
ETNA
Kent State University and

Johann Radon Institute (RICAM)

Electronic Transactions on Numerical Analysis.
Volume 61, pp. 66–91, 2024.
Copyright © 2024, Kent State University.
ISSN 1068–9613.
DOI: 10.1553/etna_vol61s66

SOFTWARE FOR LIMITED MEMORY RESTARTED `p-`q MINIMIZATION
METHODS USING GENERALIZED KRYLOV SUBSPACES∗

ALESSANDRO BUCCINI† AND LOTHAR REICHEL‡

Dedicated to our friend Giuseppe Rodriguez on the occasion of his 60th birthday.

Abstract. This paper describes software for the solution of finite-dimensional minimization problems with two
terms, a fidelity term and a regularization term. The sum of the p-norm of the former and the q-norm of the latter is
minimized, where 0 < p, q ≤ 2. We note that the “p-norm” is not a norm when 0 < p < 1, and similarly for the
“q-norm”. This kind of minimization problems arises when solving linear discrete ill-posed problems, such as certain
problems in image restoration. They also find applications in statistics. Recently, limited-memory restarted numerical
methods that are well suited for the solution of large-scale minimization problems of this kind were described by
the authors in [Adv. Comput. Math., 49 (2023), Art. 26]. These methods are based on the application of restarted
generalized Krylov subspaces. This paper presents software for these solution methods.

Key words. `p-`q minimization, inverse problem, regression, iterative method

AMS subject classifications. 65F10, 65R32, 90C26

1. Introduction. Let A ∈ Rm×n be a large ill-conditioned matrix, whose singular
values decay to zero with increasing index number with no significant gap between the small
singular values, and let the vector bδ ∈ Rm represent available data. The data is assumed
to be contaminated by an error η ∈ Rm that may, for instance, be caused by measurement
inaccuracies. Denote the unknown error-free vector associated with bδ by b ∈ Rm. We would
like to determine the solution x† of minimal Euclidean norm of the linear system of equations

(1.1) Ax = b,

which is assumed to be consistent. Since the right-hand side b is not available, it may be
tempting to instead solve

(1.2) Ax = bδ.

However, this system might not have a solution since A may be rank-deficient. Moreover,
even if it has a solution, then this solution typically is a useless approximation of x† due to the
error η in bδ and the ill-conditioning of A.

A possible approach to circumvent this difficulty is to compute an approximation of x†

by solving an `p-`q minimization problem

(1.3) x∗ = arg min
x∈Rn

{
1

p

∥∥Ax− bδ
∥∥p
p

+
µ

q
‖Lx‖qq

}
,

where 0 < p, q ≤ 2 and ‖x‖pp =
∑n
j=1 |xj |p. With a slight abuse of notation, we will refer

to ‖x‖p as the p-norm of x for any p > 0, even though it is not a norm for p < 1. The first
term in the right-hand side of (1.3) is referred to as the fidelity term and the second term as the
regularization term. The regularization parameter µ > 0 balances the influence of these two

∗Received March 5, 2024. Accepted June 2, 2024. Published online on July 3, 2024. Recommended by
G. Rodriguez.
†Department of Mathematics and Computer Science, University of Cagliari, 09124 Cagliari, Italy

(alessandro.buccini@unica.it).
‡Department of Mathematical Sciences, Kent State University, Kent, OH 44242, USA

(reichel@math.kent.edu).

66

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
http://doi.org/10.1553/etna_vol61s66

ETNA
Kent State University and

Johann Radon Institute (RICAM)

SOFTWARE FOR `p-`q MINIMIZATION METHODS USING GKS 67

terms on the solution x∗ of (1.3). The matrix L ∈ Rs×n often is referred to as a regularization
matrix. We will assume that

(1.4) N (A) ∩N (L) = {0},

where N (M) denotes the null space of the matrix M . The matrix L in (1.3) typically easily
can be chosen so that condition (1.4) is satisfied. Violation of this condition implies that the
solution of (1.3) is not unique.

When p = q = 2, problem (1.3) is a Tikhonov regularization problem in general form,
and efficient solution methods are available; see, e.g., [3,6,8,22,27]. We will not dwell on this
situation further. Our main interest is in minimization problems (1.3) with 0 < min{p, q} ≤ 1.
The problem (1.3) is convex when min{p, q} ≥ 1 and non-smooth if either p = 1 or q = 1.
If min{p, q} < 1, then the problem is non-convex and non-smooth. The well-known fast
iterative shrinkage-thresholding algorithm (FISTA) (see [2]) can be applied to solve (1.3)
when p = 2 and q = 1; a comparison of FISTA and restarted generalized Krylov subspace
methods is presented in [14]. Applications of the minimization problems (1.3) include image
restoration [20,23], as well as the solution of other large-scale linear discrete ill-posed problems.
Also large-scale regression problems in statistics with non-convex loss and penalty [4, 26, 35],
as well as saturated and supersaturated design [5], require the solution of problems of the
form (1.3).

The choices of the parameters p and q in (1.3) are important. A Bayesian derivation of
the model (1.3) was given in [4]. Here, we provide a brief intuitive discussion on how to
choose these parameters, starting with the parameter p. Let b denote the unknown noise-free
data vector associated with the noise-contaminated vector bδ, i.e., bδ = b + η, where the
vector η represents the noise. Assume for the moment that b ∈ range(A). Then, the solution
of minimal norm, x†, of (1.1) satisfies Ax† = b. This suggests that if η represents white
Gaussian noise, then p = 2 is an appropriate choice. On the other hand, when η contains
impulse noise (defined below), one generally would like to choose a “p-norm” that weighs
outliers less than the Euclidean norm. One therefore typically chooses 0 < p ≤ 1 in this
situation.

We say that the data vector bδ = [(bδ)1, (b
δ)2, . . . , (b

δ)m]T is corrupted by impulse
noise if

(bδ)j =

{
rj with probability σ,
(b)j with probability 1− σ,

j = 1, 2, . . . ,m,

where 0 < σ < 1 and rj is the realization of a random variable with uniform distribution in
the dynamic range of the entries of b. In the presence of impulse noise in bδ , the choice p = 0
in (1.3) would appear to be appropriate, where the 0-norm of a vector counts the number of
nonvanishing entries of the vector. However, the solution of minimization problems (1.3) with
p = 0 is NP-hard and, therefore, not attractive to use in computations. It is popular to use the
1-norm instead of the 0-norm, because it secures convexity; see, e.g., [2]. However, p-norms
with 0 < p < 1 provide better approximations of the 0-norm than the 1-norm; see, e.g., [13]
for an illustration. A Bayesian justification for choosing 0 < p < 1 is presented in [4].

The value of q > 0 can be determined by using a-priori information about the sparsity of
the desired solution x∗ of (1.3); typically, the smaller the value q is, the fewer nonvanishing
entries in the solution x∗ of (1.3) are. Liu and Barber [26] provide a justification for using
q < 1 and propose the choice q = 2/3. In imaging problems, the restored image usually has
a sparse representation when expressed in terms of wavelet or framelet bases, i.e., many of
the coefficients in representations of an image in these bases vanish. In this situation, letting

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

68 A. BUCCINI AND L. REICHEL

0 < q < 1 usually provides satisfactory restorations; see, e.g., [11] for illustrations. Moreover,
the discrete total variation operator applied to the desired solution often is sparse in this kind of
application and this justifies letting 0 < q < 1; see, e.g., [23] for illustrations. Recently, Lanza
et al. [24, 25] described minimization methods for use in image restoration that adaptively
determine p and q locally. These methods are very interesting, but they are more complicated
than the methods considered in the present paper.

Finally, the regularization parameter µ in (1.3) has to be chosen. Several approaches have
been described in the literature. They are based on the discrepancy principle, cross validation,
generalized cross validation, as well as on other techniques; see [10–13, 29, 31] and references
therein for discussions and illustrations. The choice of technique depends on whether bδ is
contaminated by impulse noise, and when it is not, whether an estimate for the norm of η is
available. The determination of a regularization matrix L is discussed in [7].

It is the purpose of this paper to describe and present software for the solution of the
minimization problem (1.3). The iterative majorization-minimization (MM) methods described
by Huang et al. [20] and Lanza et al. [23] determine an approximate solution in a generalized
Krylov subspace. The dimension of the subspace is increased by one with each iteration until
a satisfactory approximate solution of (1.3) has been determined. However, when the number
of iterations is large, the memory requirement for large-scale problems may be prohibitively
large. Moreover, the computational effort required to determine an orthogonal basis for the
solution subspace may be substantial. This prompted the development of a restarted method,
which allows the use of a solution subspace of fairly small dimension, say ≤ 30, also when
many iterations are required to solve (1.3) to desired accuracy; see [14]. Restarting is achieved
by reinitializing the solution subspace periodically, similarly as in the restarted GMRES
method; see [33] for a discussion of the latter method. Computed examples in [14] show
the restarted method to determine an approximate solution of desired accuracy of (1.3) faster
than when restarting is not employed. This paper outlines the restarted method and describes
its implementation in MATLAB. A Python version of part of this software is available in
the toolbox TRIPs-Py [30]. Note that the Python implementation does not implement the
restarted strategy and some of the rules for choosing the regularization parameter that we
describe in this paper.

