YMβ be given. As Nβ := M−1β ≥ 0 holds true, Corollary 3.2 directly
implies that range≥0(Y ) ⊆ range≥0(V ) is fulfilled. Let further βj < 0 for at least one j 6= `.
Assuming that range≥0(Y ) = range≥0(V ) holds true, this then results in a contradiction
similar to the argumentation in Lemma 3.9 using the facts that Y:,` is extreme and Y:,6=` = V:,6=`
holds true.

Note that we already used matrices of the structure (3.2) in Lemma 3.22(ii) to set non-
extreme columns in Y to zero.

An increase of the non-negative range by changing the extreme column Y:,` via
Theorem 3.32, i.e., modifying Y by Mβ with βj < 0 for a j 6= `, is only possible if the
support of Y:,j is a subset of the support of Y:,`:

COROLLARY 3.33. In the setting of Theorem 3.32: βj < 0 for a j 6= ` is only possible if
Yi,` = 0 implies that Yi,j = 0 for each i ∈ [n1].

Proof. Assume that βj < 0 holds true, but Yi,` = 0 < Yi,j is satisfied. Then, due to
Y ≥ 0 and β 6=` ≤ 0, it would hold true that

0 ≤ Vi,` = Yi,:β = Yi,`β`︸ ︷︷ ︸
=0

+Yi,jβj +
∑
ν 6=i,`

Yi,νβν︸ ︷︷ ︸
≤ 0

≤ Yi,jβj < 0.

In [10, p. 219], it is explained that, due to the non-negativity constraints, the columns
Y:,j typically share only a few non-zero entries (and analogously for Z). Assuming that the
non-zero entries in the columns Y:,j were randomly distributed, Corollary 3.33 would indicate
that finding βj < 0, and thus increasing the non-negative range byMβ , becomes more difficult
with increasing n1.

Further, if all columns of Y and V in Theorem 3.32 have `1-norm of 1, then β` is
determined by β 6=`:

COROLLARY 3.34. In the setting of Theorem 3.32: let V = YMβ with ‖Y:,j‖1 =
‖V:,j‖1 = 1 for all j ∈ [k] hold true. Then β` = 1−∑j 6=` βj .

Proof. We define α := (M−1β ):,` ≥ 0. Then it holds true that 1 = ‖Y:,`‖1 = ‖V α‖1 =∑
j αj‖Y:,`‖1 =

∑
j αj = 1/β` −

∑
j 6=` βj/β` ⇔ β` = 1−∑j 6=` βj .

REMARK 3.35. For Y with ‖Y:,j‖1 = 1 for all j, we can write

V:,` = Y β = Y:,` +
∑
j 6=`

βj(Y:,j − Y:,`) ∈ ∆n1−1

using Corollary 3.34. From a geometrical point of view, this means that we move Y:,` in the
opposite direction from each other column Y:,j for j 6= `. Figure 3.3 illustrates this for Y
and V ∈ R4×3

≥0 from Figure 3.2(a). The possible locations to move Y:,` using an Mβ ∈MY

are each highlighted in gray. As Y:,2 ∈ ∂(range(Y ) ∩∆3) holds true, it cannot be moved
anywhere else.

Theorem 3.32 says that increasing the non-negative range of Y by changing only one
single extreme column is equivalent to finding an Mβ ∈ MY as in (3.2) with β 6=` 6= 0k−1.
Assuming col(Y ) ⊆ ∆n1−1, Y:,` to be an extreme column, and choosing V:,` ∈ ∆n1−1, one
simple target function to find a suitable β is

β+ ∈ argmin
β∈Rk

∑
j 6=`

βj s.t. βj ≤ 0 ∀ j 6= `, Y β ∈ ∆n1−1.(3.3)
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∂(range(Y ) ∩∆3)

range≥0(Y ) ∩∆3

Y:,2

Y:,1

Y:,3

V:,1
1.

range≥0(V ) ∩∆3

(a)

∂(range(Y ) ∩∆3)

range≥0(Y ) ∩∆3

Y:,2

Y:,1

Y:,3

V:,1

V:,2

V:,3

3.

2.

1.

range≥0(V ) ∩∆3

(b)

FIG. 3.3. Illustration to increase range≥0(Y ) column-wise using an Mβ ∈ MY for Y ∈ R4×3
≥0 from

Figure 3.2(a).

As illustrated in Example 3.36, replacing Y:,` by Y β+ before updating the next column may
allow for further increase in the non-negative range. This strategy can be repeated until the
columns in Y do not change any more.

EXAMPLE 3.36. Let Y ∈ R4×3
≥0 be defined as

Y :=


0 1/3 0

1/3 1/3 0
1/3 0 1
1/3 1/3 0

 .
Then solving (3.3) independently, we obtain

β̃(1) :=

 3/2
0
−1/2

 , β̃(2) :=

0
1
0

 , β̃(3) :=

0
0
1

 , and Ṽ =


0 1/3 0

1/2 1/3 0
0 0 1

1/2 1/3 0

 ,
with Ṽ := YMβ̃(1) for Mβ̃(1) as in (3.2). Then range≥0(Y ) ( range≥0(Ṽ ) holds true since

0
1
0
1

 ∈ range≥0(Ṽ ) \ range≥0(Y ).

Whereas solving (3.3) column by column and inserting each update leads to

β(1) :=

 3/2
0
−1/2

 , β(2) :=

−2
3
0

 , β(3) :=

0
0
1

 , and V =


0 1 0

1/2 0 0
0 0 1

1/2 0 0

 ,
with V := YMβ(1)Mβ(2)Mβ(3) and range≥0(Y ) ( range≥0(Ṽ ) ( range≥0(V ), as e1 ∈
range≥0(V ) \ range≥0(Ṽ ), i.e., V is preferable compared to Ṽ for an update of the second
factor Z ∈ Rn2×3

≥0 .
We summarize this procedure in Algorithm 3.1. Note that, instead of running the columns

from ` = 1 to ` = k, one can instead choose any other order of columns.
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Algorithm 3.1: quasi-ortho for τk(Y,Z) w.r.t. Z

Input: (Y,Z) ∈ Rn1×k
≥0 × Rn2×k

≥0 (without zero columns)
Output: Updates (Y +, Z+) ≥ 0 such that range≥0(Y ) ⊆ range≥0(Y +) with

‖Y:,`‖1 = 1 ∀ ` and Y +(Z+)T = Y ZT

1 Initialize k = | col(Y )|
2 Compute D := diag(‖Y:,`‖1 : ` = 1, . . . , k)

3 Update Y ← Y D−1 and Z ← ZDT // Column-wise rescaling
4 Initialize M := 0k×k
5 while M 6= Idk do
6 Reset M := Idk
7 for ` = 1, . . . , k do
8 Initialize N := Idk // N := M−1

