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A NOTE ON TT-GMRES FOR THE SOLUTION OF PARAMETRIC
LINEAR SYSTEMS∗

OLIVIER COULAUD†, LUC GIRAUD†, AND MARTINA IANNACITO‡

Abstract. We study the solution of linear systems with tensor product structure using the Generalized Minimal
RESidual (GMRES) algorithm. To manage the computational complexity of high-dimensional problems, our
approach relies on low-rank tensor representation, focusing specifically on the Tensor Train format. We implement
and experimentally study the TT-GMRES algorithm. Our analysis bridges the heuristic methods proposed for
TT-GMRES by Dolgov [Russian J. Numer. Anal. Math. Modelling, 28 (2013), pp. 149–172] and the theoretical
framework of inexact GMRES by Simoncini and Szyld [SIAM J. Sci. Comput. 25 (2003), pp. 454–477]. This
approach is particularly relevant in a scenario where a (d + 1)-dimensional problem arises from concatenating a
sequence of d-dimensional problems, as in the case of a parametric linear operator or parametric right-hand-side
formulation. Thus, we provide backward error bounds that link the accuracy of the computed (d+ 1)-dimensional
solution to the numerical quality of the extracted d-dimensional solutions. This facilitates the prescription of a
convergence threshold ensuring that the d-dimensional solutions extracted from the (d+ 1)-dimensional result have
the desired accuracy once the solver converges. We illustrate these results with academic examples across varying
dimensions and sizes. Our experiments indicate that TT-GMRES retains the theoretical rounding-error properties
observed in matrix-based GMRES.
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1. Introduction. In numerous scientific and engineering domains, mathematical models
often involve solving d-dimensional linear systems with a tensor product structure. Such
systems can be represented as

Ax = b,

where A is a multilinear operator acting on Rn1×···×nd , the tensor b represents the right-hand
side, and the tensor x is the sought solution. As the number of dimensions d increases, the
storage and computational costs grow exponentially — this phenomenon is commonly referred
to as the “curse of dimensionality”. Addressing these challenges requires algorithms that
balance accuracy with tractable computational and memory demands.

Two main strategies have emerged for solving high-dimensional linear systems, one
arising from optimization and one from the numerical linear algebra domain. The first
approach is based on optimization methods. It includes the Alternating Linearized Scheme,
the Modified Alternating Linearized Scheme [16], the Alternating Minimal Energy method [8],
and the Density Matrix Renormalization Group approach [21]. These techniques break down
the high-dimensional system into a sequence of lower-dimensional minimization subproblems,
iteratively updating the solution. The second strategy extends iterative solvers from classical
matrix computations, such as the conjugate gradient, the Generalized Minimal RESidual
(GMRES), and the biconjugate gradient method [31], to high-dimensional spaces, introducing
tensors and multilinear operators.

This second class of methods uses well-established techniques within a tensor context,
generalizing key properties and heuristics to high-dimensional linear systems, cf. [2, 7, 19].
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High-dimensional problems pose challenges due to their computational demands and the
prohibitive storage requirements of dense tensors, even in moderate dimensions. To address
these issues, compression techniques such as High Order Singular Value Decomposition [6],
Hierarchical Tucker [11], Tensor Train (TT) [22] and Tensor Network [20] decompositions
are used. Among these, the TT format has gained particular attention due to its flexibility and
efficiency in handling high-dimensional tensors.

While tensor compression effectively reduces storage requirements, it introduces rounding
errors that affect numerical computations, particularly for iterative solvers that heavily rely
on compression. Balancing the trade-off between maintaining low ranks and achieving the
desired level of accuracy is fundamental when developing an iterative solver. Assessing and
controlling the propagation of rounding errors in iterative solvers has thus become a critical
component of numerical analysis for high-dimensional problems.

This work focuses on the analysis of GMRES with the Modified Gram–Schmidt orthogo-
nalization kernel (MGS-GMRES) algorithm adapted to the Tensor Train format (TT-GMRES)
for high-dimensional linear systems. Our TT-GMRES algorithm incorporates tensor compres-
sion at various steps of the iterative process, raising important questions about the stability and
accuracy of the computed solutions. The first theoretical demonstration that MGS-GMRES
is backward stable dates back to 2006. In [24], the authors analyse MGS-GMRES in the
standard IEEE arithmetic. The fundamental assumptions are that the unit round-off u bounds
both the data representation and the rounding error of all the elementary floating-point opera-
tions. In [1], the authors consider a variable-accuracy framework for studying experimentally
MGS-GMRES. In this context, the data storage precision is decoupled from the unit round-off
that controls the rounding of floating-point operations. Additionally, it is assumed that the
data storage precision is independent of the hardware and that the perturbation on the data
is norm-wise bounded. Under these working hypotheses, they experimentally show that the
backward stability of MGS-GMRES holds. Building on the theoretical backward stability
results of [24] for MGS-GMRES in classical matrix computation, we examine our TT-GMRES
within the variable accuracy framework. Specifically, this study experimentally investigates
the interplay between tensor compression, inexact arithmetic and backward error analysis,
linking these aspects to ensure robust performance in the tensor setting. Our TT-GMRES
approach is compared with the heuristic TT-GMRES variant proposed in [7]. Additionally, we
theoretically justify the heuristic proposed in [7] for TT-GMRES and link that variant with the
theory of inexact GMRES properties, presented in [30]. Our experimental examples empha-
size that TT-GMRES from [7] inherits the numerical features of the inexact GMRES variant.
Furthermore, we investigate the relationship between TT-GMRES and the block-GMRES
variant.

Additionally, we provide backward error bounds that relate the quality of the computed
(d+ 1)-dimensional solutions to the accuracy of the d-dimensional solutions extracted from
them. This analysis is particularly relevant for parametric problems, which involve efficiently
solving a sequence of d-dimensional problems by utilizing the tensor structure in a (d +
1)-dimensional space. The theoretical findings are supported by numerical experiments
showcasing the effectiveness of TT-GMRES on academic problems of varying dimensions
and sizes. These experiments highlight that TT-GMRES can achieve accurate solutions while
preserving the memory-efficient benefits of tensor compression. Furthermore, they confirm
that TT-GMRES inherits desirable numerical stability properties similar to its matrix-based
counterpart.

The remaining sections of this paper are organized as follows. Section 2 provides
the necessary background on tensors and their representation in TT format, along with the
formulation of parametric problems. Section 3 introduces GMRES and its tensor variants,
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detailing the algorithmic structure of TT-GMRES. Section 4 establishes theoretical connections
between inexact GMRES and the heuristics used for TT-GMRES from [7]. It presents the
backward error bounds for parametric systems. Section 5 includes numerical experiments
illustrating the algorithm’s performance and its application to high-dimensional test cases.
Finally, Section 6 offers concluding remarks and directions for future research.

2. Preliminaries on tensors and parametric problems. To enhance readability, we
utilize the following notation for the various mathematical objects described. Small Latin
letters represent scalars and vectors (e.g., a), with the context clarifying the objects’ nature.
Matrices are represented by capital Latin letters (e.g., A), tensors by bold small Latin letters
(e.g., a), the multilinear operators between two tensor spaces are denoted by bold calligraphic
capital letter (e.g., A), and the tensor representation of linear operators by bold capital Latin
letters (e.g., A). We use the “MATLAB notation”, that is, we denote all the indices along
a mode with a colon (“:”). For example, if we are given a matrix A ∈ Rm×n, then A(:, i)
represents the ith column of A. The tensor product is denoted by ⊗ and the Kronecker product
by ⊗K. The Euclidean inner product is denoted by 〈·, ·〉 for both vectors and tensors. We use
‖ · ‖ to denote the Euclidean norm for vectors and the Frobenius norm for matrices and tensors.
A linear operator A : Rn1×···×nd → Rn1×···×nd between tensor spaces is represented by a
tensor A ∈ R(n1×n1)×···×(nd×nd) with respect to the canonical basis. The L2 norm of the
linear operator A is denoted by ‖A‖2. If d = 2, then the L2 norm of the matrix associated
with a simpler linear operator between two linear vector spaces is considered.