The organization of this paper is as follows: Section 2 briefly reviews the restarted solution
method for (1.3) and describes two algorithms. Several rules for choosing the regularization
parameter are described in Section 3. A discussion of the software that accompanies this
paper1 is provided in Section 4. Section 5 illustrates the performances of our software and
compares our approach to the one described in [35]. Concluding remarks can be found in
Section 6.

2. Majorization-minimization methods for large-scale problems. We briefly review
two iterative methods described in [20] for the solution of minimization problems of the
form (1.3). Each iteration with these methods consists of a majorization step and a minimiza-
tion step. The majorization step determines a quadratic functional that majorizes a smoothed
functional Jε related to the problem (1.3). The majorant and its gradient agree with those
of the smoothed functional at the current approximation x(k) of the sought minimum. The
minimization step minimizes the majorant; its unique minimizer is the new approximation,
x(k+1), of the solution x∗. Two approaches to determine quadratic majorants are described
in [20]. We will outline both. The discussion of this section follows [14, Sections 2–3] as well
as [20, Sections 2–5] quite closely.

1https://etna.ricam.oeaw.ac.at/volumes/2021-2030/vol61/addition/p66.php

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
https://etna.ricam.oeaw.ac.at/volumes/2021-2030/vol61/addition/p66.php

ETNA
Kent State University and

Johann Radon Institute (RICAM)

SOFTWARE FOR `p-`q MINIMIZATION METHODS USING GKS 69

Majorization step. Introduce the functional

(2.1) J (x) =
1

p

∥∥Ax− bδ
∥∥p
p

+
µ

q
‖Lx‖qq

associated with the minimization problem (1.3). We are primarily interested in the situation
when 0 < min{p, q} < 1. Then, the functional (2.1) is neither convex nor differentiable.
The construction of the quadratic majorants mentioned above requires the functional to be
continuously differentiable. We therefore introduce the smoothed functional

Jε(x) =
1

p

m∑
j=1

Φp,ε
(
(Ax− bδ)j

)
+
µ

q

s∑
j=1

Φq,ε ((Lx)j)

for some small parameter ε > 0, where

(2.2) Φs,ε(t) =

{
|t|s for s > 1,(
t2 + ε2

)s/2
for 0 < s ≤ 1,

is a differentiable function of t. We note that Jε(x) is everywhere differentiable and seek to
compute a solution x∗ε of the smoothed problem

(2.3) min
x∈Rn

Jε(x).

When min{p, q} > 1, the functional Jε(x) is strictly convex and therefore has a unique
minimum. However, when 0 < min{p, q} < 1, the functional (2.3) is not convex. Then, the
methods described seek to determine a local minimum or stationary point of Jε.

Let x(k) be an available approximate solution of the problem (2.3). The majorant referred
to as “adaptive” in [20] is determined by constructing a quadratic approximation of each
component of Jε(x) at x(k). The approximation is furnished by the adaptive quadratic tangent
majorant QA(x,x(k)) of Jε(x) at x(k). It satisfies

(2.4)


QA(x(k),x(k)) = Jε(x(k)),

∇xQA(x(k),x(k)) = ∇xJε(x(k)),

QA(x,x(k)) ≥ Jε(x) ∀x ∈ Rn,
x→ QA(x,x(k)) is a quadratic functional;

see [20] for details. Here, ∇x denotes the gradient with respect to x. Typically, each
component of Jε(x) at x(k) is approximated by a different quadratic polynomial. The
majorant is constructed by evaluating the residual vectors

v(k) = Ax(k) − bδ, u(k) = Lx(k),

which define the weight vectors

ω
A,(k)
fid =

((
v(k)

)2

+ ε21

)p/2−1

, ωA,(k)
reg =

((
u(k)

)2

+ ε21

)q/2−1

,

where 1 = [1, 1, . . . , 1]T , the superscript T denotes transposition, and all operations are
element-wise. The weight vectors determine the diagonal matrices

W
(k)
fid = diag

(
ω
A,(k)
fid

)
and W (k)

reg = diag
(
ωA,(k)

reg

)
,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

70 A. BUCCINI AND L. REICHEL

which are used in the construction of the adaptive quadratic tangent majorant of Jε at x(k),

QA(x,x(k)) =
1

2

∥∥∥∥(W (k)
fid

)1/2 (
Ax− bδ

)∥∥∥∥2

2

+
µ

2

∥∥∥∥(W (k)
reg

)1/2

Lx

∥∥∥∥2

2

+ c,

where c ∈ R is a constant that is independent of x. Let x(k+1) denote the minimizer of
QA(x,x(k)). It is the next approximate solution of (2.3). We discuss the computation of an
approximation of x(k+1) below. This approximation also will be denoted by x(k+1).

We turn to the construction of the majorant that in [20] is referred to as “fixed”. This
majorant is determined by computing quadratic polynomial majorants for each component of
Jε(x) at x(k) with the leading coefficients of all quadratic polynomials chosen to be the same.
This results in a simplification of the computations, when compared to using the adaptive
majorant. However, the minimization method obtained with fixed majorants typically requires
more iteration steps than the method based on adaptive majorants to satisfy the stopping
criterion. Overall, in our experience, the fixed approach requires less computational work,
even though more iterations are performed.

The weight vectors for the fixed majorant are given by

ω
F,(k)
fid = v(k)

1−

((
v(k)

)2
+ ε21

ε2

)p/2−1
 ,

ωF,(k)
reg = u(k)

1−

((
u(k)

)2
+ ε21

ε2

)q/2−1
 ,

(2.5)

where all operations are element-wise. We obtain the fixed quadratic tangent majorant

QF (x,x(k)) =
1

2

(∥∥Ax− bδ
∥∥2

2
− 2

〈
ω
F,(k)
fid , Ax

〉)
+
µ

2
εq−p

(
‖Lx‖22 − 2

〈
ωF,(k)

reg , Lx
〉)

+ c,

of Jε at x(k). Here, 〈·, ·〉 denotes the standard inner product and the constant c ∈ R is
independent of x. The functional QF (x,x(k)) satisfies the properties (2.4) with QA(x,x(k))
replaced by QF (x,x(k)); see [20] for details.

Minimization step. We now consider the minimization of QA and QF when the matrices
A ∈ Rm×n and L ∈ Rs×n are large. To reduce the computational effort, we seek to determine
approximate solutions in solution subspaces Vk̂ of fairly small dimension k̂. Let k be the
number of iterations. The dimension k̂ usually increases with k and, therefore, k̂ ≥ k.
However, this is not be the case when a restarting technique is used; see below. In particular,
k̂ � min{m,n, s}. Let the columns of the matrix Vk̂ ∈ Rn×k̂ form an orthonormal basis for
Vk̂. We determine approximations of the minima of QA and QF of the form

(2.6) x(k+1) = Vk̂y
(k+1),

where y(k+1) ∈ Rk̂.
When using adaptive majorants, we solve

(2.7) min
x∈V

k̂

1

2

∥∥∥∥(W (k)
fid

)1/2

(Ax− bδ)

∥∥∥∥2

2

+
µ

2

∥∥∥∥(W (k)
reg

)1/2

Lx

∥∥∥∥2

2

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

SOFTWARE FOR `p-`q MINIMIZATION METHODS USING GKS 71

for x(k+1). This is equivalent to computing the solution y(k+1) of

(2.8) min
y∈Rk̂

1

2

∥∥∥∥(W (k)
fid

)1/2

(AVk̂y − bδ)

∥∥∥∥2

2

+
µ

2

∥∥∥∥(W (k)
reg

)1/2

LVk̂y

∥∥∥∥2

2

.

Introduce the economic QR factorizations

(2.9)

(
W

(k)
fid

)1/2

AVk̂ = QARA, QA ∈ Rm×k̂, RA ∈ Rk̂×k̂,(
W (k)

reg

)1/2

LVk̂ = QLRL, QL ∈ Rs×k̂, RL ∈ Rk̂×k̂,

and compute

y(k+1) = arg min
y∈Rk̂

1

2

∥∥∥∥RAy −QTA (W (k)
fid

)1/2

bδ
∥∥∥∥2

2

+
µ

2
‖RLy‖22 .

Assume that

N
((

W
(k)
fid

)1/2

AVk̂

)
∩N

((
W

(k)
fid

)1/2

LVk̂

)
= {0}.

This is typically true in applications of interest to us. Then, the solution y(k+1) is unique,
and the approximate minimizer of QA(x,x(k)) is given by (2.6). The computation of y(k+1)

can be performed cheaply with direct methods. In our numerical implementation we use the

backslash command in Matlab that performs a QR factorization of
[
RA√
µRL

]
.