9 Solve (3.3) for β+

10 Update M:,` ← β+

11 Update N:,` ← −β+/β+
` and N`,` ← 1/β+

`

12 Update Y:,` ← Y β+

13 Update Z ← ZNT

14 if ‖Y:,`‖1 = 0 then // Replace zero column by random one
15 Choose v := rand(n1, 1)

16 Update Y:,` ←
v

‖v‖1
and Z:,` ← 0n2

17 end
18 end
19 end
20 return (Y +, Z+) := (Y,Z)

REMARK 3.37 (Relaxing (3.3)). In practical application, one could think of further
relaxing the non-negativity constraint Y β ≥ 0 in (3.3) by Y β ≥ −ε for a small ε ≥ 0. This
means solving

β+ ∈ argmin
β∈Rk

∑
j 6=`

βj s.t. βj ≤ 0 ∀ j 6= `, β` = −
∑
j 6=`

βj , Y β ≥ −ε(3.4)

instead of (3.3) in line 9 and then project Y ← max{YM, 0} and Z ← max{ZNT , 0}
back to the non-negative orthant. In Section 4.2.7, such a relaxation may allow for slight
improvements using ε ∈ [10−16, 10−8], although the differences are quite small.

REMARK 3.38 (Generalization to TT tensors). The quasi-orthogonalization strategy in
Algorithm 3.1 is easily extended to higher-dimensional tensors. We can perform the quasi-
orthogonalization for a TT tensor X = τk((Xµ)µ∈[d]) with respect to Xν similarly to the
explanation in Algorithm 2.1 and Figure 2.4. We can use Algorithm 3.1 for the unfoldings
Y := Xµ

({1,2}) and Z := Xµ+1
({1}) with µ = 1, . . . , ν − 1, as well as for Y := (Xη

({1}))T

and Z := (Xη−1
({1,2}))T with η = d, . . . , ν + 1.

In more detail, in the context of the three-dimensional example in Section 1.2, apply-
ing Algorithm 3.1 to X = τk(Y1,Y2,Y3) ∈ Rn×n×n≥0 corresponds to the following: In
order to quasi-orthogonalize (Yµ)µ∈[3] with respect to Y2, one first uses Algorithm 3.1
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for1(Y1,Y2
({1})) to compute N1 as a product of inverse non-negative matrices of type (3.2)

and to update the cores Y1 ← Y1N1 and Y2
({1}) ← N−11 Y2

({1}). Next, one uses Algo-
rithm 3.1 for1 (YT

3 , (Y2
({1,2}))T ) to computeN2 as a product of inverse non-negative matrices

of type (3.2) and to update the cores YT
3 ← YT

3 N2 and (Y2
({1,2}))T ← N−12 (Y2

({1,2}))T .
See also Figure 2.4 for an illustration.

The main effort for the quasi-orthogonalization strategy in Algorithm 3.1 lies in solv-
ing (3.3), which can be done using, for example, interior point methods for linear programs [20].
Its worst-case complexity is then given in Lemma 3.39.

LEMMA 3.39 (Computational complexity for Algorithm 3.1). The worst-case computa-
tional complexity for Algorithm 3.1 using interior point methods with I inner iteration steps
to solve (3.3) and O outer iteration steps in the while loop is of order O(OInk3.5), where
n := max{n1, n2}.

Proof. The linear program (3.3) can be solved using an interior point method with worst-
case complexity of order O(N2.5S) per iteration, where N is the number of variables and
S is the size of the input of the linear program [20]. Here, N = k − 1 and S ∈ O(n1k).
Thus, solving (3.3) for β+ with I iterations each has a worst-case complexity of O(In1k

3.5).
All other operations in Algorithm 3.1 have complexities of O(nk2) with n := max{n1, n2}.
Hence, the worst-case overall complexity for Algorithm 3.1 is of order O(OInk3.5) using
interior point methods.

REMARK 3.40 (Solving micro-steps as quadratic programs). Each micro-step prob-
lem (1.3) can be reformulated as a quadratic program of the form minx x

TQx+qTx s.t. x ≥ 0
by writing the norm of the residual as inner products. For the ν-th micro-step (1.3), x corre-
sponds to the vectorization of Xν , whereas the symmetric operator Q and the vector q result
from suitable contractions and reshaping of A, X 6=ν , and B. Due to this, Qi,: = (Q:,i)

T = 0
implies that also qi = 0 holds true, and thus not only is the quadratic problem unbounded in
xi ≥ 0, but also its target function is independent of such entries. In the case that A is regular,
as we consider in Section 4, this also implies that the corresponding tensor X is independent
of such xi, which can therefore be chosen arbitrarily, but non-negative. For this reason, we
restrict x, Q, and q to indices i with Qi,: 6= 0. In Section 4, for instance, the old values xi are
kept for all i with Qi = 0.

REMARK 3.41 (On Lemma 3.39). Based on Remark 3.40, solving one micro-step
(2.4) for Xµ ∈ Rk×n×k≥0 using an interior point method for quadratic programs with J

iterations has a worst-case complexity of O(Jn3k10) [49]; whereas applying Algorithm 3.1
to Xµ

({1,2}) ∈ Rkn×k≥0 with I inner and O outer iterations has a worst-case complexity of
O(OInk4.5). Therefore, there seems to be negligible additional cost for Algorithm 3.1 when
comparing the worst-case complexities for moderate numbers of iterations. In practice, one
observes that including the quasi-orthogonalization strategy in Algorithm 3.1 may further
affect the overall runtime of the alternating optimization Algorithm 2.2 (cf. Sections 4.2.6
and 4.3.5). This could result from the fact that the quasi-orthogonalization can increase the
search space for each micro-step (2.4). For this reason, the overall additional runtime seems to
depend, in particular, on the problem (2.3) itself and the range improvement achieved by the
quasi-orthogonalization.

4. Numerical experiments. In this section, we analyze the effect of using the quasi-
orthogonalization strategy in Algorithm 3.1 (quasi-ortho) within the vanilla alternating non-
negative least-squares method in Algorithm 2.2 (TT-ANLS) instead of the classical diagonal

1Note that here we identify the first core Y1 ∈ R1×n×k
≥0 and the last core Y3 ∈ Rk×n×1

≥0 with their unfoldings

Y1
({1,2}) ∈ Rn×k≥0 and Y3

({1}) ∈ Rk×n≥0 .
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strategy in Algorithm 2.1 (diag) in numerical experiments. We also compare this for the
heuristic extrapolation algorithm with restarts in Algorithm A.1 (TT-HER). To do so, we
focus on two different types of problem. First, we test our method for the non-negative
TT approximation of non-negative symmetric polynomials in Section 4.2, for which we
provide exact non-negative TT factorizations in Lemma 4.1. In particular, these allow one
to modify the dimension, mode size, and factorization size of the target tensors. Second,
we analyze our method for the non-negative TT approximation of a particular class of high-
dimensional probability distributions in Section 4.3, which have practical applications to
modeling tumor progression [37]. Unless otherwise specified, the following settings are used
for all experiments.

