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Abstract. When Gauss quadrature rules are applied, the weight function is usually assumed to be nonnegative on
the interval of integration. This paper considers recently introduced Gauss-type quadrature formulas with respect to
weight functions that change sign in the interior of the interval of integration. To economically estimate the error of
these formulas, we propose extensions based on Gauss-Kronrod, averaged Gauss, and generalized averaged Gauss
quadrature rules. Numerical examples illustrate the accuracy of the introduced error estimates.
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1. Introduction. Denote by [a, b] a finite closed real interval and by (a, b) its interior.
Let C[a, b] represent the space of real-valued continuous functions on [a, b],R[a, b] the space
of real-valued Riemann integrable functions on [a, b], and Pd (d ∈ N0) the subspace of real
polynomials of degree at most d. A quadrature rule is said to exist if all its nodes are real.

We consider an integrand f ∈ C[a, b] and a weight function ω ∈ R[a, b]. On (a, b), we
assume that ω takes the value 0 only on a set of measure zero and that it changes sign at and
only at (pairwise distinct) points

(1.1) xk ∈ (a, b), k = 1, 2, . . . ,m (m ∈ N).

Recently, the paper [17] proposed an n-point (n ∈ N) Gauss-type quadrature rule Qn for the
approximation of the integral

I(f) =

∫ b

a

f(x)ω(x)dx.

In this section, we briefly summarize the results from the paper [17].
Application of Qn requires all the points (1.1) to be known, exactly or approximately.

When the points (1.1) are obtained, we compute the values of the integrand f at those points
f(xk) = yk, k = 1, 2, . . . ,m. Then, we choose any functions

(1.2) ϕs ∈ C[a, b], s = 1, 2, . . . ,m,

such that the analytical solutions of the integrals

I(ϕs) =

∫ b

a

ϕs(x)ω(x)dx, s = 1, 2, . . . ,m,

can be (easily) found and such that for y = [y1, y2, . . . , ym]
T and

(1.3) Φ =


ϕ1(x1) ϕ2(x1) · · · ϕm(x1)
ϕ1(x2) ϕ2(x2) · · · ϕm(x2)

...
...

. . .
...

ϕ1(xm) ϕ2(xm) · · · ϕm(xm)

 ,
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there exists a solution c = [c1, c2, · · · , cm]
T of the m×m system of linear equations

(1.4) Φc = y.

Once the functions (1.2) and one solution of the system (1.4) are determined, we define
the modifier function

(1.5) g ≡
m∑
s=1

csϕs.

It holds that g ∈ C[a, b],

g(xk) = yk, k = 1, 2, . . . ,m,

and the integral

(1.6) I(g) =

∫ b

a

g(x)ω(x)dx =
m∑
s=1

cs

∫ b

a

ϕs(x)ω(x)dx

can be (easily) found.
Then, we introduce the modified integrand

(1.7) f̄ ≡ f − g

and notice that it holds

f̄(xk) = 0, k = 1, 2, . . . ,m,

and

I(f) = I(g) + I(f̄).

This means that the given integral I(f) can be represented as a sum of the integral I(g) that
does not cause a quadrature error and the integral I(f̄) with the property that the points in the
interior of the interval of integration at which the weight function changes sign are the zeros
of its integrand.

Further, we define a real polynomial

(1.8) qm(x) = ±
m∏
k=1

(x− xk), x ∈ R,

and the modified weight function

(1.9) ω̃ ≡ qmω,

where the plus or minus sign in (1.8) is chosen so that (1.9) is nonnegative on [a, b]. We
consider the n-point Gauss quadrature rule with respect to the nonnegative modified weight
function (1.9):

Ĩ(f̄) =

∫ b

a

f̄(x) ω̃(x)dx = G̃n(f̄) + R̃Gn (f̄), G̃n(f̄) =

n∑
i=1

ω̃Gi f̄(τ̃Gi ),

R̃Gn (p2n−1) = 0, p2n−1 ∈ P2n−1.

(1.10)
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To compute the nodes τ̃Gi and the weights ω̃Gi , i = 1, 2, . . . , n, of the formula (1.10), the
Golub-Welsch algorithm [7] and the discrete Stieltjes procedure proposed by Gautschi [5] can
be used.