Note that the matrix QL is not used in the algorithm, and, therefore, one may employ a
Q-less factorization to reduce the computational cost and memory requirement. However, for
simplicity, we do not explore this possibility here.

To proceed, we enlarge the solution subspace Vk by including the normalized residual of
the normal equations associated with (2.7). Thus, let

r(k+1) = ATW
(k)
fid

(
Ax(k+1) − bδ

)
+ µLTW (k)

regLx
(k+1).

The columns of the matrix

Vk̂+1 =
[
Vk̂, r

(k+1)/‖r(k+1)‖2
]

furnish an orthonormal basis for the new solution subspace Vk̂+1. Note that the vector r(k+1)

is proportional to the gradient of QA(x,x(k)) restricted to Vk̂ at x = x(k+1). We refer to
the solution subspace Vk̂+1 = range(Vk̂+1) as a generalized Krylov subspace. This way to
determine a solution subspace also has been applied to solve Tikhonov regularization problems
in general form in [22]. Note that the evaluation of r(k+1) requires only one matrix-vector
product with each one of the matricesAT and LT , since one can use the QR factorizations (2.9)
and the relation (2.6) to avoid forming matrix-vector products with the matrices A and L.
Moreover, we store and update the “skinny” matrices AVk̂ and LVk̂ at each iteration to reduce
the computational cost. In our software, we let V0 = span

{
x(0)

}
. We may, for instance, let

x0 = ATbδ . Then, k̂ = k + 1.
Summarizing, each iteration of the adaptive approach requires one matrix-vector product

evaluation with each one of the matrices A, L, AT , and LT , as well as the computation of

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

72 A. BUCCINI AND L. REICHEL

economic QR factorizations of two tall and skinny matrices, whose column numbers increase
by one with each iteration. The latter computations can be quite demanding if the matrices
A and L are large and many iterations are required. The algorithm stores the three matrices
Vk̂, AVk̂, and LVk̂. To keep the storage requirement bounded independently of the number of
iterations, our software for the solution of (1.3) reinitializes the solution subspace as well as
the matrices Vk̂, AVk̂, and LVk̂ periodically. This is implemented in the algorithms described
below.

We turn to the fixed approach. The weight vectors are now given by (2.5), and we would
like to solve the minimization problem

(2.10) min
x∈V

k̂

1

2

(∥∥Ax− bδ
∥∥2

2
− 2

〈
ω
F,(k)
fid , Ax

〉)
+
η

2

(
‖Lx‖22 − 2

〈
ωF,(k)

reg , Lx
〉)

for x(k+1), where η = µεq−p. This problem can be expressed as

(2.11) min
y∈Rk̂

∥∥∥AVk̂y − bδ − ωF,(k)
fid

∥∥∥2

2
+ η

∥∥∥LVk̂y − ωF,(k)
reg

∥∥∥2

2
.

The solution y(k+1) of (2.11) yields the solution x(k+1) = Vk̂y
(k+1) of (2.10). Introduce the

economic QR factorizations

AVk̂ = QARA, QA ∈ Rm×k̂, RA ∈ Rk̂×k̂,

LVk̂ = QLRL, QL ∈ Rs×k̂, RL ∈ Rk̂×k̂.

Substituting these factorizations into (2.11) gives

y(k+1) = arg min
y∈Rk̂

∥∥∥∥∥
[
RA√
ηRL

]
y −

[
QTA

(
bδ + ω

F,(k)
fid

)
√
ηQTLω

F,(k)
reg

]∥∥∥∥∥
2

2

.

Similarly to the adaptive case, we compute y(k+1) with the backslash command, i.e., we

perform a QR factorization of
[
RA√
ηRL

]
. Having computed y(k+1) and x(k+1), we enlarge

the solution subspace by including the residual

r(k+1) = AT
(
Ax(k+1) −

(
bδ + ω

F,(k)
fid

))
+ ηLT

(
Lx(k+1) − ωF,(k)

reg

)
of the normal equations associated with (2.10). Thus, we let vnew = r(k+1)/

∥∥r(k+1)
∥∥

2
.

Then, the columns of the matrix Vk̂+1 = [Vk̂,vnew] form an orthonormal basis for the solution
subspace Vk̂+1. Note that the residual is proportional to the gradient of QF (x,x(k)) restricted
to Vk̂ at x = x(k+1).

Differently from (2.8), the least-squares problem (2.11) does not have a diagonal scaling
matrix that is updated at each iteration. We therefore can compute the QR factorizations of
AVk̂+1 and LVk̂+1 by updating the QR factorizations of AVk̂ and LVk̂, respectively. This
reduces the computational work and makes each iteration with the fixed approach cheaper
than each corresponding iteration with the adaptive approach. Updating formulas for the QR
factorization can be found in [15, 20]. We remark that the fixed approach might require more
iterations than the adaptive approach to satisfy the stopping criterion, but still be faster. For
certain “difficult” minimization problems that arise in nonlinear regression, we found the
adaptive approach to perform better; see [4]. The choice of approach should depend on the
problem to be solved.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

SOFTWARE FOR `p-`q MINIMIZATION METHODS USING GKS 73

Similarly as when using adaptive majorants, each iteration with fixed majorants requires
one matrix-vector product evaluation with each one of the matrices A, L, AT , and LT . The
memory requirements of the fixed and adaptive approaches are essentially the same and grows
linearly with the number of iterations. Therefore, when the matrix A is large, the memory
requirement may be substantial when many iterations are required to satisfy the stopping
criterion. Moreover, the arithmetic cost of computing QR factorizations in the adaptive
approach and for updating QR factorizations in the fixed approach grows quadratically and
linearly, respectively, with the number of iterations. We described in [14] how to reduce the
memory requirement and the average computational effort per iteration by reinitializing the
solution subspace periodically. We will outline this below. Computed examples reported
in [14] indicate that reinitializing the solution subspace periodically does not reduce the quality
of the computed solution.

Let Kmax denote the maximal permitted dimension of the solution subspaces and assume
that for a certain positive integer k̂, we have Vk̂ ∈ Rn×Kmax . We would like to avoid the
dimension of the solution subspace to increase further and therefore restart the MM algorithms
by letting x̃ = x(k) and x(k+1) = Ṽk̃+1y

(k+1) with Ṽk̃+1 = x̃/ ‖x̃‖2. This is implemented
by the adaptive and fixed MM algorithms of this paper; see Algorithms 1 and 2, respectively.
Convergence properties of the iterates determined by Algorithms 1 and 2 are shown in [14].

3. Choice of the regularization parameter. This section briefly reviews the regulariza-
tion parameter choice rules that are implemented in the software package. We distinguish two
kinds of rules: stationary and nonstationary ones. In the stationary rules the regularization
parameter is fixed throughout the iterations. This, usually, implies that one has to run the
selected algorithm for several choices of µ and then pick the “best” computed approximate
solution according to some criteria. In the nonstationary rules, the regularization parameter is
changed at each iteration. Usually only a single run of the method is required.

3.1. Stationary rules. We outline the two stationary rules that are implemented in our
package, Cross Validation (CV) and Modified Cross Validation (MCV) described in [12].
Note that these rules are heuristic, i.e., they may fail to determine a suitable value of the
regularization parameter for certain problems. Nevertheless, they perform well in general and
therefore are of interest; they require very little knowledge about the properties of the noise.
We refer to Kindermann [21] for discussions and analyses of some heuristic rules.

3.1.1. Cross validation. The CV method is based on the observation that a good approx-
imate solution x∗ should be able to predict missing data in bδ [34]. To determine a suitable
regularization parameter, we therefore remove some entries of bδ and the corresponding
rows of A, then solve the slightly smaller problem so-obtained using several regularization
parameters {µj}j=1,...,k, and pick the parameter for which the associated computed solution
best predicts the entries of bδ that we removed. In detail, let the set I ⊂ {1, . . . ,m} contain
the indices of the entries of bδ that we remove and denote the cardinality of I by d. Let
b̃δ ∈ Rm−d and Ã ∈ R(m−d)×n be the vector and matrix obtained by removing the rows with
indices in I . Fix a choice of k regularization parameters {µj}j=1,...,k and define

xj = arg min
x

1

p

∥∥∥Ãx− b̃δ
∥∥∥p
p

+
µj
q
‖Lx‖qq .