4.1. Settings. For the tensor-train-related arithmetics, the TT toolbox [33] is used. In Al-
gorithms 2.2 and A.1, each micro-step (1.3) is reformulated as a quadratic program and solved
with the MATLAB solver quadprog [41]2 as described in Remark 3.40. In Algorithm 3.1,
the MATLAB solver linprog [41] with at most 10 outer iterations is used to solve (3.3). All
experiments are repeated 30 times starting from different randomly generated initial tensors
X = τk((Xµ)µ∈[d]) ∈ Rn1×···×nd

≥0 with uniformly distributed Xµ = rand(kµ, nµ, kµ+1) for
all µ ∈ [d]. Algorithms 2.1 and 3.1 are abbreviated by diag and quasi-ortho (in short
as q-o), and Algorithms 2.2 and A.1 are abbreviated by TT-ANLS and TT-HER, respectively.
In Section 4.3, the DMRG solver from the TT toolbox [33] is used to assess bounds on the
approximation errors. The DMRG solver allows one to solve linear systems of equations approx-
imately within the tensor-train format without non-negativity constraints on Xµ or additional
constraints. To compare relative errors, residuals, and runtimes for all 30 random initial values,
geometric means and corresponding variances σ2 are considered. To visualize the relative
errors and residuals of all 30 runs, scatter-like button plots [23] are displayed. These combine
overlapping points into larger disks, allowing one to display the corresponding values and
their frequencies at the same time. All values are rounded to two significant digits.

4.2. Non-negative approximation of non-negative symmetric polynomials. The first
examples on which we focus are non-negative symmetric polynomials p(x) = (

∑d
µ=1 xµ)r of

degree r with xµ ∈ X ⊆ R≥0 for all µ ∈ [d]. In contrast to non-negative tensor factorizations
defined by randomly generated non-negative cores, such a polynomial allows one to control
the range of its entries, its minimum, and maximum explicitly.

4.2.1. Exact non-negative TT factorization of P. We prove that the corresponding
d-dimensional tensor P has a non-negative TT factorization.

LEMMA 4.1 (Non-negative TT factorization of P). The non-negative symmetric polyno-
mial tensor P ∈ RXd≥0 of degree r defined by Px := (

∑d
µ=1 xµ)r for all xµ ∈ X ⊆ R≥0 has

a non-negative TT factorization (Pµ)µ∈[d] of size (1, r + 1, . . . , r + 1, 1) with

(P1)1,x1,`1 := xr−`11

√(
r

`1

)
, (Pd)`d−1,xd,1 := x

`d−1−1
d

√(
r

`d−1

)
,

(Pµ)`µ−1,xµ,`µ :=

{
0 `µ−1 < `µ,

x
`µ−1−`µ
µ

√(
r−`µ−1
`µ−1−`µ

)(
`µ−1−1
`µ−1+1

)
otherwise,

∀µ ∈ {2, . . . , d− 1},

for all xν ∈ X , `ν ∈ [r + 1], and ν ∈ [d− 1].
Proof. See Appendix C.

2Here, Q and q from Remark 3.40 are rescaled such thatQmax := maxi,j |Qi,j | = 1 holds true, ifQmax < 1,
before calling quadprog.
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For this reason, one already knows that P can be factorized using non-negative tensor
trains of sizes bounded by k = r + 1, where r denotes its degree.

4.2.2. Problem statement. In the following experiments, we choose symmetric polyno-
mials P from Section 4.2.1 over X = {0, 1/n− 1, . . . , 1} with n ∈ {2, 3, 5, 10}, of degree
r ∈ {4, 7}, and dimension d ∈ {20, 40, . . . , 120}. Then, the goal is to solve (2.3) forA := Id,
B := P, k := r + 1, and τk(·) identifying the TT format, i.e., to find

(X+
µ )µ∈[d] ∈ argmin

(Xµ)µ∈[d]

‖X−P‖F s.t. X = τk((Xµ)µ∈[d]), Xµ ≥ 0 ∀µ ∈ [d].(4.1)

4.2.3. Quality of approximation for P of degree r = 4. We start with the experiments
for P of degree r = 4. Table 4.1 shows the geometric means of the relative errors ‖X −
P‖F /‖P‖F for P as in Section 4.2.2 after 25 sweeps of TT-ANLS or TT-HER with diag

or quasi-ortho in comparison. The smallest geometric means for each combination are
printed in bold. There are no drastic differences between TT-ANLS and TT-HER comparing
the results for diag and qusi-ortho separately. In turn, comparing the relative errors of
diag and quasi-ortho, it is noticeable that the errors with quasi-ortho are lower in all
cases considered here. Especially for small mode sizes n = 2, the error is reduced by about
one order of magnitude. For mode sizes n ∈ {3, 5}, such a reduction of the error can still be
observed for higher dimensions. For n = 10, however, the errors are only reduced by a factor
of 2 to 3 on average. These observations apply to both the TT-ANLS and TT-HER algorithms.
The experiments therefore suggest that TT-ANLS and TT-HER benefit similarly from the use
of quasi-ortho.

TABLE 4.1
Geometric means of relative errors ‖X − P‖F /‖P‖F for (4.1) with X = {0, 1/n − 1, . . . , 1}, n ∈

{2, 3, 5, 10}, and r = 4 after 25 sweeps of Algorithm 2.2 or Algorithm A.1 for 30 random initial values and
geometric variances σ2 ∈ [1.0, 2.0].