If each node of the formula (1.10) differs from each point (1.1) at which the weight
function ω changes sign on (a, b), i.e., if it holds

τ̃Gi 6= xk, i = 1, 2, . . . , n, k = 1, 2, . . . ,m,

then the integral of the modified integrand can be approximated by the quadrature rule

I(f̄) =

∫ b

a

f̄(x)ω(x)dx = Gn(f̄) +RGn(f̄), Gn(f̄) =

n∑
i=1

ωGi f̄(τGi ),

RGn(qmp2n−1) = 0, p2n−1 ∈ P2n−1,

(1.11)

where

τGi = τ̃Gi , ωGi =
ω̃Gi

qm(τ̃Gi )
, i = 1, 2, . . . , n.

The nodes τGi , i = 1, 2, . . . , n, of the formula (1.11) are pairwise distinct and belong to the
interior of the interval of integration.

To approximate the given integral, we use the quadrature rule

I(f) =

∫ b

a

f(x)ω(x)dx = Qn(f) +RQn (f),

Qn(f) = I(g) + Gn(f̄), RQn (f) = RGn(f̄),

(1.12)

where I(g) is the integral of the modifier function, while Gn(f̄) and RGn(f̄) represent the
quadrature sum and the remainder term, respectively, of the formula (1.11), associated with
the modified integrand.

The structure of this paper is as follows. In Section 2, to estimate the error of the n-point
formula (1.12), we use (2n + 1)-point Gauss-Kronrod, averaged Gauss, and generalized
averaged Gauss quadrature rules that inherit the n nodes of formula (1.11) (all considered
error estimates are obtained by following the same pattern). Section 3 is devoted to numerical
examples. Some concluding remarks are given in Section 4.

2. Error estimates for Gauss-type quadrature formulas for variable-sign weight
functions. Suppose that the points (1.1) at which the weight function ω changes sign in
the interior of the integration interval are all determined, exactly or approximately. Also
suppose that the nodes and weights of the formula (1.11) are computed. To economically
estimate the error of the n-point quadrature rule (1.12), in this section we use (2n+ 1)-point
Gauss-Kronrod, averaged Gauss, and generalized averaged Gauss extensions that inherit the n
nodes of the formula (1.11).

2.1. Error estimates based on the Gauss-Kronrod quadrature formula. Consider the
(2n+ 1)-point Gauss-Kronrod extension of the n-point Gauss quadrature rule (1.10) for the
nonnegative modified weight function (1.9), which we assume to exist:

Ĩ(f̄) =

∫ b

a

f̄(x) ω̃(x)dx = K̃n(f̄) + R̃Kn (f̄),

K̃n(f̄) =

n∑
i=1

ω̃Ki f̄(τ̃Gi ) +

2n+1∑
j=n+1

ω̃Kj f̄(τ̃Kj ),

R̃Kn (p3n+1) = 0, p3n+1 ∈ P3n+1.

(2.1)

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

ERROR ESTIMATES FOR GAUSS QUADRATURES FOR VARIABLE-SIGN WEIGHTS 95

The formula (2.1) inherits the n nodes τ̃Gi , i = 1, 2, . . . , n, of the formula (1.10).
The nodes and weights of Gauss-Kronrod quadrature formulas can be efficiently computed

by methods described in [1, 2, 9]. For more properties and references about Gauss-Kronrod
quadrature rules, see Notaris [10].

If each node of the formula (2.1) differs from each point (1.1) at which the weight function
ω changes sign on (a, b), i.e., if it holds

τ̃Gi 6= xk, τ̃Kj 6= xk,

i = 1, 2, . . . , n, j = n+ 1, n+ 2, . . . , 2n+ 1, k = 1, 2, . . . ,m,
(2.2)

then we can propose a (2n+ 1)-point extension that inherit the n nodes τGi , i = 1, 2, . . . , n,
of the formula (1.11):

I(f̄) =

∫ b

a

f̄(x)ω(x)dx = Kn(f̄) +RKn (f̄),

Kn(f̄) =

n∑
i=1

ωKi f̄(τGi ) +

2n+1∑
j=n+1

ωKj f̄(τKj ),

RKn (qmp3n+1) = 0, p3n+1 ∈ P3n+1,

(2.3)

where

(2.4)


τGi = τ̃Gi , ωKi =

ω̃K
i

qm(τ̃G
i )
, i = 1, 2, . . . , n,

τKj = τ̃Kj , ωKj =
ω̃K

j

qm(τ̃K
j )
, j = n+ 1, n+ 2, . . . , 2n+ 1.