Section 2.1 describes the main key elements of the Tensor Train (TT) notation for tensors
and linear operators between tensor product of spaces. The advantages of using this formalism
to solve linear systems naturally defined in high-dimensional vector spaces are also presented.
Section 2.2 examines the scenario where one of the linear operator modes is associated with a
parameter. When dealing with parametric linear operators, our focus is on solving a single
linear system for all discrete parameter values in TT format. Section 2.3 presents the scenario
in which the right-hand sides depend on a parameter. We describe the construction of a unique
linear system in TT format when there are multiple right-hand sides depending on a parameter.

2.1. The Tensor Train format. Let x be a d-order tensor in Rn1×···×nd and nk the
dimension of mode k for every k ∈ {1, . . . , d}. Storing the full tensor x ∈ Rn1×···×nd has a
memory cost of O(nd) with n = maxi∈{1,...,d}{ni}, so several compression techniques have
been proposed over the years to reduce the memory consumption [6, 11, 22]. For this work,
the most suitable tensor representation is the Tensor Train (TT) format [22]. The main concept
of TT is to represent a d-order tensor as the contraction of d 3-order tensors. This contraction
is a generalization of the matrix–vector product to tensors.

The Tensor Train representation of x ∈ Rn1×···×nd is

x = x1x2 · · ·xd,

where xk ∈ Rrk−1×nk×rk is the kth TT core for k ∈ {1, . . . , d}, with r0 = rd = 1. Note that
x1 ∈ Rr0×n1×r1 and xd ∈ Rrd−1×nd×rd reduce essentially to matrices, but for consistency in
notation, we represent them as tensors. The kth TT core of a tensor is denoted by the same
bold letter underlined, with a subscript k. The value rk is called the kth TT rank.

Given an index ik, we denote the ikth matrix slice of the kth TT core xk with respect
to mode 2 by Xk(ik), i.e., Xk(ik) = xk(:, ik, :). Each element of the TT tensor x can be
expressed as the product of d matrices, that is,

x(i1, . . . , id) = X1(i1) · · ·Xd(id),

withXk(ik) ∈ Rrk−1×rk for every ik ∈ {1, . . . , nk} and k ∈ {2, . . . , d−1}, whileX1(i1) ∈
R1×r1 and Xd(id) ∈ Rrd−1×1. It is important to note that X1(i1) and Xd(id) are actually
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vectors, but for the sake of consistency, they are written as matrices with a single row or
column. TT-format tensors are called TT vectors.

In order to store a tensor in TT format, O(dnr2) units of memory are required, where
n = maxi∈{1,...,d}{ni} and r = maxi∈{1,...,d}{ri}. The memory footprint grows linearly
with the tensor order and quadratically with the maximal TT rank. Therefore, knowing the
maximal TT rank is usually sufficient to estimate the TT compression benefit. However, for
more accuracy, we introduce the compression ratio measure. If x ∈ Rn1×···×nd is a tensor in
TT format, the compression ratio is the storage cost of x in TT format divided by the storage
cost in dense format, i.e., ∑d

i=1 ri−1niri∏d
j=1 nj

,

where ri is the ith TT rank of x. The TT ranks, ri, must remain small to achieve a significant
benefit from this formalism. One drawback of the TT format is that it may become less
efficient when adding two TT vectors. Given two TT vectors x and y with kth TT ranks rk
and sk, respectively, the kth TT rank of x + y is less than or equal to rk + sk (see [9]).

The TT formalism allows for the compressed expression of linear operators between tensor
product spaces. Given a linear operator A : Rn1×···×nd → Rn1×···×nd , with the canonical
basis fixed for Rn1×···×nd , we associate with A the tensor A ∈ R(n1×n1)×···×(nd×nd) in the
standard way. Therefore, a tensor associated with a linear operator between tensor product
spaces will be referred to as a tensor operator. The TT representation of the tensor operator
A ∈ R(n1×n1)×···×(nd×nd), commonly referred to as the TT matrix, is expressed as

A = a1 · · ·ad,

where ak ∈ Rrk−1×nk×nk×rk is the kth TT core, with r0 = rd = 1.
For every ik, jk ∈ {1, . . . , nk} and k ∈ {1, . . . , d}, let Ak(ik, jk) ∈ Rrk−1×rk be the

(ik, jk)th slice with respect to mode (2, 3) of ak. Therefore, the (i1, j1, . . . , id, jd)th entry of
A can be expressed as

A(i1, j1, . . . , id, jd) = A1(i1, j1) · · · Ad(id, jd).

The estimated storage cost remains the same as before, namely O(dnmrd), where n =
maxi∈{1,...,d}{ni}, m = maxi∈{1,...,d}{mi} and r = maxi∈{1,...,d}{ri}. It is worth noting
that the kth TT rank of the contraction of a TT matrix and a TT vector is less than or equal to
the product of the kth TT rank of the two contracted objects, as explained in [9]. For example,
given the TT matrix A ∈ Rn1×m1×···×nd×md and the TT vector x ∈ Rn1×···×nd with kth TT
ranks rk and sk, respectively, their contraction b = Ax is a TT vector with kth TT rank less
than or equal to rksk.

The potential growth of TT ranks is a crucial point in the implementation of algorithms
using the TT formalism, as it may lead to a shortage of memory and prevent the computation
from being completed. To address this issue, a rounding algorithm was proposed in [22] to
reduce the TT ranks. The TT rounding algorithm takes a TT vector x and a relative accuracy δ
as inputs and provides a TT vector x̃ as output. The output TT vector x̃ is at a relative distance δ
from the input TT vector x, i.e., ‖x− x̃‖ ≤ δ‖x‖. The computational cost, in terms of floating-
point operations, of a TT rounding over x is O(dnr3), as stated in [22], if x ∈ Rn1×···×nd is
a d-order TT vector with r = maxi∈{1,...,d}{ri} and n = maxi∈{1,...,d}{ni}.

2.2. Parameter-dependent linear operators. In this section and the following one,
tensor slices play a central role, so we introduce some specific notation. Given a TT vector
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a ∈ Rn1×···×nd with TT cores ak ∈ Rrk−1×nk×rk , a[k,ik] denotes the ikth slice with respect
to mode k. Henceforth, we will only take a slice with respect to the first mode, so instead of
writing a[1,i1] for the i1th slice on the first mode, we will simply write a[i1]. Similarly, A[i1]

represents the (i1, i1)th slice in mode (1, 2) of a tensor operator A ∈ R(n1×n1)×···×(nd×nd).
This section focuses on a specific type of parametric tensor operator expressed as Aα =

B0 + αB1, where α ∈ R and B0 and B1 are two tensor operators of R(n1×n1)×···×(nd×nd).
Assuming that α takes p different real values in the interval [a, b], we define p linear systems
of the form

(2.1) A`y` = b`,

where A` = B0 + α`B1, b` ∈ Rn1×···×nd and α` ∈ [a, b] for every ` ∈ {1, . . . , p}. At
this level, one can choose between either solving each system independently or solving them
simultaneously in a higher-dimensional space. This latter choice will be referred to as the
“all-in-one” approach. The “all-in-one” linear system can be expressed as

(2.2) Ax = b,

where A ∈ R(p×p)×(n1×n1)×···×(nd×nd) is a tensor operator such that

(2.3) A(h, `, i1, j1, . . . , id, jd) =

{
A`(i1, j1, . . . , id, jd) if h = `,

0 if h 6= `,

and the right-hand side is b ∈ Rp×n1×···×nd defined as

(2.4) b(`, i1, . . . , id) = b`(i1, . . . , id)

for ik, jk ∈ {1, . . . , nk}, k ∈ {1, . . . , d} and `, h ∈ {1, . . . , p}. The tensor operator A is
written in a compact form as

A = Ip ⊗B0 + diag(α1, . . . , αp)⊗B1.

The (`, `)th slice of A with respect to modes (1, 2) is denoted by

(2.5) A[`] = B0 + α`B1 = A`,

and, similarly, the `th slice of b with respect to the first mode is b[`] = b` by construction.
Consequently, equation (2.1) can also be written as

A[`]x[`] = b[`],

with x[`] = y`. This implies that, after solving the “all-in-one” system defined by equa-
tion (2.2), a specific parameter’s solution can be obtained by selecting a slice from the
“all-in-one” solution along the parameter mode (first mode). This slice of the “all-in-one”
solution is called the extracted solution. In other words, if an iterative solution is computed
at iteration k, the extracted solution for the `th problem, x

[`]
k , is the `th slice with respect to

mode 1 of the kth iterate of the “all-in-one” system, xk, i.e.,

x
[`]
k = xk(`, i1, . . . , id).