n d = 20 d = 40 d = 60 d = 80 d = 100 d = 120

2
HER

diag 1.1 ·10−2 1.6 ·10−2 1.8 ·10−2 1.8 ·10−2 1.7 ·10−2 1.7 ·10−2

q-o 4.9 ·10−4 2.7 · 10−3 3.1 · 10−3 3.4 · 10−3 2.9 · 10−3 3.9 ·10−3

ANLS
diag 1.4 ·10−2 1.8 ·10−2 2.0 ·10−2 2.0 ·10−2 1.9 ·10−2 1.7 ·10−2

q-o 4.2 · 10−4 2.8 ·10−3 3.4 ·10−3 3.8 ·10−3 3.2 ·10−3 3.5 · 10−3

3
HER

diag 6.9 ·10−3 5.7 ·10−3 5.6 ·10−3 9.7 ·10−3 1.4 ·10−2 1.3 ·10−2

q-o 1.6 ·10−3 2.9 · 10−3 2.7 · 10−3 3.0 ·10−3 3.9 ·10−3 4.7 ·10−3

ANLS
diag 7.1 ·10−3 5.8 ·10−3 6.8 ·10−3 7.2 ·10−3 8.0 ·10−3 9.1 ·10−3

q-o 1.1 · 10−3 3.0 ·10−3 2.8 ·10−3 2.5 · 10−3 2.6 · 10−3 2.8 · 10−3

5
HER

diag 3.6 ·10−3 3.3 ·10−3 1.4 ·10−2 1.3 ·10−2 1.1 ·10−2 1.0 ·10−2

q-o 2.0 · 10−3 2.7 · 10−3 2.1 ·10−3 3.1 ·10−3 4.6 ·10−3 5.2 ·10−3

ANLS
diag 4.0 ·10−3 3.4 ·10−3 3.5 ·10−3 7.5 ·10−3 8.6 ·10−3 8.2 ·10−3

q-o 2.0 · 10−3 3.0 ·10−3 1.9 · 10−3 2.8 · 10−3 2.7 · 10−3 3.5 · 10−3

10
HER

diag 3.3 ·10−3 1.2 ·10−2 1.3 ·10−2 1.1 ·10−2 9.6 ·10−3 8.3 ·10−3

q-o 1.9 · 10−3 1.6 · 10−3 2.4 ·10−3 3.1 ·10−3 4.5 ·10−3 5.5 ·10−3

ANLS
diag 3.1 ·10−3 3.0 ·10−3 9.9 ·10−3 1.0 ·10−2 6.3 ·10−3 7.9 ·10−3

q-o 2.0 ·10−3 1.7 ·10−3 1.7 · 10−3 2.8 · 10−3 3.4 · 10−3 3.3 · 10−3
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4.2.4. Convergence behavior. Figure 4.1 shows semi-logarithmic button plots (see
Section 4.1 or [23]) for the relative error as a function of the sweeps for diag on the left
(in blue), quasi-ortho on the right (in bordeaux), TT-HER above, and TT-ANLS below for
dimension d = 100. Figure 4.1(a) shows the decay for mode size n = 2 and Figure 4.1(b) for
n = 10. In both Figures 4.1(a) and 4.1(b) using diag, the error always decreases rapidly to
approximately 10−2 in the first 10–20 sweeps. After 50–80 sweeps, there are some samples
for which the errors start to further decrease, but slowly. Using quasi-ortho instead, the
relative errors also drop after 10 sweeps but continue to decrease, though more slowly, in all
cases. The relative error for TT-HER with quasi-ortho decreases slightly slower but more
evenly than for TT-ALS. Concluding, Figure 4.1 suggests that using quasi-ortho instead of
diag helps to prevent stagnation and to speed up convergence for small and larger mode sizes.
However, as is typical for such alternating minimization strategies, a large number of sweeps
may be required to achieve a higher approximation accuracy.
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FIG. 4.1. Semi-logarithmic plots of the relative error ‖X−P‖F /‖P‖F as a function of the sweeps for (4.1)
with X = {0, 1/n − 1, . . . , 1}, d = 100, n ∈ {2, 10}, and r = 4 using Algorithm 2.2 or Algorithm A.1 for 30
random initial values.
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4.2.5. Quality of approximation for P of degree r = 7. In the same setting as in
Section 4.2.3, we repeat the experiments for the extreme mode sizes n = 2 and n = 10,
but with P of degree r = 7, i.e., for k = 8 in (4.1). Table 4.2 shows the geometric means
of the relative errors ‖X − P‖F /‖P‖F . Again, the smallest mean is written in bold for
each combination. The results in Table 4.2 behave quite similarly to those in Table 4.1
for r = 4, i.e., for k = 5. Comparing TT-HER and TT-ANLS, oftentimes TT-HER allows for
slightly further reduction of the relative error on average. Comparing diag and quasi-ortho
instead, the relative errors for n = 2 are approximately one order of magnitude smaller using
quasi-ortho compared to diag. For n = 10 and d ≤ 100, the relative errors are on average
again about half as large when using quasi-ortho instead of diag. When increasing the
dimension d, this effect of quasi-ortho seems to be further pronounced. Overall, both
TT-ANLS and TT-HER seem to benefit from the use of quasi-ortho again. The combination
of quasi-ortho and TT-HER nearly always leads to the smallest relative error on average
here. However, this is also associated with a higher runtime, as can be observed in the
following section.

TABLE 4.2
Geometric means of relative errors ‖X−P‖F /‖P‖F for (4.1) with X = {0, 1/n− 1, . . . , 1}, n ∈ {2, 10},

and r = 7 after 25 sweeps of Algorithm 2.2 or Algorithm A.1 for 30 random initial values and geometric variances
σ2 ∈ [1.0, 2.3].

n d = 20 d = 40 d = 60 d = 80 d = 100 d = 120

2
HER

diag 1.1 ·10−2 1.2 ·10−2 1.0 ·10−2 9.6 ·10−3 9.6 ·10−3 1.2 ·10−2

q-o 4.5 ·10−4 4.2 · 10−3 5.5 · 10−3 6.1 · 10−3 5.7 · 10−3 5.6 · 10−3

ANLS
diag 1.4 ·10−2 1.5 ·10−2 1.6 ·10−2 1.5 ·10−2 1.5 ·10−2 1.6 ·10−2

q-o 2.8 · 10−4 5.6 ·10−3 8.0 ·10−3 7.4 ·10−3 7.0 ·10−3 7.3 ·10−3

10
HER

diag 2.1 ·10−3 2.7 ·10−3 5.8 ·10−3 1.0 ·10−2 1.2 ·10−2 1.6 ·10−2

q-o 1.5 · 10−3 1.5 · 10−3 1.5 · 10−3 1.6 · 10−3 2.3 ·10−3 2.8 · 10−3

ANLS
diag 2.1 ·10−3 3.1 ·10−3 2.8 ·10−3 2.5 ·10−3 3.7 ·10−3 1.3 ·10−2

q-o 1.5 · 10−3 2.6 ·10−3 2.2 ·10−3 1.8 ·10−3 2.2 · 10−3 6.6 ·10−3

4.2.6. Runtimes. In addition to the worst-case complexities of Algorithm 3.1 in
Lemma 3.39, Table 4.3 presents the geometric means of practical runtimes for diag in
seconds and the quotient of the means for all other strategies. For the simple approximation
problem (4.1), the runtimes of diag-HER are 10% to 30% larger than those of diag-ANLS.
The quotient is slightly increasing in the dimension d and decreasing in n and r. Further,
the runtimes of quasi-ortho-ANLS and quasi-ortho-HER are 1.6–8.2 and 1.8–8.8 times
higher that those of diag-ANLS, respectively. But note that already after 10 sweeps the
relative error is oftentimes smaller than the final one using diag, in particular, for n = 2.
Both quotients seem to decrease in n and r, but vary in the dimension d. As expected, also
quasi-ortho-HER has longer runtimes than quasi-ortho-ANLS but the main extra time
is needed for quasi-ortho compared to diag. Thus, these observations agree with the
theoretical considerations from Remark 3.41.