Indeed, by (1.8) and the assumption (2.2), it holds

(2.5)

{
qm(τ̃Gi ) 6= 0, i = 1, 2, . . . , n,

qm(τ̃Kj ) 6= 0, j = n+ 1, n+ 2, . . . , 2n+ 1,

from which it follows that ωKi , i = 1, 2, . . . , n, and ωKj , j = n + 1, n + 2, . . . , 2n + 1, are
well defined by (2.4). In view of (1.9), (2.1), (2.4), and (2.5), we obtain∫ b

a

qm(x)p3n+1(x)ω(x)dx =

∫ b

a

p3n+1(x) ω̃(x)dx

=

n∑
i=1

ω̃Ki p3n+1

(
τ̃Gi
)

+

2n+1∑
j=n+1

ω̃Kj p3n+1

(
τ̃Kj
)

=

n∑
i=1

ω̃Ki
qm
(
τ̃Gi
)qm (τ̃Gi ) p3n+1

(
τ̃Gi
)

+

2n+1∑
j=n+1

ω̃Kj

qm
(
τ̃Kj
)qm (τ̃Kj ) p3n+1

(
τ̃Kj
)

=

n∑
i=1

ωKi qm
(
τGi
)
p3n+1

(
τGi
)

+

2n+1∑
j=n+1

ωKj qm
(
τKj
)
p3n+1

(
τKj
)
,

which proves that the formula (2.3) is exact for all polynomials of the form qmp3n+1, where
qm is defined by (1.8) and p3n+1 ∈ P3n+1.

We introduce the error estimation of the formula (1.12):

(2.6) |RQn (f)| = |RGn(f̄)| = |(I − Gn)(f̄)| ≈ |(Kn − Gn)(f̄)|.
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2.2. Error estimates based on the averaged Gauss quadrature formula. There are
situations when some nodes of the Gauss-Kronrod quadrature rule are complex. This motivated
the construction of alternatives to the Gauss-Kronrod formula. One of those alternatives, which
always exists, is the averaged Gauss quadrature rule introduced by Laurie [8].

In this subsection, we consider the (2n+ 1)-point averaged Gauss extension that inherit
the n nodes τ̃Gi , i = 1, 2, . . . , n, of the n-point Gauss quadrature rule (1.10):

Ĩ(f̄) =

∫ b

a

f̄(x) ω̃(x)dx = L̃n(f̄) + R̃Ln(f̄),

L̃n(f̄) =

n∑
i=1

ω̃Li f̄(τ̃Gi ) +

2n+1∑
j=n+1

ω̃Lj f̄(τ̃Lj ),

R̃Ln(p2n+1) = 0, p2n+1 ∈ P2n+1.

As in Section 2.1, if it holds

τ̃Gi 6= xk, τ̃Lj 6= xk,

i = 1, 2, . . . , n, j = n+ 1, n+ 2, . . . , 2n+ 1, k = 1, 2, . . . ,m,

then we can propose another (2n + 1)-point extension that inherit the n nodes τGi ,
i = 1, 2, . . . , n, of the formula (1.11):

I(f̄) =

∫ b

a

f̄(x)ω(x)dx = Ln(f̄) +RLn (f̄),

Ln(f̄) =

n∑
i=1

ωLi f̄
(
τGi
)

+

2n+1∑
j=n+1

ωLj f̄
(
τLj
)
,

RLn (qmp2n+1) = 0, p2n+1 ∈ P2n+1,

where 
τGi = τ̃Gi , ωLi =

ω̃L
i

qm(τ̃G
i )
, i = 1, 2, . . . , n,

τLj = τ̃Lj , ωLj =
ω̃L

j

qm(τ̃L
j )
, j = n+ 1, n+ 2, . . . , 2n+ 1.

The error of the formula (1.12) can be also estimated by:

(2.7) |RQn (f)| = |RGn(f̄)| = |(I − Gn)(f̄)| ≈ |(Ln − Gn)(f̄)|.

2.3. Error estimates based on the generalized averaged Gauss quadrature formula.
Another alternative to the Gauss-Kronrod formula is the generalized averaged Gauss quadrature
rule introduced by Spalević [15]; see also [14, 16]. The generalized averaged Gauss formula
represents a modification of the averaged Gauss formula, it always exists, and its construction
is based on certain results on positive quadrature rules by Peherstorfer [11].