In actual computations, we use the algorithms of Section 2 to compute approximations of the
vectors xj . This holds for all minimization problems considered in this section.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

74 A. BUCCINI AND L. REICHEL

Algorithm 1: A-MM-GKS-Restarted

1 Let A ∈ Rm×n, bδ ∈ Rm. Let µ > 0 be a fixed parameter and L ∈ Rs×n be such
thatN (A)∩N (L) = {0}. Fix 0 < p, q ≤ 2, a maximum number of iterations K, a
maximum dimension Kmax, a smoothing parameter ε > 0, and a tolerance τ > 0.
Let x(0) be an initial guess for x†;

2 V0 = x(0)/
∥∥x(0)

∥∥
2
;

3 Compute and store A0 = AV0 and L0 = LV0;
4 v(0) = Ax(0) − bδ;
5 u(0) = Lx(0);
6 for k = 0, 1, . . . ,K do

7 ω
A,(k)
fid =

((
v(k)

)2
+ ε21

)p/2−1

;

8 ω
A,(k)
reg =

((
u(k)

)2
+ ε21

)q/2−1

;

9 W
(k)
fid = diag

(
ω
A,(k)
fid

)
;

10 W
(k)
reg = diag

(
ω
A,(k)
reg

)
;

11 Compute the QR factorizations


(
W

(k)
fid

)1/2

Ak = QARA(
W

(k)
reg

)1/2

Lk = QLRL

;

12 y(k+1) = arg miny
1
2

∥∥∥∥RAy −QTA (W (k)
fid

)1/2

bδ
∥∥∥∥2

2

+ µ
2 ‖RLy‖

2
2;

13 if k > 1 &
∥∥y(k+1) − y(k)

∥∥
2
< τ

∥∥y(k)
∥∥

2
then

14 break;
15 end
16 if k + 1 ≡ 0 mod Kmax then
17 x̃ = Vky

(k+1);
18 v(k+1) = Aky

(k+1) − bδ;
19 u(k+1) = Lky

(k+1);
20 Set Vk+1 = x̃/ ‖x̃‖2;
21 Compute and store Ak+1 = AVk+1;
22 Compute and store Lk+1 = LVk+1;
23 else
24 r(k+1) = ATW

(k)
fid

(
Aky

(k+1) − bδ
)

+ µLTW
(k)
reg

(
Lky

(k+1)
)
;

25 vnew = r(k+1)/
∥∥r(k+1)

∥∥
2
;

26 Vk+1 = [Vk,vnew];
27 Ak+1 = [Ak, Avnew];
28 Lk+1 = [Lk, Lvnew];
29 v(k+1) = Aky

(k+1) − bδ;
30 u(k+1) = Lky

(k+1);
31 end
32 end

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

SOFTWARE FOR `p-`q MINIMIZATION METHODS USING GKS 75

Algorithm 2: F-MM-GKS-Restarted

1 Let A ∈ Rm×n, bδ ∈ Rm. Let µ > 0 be a fixed parameter and L ∈ Rs×n be such
thatN (A)∩N (L) = {0}. Fix 0 < p, q ≤ 2, a maximum number of iterations K, a
maximum dimension Kmax, a smoothing parameter ε > 0, and a tolerance τ > 0.
Let x(0) be an initial guess for x†;

2 V0 = x(0)/
∥∥x(0)

∥∥
2
;

3 Compute and store A0 = AV0 and L0 = LV0;

4 Compute the QR factorizations

{
A0 = QARA

L0 = QLRL
;

5 v(0) = Ax(0) − bδ;
6 u(0) = Lx(0);
7 η = µεq−p;
8 for k = 0, 1, . . . ,K do

9 ω
F,(k)
fid = v(k)

(
1−

(
(v(k))2+ε21

ε2

)p/2−1
)

;

10 ω
F,(k)
reg = u(k)

(
1−

(
(u(k))2+ε21

ε2

)q/2−1
)

;

11 y(k+1) = arg miny

∥∥∥Aky − bδ − ωF,(k)
fid

∥∥∥2

2
+ η

∥∥∥Lky − ωF,(k)
reg

∥∥∥2

2
;

12 if k > 1 &
∥∥y(k+1) − y(k)

∥∥
2
< τ

∥∥y(k)
∥∥

2
then

13 break;
14 end
15 if k + 1 ≡ 0 mod Kmax then
16 x̃ = Vky

(k+1);
17 v(k+1) = Aky

(k+1) − bδ;
18 u(k+1) = Lky

(k+1);
19 Set Vk+1 = x̃/ ‖x̃‖2;
20 Compute and store Ak+1 = AVk+1;
21 Compute and store Lk+1 = LVk+1;

22 Compute the QR factorizations

{
Ak+1 = QARA

Lk+1 = QLRL
;

23 else
24 r(k+1) = AT

(
Aky

(k+1) − bδ − ωF,(k)
fid

)
+ ηLT

(
Lky

(k+1) − ωF,(k)
reg

)
;

25 vnew = r(k+1)/
∥∥r(k+1)

∥∥
2
;

26 Vk+1 = [Vk,vnew];
27 Ak+1 = [Ak, Avnew];
28 Lk+1 = [Lk, Lvnew];
29 v(k+1) = Aky

(k+1) − bδ;
30 u(k+1) = Lky

(k+1);
31 Update QA, QL, RA, and RL as described in [15, 20];
32 end
33 end

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

76 A. BUCCINI AND L. REICHEL

We measure how well the missing data is reconstructed by xj as

rj =

√∑
i∈I

(Axj − bδ)2
i

and choose the regularization parameter µ∗ as

µ∗ = µj∗ , with j∗ = arg min
j
rj .

To reduce statistical variability, we pick s different randomly chosen sets of indexes I(l). Each
set provides a regularization parameter µ∗l , and the final regularization parameter is determined
as

µCV =
1

s

s∑
l=1

µ∗l .

The final solution is obtained as

x∗ = arg min
x

1

p

∥∥Ax− bδ
∥∥p
p

+
µCV

q
‖Lx‖qq .

3.1.2. Modified cross validation. Even though in the CV method the choice of the 2-
norm to measure rj seems natural, this choice might not be ideal if the data bδ is contaminated
by non-Gaussian noise. To avoid relying on the noisy data bδ, a variation of the CV method
was introduced in [12]. The intuition is that a “good” reconstruction x∗ should be stable with
respect to loss of data. Therefore, we select two sets of indices, I1 and I2, and remove the
entries with indices in I1 and I2 from bδ to obtain the data vectors b̃δ1 and b̃δ2, respectively.
Similarly, we remove from A the rows with indices in I1 and I2 to obtain the matrices Ã1 and
Ã2, respectively. For a choice of parameters {µj}j=1,...,k, we compute

x
(1)
j = arg min

x

1

p

∥∥∥Ã1x− b̃δ1

∥∥∥p
p

+
µj
q
‖Lx‖qq ,

x
(2)
j = arg min

x

1

p

∥∥∥Ã2x− b̃δ2

∥∥∥p
p

+
µj
q
‖Lx‖qq ,

and denote the difference in norm between the two approximate solutions by

∆j =
∥∥∥x(1)

j − x
(2)
j

∥∥∥
2
.

We choose the regularization parameter that results in solutions that are least sensitive with
respect to the loss of data, i.e., we pick µ∗ = µj∗ with

j∗ = arg min
j

∆j .

To reduce variability, we repeat this procedure for s different pairs of index sets I(l)
1 and

I
(l)
2 to obtain s regularization parameters µ∗l with l = 1, . . . , s, and we determine the “best”

regularization parameter by

µMCV =
1

s

s∑
l=1

µ∗l .

The final approximate solution is computed by

x∗ = arg min
x

1

p

∥∥Ax− bδ
∥∥p
p

+
µMCV

q
‖Lx‖qq .

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

SOFTWARE FOR `p-`q MINIMIZATION METHODS USING GKS 77

3.2. Nonstationary rules. We review the nonstationary rules for choosing the regulariza-
tion parameter µ discussed in [10, 11, 13]. Similarly to the stationary case, the first two rules
are heuristic, and, therefore, they may fail to produce a suitable value of the regularization
parameter. However, in our experience, this is usually not the case. The third rule is based on
the discrepancy principle (DP). The convergence and regularization properties of this rule has
been shown in [11]; see below for more details.

3.2.1. Generalized cross validation. We describe the approaches proposed in [13].
Consider `2-`2 regularization

(3.1) xµ = arg min
x

1

2

∥∥Ax− bδ
∥∥2

2
+
µ

2
‖Lx‖22 .

For each µ > 0, we define the function

(3.2) G(µ) =

∥∥bδ −Axµ∥∥2

2

(trace (I −A(ATA+ µLTL)−1AT))
2 .

Generalized Cross Validation (GCV) [18] prescribes that the regularization parameter be
obtained as the minimizer of the function G, i.e.,

µGCV = arg min
µ
G(µ).

When the adaptive approach is employed, i.e., when using Algorithm 1, at each iteration an `2-
`2 functional similar to the one in (3.1) is minimized. Therefore, we can iteratively determine
the regularization parameter µ(k)

GCV by applying the GCV criterion to the problem (2.8). This
approach induces a nonstationary method that updates the regularization parameter at each
iteration.