4.2.7. Relaxation of the non-negativity constraint in Algorithm 3.1. As mentioned in
Remark 3.37, the non-negativity constraint in (3.3) could be relaxed by replacing the constraint
Y β ≥ 0 with Y β ≥ −ε, see (3.4), and then projecting Y and Z back to the non-negative
orthant. Here the hope is to further increase the non-negative range of Y by relaxing the
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TABLE 4.3
Geometric means and quotients of runtimes in seconds for (4.1) with X = {0, 1/n − 1, . . . , 1}, n ∈

{2, 3, 5, 10}, and r ∈ {4, 7} using Algorithm 2.2 or Algorithm A.1 with 25 sweeps and 30 random initial values and
geometric variances σ2 ∈ [1.0, 1.1].

n r d = 20 d = 40 d = 60 d = 80 d = 100 d = 120

2

4

diag-A (s) 7.6 18 28 38 51 66

q-o-A/diag-A 8.1 7.6 6.6 6.0 6.0 5.7

diag-H/diag-A 1.1 1.2 1.3 1.3 1.3 1.3

q-o-H/diag-A 8.2 7.9 7.2 7.2 8.1 8.8

7

diag-A (s) 16 35 57 80 97 139

q-o-A/diag-A 7.1 6.2 5.2 5.4 5.4 4.7

diag-H/diag-A 1.1 1.1 1.1 1.1 1.2 1.2

q-o-H/diag-A 7.4 6.5 5.8 6.3 7.4 6.4

10

4

diag-A (s) 32 67 104 147 198 252

q-o-A/diag-A 2.4 2.3 2.6 2.8 2.4 2.4

diag-H/diag-A 1.1 1.1 1.1 1.1 1.1 1.2

q-o-H/diag-A 2.4 3.3 3.7 4.1 3.5 3.5

7

diag-A (s) 101 215 342 484 614 754

q-o-A/diag-A 1.8 1.6 1.6 1.6 1.6 1.6

diag-H/diag-A 1.1 1.1 1.1 1.1 1.1 1.1

q-o-H/diag-A 1.8 2.1 2.1 2.1 2.1 2.0

constraint as above. Table D.1 in Appendix D shows the geometric means of the relative
errors for ε ∈ {0, 10−16, 10−12, 10−8, 10−4, 1} and all combinations of n ∈ {2, 10} and
d ∈ {20, 40, . . . , 120} using TT-HER and TT-ANLS with quasi-ortho, respectively. For
ε ≤ 10−8, the respective relative errors are in the same order of magnitude. For ε > 10−8

the relative error increases significantly. In conclusion, relaxing the non-negativity constraint
in (3.3) using (3.4) might help to further speed up convergence if ε > 0 is chosen properly.
The geometric variances σ2 over all 30 random initializations are typically larger for ε > 0.
Note that a proper choice for ε ≥ 0 may depend on the problem, the micro-step solver, the
solver used for (3.4), and also the initial factorization chosen.

4.3. Non-negative approximation for probability distributions. One particular appli-
cation we have in mind is the non-negative approximation of high-dimensional probability
distributions that are defined as a solution of a linear system. Here, we focus on one that arises
in the context of tumor progression modeling via high-dimensional Markov chains [37].

4.3.1. The model. The searched distribution X? over the discrete state space S :=
{0, 1}d is defined as the solution of the linear system

A(X) = B,

where the operator A ∈ RS×S and the right-hand side

B :=
d⊗
ν=1

[
1
0

]
∈ RS
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both have low-rank representations with

A :=
d⊗
ν=1

[
1 0
0 1

]
+

d∑
µ=1

µ−1⊗
ν=1

[
1 0
0 Θµ,ν

]
⊗
[

Θµ,µ 0
−Θµ,µ 0

]
⊗

d⊗
ν=µ+1

[
1 0
0 Θµ,ν

]

for some parameters Θ ∈ Rd×d>0 . Note that, due to the model construction, the mode sizes
of X? are all equal to n = 2. This suggests an improvement of quasi-ortho over diag in
particular for higher dimensions, as seen in Section 4.2. Further, the dimension d corresponds
to the number of genetic events, e.g., mutations, considered in the Markov chain. There
are up to 800 genes known to be involved in tumor progression [2], the mutations of which
could be included as events in a model. Typically, not all of these are relevant at the same
time, but higher dimensions d & 100 are needed for comprehensive models. In the following,
we use synthetic parameters Θ generated according to [8, Section 4.1, (B1)] and choose the
dimensions d to be a multiple of 8 to be consistent with [8].

4.3.2. Problem statement. As X? is a probability distribution, X? ∈ [0, 1]S and
〈1S ,X?〉F = 1 hold true. In [8] it was already demonstrated that X? can be well ap-
proximated using low-rank tensors (at least, for a specific class of parameters Θ). In order to
allow for further interpretation of its low-rank approximation, we also want its approximation
to fulfill both conditions. This results in the task to find

(X+
µ )µ∈[d] ∈ argmin

(Xµ)µ∈[d]

‖A(X)−B‖F s.t. X = τk((Xµ)µ∈[d]),(4.2)

Xµ ≥ 0 ∀µ ∈ [k], 〈C,X〉F = 1,

where

C := 1S =
d⊗
ν=1

[
1
1

]
∈ RS

and k denotes the target size. Note that the additional constraint 〈C,X〉F = 1 can be
reformulated as an equality constraint for Xν with fixed X 6=ν and therefore can be included
in each micro-step (2.4). The resulting micro-step can then also be solved using a quadratic
program solver like quadprog [41].

4.3.3. Quality of approximation. Similar to Sections 4.2.3 and 4.2.5, the geometric
means of the relative residuals (‖A(X)−B‖F )/‖B‖F for dimensions d ∈ {24, 32, . . . , 72}
and k ∈ {5, 8} are summarized in Table 4.4. The last column in each part of the table gives
the geometric mean of the relative residuals achieved by DMRG [33] to stagnation without
non-negativity constraints on the cores (Xµ)µ∈[d]. For this reason, the residuals for DMRG can
be regarded as an approximate lower bound for the expected residuals of the other methods.
However, as DMRG in general ensures neither non-negativity of the cores (Xµ)µ∈[d] nor the
equality condition 〈C,X〉F = 1, DMRG generally does not allow one to solve (2.3) or (4.2).

For k = 5, one observes that the relative residuals achieved using TT-ANLS and TT-HER

are typically in the same order of magnitude as those achieved by DMRG, i.e., one cannot expect
to get closer to the solution without increasing k. By increasing k to k = 8, DMRG, which
ignores both the non-negativity and equality constraint, achieves a relative residual that is one
order smaller for d ≥ 48. However, it is important to note that this does not necessarily imply
that the solution X? can be approximated non-negatively with a residual of the same order.
For both ranks k ∈ {5, 8}, there is a trend that the solution X? can be better approximated by
low-rank or non-negative factorizations for higher dimensions d. This observation is consistent
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with [8] and seems to be due to the problem statement in Section 4.3.2. A comparison of
TT-HER and TT-ANLS shows only slight differences and no clear trend as to which method
is superior. Comparing diag and quasi-ortho, quasi-ortho leads to a lower geometric
mean of the relative residuals in all cases. In most cases the differences are small, but in some
cases are up to an order of magnitude; see, e.g., k = 8 and d = 40 using TT-ALS. The lowest
relative residuals on average are always achieved by TT-ANLS with quasi-ortho except for
d = 64 and k = 8.