Section 4.3 examines the connection between the numerical quality of the extracted
solution and the individual solution.
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2.3. Parameter-dependent right-hand sides. This section considers a specific case of
the “all-in-one” approach. The goal is to solve p linear systems that share the same linear
operator but have different right-hand sides. If A0 ∈ R(n1×n1)×···×(nd×nd) is a linear tensor
operator, the `th linear system is defined as

(2.6) A0y` = b`,

where b` ∈ Rn1×···×nd for every ` ∈ {1, . . . , p}. To simultaneously solve all the right-hand
sides expressed in equation (2.6), we repeat the construction introduced in Section 2.2, except
that A0 is repeated on the “diagonal” of the tensor linear operator A defined in equation (2.3).
Thanks to the tensor properties, the tensor operator A ∈ R(p×p)×(n1×n1)×···×(nd×nd) can be
written as

(2.7) A = Ip ⊗A0,

so that A[`] = A0 for every ` ∈ {1, . . . , p}. The right-hand side b is defined similarly to the
previous section, i.e., b[`] = b`.

The case of multiple right-hand sides can be formulated and solved either as an “all-in-one”
problem or as a block problem, as explained in Section 4.2. Furthermore, in Section 4.4, the
quality of individual solutions is linked with the numerical quality of the “all-in-one” solution
in this specific case.

3. Preliminaries on GMRES and block GMRES. This section provides an overview
of the GMRES algorithm, and its matrix and tensor variants. In classical matrix computation,
Section 3.1 describes the main properties of the GMRES algorithm. Section 3.2 presents the
block variant of GMRES, which is used to solve linear systems with multiple right-hand sides
in matrix format. Finally, Section 3.3 outlines the TT-GMRES algorithm.

3.1. Preconditioned GMRES in matrix computation. When using an iterative solver
to compute the solution of a linear system, it is recommended to use a stopping criterion
based on a backward error [12, 17, 24]. The iterative scheme should be stopped when the
backward error becomes smaller than a user-prescribed threshold. This means that the current
iterate can be considered as the exact solution of a perturbed problem where the relative norm
of the perturbation is smaller than the threshold. Two norm-wise backward errors can be
considered for iterative schemes. Let Ax = b be the linear system to be solved. We can
consider a norm-wise backward error on A ∈ Rn×n and b ∈ Rn. The norm-wise backward
error associated with the approximate solution xk at iteration k is denoted as ηA,b(xk) [15].
The following equality was proved in [26]:

ηA,b(xk) = min
∆A,∆b

{τ > 0 :‖∆A‖ ≤ τ‖A‖ , ‖∆b‖ ≤ τ‖b‖ and (A+ ∆A)xk = b+ ∆b}

=
‖Axk − b‖

‖A‖2‖xk‖+‖b‖
.(3.1)

In certain situations, a simpler backward error criterion based solely on perturbations in
the right-hand side can also be considered, leading to the second possible choice:

ηb(xk) = min
∆b
{τ > 0 :‖∆b‖ ≤ τ‖b‖ and Axk = b+ ∆b}

=
‖Axk − b‖
‖b‖

.(3.2)
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Starting from the zero initial guess, GMRES [29] constructs a series of approximations
xk in Krylov subspaces of increasing dimension k such that the residual norm of the sequence
of iterates is decreasing over these nested spaces. More specifically,

xk = argmin
x∈Kk(A,b)

‖b−Ax‖ ,

with

Kk(A, b) = span{b, Ab, . . . , Ak−1b}

being the k-dimensional Krylov subspace spanned by A and b. In practice, a matrix
Vk = [v1, . . . , vk] ∈ Rn×k with orthonormal columns and an upper Hessenberg matrix
H̄k ∈ R(k+1)×k are iteratively constructed using the Arnoldi procedure such that one has
span{Vk} = Kk(A, b) and

AVk = Vk+1H̄k, with V Tk+1Vk+1 = Ik+1.

This relation is often referred to as the Arnoldi relation. As a result, xk = Vkyk with

yk = argmin
y∈Rk

∥∥βe1 − H̄ky
∥∥ ,

where β = ‖b‖ and e1 = (1, 0, . . . , 0)T ∈ Rk+1. In exact arithmetic, the following equality
holds between the least-squares residual and the true residual

‖r̃k‖ = ‖βe1 − H̄ky‖ = ‖b−Axk‖.

In finite-precision calculation, the equality may no longer hold. However, it has been demon-
strated that the GMRES method is backward stable with respect to ηA,b [24]. This means
that during the iterations ηA,b(xk) may decrease to O(u), where u is the unit round-off of
the floating-point arithmetic used for the calculations. Algorithm 1 provides an overview of
GMRES. For a more detailed presentation, see [28, 29].

To control the memory footprint of the solver, a restart parameter is used to define the
maximal dimension of the search Krylov space since the orthonormal basis Vk must be
stored. If the algorithm fails to converge after reaching the maximum dimension of the search
space, it is restarted using the final iterate as the initial guess for a new cycle of GMRES.
Furthermore, it is often necessary to consider a preconditioning to speed up convergence.
Using right-preconditioned GMRES consists in considering a non-singular matrix M , the
so-called preconditioner, which approximates the inverse of A in some sense. In this case,
the preconditioned system AMt = b is solved using GMRES. The solution t is then used
to compute the solution of the original system, that is, x = Mt. Algorithm 2 outlines the
right-preconditioned GMRES for a restart parameter m and a convergence threshold ε.

3.2. Block GMRES in matrix computation. Block GMRES is a variant of GMRES that
can be used to solve a linear system with multiple right-hand sides. The system is represented
as AX = B where B = [b[1], . . . , b[p]] ∈ Rn×p and X = [x[1], . . . , x[p]] ∈ Rn×p. The
algorithm uses a block variant of the Arnoldi relationship to build the search space, which
is defined by the sum of the Krylov subspace associated with each of the right-hand sides,
assuming the initial guess is zero. To simplify the explanation, we assume that the block of
right-hand sides is full rank and that there is no partial convergence during the iterations. For
a complete description of the latter situation and an efficient approach to deal with it, refer
to [27]. The search space is

Kk(A,B) =

p⊕
i=1

Kk(A, b[i]).
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Algorithm 1 x, hasConverged = GMRES(A, b, m, ε)

1: input: A, b, m, ε
2: r0 = b, β = ‖r0‖ and v1 = r0/β
3: for k = 1, . . . ,m do
4: w = Avk
5: for i = 1, . . . , k do . MGS variant
6: H̄i,k = 〈vi, w〉
7: w = w − H̄i,kvi
8: end for
9: H̄k+1,k = ‖w‖

10: vk+1 = w/H̄k+1,k

11: yk = argminy∈Rk ‖βe1 − H̄ky‖
12: xk = Vkyk
13: if (ηA,b(xk) < ε) then
14: hasConverged = True
15: break
16: end if
17: end for
18: return: x = xk, hasConverged

Algorithm 2 x, hasConverged = Right-GMRES(A, M , b, x0, m, ε)

1: input: A, M , b, m, ε
2: hasConverged = False
3: x = x0

4: while not(hasConverged) do
5: r = b−Ax . Iterative refinement step with at most m GMRES iterations on AM

6: tk, hasConverged = GMRES(AM , r, m, ε)
7: x = x+Mtk . Update the unpreconditioned solution with the computed correction
8: end while
9: return: x, hasConverged

In this space, the kth iterate is defined as the minimum Frobenius norm of the block residual,
which is given by

Xk = argmin
X∈Kk(A,B)

‖B −AX‖F .

The residual norm of each individual right-hand side is minimized over the sum of the Krylov
spaces associated with all right-hand sides. Therefore, if the ith column of the residual block
is considered, the kth iterate associated with the ith right-hand side is

x
[i]
k = argmin

x∈Kk(A,B)

‖b[i] −Ax[i]‖.

For a more detailed discussion on the block GMRES variant, see [27, 28].