When the noise that corrupts the data is non-Gaussian, the 2-norm of the residual bδ−Axµ
may be very large even when µ is chosen so that xµ is an accurate approximation of the desired
solution x†, because bδ may contain large outliers. To avoid this difficulty, if p < 2, then
we damp the outliers by smoothing the data vector bδ . This is done by convolving bδ with a
Gaussian filter with small variance. This modification is performed exclusively in (3.2), and
the data vector bδ is not modified anywhere else. Note that, if bδ is the vectorization of a
two-dimensional signal, e.g., an image, then we first reshape bδ into a matrix, convolve the
matrix with a two-dimensional Gaussian filter, and, finally, reshape the smoothed matrix into a
vector.

3.2.2. The residual whiteness principle. We outline the approach proposed in [10]
to select the regularization parameter based on the Residual Whiteness Principle (RWP)
introduced in [24].

When the noise that afflicts the data is white, e.g., Gaussian or Laplace, we can expect
that, if x∗ is an accurate approximation of the exact solution x†, then

Ax∗ − bδ ≈ Ax† − bδ = b− bδ.

This suggests that we choose the regularization parameter µ so that the residual Ax∗ − bδ

is as “white” as possible. To measure the whiteness of a vector, in [10, 24] the norm of the
normalized sample auto-correlation function was used. This function is defined by

β(x) =
1

‖x‖22
(x ? x) ,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

78 A. BUCCINI AND L. REICHEL

where ? denotes the convolution operator.
Let x(k)

µ be the k-th iterate of either Algorithms 1 or 2 with parameter µ. Define the
functionW(k) : R+ → R+ by

W(k)(µ) =
∥∥∥β (r(k)

µ

)∥∥∥2

2
=

∥∥∥r(k)
µ ? r

(k)
µ

∥∥∥2

2∥∥∥r(k)
µ

∥∥∥4

2

,

where r
(k)
µ = bδ −Ax(k)

µ . Imposing the whiteness of the residual error associated with x
(k)
µ

is equivalent to minimizing the functionW(k) with respect to µ.
Similarly to the computations for the GCV, we construct a nonstationary method where,

at each iteration, the regularization parameter µ(k)
RWP is computed as

µ
(k)
RWP = arg min

µ
W(k)(µ).

3.2.3. The discrepancy principle. We describe the nonstationary approach to determine
the regularization parameter discussed in [11]. Assume that a fairly accurate estimate of the
norm of the noise in the data bδ is available, namely

(3.3)
∥∥bδ − b

∥∥
2
≤ δ.

The discrepancy principle (DP) prescribes that the regularization parameter µ > 0 be chosen
as large as possible so that the corresponding computed approximate solution xµ of (1.3)
satisfies

(3.4)
∥∥Axµ − bδ

∥∥
2
≤ τδ,

where τ > 1 is a user-provided constant. When the noise is Gaussian and δ is a fairly accurate
upper bound of the left-hand side of (3.3), the parameter τ often can be chosen close to unity.

We employ this criterion to determine a nonstationary sequence of regularization parame-
ters such that, at each iteration, the DP is satisfied. Even though this approach can be used
with both type of majorants, we only consider the fixed case in this paper, i.e., Algorithm 2.

Let x(k)
µ be the k-th iterate determined by Algorithm 2 with parameter µ. We pick µ(k)

DP

such that ∥∥∥∥Ax(k)

µ
(k)
DP

− bδ
∥∥∥∥

2

= τδ.

The parameter µ(k)
DP can be determined with a few iterations of Newton’s method. The

following results are shown in [11].
PROPOSITION 3.1. Assume that A is of full column rank and let x(k)

µ
(k)
DP

, k = 1, 2, . . . , de-

note the iterates generated by Algorithm 2 equipped with the DP. Then, there is a subsequence
x

(kj)

µ
(kj)

DP

with a limit x∗, such that ∥∥Ax∗ − bδ
∥∥

2
= τδ.

THEOREM 3.2. With the assumptions and notation of Proposition 3.1, let xδ denote the
limit of the subsequence x

(kj)

µ
(kj)

DP

with noise level δ. Then,

lim sup
δ↘0

∥∥xδ − x†
∥∥

2
= 0.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

SOFTWARE FOR `p-`q MINIMIZATION METHODS USING GKS 79

4. Software. This sections describes the software that accompanies this paper2. We built
a single function that carries out `p-`q minimization. The basic method can be run as

x=lplq (A ,b) ;

Here, A represents the matrix A and can be either a matrix or a class for which a matrix-vector
product and a matrix-vector product with the transpose are defined, and b is a column vector
that contains the entries of bδ. The output x contains the approximate solution as a column
vector. Running the method in this way selects the default options for all parameters of the
algorithms; see below.

It is possible to specify various parameters by including them in a structure as additional
input variables

x=lplq (A ,b ,options) ;

Similarly as for the implementation of the IRtools toolbox [17], one obtains a structure
containing all the default values for options with the command

default_options=lplq (' d e f a u l t s ') ;

Table 4.1 describes the fields of the structure options.

TABLE 4.1:
Descriptions and accepted values for the fields of the options structure.

p Value of p for the `p norm. 0 < p ≤ 2 (default 2).

q Value of q for the `q norm. 0 < q ≤ 2 (default 0.1).

L Regularization matrix. Matrix or class for which
matrix-vector product and
matrix-vector product with the
transposition are implemented
(default I).

mu Value of the regularization pa-
rameter µ. If this field is pop-
ulated, then this parameter is
used in the iterations regardless
of other options.

µ > 0 (default []).

initialGuess Initial guess for the MM itera-
tions. If this field is populated,
then its value is used as x(0).
If this field is not populated or
empty, then x(0) = ATbδ .

x(0) ∈ Rn (default []).

Field Description of the field Accepted values

Continued on next page

2https://etna.ricam.oeaw.ac.at/volumes/2021-2030/vol61/addition/p66.php

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
https://etna.ricam.oeaw.ac.at/volumes/2021-2030/vol61/addition/p66.php

ETNA
Kent State University and

Johann Radon Institute (RICAM)

80 A. BUCCINI AND L. REICHEL

TABLE 4.1:
Descriptions and accepted values for the fields of the options structure. (Continued)

choiceRule Rule for the automatic selec-
tion of the regularization pa-
rameter. If the field mu is non-
empty, then this field is dis-
carded.

’CV’ for Cross Validation,
’MCV’ for Modified Cross Val-
idation, ’GCV’ for General-
ized Cross Validation (if this
is selected the then adaptive
majorant is used, regardless of
other options), RWP for Resid-
ual Whiteness Principle, and
DP for Discrepancy Principle
(if this is selected the fixed
majorant is used, regardless
of other options, and the field
noiseNorm must be popu-
lated) (default ’GCV’).

majorantType Type of the majorant. adaptive for the adaptive
majorant and fixed for
the fixed majorant (default
adaptive).

epsilon Value of the smoothing param-
eter ε in (2.2).

ε > 0 (default 10−3).

tol Value of the tollerance for the
stopping criterion.

tol > 0 (default 10−4).

maxIt Maximum number of itera-
tions.

Any integer larger than 1 (de-
fault 100).

noiseNorm Estimate of the norm of the
noise δ. Must be populated if
choiceRule is set to ’DP’.

δ > 0 or empty (default []).

tau Value of τ for the Discrepancy
Principle in (3.4).

τ > 1 (default 1.01).

Field Description of the field Accepted values

Continued on next page

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

SOFTWARE FOR `p-`q MINIMIZATION METHODS USING GKS 81

TABLE 4.1:
Descriptions and accepted values for the fields of the options structure. (Continued)

size Dimensions for reshaping if
GCV (with p < 2) or RWP are
used. If GCV (with p < 1)
is used and this field is pop-
ulated, then the data vector
bδ is reshaped to this size to
carry out convolution with a
Gaussian kernel to remove out-
liers. If the RWP is used and
this field is populated, then the
residual is reshaped and multi-
dimensional convolution is car-
ried out. In both cases only
two- and three-dimensional
vectors can be considered. If
empty, the problem is consid-
ered one-dimensional.

Vectors with either 2 or 3 com-
ponents such that the product
of the entries is equal to m (de-
fault []).

trainingPercent Percentage of rows of A and
elements of bδ that are not re-
moved in either CV or MCV.

Any number between 0 and
100 (excluded) (default 90).

trainingTestNum Number of times that either CV
or MCV is repeated to reduce
variability.

Any integer larger than or
equal to 1 (default 10).

trainingMu Values of µ that are tested in
either CV or MCV.

Any vector with entries
strictly greater than 0 (default
logspace(-3,2,10)).

restart Number of iterations after
which the GKS method is
restarted. If it is larger than the
maximum number of iterations
no restart is carried out.

Any integer number larger than
1 (default 101).

waitbar Flag that determines if a wait-
bar is shown.

If it is set to ’off’ no wait-
bar is shown, if is set to ’on’
a waitbar is shown (default
’off’).

xTrue Exact solution of the problem
(for testing purposes). If it
is populated in the outInfo
structure the RRE at each itera-
tion is stored.

Column vector containing the
exact solution (default []).