TABLE 4.4
Geometric means of relative residuals (‖A(X)−B‖F )/‖B‖F for (4.2) with n = 2 and k ∈ {5, 8}, using

Algorithms 2.2 and A.1, and DMRG [33] with 30 random initial values and geometric variances σ2 ∈ [1.0, 1.3].

k = 5
d TT-HER TT-ANLS (DMRG)

diag q-o diag q-o

24 4.0 · 10−3 2.8 · 10−3 3.5 · 10−3 2.6 · 10−3 (2.1 · 10−3)
32 2.2 · 10−3 1.8 · 10−3 2.4 · 10−3 1.7 · 10−3 (1.6 · 10−3)
40 1.7 · 10−3 1.2 · 10−3 1.8 · 10−3 1.2 · 10−3 (7.5 · 10−4)
48 1.2 · 10−3 1.0 · 10−3 1.3 · 10−3 9.0 · 10−4 (7.8 · 10−4)
56 1.2 · 10−3 1.0 · 10−3 1.3 · 10−3 9.0 · 10−4 (7.8 · 10−4)
64 8.3 · 10−4 7.5 · 10−4 8.8 · 10−4 7.4 · 10−4 (3.1 · 10−4)
72 9.0 · 10−4 7.7 · 10−4 6.6 · 10−4 6.5 · 10−4 (2.3 · 10−4)

k = 8
d TT-HER TT-ANLS (DMRG)

diag q-o diag q-o

24 2.2 · 10−3 1.4 · 10−3 3.2 · 10−3 1.4 · 10−3 (1.1 · 10−3)
32 1.0 · 10−3 6.3 · 10−4 1.4 · 10−3 5.7 · 10−4 (5.2 · 10−4)
40 9.8 · 10−4 4.7 · 10−4 7.3 · 10−3 4.0 · 10−4 (1.0 · 10−4)
48 4.2 · 10−4 3.2 · 10−4 6.7 · 10−4 2.5 · 10−4 (4.8 · 10−5)
56 5.1 · 10−4 3.2 · 10−4 4.3 · 10−4 2.7 · 10−4 (3.2 · 10−5)
64 3.1 · 10−4 2.7 · 10−4 6.2 · 10−4 3.4 · 10−4 (2.8 · 10−5)
72 4.8 · 10−4 2.7 · 10−4 2.6 · 10−4 2.2 · 10−4 (1.7 · 10−5)

4.3.4. Convergence behavior. In Figure 4.2, the semi-logarithmic button plots again
display the relative residuals as a function of the sweeps for d = 48 with k = 5. The results
using diag are on the left (in blue), quasi-ortho on the right (in bordeaux), TT-HER above,
and TT-ANLS below. In all four cases, the relative residual drops fast during the first 10 sweeps
and then reduces only quite slowly. Using TT-HER compared to TT-ALS, the fast reduction
during the first sweeps is slower for most initial values but reaches similar values after about 20
sweeps. Using diag in TT-HER or TT-ALS, there are some initial values for which the relative
residual cannot be reduced to 1 · 10−3 but stagnates after about 10 sweeps between 3 · 10−3

and 8 · 10−3. Using TT-ALS with quasi-ortho, the relative residuals behave similarly for
all initial values. The convergence behaviors are similar for other dimensions d and therefore
are not shown here.

4.3.5. Runtimes. Similar to Table 4.3, Table 4.5 also lists the geometric means of
the runtimes in seconds for all experiments. In contrast to Section 4.2.6, one observes
that using quasi-ortho for (4.2) has a much smaller impact on the runtimes. Moreover,
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FIG. 4.2. Semi-logarithmic plots of the relative residual (‖A(X)−B‖F )/‖B‖F as a function of the sweeps
for (4.2) with n = 2, d = 48, and k = 5 using Algorithms 2.2 and A.1 with 30 random initial values.

this impact appears to decrease with increasing dimension d and size k. For TT-ANLS,
using quasi-ortho instead of diag has almost no effect on the computational time for
d ≥ 56. Using TT-HER instead of TT-ANLS approximately doubles the runtimes. The use
of quasi-ortho can further reduce the runtime compared to diag for higher dimensions;
see, e.g., d = 72 and k ∈ {5.8} for both TT-ANLS and TT-HER. This supports the conjecture
that the cost increase due to quasi-ortho is less significant for more complex problems.
When comparing the times required for 25 sweeps with those for 100 sweeps (not shown here),
the latter take approximately four times as long as the former, whereas the ratios between
TT-ANLS and TT-HER as well as diag and quasi-ortho remain similar.

TABLE 4.5
Geometric means and quotients of runtimes in seconds for (4.2) with n = 2 and k ∈ {5, 8} using Algorithms 2.2

and A.1 with 25 sweeps for 30 random initial values and geometric variances σ2 ∈ [1.0, 1.1].

k = 5 k = 8
d TT-ANLS TT-HER TT-ANLS TT-HER

diag-A (s) q-o-A
diag-A

diag-H
diag-A

q-o-H
diag-A diag-A (s) q-o-A

diag-A
diag-H
diag-A

q-o-H
diag-A

24 114 1.5 1.9 2.5 266 1.4 1.8 2.5
32 318 1.3 1.9 2.3 679 1.2 1.9 2.1
40 654 1.1 1.9 2.0 1431 1.1 1.9 2.1
48 1193 1.1 2.0 2.0 2918 1.0 1.9 1.9
56 2204 1.0 2.0 1.9 5174 1.0 1.9 1.9
64 3308 1.0 2.0 2.0 8382 0.96 2.0 1.9
72 5978 0.99 2.0 1.9 14 608 0.98 2.0 1.9

5. Conclusion. We developed the quasi-orthogonalization method as an intermediate step
between two micro-steps in alternating non-negative tensor factorization with the following
goal: to improve the expressivity in each non-negative factor by increasing the non-negative
ranges of all fixed factors, but necessarily without changing the tensor represented or losing
the non-negativity of all factors. To do this, we derived how to obtain such a factorization
within the equivalence class representing the same tensor by modifying the current one
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via certain transfer matrices. We focused on a particular, numerically manageable subset
of M -matrices, whose elements are inverse non-negative under mild conditions and thus
allow for non-negative updates of all factors. Further, we proved that any such transfer
matrix, which is not a permuted diagonal matrix, leads to a strict increase in the non-negative
range. We proposed a simple strategy for finding such a transfer matrix based on well-known
linear programming approaches. Numerical experiments suggest that including this into an
alternating non-negative approach indeed reduces the persistence in local minima and improves
the convergence properties of the alternating optimization, where the differences, in particular
for higher dimensions and small mode sizes, can be significant.

Future work may include answering open questions such as how to find an optimal transfer
matrix that allows for a maximal non-negative range, and how to use more general transfer
matrices. Likewise, further modifications of alternating optimization methods for tensors may
be extended to the non-negative case.