Some new results on averaged and generalized averaged Gauss quadrature rules can be
found in [12, 13]. For some recent results on the application of averaged and generalized
averaged Gauss quadrature rules to the numerical solution of integral equations, see [3, 4].
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Consider the (2n+1)-point generalized averaged Gauss extension that inherit the n nodes
τ̃Gi , i = 1, 2, . . . , n, of the n-point Gauss quadrature rule (1.10):

Ĩ(f̄) =

∫ b

a

f̄(x) ω̃(x)dx = S̃n(f̄) + R̃Sn(f̄),

S̃n(f̄) =

n∑
i=1

ω̃Si f̄
(
τ̃Gi
)

+

2n+1∑
j=n+1

ω̃Sj f̄
(
τ̃Sj
)
,

R̃Sn(p2n+2) = 0, p2n+2 ∈ P2n+2.

Again, as in Section 2.1, if it holds

τ̃Gi 6= xk, τ̃Sj 6= xk,

i = 1, 2, . . . , n, j = n+ 1, n+ 2, . . . , 2n+ 1, k = 1, 2, . . . ,m,

then we propose another (2n+1)-point extension that inherits the n nodes τGi , i = 1, 2, . . . , n,
of the formula (1.11):

I(f̄) =

∫ b

a

f̄(x)ω(x)dx = Sn(f̄) +RSn(f̄),

Sn(f̄) =

n∑
i=1

ωSi f̄
(
τGi
)

+

2n+1∑
j=n+1

ωSj f̄
(
τSj
)
,

RSn (qmp2n+2) = 0, p2n+2 ∈ P2n+2,

where 
τGi = τ̃Gi , ωSi =

ω̃S
i

qm(τ̃G
i )
, i = 1, 2, . . . , n,

τSj = τ̃Sj , ωSj =
ω̃S

j

qm(τ̃S
j )
, j = n+ 1, n+ 2, . . . , 2n+ 1.

To estimate the error of the formula (1.12), we also can use:

(2.8) |RQn (f)| = |RGn(f̄)| = |(I − Gn)(f̄)| ≈ |(Sn − Gn)(f̄)|.

3. Numerical tests. The present section describes numerical tests, which confirm the
applicability of the error estimates (2.6), (2.7), and (2.8). The OPQ suite [6] and some codes
written in MATLAB by the author of this paper are used.

EXAMPLE 3.1. Consider a simple analytically solvable integral

I(f) =

∫ 1

0

cos2(3πx) sin(3πx)dx =
2

9π
≈ 0.070735530263065,

where f(x) = cos2(3πx) is the integrand and ω(x) = sin(3πx) is the weight function. In
the interior of the integration interval (0, 1) there are exactly two points at which the weight
function ω changes sign. They are

x1 =
1

3
, x2 =

2

3
.

It follows that the polynomial (1.8) takes the form

q2(x) = (x− 1
3 )(x− 2

3 ),
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and, hence, the modified weight function (1.9) is

ω̃(x) = (x− 1
3 )(x− 2

3 ) sin(3πx).

We have

y =

[
y1

y2

]
=

[
f(x1)
f(x2)

]
=

[
1
1

]
.

First, for the functions (1.2), we propose

ϕ1(x) = ϕV,1(x) = 1, ϕ2(x) = ϕV,2(x) = x,

and compute the associated integrals:

I(ϕV,1) =

∫ 1

0

sin(3πx)dx =
2

3π
,

I(ϕV,2) =

∫ 1

0

x sin(3πx)dx =
1

3π
.

In this case, the matrix (1.3) is the Vandermonde matrix

Φ = V =

[
1 1/3
1 2/3

]
,

while the solution of the system (1.4) is

c = cV =

[
cV,1
cV,2

]
=

[
1
0

]
.

In view of (1.5), the modifier function is

g(x) = gV (x) = cV,1 + cV,2x = 1,

while for the integral (1.6) of the modifier function we obtain

I(gV ) = cV,1I(ϕV,1) + cV,2I(ϕV,2) = I(ϕV,1) ≈ 0.212206590789194.

By (1.7), the modified integrand is

f̄(x) = f̄V (x) = f(x)− gV (x) = cos2(3πx)− 1,

and it holds

I(f) = I(gV ) + I(f̄V ).

Based on (1.12), we can approximate the given integral by

(3.1) I(f) ≈ Qn(f) = QV,n(f) = I(gV ) + Gn(f̄V ).