Field Description of the field Accepted values

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

82 A. BUCCINI AND L. REICHEL

It is possible to add an additional output argument

[x ,outInfo]=lplq (A ,b ,options) ;

The outInfo structure contains additional information on the results of the algorithm. We
describe in Table 4.2 the fields of this structure.

TABLE 4.2:
Descriptions of the fields of the outInfo structure.

iter Number of iterations carried out. If choiceRule is either CV or MCV it
contains the number of iterations of the final run, i.e., the one carried out with
all the data.

mu Value of µ used. If the choice rule is stationary this field contains a number,
if it is nonstationary it is a vector.

res Vector containing the norm of the residual
∥∥Ax(k) − bδ

∥∥
2

at each iteration.

RRE Vector containing the RRE
∥∥x(k) − x†

∥∥
2
/
∥∥x†∥∥

2
at each iteration. This field

is populated only if options.xTrue is non-empty.

resCV Generated only if choiceRule is set to CV. It contains the residual rj for
each test carried out. Each column represents a different set of removed data
and each row represents a different value of µ.

RRECV Generated only if choiceRule is set to CV. It contains a matrix with the
final RRE for each test carried out. Each column represents a different set of
removed data and each row represents a different value of µ.

diffMCV Generated only if choiceRule is set to MCV. It contains a matrix with
the ∆j for each test carried out. Each column represents a different set of
removed data and each row represents a different value of µ.

RREMCV Generated only if choiceRule is set to MCV. It contains a tensor with the
final RRE for each test carried out. The first slice is related to the first set of
indices removed I1, the second slice is related to the second set of indices
removed I2. In each slice each column represents a different set of removed
data and each row represents a different value of µ.

Field Description of the field

4.1. Supplementary software. We describe MATLAB classes that we built for the
numerical experiments in this paper.

Aclass & Aclass3. We consider some deblurring problems in the numerical experi-
ments. The space invariant deblurring problem for black and white images can be formulated
as a Fredholm integral equation of the first kind of the form

g(s, t) =

∫
R2

k(s− u, t− v)f(u, v)dudv + e(s, t),

where f is the unknown sharp image, k is a smooth kernel with compact support, often
referred to as a point spread function (PSF), e models the error (noise), and g is a blur- and
noise-contaminated image. Once discretized, the problem is of the form (1.2), where the pixels
of the blurred and sharp images are ordered in lexicographical order. The number of entries of
the solution x equals the number of pixels of the image and typically is large, and the matrix

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

SOFTWARE FOR `p-`q MINIMIZATION METHODS USING GKS 83

A has a structure that depends on the boundary conditions imposed on the problem. We have

A = T + E +R,

where T is a block Toeplitz with Toeplitz blocks matrix, E is a matrix of small norm, and
R is a matrix of small rank; see [19] for more details. Due to this structure, the product
of the matrix A with a vector x is easy to evaluate: one first reshapes the vector x into a
matrix that represents the image, then the image is padded to satisfy the desired boundary
conditions. The padded image is convolved with the PSF using periodic boundary conditions;
this corresponds to multiplying the padded vector with a block circulant with circulant blocks
matrix C. This operation can be carried out cheaply with the aid of the fft algorithm. Finally,
the added boundary is cropped and the blurred image is reordered into a vector. This procedure
is appropriate, e.g., for reflexive and anti-reflexive boundary conditions.

The matrix-vector product withAT is less trivial to carry out when imposing anti-reflexive
boundary conditions. We use the approach in [16]. The authors suggest to substitute AT with
its approximation A′, that is the blurring operator with the same boundary conditions as A, but
where the PSF has been flipped. Matrix-vector products with the matrix A′ can be computed
by simply following the steps for the matrix-vector product described above and using CT

instead of C.
We implemented A as described as a MATLAB class and denote it by Aclass. The

syntax for the creation of an object of this class is

A=Aclass (PSF ,center ,bc ,n1 ,n2) ;

The field PSF should contain the point spread function as a matrix, the vector center
contains the indices of the center of the PSF, bc is a string containing the boundary conditions;
it can be

• ’zero’ for zero Dirichlet boundary conditions;
• ’periodic’ for periodic boundary conditions;
• ’reflexive’ for reflexive boundary conditions;

and the numbers n1 and n2 are the sizes of x considered as an image.
The class can carry out matrix-vector products with x both in vector and matrix form and

will return a result of the same size as x. For this class, we implemented the matrix-vector
product operation with A and with the transpose of A, the size command, and the normest
command. This latter command returns the norm of C.

For the blurring operator for color images, we implemented the MATLAB class Aclass3.
It can be constructed by

A=Aclass3 (PSF_R ,center_R ,PSF_G ,center_G ,PSF_B ,center_B ,
Mix_channels ,bc ,n1 ,n2)

Color images are represented by a three-dimensional tensor X ∈ Rn1×n2×3. Each frontal
slice represents one of the three color channels red, green, and blue (RGB). Once ordered
lexicographically, the vector obtained x ∈ Rn, with n = n1 · n2 · 3, contains in the first
n1 · n2 entries the pixels of the red channel, in the second n1 · n2 entries the pixels of the
green channel, and in the last n1 · n2 entries the pixels of the blue channel. We construct a
blurring matrix of the form

(4.1) A = AM ⊗

AR 0 0
0 AG 0
0 0 AB

 ,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

84 A. BUCCINI AND L. REICHEL

where ⊗ denotes the Kronecker product, AR, AG, AB ∈ Rn1n2×n1n2 are blurring matrices
that blur each channel separately, and AM ∈ R3×3 mixes the channels. In particular, let

x̃ =

AR 0 0
0 AG 0
0 0 AB

x,

where x is the vectorization of a color image. One can think of x̃ as the vectorization of a color
image X̃ . Let X̃R

i,j , X̃
G
i,j , and X̃B

i,j , denote the values of the red, blue, and green, channels of
the (i, j)th pixel of X̃ . Let y = Ax be the vectorization of a color image Y . Then, the (i, j)th
pixel of Y is Y Ri,jY Gi,j

Y Bi,j

 = AM

 X̃R
i,j

X̃G
i,j

X̃B
i,j ,

 .
In Aclass3 the PSF_X and center_X, with X either R, G, or B, represent the PSF and

center of the respective channel, Mix_channel contains AM , bc contains the boundary
conditions, and n1 and n2 are n1 and n2, respectively. The boundary conditions available
and the operations implemented are the same as for Aclass.

TVclass & TVclass3. A popular choice of the regularization operator is total varia-
tion [23, 32]. Assuming that the vector x ∈ Rn×n is a vectorized version of a, for simplicity
of notation, square

√
n×
√
n matrix, we let

L1 =


−1 1

−1 1
.

−1 1
1 −1

 ∈ R
√
n×
√
n

and define

(4.2) L =

[
L1 ⊗ I
I ⊗ L1

]
∈ R2n×n,

where I ∈ R
√
n×
√
n denotes the identity matrix. Since L1 is a circulant matrix, matrix-vector

products with L and its transpose can be carried out efficiently by using the fft algorithm.
The MATLAB class TVclass implements this operator. It can be defined by

L=TVclass (n1 ,n2) ;

where n1 and n2 are the sizes of x regarded as a matrix. Similarly to the Aclass, this class
can evaluate matrix-vector products with x both in vector and matrix form, and will return a
vector or a matrix.

If x is the vectorization of a color image, then we let

Lcolor =

L L
L

 ,
where L is defined in (4.2). The class TVclass3 implements this operator and can evaluate
matrix-vector products with Lcolor and its transpose. It is called by

L=TVclass3 (n1 ,n2) ;

where n1 and n2 are the sizes of the frontal slices of x considered as a tensor.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

SOFTWARE FOR `p-`q MINIMIZATION METHODS USING GKS 85

5. Numerical experiments. We describe a few computed examples that illustrate the
performances of the software and first compare our software to the `2-`2/3 thresholding in [35]
in terms of accuracy and computational cost. Then, for each parameter choice rule, we show a
numerical example that illustrates its advantage and performance. In all our experiments we
set

• the exponent of the norm in the regularization term to q = 0.1;
• the smoothing parameter to ε = 1;
• the maximum number of iteration to 500;
• the number of iterations after which the generalized Krylov subspace is restarted to

30;
• the tolerance for the stopping criterion to 10−4.

This choice of ε has been found to be suitable for many image restoration problems. However,
for nonlinear regression problems this value of ε may be too large; see [4] for an illustration.
In all our experiments, we let L be the TV operator described above.

To measure the accuracy of the computed solution, we use the Relative Restoration Error
(RRE) defined by

RRE(x) =

∥∥x− x†
∥∥

2

‖x†‖2
,

where x† denotes the exact solution of the problem. All the experiment are carried out in
MATLAB 2021b on a laptop running Windows 10 with 16GB of RAM and an AMD Ryzen 7
5800HS CPU.