3.3. Preconditioned GMRES in Tensor Train format. Let A ∈ R(n1×n1)×···×(nd×nd)

be a tensor operator and b ∈ Rn1×···×nd a tensor, then the general tensor linear system is

(3.3) Ax = b,
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where x ∈ Rn1×···×nd . It is important to note that if we set d = 1, we obtain the standard
linear system from classical matrix computation. To solve equation (3.3), we can use a tensor-
extended version of GMRES. Since all operations involved in this iterative solver are feasible
with the TT formalism, we assume that all objects are expressed in TT format. One major
limitation of this approach is the repetition of additions and contractions in the various loops.
This results in the growth of TT rank and potential memory overconsumption. Therefore, it is
crucial to introduce compression steps in TT-GMRES. However, special attention must be paid
to the selection of the TT rounding parameter to ensure that the prescribed GMRES tolerance
ε can be achieved. The complete TT-GMRES algorithm is presented in Algorithm 3.

Algorithm 3 x, hasConverged = TT-GMRES(A, b, m, ε, δ)

1: input: A, b, m, ε, δ
2: r0 = b, β = ‖r0‖ and v1 = (1/β)r0

3: for k = 1, . . . ,maxit do
4: w = TT-round(Avk, δ) . MGS variant
5: for i = 1, . . . , k do
6: H̄i,k = 〈vi ,w〉
7: w = w − H̄i,kvi
8: end for
9: w = TT-round(w, δ)

10: H̄k+1,k = ‖w‖
11: vk+1 = (1/H̄k+1,k)w
12: yk = argminy∈Rk ‖βe1 − H̄ky‖
13: xk = TT-round

(∑k+1
j=1 yk(j)vj , δ

)
14: if (ηA,b(xk) < ε) then
15: hasConverged = True
16: break
17: end if
18: end for
19: return: x = xk, hasConverged

Algorithm 4 x, hasConverged = TT-Right-GMRES(A, M, b, x0, m, ε, δ)

1: input: A, M, b, m, ε, δ
2: hasConverged = False
3: x = x0

4: while not(hasConverged) do
5: r = TT-round(b−Ax, δ) . Iterative refinement step with at most m GMRES iterations

on AM

6: tk, hasConverged = TT-GMRES(AM, r, m, ε, δ)
7: x = TT-round(x + Mtk, δ) . Update the unpreconditioned solution with the computed

correction
8: end while
9: return: x, hasConverged

Algorithms 3 and 4 introduce an additional input parameter, δ, which represents the TT
rounding threshold. The TT rounding algorithm at accuracy δ is applied to the result of the
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contraction between A and the last Krylov basis vector computed in line 4, to the new Krylov
basis vector after orthogonalization in line 9, and to the updated iterative solution in line 13.
The purpose of this step is to balance the rank growth that the tensor contraction and addition
of the previous steps may cause. Notice that the MGS orthogonalization kernel plays a key
role in the rank growth. When an orthogonalization kernel is applied to low-rank TT vectors,
it produces a set of TT vectors of larger TT ranks, to satisfy the orthogonality constraint.
This growth can be balanced by the use of the TT rounding operation, which reduces the TT
ranks and affects the orthogonality of the final basis. In [4], the authors study in detail this
phenomenon for several orthogonalization kernels applied to TT vectors. As shown in the
numerical experiments in Section 5, the TT rounding accuracy (δ) must be less than or equal
to the GMRES target accuracy (ε).

4. Some comments and observations on GMRES in tensor format. Section 4.1 com-
pares the TT-GMRES algorithm in the variable accuracy framework described in Section 3.3
with the TT-GMRES algorithm from [7]. Furthermore, the connection between the TT-
GMRES algorithm from [7] and the inexact GMRES theory is proved. In Section 4.2, two
possible approaches for solving multiple right-hand sides are compared: the TT-GMRES
algorithm applied with the “all-in-one” construction described in Section 2.3, and the block
GMRES variant. Finally, Sections 4.3 and 4.4 describe backward error bounds in TT format
for parametric linear systems and multiple right-hand sides, as introduced in Sections 4.3 and
4.4, respectively.

4.1. TT-GMRES with variable rounding versus inexact GMRES. In this section, we
will first recall some of the existing results from the literature on GMRES and inexact GMRES,
and then we will draw some connections with TT-GMRES. In exact arithmetic, two important
properties hold for GMRES: the Arnoldi basis is perfectly orthogonal (i.e., V Tk Vk = Ik), and,
as a corollary, the least-squares residual norm is equal to the linear system residual norm.
However, in finite precision computation, it is known that these two equalities do not hold
any more [24]. Despite this, GMRES is backward stable, that is, ηA,b(xk) ≈ O(u) when
κ2(Vk) > 4/3; cf. [24]. The κ2(Vk) can be used to detect the stagnation of the backward
error. Indeed, the ηA,b(xk) will be O(u) within the iteration at which κ2(Vk) is greater
than 4/3. Still, in exact arithmetic, the idea of relaxing the accuracy when performing the
matrix–vector product in the Arnoldi procedure was first observed experimentally in [3]. The
inaccuracy in the matrix–vector product is modelled by introducing a perturbation matrix
Ek (i.e., w = (A+ Ek)vk) whose relative norm defines the amount of inaccuracy. Later, a
series of papers [10, 30, 32] provided theoretical justification, showing that in exact arithmetic
the norm of Ek can grow as the inverse of the residual norm of the linear system times a
prescribed threshold η, while still ensuring that the attainable GMRES residual norm will
reach this threshold η.

These latter results motivated a heuristic proposed in the TT-GMRES algorithm described
in [7] and [25]. The heuristic increases the TT rounding threshold proportionally to the inverse
of the residual least-squares norm. The TT rounding computes a TT vector, which can be
viewed as a perturbation of the original vector with a relative perturbation norm bounded by
the threshold. Upon initial examination, an issue with this TT-GMRES algorithm is that the
perturbation is applied to w, the outcome of the matrix–vector product, rather than the linear
operator involved to compute it. However, we show below that the TT rounding can also
be interpreted as a perturbation on the linear operator, which partially justifies the proposed
heuristic. In Algorithm 3, during step 4, the computation w = TT-round(Avk, δ) can be
written as the application of an inexact version of the operator applied to vk, that is,

w = Avk + ∆w = (A + Ek)vk,
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where ∆w is a tensor whose norm is bounded by ‖∆w‖ ≤ δ‖Avk‖ by a property of the TT
rounding. In fact, if we think of R as the Householder reflector [4] that maps the normalized
TT vector ∆ŵ = ∆w/‖∆w‖ to vk, we do have

w = (A + Ek)vk,

where Ek = ‖∆w‖R, so that ‖Ek‖ = ‖∆w‖ ≤ δ‖Avk‖ ≤ δ‖A‖.
If a sufficiently good preconditioner is used, the linear operator seen by TT-GMRES is

such that ‖A‖ ≈ 1. This results in selecting the TT rounding threshold δk at the kth GMRES
iteration as

δk = O(‖βe1 − H̄yyk‖−1),

as originally proposed in the first paper on inexact GMRES, then known as relaxed GMRES [3].
We have shown that a variable TT rounding strategy can be viewed as an inexact matrix–

vector product in the inexact GMRES framework, but some other gaps need to be filled to
fully assess the robustness of TT-GMRES. In particular, we lack the analysis related to the
other roundings performed in Lines 9 and 13 of Algorithm 3. These missing theoretical pieces
will be the subject of future work.

4.2. GMRES in tensor format versus GMRES and block GMRES in matrix compu-
tation. This section investigates the relationship between the iterates computed by GMRES
applied on a (d+ 1)-mode tensor space to solve all the d-mode right-hand sides at once versus
GMRES applied to the individual d-mode right-hand sides individually. Specifically, the iter-
ates computed by the two approaches belong to the same Krylov space but are characterized
by a different optimality condition for the residual norm minimization. The presentation uses
classical Rn vector spaces to maintain simple notation. Using rigorous notation to describe
the underlying principle in tensor spaces would make the notation very heavy, which might
obscure the ideas.