To estimate the error of the approximation (3.1), we use (2.6), (2.7), and (2.8), i.e.,

|RQV
n (f)| ≈ |(Kn − Gn)(f̄V )|,(3.2)

|RQV
n (f)| ≈ |(Ln − Gn)(f̄V )|,(3.3)

|RQV
n (f)| ≈ |(Sn − Gn)(f̄V )|.(3.4)
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TABLE 3.1
Example 3.1: Error |RQV

n (f)| = |(I −QV,n)(f)| and error estimations |RQV
n (f)| ≈ |(Kn − Gn)(f̄V )|,

|RQV
n (f)| ≈ |(Ln − Gn)(f̄V )|, and |RQV

n (f)| ≈ |(Sn − Gn)(f̄V )|, for n = 3, 4, 5, 6, 7, 8.

n |(I −QV,n)(f)| |(Kn − Gn)(f̄V )| |(Ln − Gn)(f̄V )| |(Sn − Gn)(f̄V )|
3 2.550e-01 2.538e-01 2.667e-01 2.512e-01
4 1.204e-01 1.205e-01 1.066e-01 1.198e-01
5 1.404e-02 1.404e-02 1.581e-02 1.418e-02
6 3.175e-03 3.175e-03 2.979e-03 3.168e-03
7 2.568e-04 2.568e-04 2.607e-04 2.571e-04
8 2.037e-05 — 2.067e-05 2.037e-05

Table 3.1 reports the exact error |RQV
n (f)| = |(I − QV,n)(f)| and the error esti-

mates (3.2), (3.3), and (3.4), for n = 3, 4, 5, 6, 7, 8. For n = 8, it turns out that the Gauss-
Kronrod quadrature rule (2.1) does not exist. It seems that all three error estimates give results
similar to the exact error.

Now, for the functions (1.2), let us propose

ϕ1(x) = ϕΦ,1(x) = ex, ϕ2(x) = ϕΦ,2(x) = e2x.

The associated integrals are:

I(ϕΦ,1) =

∫ 1

0

ex sin(3πx)dx =
3π(e+ 1)

9π2 + 1
,

I(ϕΦ,2) =

∫ 1

0

e2x sin(3πx)dx =
3π(e2 + 1)

9π2 + 4
.

In this case, the matrix (1.3) is

Φ =

[
e1/3 e2/3

e2/3 e4/3

]
≈
[
1.395612425086090 1.947734041054676
1.947734041054676 3.793667894683177

]
.

As a solution of the system (1.4), we obtain

c = cΦ =

[
cΦ,1
cΦ,2

]
≈
[

1.229948429606381
−0.367879441171442

]
.

By (1.5), the modifier function is

g(x) = gΦ(x) = cΦ,1e
x + cΦ,2e

2x,

and we can compute the integral (1.6) of the modifier function:

I(gΦ) = cΦ,1I(ϕΦ,1) + cΦ,2I(ϕΦ,2) ≈ 0.166498072020147.

In view of (1.7), the modified integrand is

f̄(x) = f̄Φ(x) = f(x)− gΦ(x) = cos2(3πx)− (cΦ,1e
x + cΦ,2e

2x),

and it holds that

I(f) = I(gΦ) + I(f̄Φ).
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TABLE 3.2
Example 3.1: Error |RQΦ

n (f)| = |(I −QΦ,n)(f)| and error estimations |RQΦ
n (f)| ≈ |(Kn − Gn)(f̄Φ)|,

|RQΦ
n (f)| ≈ |(Ln − Gn)(f̄Φ)|, and |RQΦ

n (f)| ≈ |(Sn − Gn)(f̄Φ)|, for n = 3, 4, 5, 6, 7, 8.

n |(I −QΦ,n)(f)| |(Kn − Gn)(f̄Φ)| |(Ln − Gn)(f̄Φ)| |(Sn − Gn)(f̄Φ)|
3 2.550e-01 2.538e-01 2.667e-01 2.512e-01
4 1.204e-01 1.205e-01 1.066e-01 1.198e-01
5 1.404e-02 1.404e-02 1.581e-02 1.418e-02
6 3.175e-03 3.175e-03 2.979e-03 3.168e-03
7 2.568e-04 2.568e-04 2.607e-04 2.571e-04
8 2.037e-05 — 2.067e-05 2.037e-05

Based on (1.12), the given integral also can be approximated by

(3.5) I(f) ≈ Qn(f) = QΦ,n(f) = I(gΦ) + Gn(f̄Φ).