Comparison with `2-`2/3 thresholding. We consider an image deblurring problem where
the exact image is sparse. The shrinkage method proposed in [35] solves the minimization
problem

x∗ = arg min
1

2

∥∥Ax− bδ
∥∥2

2
+

3µ

2
‖x‖2/32/3 .

It is not straightforward to introduce a regularization operator in the algorithm in [35] and,
therefore, we pick a sparse solution. First we set in our method L = I , p = 2, and q = 0.1,
and subsequently we vary q between 0.1 and 1.

The exact image in Figure 5.1(a) is blurred with the nonsymmetric PSF shown in Fig-
ure 5.1(b). We crop the boundaries to simulate realistic data; see [19] for more details. Since
the method in [35] only allows p = 2, we add 3% white Gaussian noise, i.e.,

σGauss =

∥∥bδ − b
∥∥

2

‖b‖2
= 0.03.

We use the DP to select the regularization parameter in both methods. Our algorithm uses
the nonstationary approach described in Section 3.2.3. To apply the DP in [35], we run the
algorithm for 15 values of µ and we pick the largest of these values for which the computed
solution satisfies the DP. Table 5.1 reports the results so obtained. For the `2-`2/3 thresholding
method described in [35], we show results for both the DP parameter and the optimal one,
i.e., the one that minimizes the RRE. The column labeled Total time shows the total time
required to run the method for the 15 chosen values of µ, while in the Run time column, we
display the time required to carry out the iterations with this particular choice of µ. We can
observe that our method outperforms the method in [35] in terms of accuracy regardless of
how the regularization parameter is chosen. Moreover, if we consider the total time required,
the method [35] is computationally more demanding than our software. Finally, we display

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

86 A. BUCCINI AND L. REICHEL

TABLE 5.1
Comparison with `2-`2/3 thresholding: RRE obtained with both methods and CPU time. For the `2-`2/3

thresholding algorithm, we show results for both the DP and the optimal choice of µ. The column Total time reports
the total required time for all 15 considered values of µ, while the column Run time shows the CPU time for a single
run. The `p-`q minimization method is run using the Algorithm 2 with the DP and requires only a single run of the
algorithm, therefore, the last two columns coincide.

Method RRE Total time (sec.) Run time (sec.)
`2 − `2/3 thresholding (DP) 0.22230 34.96 2.40
`2 − `2/3 thresholding (Opt.) 0.13184 34.96 1.79
`p − `q minimization (q = 0.1) 0.11195 9.73 9.73

(a) (b) (c)

(d) (e) (f)

FIGURE 5.1. Comparison with `2-`2/3 thresholding: (a) exact image (222 × 222 pixels), (b) PSF (17 ×
17 pixels), (c) blurred and noisy image with 3% white Gaussian noise, (d) restored image obtained with `2-
`2/3 thresholding (DP parameter), (e) restored image with `2-`2/3 thresholding (Optimal parameter), (f) `p-`q

minimization (Algorithm 2 with the DP).

computed approximate solutions in Figure 5.1(d)–(f). Visual inspection of the reconstructions
show the `2-`2/3 thresholding algorithm to produce “shrunk” solutions that are of smaller
norm than the exact solution. This is not an issue for our method.

An important feature of the software described in this paper is that it allows the determi-
nation of the regularization parameter µ by several methods, and also makes it possible for
a user to choose the values of the parameters p and q that yield the best results. However, if
suitable values of p, q, and µ are known before the beginning of the computations, then faster
methods are available, such as the scheme presented by Zhang and Ye [35].

We now run Algorithm 2 with the DP for several values of q. Figure 5.2 reports the RREs
so-obtained, and compares them to the RRE of the approximate solution determined with
`2-`2/3 thresholding. We can observe that Algorithm 2 outperforms `2-`2/3 thresholding for
all considered values of q. Moreover, as expected, we can observe that the RRE increases with
q (except that for q = 1).

Cameraman. We illustrate the application and performance of Cross Validation (CV)
to deblurring the Cameraman image in Figure 5.3(c). This image was obtained by blur-
ring the exact image in Figure 5.3(a) with the motion PSF shown in Figure 5.3(b) and

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

SOFTWARE FOR `p-`q MINIMIZATION METHODS USING GKS 87

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

FIGURE 5.2. Comparison with `2-`2/3 thresholding: RRE obtained with Algorithm 2 using the DP compared
with the RRE obtained with `2-`2/3 thresholding with both the optimal and DP parameter. The solid blue graph
reports the RRE obtained with Algorithm 2 for several values of q, where we mark the case q = 2/3 with an asterisk,
the dotted red graph reports the RRE obtained with `2-`2/3 thresholding with the optimal parameter, and the black
dashed graph reports the RRE obtained with `2-`2/3 thresholding with the DP parameter.

adding 2% of white Gaussian noise. Since the image is general, we imposed reflexive
boundary conditions. The number of different sets with removed indices, i.e., the variable
options.trainingTestNum, is set to 3. Since the noise is Gaussian, we let p = 2. The
values of options.trainingPercent and options.trainingMu are set to their
default values. We use fixed majorants. This implies that the algorithm is run 30 times with the
“pruned” data set and once with the complete data set. Table 5.2 reports the CPU time required
for the computations and the RRE of the final result. We can see that the computational cost
is reasonable if we consider that the method is run 31 times in total. The RRE is small and
visual inspection of the computed solution shown in Figure 5.3(d) confirms that the computed
approximation is very accurate.

Saturn. We show the performance of the MCV parameter choice rule. The Saturn image
displayed in Figure 5.3(e) is blurred with the disk PSF in Figure 5.3(f), and we add 1% of white
Gaussian noise and 10% of salt-and-pepper noise. This gives the blurred and noisy image
shown in Figure 5.1(g). Similarly as in the previous examples, we use reflexive boundary
conditions. Since the noise is mixed, we let p = 0.8. Similarly to the CV case, we set the
values of options.trainingPercent and options.trainingMu to their defaults
and set options.trainingTestNum to 3. Fixed majorants are used. The algorithm is
run 60 time with the smaller data set and once with the full data. We can find the results in
Table 5.2 and the computed solution is shown in Figure 5.3(h). The computational time is
seen to be quite long, due to the large number of times that the method has to be run. But
the computed solution is very accurate! This can be confirmed by visual inspection of the
reconstruction and its RRE value. We would like to stress that the reconstruction of data
corrupted by mixed noise is a very challenging task and that our method is able to produce
very accurate solution.

Peppers. We turn to GCV. The Peppers image in Figure 5.3(i) is blurred with the Gaussian
PSF in Figure 5.3(j), and we further corrupt the image with 25% salt-and-pepper noise. We
show the blurred and noisy image in Figure 5.3(k). Since the image is generic, we impose

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

88 A. BUCCINI AND L. REICHEL

TABLE 5.2
Performances of the proposed software in terms of accuracy (RRE) and CPU time.

Example Parameter rule RRE CPU time (sec.)
Cameraman CV 0.083239 148.41
Saturn MCV 0.066066 422.85
Peppers GCV 0.083682 158.77
Tomography RWP 0.22223 3.58
Color image DP 0.073041 2.09

reflexive boundary conditions. The parameter p is set to 0.8; all other parameters in the
algorithm are set to their default values or to the values described above. Note that we populate
the field options.size to more effectively smooth bδ in the GCV to damp the outliers in
the data. Table 5.2 shows the results of the computations and the restored image is displayed
in Figure 5.3(l). The computational cost is reasonable, especially when we consider that the
image is larger (492 × 492 pixels) than in the previous examples. The computed solution
is very accurate. We recall that no additional information about the noise or the problem is
required besides A and bδ .

Tomography. We now illustrate the RWP method for determining the regularization
parameter. Consider a tomography problem built with the IRtools package [17]. The 256
pixels phantom in Figure 5.3(m) is shined on by 362 parallel rays at 90 angles equispaced
between 0 and π. This determines the sinogram in Figure 5.3(n). The problem of restoring the
image is underdetermined with A ∈ R32580×65536; see [28] for a discussion on tomography
problems. We corrupt the data with 3% white Gaussian noise and, therefore, we set p = 2.
Since the data is two-dimensional, we populate the field options.size. However, note that
the code would run with no issue also if this field is left empty. We use the default majorant,
i.e., the adaptive one. Table 5.2 shows results of the computations, and the computed solution
is displayed in Figure 5.3(o). The table shows the computational cost to be very low and
the computed solution to be quite accurate. This is confirmed by visual inspection of the
reconstruction.

Color image. We conclude this section by showing the performance of the DP method.
Consider the color image in Figure 5.3(p), and blur each channel with the same average PSF
shown in Figure 5.3(q). The matrix AM in (4.1) is

AM =
1

10

6 2 2
1 8 1
1 3 6

 .
We corrupt the data with 1% of white Gaussian noise and obtain the blurred and noisy image
of Figure 5.3(r). Since the image is generic, we impose reflexive boundary conditions. Our
method is run with p = 2, and we select DP as the parameter choice rule. This is specified
in the field options.noiseNorm. Note that, since we use the DP, the majorant used is
the fixed one. The results obtained are reported in Table 5.2 and the computed restoration is
shown in Figure 5.3(s). We can observe that the computational cost is very low and that the
computed solution is quite accurate.