The problem of solving a linear system AX = B, where A, X and B are matrices of
compatible dimensions such that X = [x[1], . . . , x[p]] and B = [b[1], . . . , b[p]], can be recast
by the Kronecker product in a tensor-like structure as

(Ip ⊗A)

 x[1]
...
x[p]

 =

 b[1]
...
b[p]

 .
Based on this structure of the linear operator, we can observe that the individual iterate is
x

[i]
k ∈ Kk(A, b[i]) and the residual norm associated with the global iterate is

‖rk‖ =

(
p∑
i=1

‖r[i]
k ‖

2

)1/2

,

where r[i]
k is the residual associated with the individual iterate extracted from the global iterate.

The coordinates of the individual iterates in the Krylov basis will be the same for all the
iterates, and these iterates minimize the 2-norm of the sum of the squares of the individual
square residual norms.

If GMRES is run for each right-hand side separately, the iterate at step k would also belong
to Kk(A, b[i]), but it would only minimize its own residual norm, which would consequently
be lower than the one in the tensor case.
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Another option is to use a block-GMRES algorithm defined on dmode tensors. As already
mentioned in Section 3.2, at step k, each individual residual norm is minimized over the sum
of the individual Krylov spaces. That is a dual situation in the solution of a (d + 1)-mode
computation, where each solution is sought in its own Krylov space by minimizing the sum of
the squares of all residual norms.

4.3. Backward error bounds for parametric operators. The purpose of the following
propositions is to examine the relationship between the backward error of the “all-in-one”
system solution and the extracted individual one. The equalities provided for the “all-in-one”
system are true when the tensor and the tensor operators are given in full format, but they also
hold in TT format. For further details on the “all-in-one” construction in TT format, refer
to [5, Appendix C].

The bounds that will be proven allow us to adjust the convergence threshold when solving
for multiple parameters, while ensuring a specific quality for the individual extracted solutions.
Specifically, the bound presented in equation (4.1) of Proposition 4.1 indicates that if a certain
accuracy ε is expected for the extracted individual solution in terms of the backward error
in (3.2), a more stringent convergence threshold should be used for the “all-in-one” system
solution. This threshold should be set to ε/

√
p.

PROPOSITION 4.1. Given the “all-in-one” operator A ∈ R(p×p)×(n1×n1)×···×(nd×nd)

and the right-hand side b ∈ Rp×n1×···×nd , as defined in equations (2.3) and (2.4), we
consider the “all-in-one” system

Ax = b.

Let A` ∈ R(n1×n1)×···×(nd×nd) be the tensor operator as in equation (2.5) and let b` ∈
Rn1×···×nd be a tensor such that ‖b`‖ = 1, which defines the individual linear systems

A`y` = b`,

where A` = A[`] and b` = b[`] for every ` ∈ {1, . . . , p}.
If xk represents the “all-in-one” iterate, we have

(4.1) ηb(xk)
√
p ≥ ηb`

(x
[`]
k )

for ` ∈ {1, . . . , p}.
Proof. For the sake of simplicity, we use ηb and ηb`

squared throughout the proof
and discard the subscript of the kth “all-in-one” iterate. The quantity η2

b`
(x[`]) is explicitly

expressed as

η2
b`

(x[`]) =

∥∥A`x
[`] − b`

∥∥2

‖b`‖2
,

while η2
b(x) is written as

(4.2) η2
b(x) =

‖Ax− b‖2

‖b‖2
.

Owing to the diagonal structure of A and the definition of the Frobenius norm, equation (4.2)
can be simplified to

η2
b(x) =

∑n
`=1

∥∥(Ax− b)[`]
∥∥2∑p

k=1

∥∥b[k]
∥∥2 =

∑n
`=1

∥∥A`x
[`] − b`

∥∥2∑p
k=1‖bk‖

2 =

∑p
`=1 η

2
b`

(x[`])

p
,
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since ‖b‖2 =
∑n
k=1 ‖bk‖2 = p. Taking the square root of both sides of this equation yields

the desired result.
For the backward error based on perturbation of both the linear operator and the right-hand

sides, defined by equation (3.1), a similar result can be derived.
PROPOSITION 4.2. Based on the hypothesis and notation of Proposition 4.1 for ηA,b(x)

and ηA`,b`
(x[`]) associated with the linear systems Ax = b and A`y` = b`, respectively,

for every ` ∈ {1, . . . , p}, then we have

(4.3) ηA,b(xk) ρ`(xk) ≥ ηA`,b`
(x

[`]
k ) where ρ`(xk) =

‖A‖2‖xk‖+
√
p∥∥∥A`x

[`]
k

∥∥∥+ 1
,

with xk being the kth “all-in-one” iterate and x
[`]
k being its `th slice with respect to mode 1.

Proof. The subscript of the kth “all-in-one” iterate is dropped for simplicity. The backward
error ηA,b(x) is explicitly written as

ηA,b(x) =
‖Ax− b‖

‖A‖2‖x‖+‖b‖
.

Multiplying the previous equation by ηb(x) yields
(4.4)

ηA,b(x) =
‖Ax− b‖

‖A‖2‖x‖+‖b‖
ηb(x)

ηb(x)
=

‖b‖
‖A‖2‖x‖+‖b‖

ηb(x) =

√
p

‖A‖2‖x‖+
√
p
ηb(x)

according to the definition of ηb(x), and‖b‖ =
√
p. Similarly, ηA`,b`

(x[`]) is expressed in
terms of ηb`

(x[`]) as

(4.5) ηA`,b`
(x[`]) =

‖b`‖
‖A`‖2

∥∥x[`]
∥∥+‖b`‖

ηb`
(x[`]) =

1

‖A`‖2
∥∥x[`]

∥∥+ 1
ηb`

(x[`])

since‖b`‖ = 1. By multiplying each side of equation (4.4) by (‖A‖2‖x‖+
√
p ), it follows

that

(‖A‖2‖x‖+
√
p )ηA,b = ηb

√
p.

Owing to the result of Proposition 4.1, we have
(4.6)

(‖A‖2‖x‖+
√
p )ηA,b(x) = ηb(x)

√
p ≥ ηb`

(x[`]) = (‖A`‖2
∥∥∥x[`]

∥∥∥+ 1 )ηA`,b`
(x[`])

from equation (4.5). Dividing both sides of equation (4.6) by‖A`‖2
∥∥x[`]

∥∥+ 1, we obtain

‖A‖2‖x‖+
√
p∥∥A`x[`]

∥∥+ 1
ηA,b(x) ≥ ηA`,b`

(x[`])

because‖A`‖2
∥∥x[`]

∥∥ ≥∥∥A`x
[`]
∥∥ according to the definition of the L2 norm.

The calculation of ρ`(xk) in equation (4.3) requires a little extra cost.
COROLLARY 4.3. Let {xk}k∈N be a sequence of iterative solutions and ν a real value. If

there exists a k∗` ∈ N such that | ‖A`x
[`]
k ‖ − 1| ≤ ν for every k ≥ k∗` , then

(4.7) ηA,b(xk) ρ∗(xk) ≥ ηA`,b`
(x

[`]
k ) where ρ∗(xk) =

‖A‖2‖xk‖+
√
p

2− ν
for every ` ∈ {1, . . . , p} and for every k ∈ N such that k ≥ k∗∗, where k∗∗ = max k∗` .

This corollary provides a bound depending only on the “all-in-one” iterative solution, and
it holds true for all the d-dimensional problems.
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4.4. Backward error bounds for parametric right-hand sides. If the initial guess for
x0 ∈ Rp×n1×···×nd is the null tensor and b is defined as in (2.4), then at the kth iteration
TT-GMRES minimizes with respect to xk the norm of the residual rk = Axk − b on the
space

Kk(A,b) = span{b,Ab,A2b, . . . ,Ak−1b}.

In other words, we seek a tensor xk ∈ Kk(A,b) such that

xk = argmin
x∈Kk(A,b)

‖Ax− b‖ .

The Frobenius norm of rk = Axk − b, due to the diagonal structure of A defined by
(2.7), is naturally written as follows:

(4.8) ‖rk‖2 =

p∑
`=1

‖b` −A0x
[`]
k ‖

2.

PROPOSITION 4.4. Given the “all-in-one” operator A ∈ R(p×p)×(n1×n1)×···×(nd×nd)

and the right-hand side b ∈ Rp×n1×···×nd , as defined in equations (2.7) and (2.4), we
consider the “all-in-one” system

Ax = b.