Again, we use (2.6), (2.7), and (2.8) to estimate the error of the approximation (3.5), i.e.,

|RQΦ
n (f)| ≈ |(Kn − Gn)(f̄Φ)|,(3.6)

|RQΦ
n (f)| ≈ |(Ln − Gn)(f̄Φ)|,(3.7)

|RQΦ
n (f)| ≈ |(Sn − Gn)(f̄Φ)|.(3.8)

The exact error |RQΦ
n (f)| = |(I −QΦ,n)(f)| and the error estimations (3.6), (3.7), and (3.8),

for n = 3, 4, 5, 6, 7, 8, are shown in Table 3.2 (for n = 8, the Gauss-Kronrod quadrature
rule (2.1) does not exist). Notice that the obtained results presented in Table 3.1 and Table 3.2
are practically the same.

EXAMPLE 3.2. In this example, we consider the integral

I(f) =

∫ 1

−1

ex
2

(ex − 2 cosx)dx,

where the integrand is f(x) = ex
2

and the weight function is ω(x) = ex − 2 cosx. There
is exactly one point in the interior of the interval of integration (−1, 1) at which the weight
function ω changes sign, and the approximate value of that point with precision 0.5 · 10−15 is

x1 ≈ 0.539785160809281.

The polynomial (1.8) and the modified weight function (1.9) are, respectively,

q1(x) = x− x1,

ω̃(x) = (x− x1)(ex − 2 cosx).

It holds

y = y1 = f(x1) ≈ 1.338256998448261.

In (1.2) we have to choose only one function—let it be

ϕ1(x) = 1.

The analytical solution of the associated integral is

I(ϕ1) =

∫ 1

−1

(ex − 2 cosx)dx = e− 1
e − 4 sin 1 ≈ −1.015481551943983.
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TABLE 3.3
Example 3.2: Error estimations |RQ

n (f)| ≈ |(Kn − Gn)(f̄)|, |RQ
n (f)| ≈ |(Ln − Gn)(f̄)|, and |RQ

n (f)| ≈
|(Sn − Gn)(f̄)|, for n = 3, 4, 5, 6, 7, 8.

n |(Kn − Gn)(f̄)| |(Ln − Gn)(f̄)| |(Sn − Gn)(f̄)|
3 8.475e-05 7.852e-05 7.649e-05
4 1.121e-06 1.718e-06 1.841e-06
5 3.328e-07 3.665e-07 3.536e-07
6 3.388e-09 3.403e-09 3.399e-09
7 — 1.267e-10 1.298e-10
8 4.241e-12 4.580e-12 4.496e-12

The matrix (1.3) is

Φ = 1,

and for the solution of the system (1.4), we obtain

c = c1 = y1 ≈ 1.338256998448261.

From (1.5) it follows that the modifier function is

g(x) = c1,

while the integral (1.6) of the modifier function is

I(g) = c1I(ϕ1) ≈ −1.358975293684137.

From (1.7) it follows that the modified integrand is

f̄(x) = f(x)− g(x) = ex
2

− c1,

and it holds

I(f) = I(g) + I(f̄).

In view of (1.12), the considered integral can be approximated by

(3.9) I(f) ≈ Qn(f) = I(g) + Gn(f̄).

Similarly to the previous example, to estimate the error of approximation (3.9), we use (2.6),
(2.7), and (2.8). The error estimations |RQn (f)| ≈ |(Kn−Gn)(f̄)|, |RQn (f)| ≈ |(Ln−Gn)(f̄)|,
and |RQn (f)| ≈ |(Sn − Gn)(f̄)|, for n = 3, 4, 5, 6, 7, 8 are shown in Table 3.3. For n = 7, the
Gauss-Kronrod quadrature rule (2.1) does not exist. We notice that all three error estimates
give similar results.

EXAMPLE 3.3. Let us now consider the integral

I(f) =

∫ 1

0

√
cos3 x+ x

x2 + 0.1 +
√
ex

(ln(x+ 0.6)− sin(11x)) dx,

where

f(x) =

√
cos3 x+ x

x2 + 0.1 +
√
ex
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is the integrand and ω(x) = ln(x + 0.6) − sin(11x) is the weight function. This integral
was also considered in numerical experiments in [17]. There are exactly three points in the
interior of the integration interval (0, 1) at which the weight function ω changes sign, and the
approximate values of those points with precision 0.5 · 10−15 are

x1 ≈ 0.295639485449891, x2 ≈ 0.586848729278417, x3 ≈ 0.823957465020420.