Appendix A. Heuristic extrapolation with restarts (HER) for tensor trains. The HER
method from [29] adapted to tensor trains and extended by a quasi-orthogonalization step
is given in Algorithm A.1. To simplify the notation, we do not distinguish between the two
half-sweeps from ν = 1 to d− 1 and from ν = d to 2 in Algorithm A.1. However, this can be
done analogously to Algorithm 2.2.

Algorithm A.1: TT-HER for (2.3)

Input: A TT operator, B TT tensor, X(0) = τk((X
(0)
µ )µ∈[d]) initial TT tensor with

X
(0)
µ ≥ 0, ω ∈ (0, 1), and 1 ≤ γ ≤ γ ≤ η HER parameter

Output: X approximate solution of (2.3)
1 Set ω = 1 // Initialize ω (upper bound on ω)
2 Set i = 0

3 Set X̂(i)
µ = X

(i)
µ for all µ ∈ [d] // Initialize X̂(i) = τk((X̂

(i)
µ )µ∈[d])

4 while stop criteria are not fulfilled do
5 Set X̂(i+1)

µ = X̂
(i)
µ for all µ ∈ [d] // Initialize X̂(i+1)

6 for ν ∈ [d] do // Perform a half-sweep

7 Quasi-orthogonalize or normalize X̂(i+1) w.r.t. X̂(i)
ν

8 Solve X
(i+1)
ν ∈ argminXν≥0 ‖A(τk(X̂

(i+1)
6=ν ,Xν))−B‖2F

9 Update X̂
(i+1)
ν ← max{0, (1 + ω)X

(i+1)
ν − ωX(i)

ν } // Extrapolation

10 end
11 if ‖A(X̂(i+1))−B‖2F > ‖A(X̂(i))−B‖2F then // Restart

12 X
(i+1)
µ ← X

(i)
µ and X̂

(i+1)
µ ← X

(i+1)
µ for all µ ∈ [d]

13 ω ← ω and ω ← ω/η // Decrease ω and ω

14 else
15 X

(i+1)
µ ← X̂

(i+1)
µ for all µ ∈ [d]

16 ω ← min{1, ω · γ} and ω ← min{ω, ω · γ} // Increase ω and ω

17 end
18 Increase i← i+ 1

19 end
20 return X
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Appendix B. Further lemmas. In the proof of Theorem 3.31, we use the following
lemmas.

LEMMA B.1. For all p ≥ 1 and a, b ≥ 0 it holds true that (a+ b)p ≥ ap + bp.
Proof. If a = b = 0 or p = 1, the statement is clear. Otherwise, we define t := a/(a +

b) ∈ [0, 1] with (1− t) = b/(a+ b) ∈ [0, 1]. Then tp + (1− t)p ≤ t+ (1− t) = 1 holds true
and multiplying both sides by (a+ b)p > 0 leads to the above result.

LEMMA B.2. Let p ≥ 1, α ∈ Rk≥0, and v(1), . . . , v(k) ∈ Rn1

≥0 with ‖v(`)‖p = 1 for all

` ∈ [k]. Then ‖∑k
`=1 α`v

(`)‖p ≥ ‖α‖p holds true. For p = 1, equality holds true.
Proof. For k = 1 or p = 1, the statement is trivial. For k > 1, the statement follows by

induction using the result for k = 2:

‖α1v
(1) + α2v

(2)‖pp =

n1∑
j=1

(α1v
(1)
j + α2v

(2)
j )p

Lem. B.1
≥

n1∑
j=1

(α1v
(1)
j )p +

n1∑
j=1

(α2v
(2)
j )p

= αp1 + αp2 = ‖α‖pp.

Appendix C. Proofs. The complete proofs of Theorem 3.5 and Lemma 4.1 are given in
this appendix.

Proof of Theorem 3.5. We prove the statements (i) to (iv) of the theorem by constructing
I ⊆ [k] as follows.

(iii) Let Y contain no column which is a multiple of another one. Removing an index
` ∈ [k] of an extreme column Y:,` would result in range≥0(Y:,6=`) ( range≥0(Y ).
Thus, I must contain all indices of extreme columns. As Y 6= 0, there exists at
least one extreme column, i.e., I 6= ∅. Let J := [k] \ I denote the set of all
non-extreme columns. Then for each j ∈ J there exists an α(j) ≥ 0 such that
Y:,j =

∑
` 6=j α

(j)
` Y:,` and Y:,j 6= λY:,` for all λ ≥ 0 and ` 6= j. Without loss of

generality, let J = [n]. We show that Y:,≤j ∈ range≥0(Y:,>j) by induction over
j ∈ J . For j = 1, the statement directly holds true as Y:,j1 is non-extreme. Let
Y:,<j ⊆ range≥0(Y:,≥j) hold true with Y:,i =

∑
`≥j β

(i)
` Y:,` with β(i) ≥ 0 for all

i < j. Then we have

Y:,j =
∑
i<j

α
(j)
i Y:,i +

∑
`>j

α
(j)
` Y:,`

=

(∑
i<j

α
(j)
i β

(i)
j

)
Y:,j +

∑
`>j

(
α
(j)
` +

∑
i<j

α
(j)
i β

(i)
`

)
Y:,`

⇐⇒
(

1−
∑
i<j

α
(j)
i β

(i)
j

)
Y:,j =

∑
`>j

(
α
(j)
` +

∑
i<j

α
(j)
i β

(i)
`

)
Y:,`.

As Y ≥ 0 and α(j), β(i) ≥ 0, directly 1 − ∑i<j α
(j)
i β

(i)
j ≥ 0 follows. If∑

i<j α
(j)
i β

(i)
j = 1, then

0 =
∑
`>j

(
α
(j)
` +

∑
i<j

α
(j)
i β

(i)
`

)
Y:,`,

which implies that α(j)
` = 0 and α(j)

i β
(i)
` = 0 for all i < j < `. Assume there

exists an i < j with α(j)
i > 0, then β(i)

` = 0 for all ` > j and Y:,i = β
(i)
j Y:,j , which
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contradicts the assumption. Thus, α(j) = 0 would imply that Y:,j = 0, which also
contradicts the assumption. For this reason, 1−∑i<j α

(j)
i β

(i)
j > 0 and

Y:,j =
∑
`>j

α
(j)
` +

∑
i<j

α
(j)
i β

(i)
`

1−
∑

i<j
α
(j)
i β

(i)
j

Y:,` ∈ range≥0(Y:,>j)

and Y:,<j ⊆ range≥0(Y:,≥j) = range≥0(Y:,>j). By induction, we conclude that
range≥0(Y:,6=J ) = range≥0(Y ), i.e., all non-extreme columns are not needed to
generate the non-negative range. Thus, I 6= ∅ is the unique index set of all extreme
columns with range≥0(Y:,I) = range≥0(Y ).