Let b` ∈ Rn1×···×nd be a tensor such that ‖b`‖ = 1, which defines the individual linear
systems

A0y` = b`,

where b` = b[`] for every ` ∈ {1, . . . , p}.
If xk represents the “all-in-one” iterate, we have

ηb(xk)
√
p ≥ ηb`

(x
[`]
k )

for ` ∈ {1, . . . , p}.
Proof. The proof is based on equation (4.8) using similar arguments to those for the proof

of Proposition 4.1.
Similarly to Proposition 4.2, an informative bound of lower practical interest can be

derived.
PROPOSITION 4.5. Under the hypothesis of Proposition 4.2, if A = Ip ⊗ A0, then

for ηA,b(x) and ηA`,b`
(x[`]) associated with the linear systems Ax = b and A0y` = b`,

respectively, the following inequality holds:

ηA,b(xk)ψ`(xk) ≥ ηA`,b`
(x

[`]
k ) where ψ`(xk) =

‖A0‖2‖xk‖+
√
p∥∥∥A0x

[`]
k

∥∥∥+ 1

for every ` ∈ {1, . . . , p}.
Proof. This result follows from the thesis of Proposition 4.2, since‖A‖2 =‖A0‖2.
The bound of Corollary 4.3 remains valid in the multiple right-hand-side structure de-

scribed in this section. The thesis does not depend on the repetition of the same of the
operator.
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5. Numerical experiments. This section investigates the numerical behavior of the
TT-GMRES solver for linear problems with increasing dimension, as it naturally arises in
some partial differential equation (PDE) studies. The TT operators of our numerical examples
are directly constructed in TT format, thanks to their peculiarity. In this section, we present
numerical aspects related to convergence of the algorithm and the computational cost, with a
focus on memory growth and memory savings. All experiments were conducted using Python
3.6.9 and the tensor toolbox ttpy 1.2.0 [23].

The problem we will address involves Laplace-like operators. A Laplace-like tensor
operator, A ∈ Rn1×m1×···×nd×md , is the sum of operators written as

A = M1 ⊗R2 ⊗R3 ⊗ · · · ⊗Rd−2 ⊗Rd−1 ⊗Rd
+ L1 ⊗M2 ⊗R3 ⊗ · · · ⊗Rd−2 ⊗Rd−1 ⊗Rd
+ · · ·+ L1 ⊗ L2 ⊗ L3 ⊗ · · · ⊗ Ld−2 ⊗Md−1 ⊗Rd
+ L1 ⊗ L2 ⊗ L3 ⊗ · · · ⊗ Ld−2 ⊗ Ld−1 ⊗Md,

where Lk,Mk, Rk ∈ Rnk×mk for every k ∈ {1, . . . , d}. These linear operators are expressed
in TT format with TT rank 2, that is,

A =
[
L1 M1

]
⊗
[
L2 M2

0 R2

]
⊗ · · · ⊗

[
Ld−1 Md−1

0 Rd−1

]
⊗
[
Md

Rd

]
,

as proven in [18, Lemma 5.1]. The expression for the discrete d-dimensional Laplacian on a
uniform grid of n points in each direction is

∆d = ∆1 ⊗ In ⊗ · · · ⊗ In + · · ·+ In ⊗ In ⊗ · · · ⊗∆1,

where In is the identity matrix of size n, and ∆1 ∈ Rn×n is the discrete one-dimensional
Laplacian using the central-point finite difference scheme with discretization step h =
1/(n+ 1), that is,

∆1 =
1

h2


−2 1 0 . . . 0
1 −2 1 . . . 0
...

. . . . . . . . .
...

0 . . . 1 −2 1
0 0 . . . 1 −2

 .

The TT expression of ∆d is

(5.1) ∆d =
[
In ∆1

]
⊗
[
In ∆1

O In

]
⊗ · · · ⊗

[
In ∆1

O In

]
⊗
[
∆1

In

]
.

To efficiently solve linear systems, we use an approximation of the inverse of the discrete
Laplacian operator, M, as a preconditioner [13, 14]. This operator can be written as

(5.2) M =

q∑
k=−q

ck exp(−tk∆1)⊗ · · · ⊗ exp(−tk∆1),

where ck = ξtk, tk = exp(kξ) and ξ = π/q. The TT ranks of M will be at least 2q + 1,
based on the previously stated property of the sum of TT tensors.
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To examine the primary numerical characteristics of the TT-GMRES implementations
discussed in the previous sections, we analyze the classical convection–diffusion equation,
which is the same as that examined in [7] and is expressed as

(5.3)


−∆u+ 2y(1− x2)

∂u

∂x
− 2x(1− y2)

∂u

∂y
= 0 in Ω = [−1, 1]3,

u{y=1} = 1 and u∂Ω\{y=1} = 0 .

We set a grid of n points per mode over [−1, 1]3 and discretize the Laplacian as shown in
equation (5.1) with d = 3. The discretization of the first derivative of u with respect to mode
1, ∇x, is defined as ∇x = ∇1 ⊗ In ⊗ In. Similarly, the discrete first derivative with respect
to mode 2, ∇y, is written as ∇y = In ⊗∇1 ⊗ In, where ∇1 is the order-two central finite
difference matrix, i.e.,

∇1 =
1

2h


0 1 0 . . . 0
−1 0 1 . . . 0

...
. . . . . . . . .

...
0 . . . −1 0 1
0 0 . . . −1 0

 .

Let v : [−1, 1]3 → R2 be a function such that v(x, y, z) =
(
2y(1 − x2),−2x(1 − y2)

)
.

The components of v are discretized over the Cartesian grid set on [−1, 1]3, defining two
tensors V1,V2 ∈ R(n×n)×(n×n)×(n×n) such that V1 = diag(1− x2)⊗ diag(2y)⊗ In and
V2 = diag(−2x)⊗ diag(1− y2)⊗ In. The diffusion term D discretized is expressed as

D = V1 •∇x + V2 •∇y

= diag(1− x2)∇1 ⊗ diag(2y)⊗ In + diag(−2x)⊗ diag(1− y2)∇1 ⊗ In.
(5.4)

The operator passed to the TT-GMRES algorithm is A = −∆3 + D. The right-hand side is
represented by the TT vector b ∈ Rn×n×n and the initial guess is the zero TT vector x0.

To ensure rapid convergence, we use the right preconditioner M from equation (5.2),
as in [7], for this test example. The preconditioner TT matrix M is always computed by a
number of addends q equal to a quarter of the grid step dimension. To keep the TT rank of the
preconditioner small, we choose to round it to 10−2. The choice of the number of addends
and of the TT rounding compression are further discussed in [5, Appendix A].

When a right preconditioner is used, TT-GMRES actually solves the linear system
AMt = b. To evaluate the convergence of the right-preconditioned TT-GMRES, we display
the convergence history of ηAM,b, which is defined as

ηAM,b(tk) =
‖AMtk − b‖

‖AM‖2‖tk‖+‖b‖
,

with tk being the preconditioned approximate solution at the kth iteration. We compute
the norm of the residual, the norm of the right-hand side, and the norm of the iterative
preconditioned approximate solution. The L2-norm of the preconditioner operator AM
is computed using a sampling approximation. Let W be a set of normalized TT vectors,
randomly generated from a normal distribution. A lower bound for‖AM‖2 can be found as
the maximum norm of the image of the elements ofW through AM, i.e.,

τAM = max
w∈W

‖AMw‖ ≤‖AM‖2 .
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As a consequence, the backward error will be estimated as

ηAM,b(tk) ≤ ‖AMtk − b‖
τAM‖tk‖+‖b‖

.

In the following numerical experiments, we report on this quantity, where τAM is computed
using 10 elements ofW .

5.1. Main features and robustness properties. A link between the TT-GMRES variant
proposed in [7] and inexact TT-GMRES is established in Section 5.1.1. It is shown that a
robust stopping criterion based on the backward error with perturbation on both the linear
operator and the right-hand side is suitable for the inexact TT-GMRES algorithm. Additionally,
the backward stability of inexact TT-GMRES is experimentally investigated in Section 5.1.2.