The polynomial (1.8) is

q3(x) = (x− x1)(x− x2)(x− x3),

while the modified weight function (1.9) is

ω̃(x) = (x− x1)(x− x2)(x− x3) (ln(x+ 0.6)− sin(11x)) .

We compute

y =

y1

y2

y3

 =

f(x1)
f(x2)
f(x3)

 ≈
0.803554196799477

0.604337959998847
0.465989151379413

 .
In (1.2) let us choose

ϕ1(x) = 1, ϕ2(x) = x, ϕ3(x) = x2.

The analytical solutions of the associated integrals are

I(ϕ1) =

∫ 1

0

(ln(x+ 0.6)− sin(11x))dx

=
88 ln

(
8
5

)
− 33 ln

(
3
5

)
+ 5 cos(11)− 60

55
,

≈ −0.032005573675588,

I(ϕ2) =

∫ 1

0

x (ln(x+ 0.6)− sin(11x))dx

=
6050 ln

(
8
5

)
+ 2178 ln

(
3
8

)
− 100 sin(11) + 1100 cos(11) + 605

12100
,

≈ 0.117119267133809,

I(ϕ3) =

∫ 1

0

x2 (ln(x+ 0.6)− sin(11x))dx

=
998250 ln

(
8
5

)
− 215622 ln

(
3
8

)
− 49500 sin(11) + 267750 cos(11)− 388145

2994750
≈ 0.114603550863348.

The matrix (1.3) is the Vandermonde matrix

Φ = V =

1 x1 x2
1

1 x2 x2
2

1 x3 x2
3

 ≈
1 0.295639485449891 0.087402705357076

1 0.586848729278417 0.344391431055693
1 0.823957465020420 0.678905904162876

 .
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TABLE 3.4
Example 3.3: Error estimations |RQ

n (f)| ≈ |(Kn − Gn)(f̄)|, |RQ
n (f)| ≈ |(Ln − Gn)(f̄)|, and |RQ

n (f)| ≈
|(Sn − Gn)(f̄)|, for n = 3, 4, 5, 6, 7, 8.

n |(Kn − Gn)(f̄)| |(Ln − Gn)(f̄)| |(Sn − Gn)(f̄)|
3 — 8.120e-07 8.163e-07
4 2.921e-08 2.852e-08 2.916e-08
5 — 1.762e-09 1.756e-09
6 2.616e-11 2.849e-11 2.620e-11
7 — 2.409e-12 2.355e-12
8 — 9.609e-14 9.569e-14

For the solution of the system (1.4), we obtain

c =

c1c2
c3

 ≈
 1.038843170436327
−0.852168640576758
0.190448621833740

 .
From (1.5), it follows that the modifier function is

g(x) = c1 + c2x+ c3x
2,

and the integral (1.6) of the modifier function is

I(g) =

3∑
s=1

csI(ϕs) ≈ −0.111228049968368.

By (1.7), the modified integrand is

f̄(x) = f(x)− g(x) =

√
cos3 x+ x

x2 + 0.1 +
√
ex
− (c1 + c2x+ c3x

2).

It holds

I(f) = I(g) + I(f̄).

In view of (1.12), the considered integral can be approximated by

(3.10) I(f) ≈ Qn(f) = I(g) + Gn(f̄).

We use (2.6), (2.7), and (2.8) to estimate the error of approximation (3.10) in this example as
well.

The error estimations |RQn (f)| ≈ |(Kn − Gn)(f̄)|, |RQn (f)| ≈ |(Ln − Gn)(f̄)|, and
|RQn (f)| ≈ |(Sn − Gn)(f̄)| are shown in Table 3.4 for n = 3, 4, 5, 6, 7, 8. The corresponding
Gauss-Kronrod extension (2.1) exists only for n = 4 and n = 6. We notice that error estimates
|(Ln − Gn)(f̄)| and |(Sn − Gn)(f̄)| give similar results, which are also similar to the results
obtained by the error estimate |(Kn − Gn)(f̄)| in cases when the Gauss-Kronrod quadrature
rule (2.1) exists.

4. Conclusion. In the present paper, error estimates for the Gauss-type quadrature
formula with respect to a variable-sign weight function, based on the Gauss-Kronrod, averaged
Gauss, and generalized averaged Gauss quadrature rules, are proposed. The precision and
applicability of these error estimates are illustrated by numerical experiments.
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