(i) Let Y contain at least one column which is a multiple of another one. Then one
can prove that all non-extreme columns which are not a multiple of another one are
not needed to generate the non-negative range by repeating the proof in part (iii)
above for J denoting the corresponding index set. Then I can be processed as
follows: We start with I being the index set of all extreme columns. If Y has
columns Y:,i1 = λ2Y:,i2 = · · · = λ`Y:,i` , where iµ 6= iν for all µ 6= ν, λµ > 0,
and Y:,i1 6∈ range≥0(Y:, 6={i1,...,i`}), then one adds exactly one index iµ to I. If Y
has columns Y:,i1 = λ2Y:,i2 = · · · = λ`Y:,i` with iµ 6= iν for all µ 6= ν, λµ ≥ 0,
and Y:,i1 ∈ range≥0(Y:,6={i1,...,i`}), then none of these indices is needed to generate
range≥0(Y ). By construction of I, directly range≥0(Y ) = range≥0(Y:,I) and the
minimality of I follows.

(ii) The fact that all columns of Y:,I are extreme w.r.t. Y:,I follows from the construction
in parts (iii) and (i) above.

(iv) If Y has only extreme columns, I = [k] follows directly from part (iii).

Proof of Lemma 4.1. For d = 2, it holds true that

(x+ y)r =

r∑
j=0

(
r

j

)
xr−jyj =

r∑
j=0

(√(
r

r − j

)
xr−j

)(√(
r

j

)
yj

)

=

[√(
r

j

)
xj

]T
j=r,...,0

[√(
r

j

)
yj

]
j=0,...,r

.

Applying this recursively to (
∑d−1
µ=1 xµ + xd)

r using√(
r

`

)
(x+ y)r−` =

r−∑̀
j=0

√(
r

`+ j

)
xr−`−j

√(
r

`

)(
r − `
j

)2(
r

`+ j

)−1
yj

=

r−∑̀
j=0

√(
`

`− j

)
x`−j

√(
r − `
j

)(
`+ j

`

)
yj

with (
r

`

)(
r − `
j

)2(
r

`+ j

)−1
=

r!((r − `)!)2(r − `− j)!
`!(r − `)!(j!)2((r − `− j)!)2r!

=
(r − `)!

j!(r − `− j)!
(`+ j)!

`!(`+ j − `)! =

(
r − `
j

)(
`+ j

`

)
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for ` ∈ [r] and j ∈ {0, . . . , r − `} together with an index shift j ← j + 1 leads to the above
results.

Appendix D. Relaxation of the non-negativity constraint in Algorithm 3.1.

TABLE D.1
Geometric means of relative errors (‖X − P‖F )/‖P‖F for (4.1) with X = {0, 1/n − 1, . . . , 1}, n ∈

{2, 10}, and r = 4 after 25 sweeps of Algorithm 2.2 or Algorithm A.1 with Algorithm 3.1 solving (3.4) for ε ∈
{0, 10−16, 10−12, 10−8, 10−4, 1} in line 9 for 30 random initial values and geometric variances σ2 ∈ [1.0, 6]
for ε 6= 1 and σ2 ∈ [1.0, 61] for ε = 1.

n ε d = 20 d = 40 d = 60 d = 80 d = 100 d = 120

2

HER

0 4.9 · 10−4 2.7 · 10−3 3.1 · 10−3 3.4 · 10−3 2.9 · 10−3 3.9 · 10−3

10−16 2.6 · 10−4 2.6 · 10−3 3.4 · 10−3 3.8 · 10−3 3.2 · 10−3 4.1 · 10−3

10−12 5.4 · 10−4 2.2 · 10−3 2.6 · 10−3 2.7 · 10−3 2.4 · 10−3 2.6 · 10−3

10−08 4.7 · 10−4 2.3 · 10−3 2.8 · 10−3 2.8 · 10−3 2.3 · 10−3 2.4 · 10−3
10−04 1.2 · 10−2 8.6 · 10−3 5.8 · 10−3 6.5 · 10−3 5.8 · 10−3 1.1 · 10−2

1 4.2 · 10−2 4.3 · 10−2 4.3 · 10−1 3.4 · 10−1 3.8 · 10−1 3.5 · 10−1

ANLS

0 4.2 · 10−4 2.8 · 10−3 3.4 · 10−3 3.8 · 10−3 3.2 · 10−3 3.5 · 10−3

10−16 3.2 · 10−4 2.7 · 10−3 3.3 · 10−3 3.4 · 10−3 3.1 · 10−3 2.8 · 10−3

10−12 6.1 · 10−4 3.0 · 10−3 3.0 · 10−3 3.5 · 10−3 3.2 · 10−3 3.5 · 10−3

10−08 5.2 · 10−4 2.4 · 10−3 2.7 · 10−3 2.9 · 10−3 3.4 · 10−3 2.7 · 10−3
10−04 1.5 · 10−2 9.5 · 10−3 7.6 · 10−3 6.4 · 10−3 7.5 · 10−3 7.0 · 10−2

1 1.1 · 10−2 1.0 · 10−2 6.8 · 10−1 6.8 · 10−1 6.2 · 10−1 4.0 · 10−1

10

HER

0 1.9 · 10−3 1.6 · 10−3 2.4 · 10−3 3.1 · 10−3 4.5 · 10−3 5.5 · 10−3

10−16 2.2 · 10−3 1.7 · 10−3 2.3 · 10−3 4.2 · 10−3 5.2 · 10−3 5.1 · 10−3
10−12 1.7 · 10−3 1.4 · 10−3 2.4 · 10−3 3.8 · 10−3 4.5 · 10−3 5.4 · 10−3

10−08 2.1 · 10−3 1.4 · 10−3 2.8 · 10−3 3.1 · 10−3 5.3 · 10−3 5.8 · 10−3

10−04 3.1 · 10−3 6.8 · 10−3 1.7 · 10−2 1.9 · 10−2 3.1 · 10−2 3.6 · 10−2

1 2.9 · 10−2 1.5 · 10−1 1.0 1.0 1.0 1.0

ANLS

0 2.0 · 10−3 1.7 · 10−3 1.7 · 10−3 2.8 · 10−3 3.4 · 10−3 3.3 · 10−3

10−16 1.9 · 10−3 1.4 · 10−3 1.8 · 10−3 3.0 · 10−3 3.0 · 10−3 2.9 · 10−3
10−12 1.8 · 10−3 1.8 · 10−3 1.6 · 10−3 3.6 · 10−3 3.7 · 10−3 3.6 · 10−3

10−08 2.1 · 10−3 1.2 · 10−3 2.0 · 10−3 2.5 · 10−3 4.6 · 10−3 4.7 · 10−3

10−04 3.6 · 10−3 2.8 · 10−3 5.2 · 10−3 8.0 · 10−3 9.8 · 10−3 8.2 · 10−3

1 5.0 · 10−3 2.1 · 10−2 1.0 1.0 5.3 · 10−2 4.5 · 10−1
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