5.1.1. Comparison of inexact GMRES and classical GMRES in TT format. This
section presents a comparison of the numerical behavior of TT-GMRES with constant TT
rounding as described in Algorithm 3 and its inexact variant introduced in [7]. In the inexact
variant, the TT rounding threshold at step 4 of Algorithm 3 is increased as ‖r̃k‖−1, where
r̃k = ‖βe1 − H̄kyk‖. The numerical behavior is evaluated through the convergence history of
the norm-wise backward error of the preconditioned system, ηAM,b(tk), as defined by (3.1).
Figure 5.1 displays the convergence history of the norm-wise backward error for the TT-
GMRES with constant TT rounding accuracy and the inexact TT-GMRES with varying TT
rounding accuracy (referred to as “inexact” in the legend of the curves). We consider an
initial rounding accuracy δ ∈ {10−3, 10−5, 10−8} and perform 50 iterations of full GMRES
(i.e., without restart). The test example is a 3D convection diffusion problem with n = 63
discretization points in each mode, with preconditioner M from equation (5.2) with q ∈
{16, 32}.
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= 1e 05
= 1e 05, inexact
= 1e 08
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FIG. 5.1. Convergence history of ηAM,b for TT-GMRES and inexact TT-GMRES applied to 3D convection
diffusion problem with n = 63.

The primary observation is that TT-GMRES and its inexact variant exhibit very similar
convergence behavior, since all convergence histories of ηAM,b overlap. Upon examining
the convergence history of ηAM,b, we observe that TT-GMRES with constant TT rounding
accuracy inherits the backward stability property of GMRES in matrix computation. Specifi-
cally, for each value of δ, the backward error ηAM,b(tk) decreases and stagnates around δ.
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If δ represents the TT rounding accuracy and tk represents the GMRES solution at iteration
k, then ηAM,b(tk) is O(δ) since δ is the dominant part of the TT rounding error that occurs
during the numerical calculation. Therefore, assuming δ ≈ ε, TT-GMRES can ensure a δ
backward stable solution.

Inexact TT-GMRES also succeeds in reducing the backward error to a value close to
δ, indicating that it might also be backward stable. The main advantage of this approach
is demonstrated in Figure 5.2a, where increasing the TT rounding threshold throughout the
iterations results in a significant decrease in the maximum TT rank of the Arnoldi basis vector
(i.e., in the memory footprint). As illustrated in Figure 5.2b, the iterative solutions obtained
from the two TT-GMRES variants have the same TT rank at each iteration. It is important
to note that the TT rank is displayed as a dashed line once the TT-GMRES variants have
reached their attainable accuracy. Finally, Figure 5.2c illustrates the evolution of δk during the
iterations and highlights the significant difference between the TT rounding accuracy initial
value and its final one.

2 4 6 8 10 12 14
iteration

0

10

20

30

40

m
ax

im
al

 T
T 

ra
nk

= 1e 03, inexact
= 1e 03
= 1e 05, inexact
= 1e 05
= 1e 08, inexact
= 1e 08

(a) Max TT rank of the last
Krylov vector.

2 4 6 8 10 12 14
iteration

2.5

5.0

7.5

10.0

12.5

15.0

17.5

m
ax

im
al

 T
T 

ra
nk

= 1e 03, inexact
= 1e 03
= 1e 05, inexact
= 1e 05
= 1e 08, inexact
= 1e 08

(b) Max TT rank of the
iterative solution.

0 2 4 6 8 10 12 14
iteration

10 7

10 5

10 3

10 1

101

103

= 1e 03, inexact
= 1e 05, inexact
= 1e 08, inexact

(c) History of the relaxed
δ values.

FIG. 5.2. Memory request of TT-GMRES and relaxed TT-GMRES applied to the 3D convection–diffusion
problem with n = 63.

In the next section, we will evaluate some other numerical properties of inexact TT-
GMRES, which are identical to those known and theorized for classical GMRES in matrix
computation.

5.1.2. Inexact TT-GMRES backward stability: an experimental illustration. As
already stated, GMRES is backward stable in matrix computation [24]. Specifically, it is
known that when the condition number of the Arnoldi basis κ(Vk) exceeds 4/3, the backward
error ηA,b is close to the machine precision of the working arithmetic. We demonstrate
numerically that this property also applies to inexact TT-GMRES. Let Vk = {v1, . . . ,vk}
be the set of TT vectors of the Arnoldi TT basis. The condition number of Vk, κ(Vk), is
computed as the condition number of the R factor of the MGS-QR factorization of Vk. Refer
to [4] for a description of the MGS-QR factorization of a set of TT vectors.

We test three different grid dimensions for the 3D convection–diffusion problem, namely
n ∈ {63, 127, 255}, with preconditioner M from equation (5.2) with q ∈ {16, 32} and a
single TT rounding threshold. The convergence history of ηAM,b is shown in Figure 5.3. The
horizontal dashed-dotted black line represents the TT rounding initial accuracy δ, and the
vertical dashed blue line indicates the iteration where κ(Vk) becomes larger than 4/3.
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Let V Tk Vk denote the Gram matrix associated with the Arnoldi basis set, Vk. The loss of
orthogonality of the Arnoldi basis, computed as ‖Ik − V Tk Vk‖, is displayed with a dashed
green curve in Figure 5.3. Similarly to the theoretical matrix computation result for GMRES,
the backward error ηAM,b of inexact TT-GMRES reaches an attainable accuracy of O(δ)
when κ(Vk) ≥ 4/3 for the three examples. This shows that ηAM,b ≤ δ is a robust stopping
criterion for inexact TT-GMRES.
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FIG. 5.3. Convergence history of ηAM,b versus loss of orthogonality for the 3D convection–diffusion problem
using δ = 10−5.

Finally, we illustrate once again the memory benefits of the inexact TT-GMRES variant
in Figure 5.4. Figure 5.4a shows the maximum TT rank of the last Krylov vector in the basis,
while Figure 5.4b shows the memory gain compared to storing the tensor in full format for the
entire Arnoldi basis. In the latter plot, for the largest example (i.e., n = 255), less than 0.03%
of the memory required for a full tensor GMRES computation is necessary when using the
inexact TT-GMRES. This illustrates that the curse of dimensionality can be overcome by such
a linear solver.
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FIG. 5.4. The 3D convection–diffusion problem using δ = 10−5.

We consider only the inexact TT-GMRES variant in the following experiments reported
in this paper, since this variant experimentally shows similar numerical behavior to the TT-
GMRES with remarkable memory advantages.
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5.2. Solution of parameter-dependent linear operators. This section focuses on four-
dimensional PDEs, namely parametric convection–diffusion. The domain of the problem
is obtained as a Cartesian product of a three-dimensional space domain and an additional
parameter space. The main idea behind this section is to solve for all discrete parameter values
simultaneously, resulting in an “all-in-one” solution. The structure of the operator allows for
numerical evaluation of the theoretical bounds stated in Section 4.3.

The parametric convection–diffusion problem is defined as
−α∆u+ 2y(1− x2)

∂u

∂x
− 2x(1− y2)

∂u

∂y
= 0 in Ω = [−1, 1]3,

u{y=1} = 1 and u∂Ω\{y=1} = 0.

If a grid of n points along each direction of Ω is defined, the final discrete operator of this
PDE is Aα = α∆3 + D, where α ∈ [1, 10] and D is defined in equation (5.4). Similarly,
the right-hand side cα ∈ Rn×n×n depends on the parameter α ∈ [1, 10] due to the boundary
conditions. To solve for multiple discrete values of α, we can tensorize ∆3 and D by a
diagonal matrix, adding a fourth dimension. This allows us to solve for all the parameter
values simultaneously using the tensor operator A ∈ R(p×p)×(n×n)×(n×n)×(n×n) such that

A = A⊗∆d + Ip ⊗D,

where A = diag(α1, . . . αp) and αi ∈ [1, 10] logarithmically distributed for i ∈ {1, . . . , p}.
The “all-in-one” problem’s right-hand side is represented by b ∈ Rp×n×n×n, where

b[`] =
1

‖cα`
‖
cα`

for ` ∈ {1, . . . , p},

using the slice notation introduced in Section 2.1. By construction,‖b‖ =
√
p, which implies

that the discrete “all-in-one” problem fits the hypothesis of Propositions 4.2 and 4.5. Note that
the “all-in-one” linear operator is constructed directly as a TT matrix from the TT matrix of
the single linear system. On the other hand, the “all-in-one” right-hand side is first constructed
as a full tensor and then converted into a TT vector.

TT-GMRES is utilized to solve the “all-in-one” linear system for n ∈ {63, 127, 255}
and p = 20. The preconditioner M, defined in equation (5.2) with value q ∈ {16, 32}, is
tensorized with the identity

(5.5) M = Ip ⊗M.

Figures 5.5a and 5.5b show the convergence history of ηAM,b and the loss of orthogonality
for n = 127 and 255. The vertical dashed blue line indicates the iteration k̃ such that κ2(Vk̃)
is larger than 4/3, where Vk is the set of the TT vectors of the basis of the Krylov space.
Figure 5.5c displays the compression ratio for the entire Krylov basis. These findings are
consistent with those presented in Section 5.1.2 and confirm the observations made in that
section. In conclusion, inexact TT-GMRES appears to be δ backward stable and enables
substantial memory savings. Hence, the larger the problem, the greater the savings.

First, we examine the tightness of the bound presented in Proposition 4.1. Figure 5.6
shows the convergence history of ηb. The ηb1

curve dominates the others during the first half
of the iterations for all values of n. In the optimal case, the difference between ηb`

and ηb
is less than one order of magnitude. Although the individual linear systems do not converge
similarly, the bound is quite tight during convergence and slightly more pessimistic once
convergence is reached. It is also noticeable that the convergence history is monotonic for the
“all-in-one” residual, as expected, but not for the individual ones.
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FIG. 5.5. Convergence history of ηAM,b versus loss of orthogonality and compression ratio for the 4D
parametric convection–diffusion problem using δ = 10−5.
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FIG. 5.6. Convergence history of the ηb bound for 4D convection–diffusion parametric operators using
δ = 10−5.

To plot the bound for ηAM,b from Proposition 4.2, we define a vector υ` ∈ Rw. The kth
component of υ` corresponds to the value of the coefficient ρ` from equation (4.3) evaluated
for the solution at the kth iteration, i.e.,

υ`(k) = ρ`(tk) for every k ∈ {1, . . . , w},

where w is the number of iterations considered. Let `m and `M be the parameter indices for
which the norm of υ` is minimal and maximal, respectively, that is,

(5.6) `m = argmin
`∈{1,...,p}

‖υ`‖ and `M = argmax
`∈{1,...,p}

‖υ`‖ .

In our specific case, these indices are equal to 1 and 14, respectively. Figure 5.7 displays
ηAM,b(tk) scaled by ρ` (see equation (4.3) from Proposition 4.2) and by ρ∗ (see equation (4.7)
from Corollary 4.3) versus ηA`M,b`

(t
[`]
k ) for ` ∈ {1, 14} and for all the values of n. The three

scaled curves overlap starting from the third iteration for all the grid dimensions, indicating
that the scaling coefficient approximation given by ρ∗ is highly accurate in this example. It
is observed that the orange curve corresponding to ηA5M,b5

and the blue one for ηA20M,b20

frequently intersect with a difference of at most one order. Furthermore, the difference between
ηA5M,b5

and ηAM,b scaled by ρ5 is less than one order of magnitude in the optimal case, and
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not larger than two in the worst case. Thus, we conclude that the bound of the “all-in-one” for
the individual solution is quite tight for this PDE. Note that no extra computation is required
to estimate ρ∗, while the norm of A`Mt

[`]
k has to be computed to obtain the value of ρ`(tk).
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FIG. 5.7. Convergence history of the ηAM,b bound for 4D convection–diffusion parametric operators using
δ = 10−5.

5.3. Solution of parameter-dependent right-hand sides. This subsection aims to
illustrate the solution of multiple convection–diffusion problems (5.3) with different right-
hand sides. The discretization of the equation (5.3) operator over a Cartesian grid of n points
per mode for the domain Ω = [0, 1]3 is denoted A0. The right-hand-side discretization defined
in Section 5.1.2 is represented by b ∈ Rn×n×n. The individual linear system is defined as

A0u` = b + e`,

where e` ∈ Rn×n×n is a realization of the normal distribution N (0, 1) for every ` ∈
{1, . . . , p}. To solve the p problems simultaneously, we define the “all-in-one” tensor linear
operator A ∈ R(p×p)×(n×n)×(n×n)×(n×n) as

A = Ip ⊗ (−∆3),

while the “all-in-one” right-hand side is c ∈ Rp×n×n×n such that

c(`, i1, i2, i3) = b(i1, i2, i3) + e`(i1, i2, i3)

for every ik ∈ {1, . . . , nk} and, ` ∈ {1, . . . , p} for k ∈ {1, . . . , 3}. The problem is solved for
n ∈ {63, 127} and p = 20. The preconditioner stated in (5.5) with q ∈ {7, 10} is used, and a
small TT rank is imposed to e`, resulting in a maximum TT rank of 11 for c.

Figure 5.8 displays results that confirm, on another example, the observations made in
Section 5.1.2 regarding the backward stability and the memory savings of inexact TT-GMRES.

Figure 5.9 illustrates the bound presented in Proposition 4.4 for ηb. Since all right-hand
sides converge simultaneously, the bound is not very tight, and the gap is mostly due to√
p. The convergence of the individual right-hand sides is monotonic, although this is not

guaranteed by any theoretical argument.
Figure 5.10 shows the bound described in Proposition 4.5, which is quite tight during

the first iterations and becomes looser towards the end, differing by more than one order
of magnitude. As in the previous section, we calculate `m and `M using equation (5.6) to
determine which curves to plot in Figure 5.10. The resulting bound, displayed in Figure 5.10,
is quite tight, differing by slightly less than one order of magnitude. As previously, the three
scaled curves overlap from the second iteration.
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FIG. 5.8. Convergence history of ηAM,b versus loss of orthogonality and compression ratio for the 4D multiple
right-hand sides convection–diffusion problem using δ = 10−5.
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FIG. 5.9. The 4D convection–diffusion problem ηb bound using δ = 10−5 and ε = 10−16.
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FIG. 5.10. The 4D multiple right-hand-sides convection–diffusion problem ηAM,b bound using δ = 10−5

and ε = 10−16.
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6. Concluding remarks. This work addresses the efficient solution of linear systems
with tensor product structure using a GMRES algorithm based on low-rank Tensor Train
representation. Focusing on mitigating the computational complexity in terms of computation
and memory requirements for high-dimensional linear systems, our contributions unfold two
key aspects. First, we establish a connection between GMRES in tensor format and its classical
matrix counterparts, elucidating the relationship with inexact GMRES theory and a heuristic
proposed for GMRES in Tensor Train format. Second, we provide backward error bounds that
relate the accuracy of the (d+ 1)-dimensional computed solution to the numerical quality of
the sequence of d-dimensional solutions extracted from it. This allows for the prescription of a
convergence threshold for the (d+ 1)-dimensional problem that ensures the desired numerical
quality of the d-dimensional solutions upon convergence.

Our results are substantiated by academic examples of different dimensions and sizes,
which demonstrate the practical applicability and theoretical foundation of our approach. We
especially focus on the demonstrated effectiveness of inexact GMRES in the Tensor Train
format. Numerically, we observe that it inherits properties established for GMRES in the matrix
case. Filling the gap completely, proving the δ backward stability of inexact GMRES in Tensor
Train format represents a direction for future research. Furthermore, the inexact TT-GMRES
algorithm still carries some intrinsic drawbacks. The use of an efficient preconditioner is
crucial to quickly reach the attainable accuracy, as the memory requirement increases with the
number of iterations. Therefore, the development of effective preconditioners for multilinear
operators remains a challenging open question.

Finally, the theoretical and numerical examples presented in this work focus on the case
of a low-rank TT operator that depends on a single parameter. The low-rank assumption
is fundamental to ensure the applicability of iterative schemes such as TT-GMRES. If the
considered low-rank operator depends linearly on multiple parameters, such as the stationary
heat equation with heat conductivity coefficient piecewise constant on several discs from [19],
the backward error bounds presented in Sections 4.3 and 4.4 can be generalized. The general-
ization to multiple parameters is straightforward for ηb, while more tedious computations are
required for ηA,b. In this framework, it is also possible to develop bounds where only certain
parameters of interest are included as variables, while the remaining parameters are kept fixed.
The study of these particular bounds could be the subject of future research.
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