6. Conclusion and extensions. This paper illustrates the performance of two generalize
Krylov subspace algorithms for the solution of large-scale minimization problems (1.3) and
discusses software that implements these algorithms. Several approaches to determine the
regularization parameter are implemented. Convergence results can be found in [14], where
also computed examples, including a comparison with FISTA [2] are presented. Several

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

SOFTWARE FOR `p-`q MINIMIZATION METHODS USING GKS 89

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o)

(p) (q) (r) (s)

FIGURE 5.3. Numerical experiments. Cameraman: (a) exact image (246× 246 pixels), (b) PSF (5× 5 pixels),
(c) blurred and noisy image with 2% of white Gaussian noise, (d) restored image. Saturn: (e) exact image (230× 230
pixels), (f) PSF (13×13 pixels), (g) blurred and noisy image with 10% salt and pepper noise and 1% white Gaussian
noise, (h) restored image. Peppers: (i) exact image (492 × 492 pixels), (j) PSF (10 × 10 pixels), (k) blurred and
noisy image with 25% salt and pepper noise, (l) restored image. Tomography: (m) exact image (256× 256 pixels),
(n) sinogram (90 angles, 362 rays) with 3% white Gaussian noise, (o) restored image. Color image: (p) exact image
(246× 246 pixels), (q) PSF (9× 9 pixels), (r) blurred and noisy image with 1% white Gaussian noise, (s) restored
image.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

90 A. BUCCINI AND L. REICHEL

extensions of this code can quite easily be developed, such as combining `p-`q minimization
with the use of median filters as described in [1], and imposing a nonnegativity constraint as
illustrated in [9].

Supplementary material. The accompanying software is available at
https://etna.ricam.oeaw.ac.at/volumes/2021-2030/vol61/addition/p66.php

in form of a compressed file entitled lplq.zip. Installation details are discussed in the file
CodePrimer.pdf as well as in the README.md file

Acknowledgments. A.B. is partially supported by the PRIN 2022 PNRR project no.
P2022PMEN2 financed by the European Union—NextGenerationEU and by the Italian Min-
istry of University and Research (MUR) and by Fondazione di Sardegna, Progetto biennale
bando 2021, “Computational Methods and Networks in Civil Engineering (COMANCHE)”.
A.B. is a member of the GNCS group of INdAM that partially supported this work with the
INdAM-GNCS 2023 Project “Tecniche numeriche per lo studio dei problemi inversi e l’analisi
delle reti complesse” (CUP_E53C22001930001).

REFERENCES

[1] M. ALOTAIBI, A. BUCCINI, AND L. REICHEL, Restoration of blurred images corrupted by impulse noise via
median filters and `p-`q minimization, in 21st International Conference on Computational Science and Its
Applications (ICCSA), IEEE Conferences Proceedings, Los Alamitos, 2021, pp. 112–122.

[2] A. BECK AND M. TEBOULLE, A fast iterative shrinkage-thresholding algorithm for linear inverse problems,
SIAM J. Imaging Sci., 2 (2009), pp. 183–202.

[3] A. BUCCINI, Regularizing preconditioners by non-stationary iterated Tikhonov with general penalty term,
Appl. Numer. Math., 116 (2017), pp. 64–81.

[4] A. BUCCINI, O. DE LA CRUZ CABRERA, M. DONATELLI, A. MARTINELLI, AND L. REICHEL, Large-scale
regression with non-convex loss and penalty, Appl. Numer. Math., 157 (2020), pp. 590–601.

[5] A. BUCCINI, O. DE LA CRUZ CABRERA, C. KOUKOUVINOS, M. MITROULI, AND L. REICHEL, Variable
selection in saturated and supersaturated designs via minimization, Commun. Statist. Simulation Comput.,
52 (2023), pp. 4326–4347.

[6] A. BUCCINI, M. DONATELLI, AND L. REICHEL, Iterated Tikhonov with a general penalty term, Numer.
Linear Algebra Appl., 24 (2017), Art. e2089 (12 pages).

[7] A. BUCCINI, G. HUANG, L. REICHEL, AND F. YIN, On the choice of regularization matrix for an `2-`q
minimization method for image restoration, Appl. Numer. Math., 164 (2021), pp. 211–221.

[8] A. BUCCINI, M. PASHA, AND L. REICHEL, Generalized singular value decomposition with iterated Tikhonov
regularization, J. Comput. Appl. Math., 373 (2020), Art. 112276 (9 pages).

[9] A. BUCCINI, M. PASHA, AND L. REICHEL, Modulus-based iterative methods for constrained `p-`q mini-
mization, Inverse Problems, 36 (2020), Art. 084001 (26 pages).

[10] A. BUCCINI, M. PRAGLIOLA, L. REICHEL, AND F. SGALLARI, A comparison of parameter choice rules for
`p-`q minimization, Ann. Univ. Ferrara Sez. VII Sci. Mat., 68 (2022), pp. 441–463.

[11] A. BUCCINI AND L. REICHEL, An `2-`q regularization method for large discrete ill-posed problems, J. Sci.
Comput., 78 (2019), pp. 1526–1549.

[12] , An `p-`q minimization method with cross-validation for the restoration of impulse noise contaminated
images, J. Comput. Appl. Math., 375 (2020), Art. 112824 (16 pages).

[13] , Generalized cross validation for `p-`q minimization, Numer. Algorithms, 88 (2021), pp. 1595–1616.
[14] , Limited memory restarted `p-`q minimization methods using generalized Krylov subspaces, Adv.

Comput. Math., 49 (2023), Art. 26 (26 pages).
[15] J. W. DANIEL, W. B. GRAGG, L. KAUFMAN, AND G. W. STEWART, Reorthogonalization and stable

algorithms for updating the Gram–Schmidt QR factorization, Math. Comput., 30 (1976), pp. 772–795.
[16] M. DONATELLI, D. MARTIN, AND L. REICHEL, Arnoldi methods for image deblurring with anti-reflective

boundary conditions, Appl. Math. Comput., 253 (2015), pp. 135–150.
[17] S. GAZZOLA, P. C. HANSEN, AND J. G. NAGY, IR Tools: a MATLAB package of iterative regularization

methods and large-scale test problems, Numer. Algorithms, 81 (2019), pp. 773–811.
[18] G. H. GOLUB, M. HEATH, AND G. WAHBA, Generalized cross-validation as a method for choosing a good

ridge parameter, Technometrics, 21 (1979), pp. 215–223.
[19] P. C. HANSEN, J. G. NAGY, AND D. P. O’LEARY, Deblurring Images: Matrices, Spectra, and Filtering,

SIAM, Philadelphia, 2006.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
https://etna.ricam.oeaw.ac.at/volumes/2021-2030/vol61/addition/p66.php

ETNA
Kent State University and

Johann Radon Institute (RICAM)

SOFTWARE FOR `p-`q MINIMIZATION METHODS USING GKS 91

[20] G. HUANG, A. LANZA, S. MORIGI, L. REICHEL, AND F. SGALLARI, Majorization-minimization generalized
Krylov subspace methods for `p-`q optimization applied to image restoration, BIT Numer. Math., 57
(2017), pp. 351–378.

[21] S. KINDERMANN, Convergence analysis of minimization-based noise level-free parameter choice rules for
linear ill-posed problems, Electron. Trans. Numer. Anal., 38 (2011), pp. 233–257.
https://etna.ricam.oeaw.ac.at/vol.38.2011/pp233-257.dir/pp233-257.pdf

[22] J. LAMPE, L. REICHEL, AND H. VOSS, Large-scale Tikhonov regularization via reduction by orthogonal
projection, Linear Algebra Appl., 436 (2012), pp. 2845–2865.

[23] A. LANZA, S. MORIGI, L. REICHEL, AND F. SGALLARI, A generalized Krylov subspace method for `p-`q
minimization, SIAM J. Sci. Comput., 37 (2015), pp. S30–S50.

[24] A. LANZA, M. PRAGLIOLA, AND F. SGALLARI, Residual whiteness principle for parameter-free image
restoration, Electron. Trans. Numer. Anal., 53 (2020), pp. 329–351.
https://etna.ricam.oeaw.ac.at/vol.53.2020/pp329-351.dir/pp329-351.pdf

[25] , Parameter-free restoration of piecewise smooth images, Electron. Trans. Numer. Anal., 59 (2023),
pp. 202–229.
https://etna.ricam.oeaw.ac.at/vol.59.2023/pp202-229.dir/pp202-229.pdf

[26] H. LIU AND R. F. BARBER, Between hard and soft thresholding: optimal iterative thresholding algorithms,
Inf. Inference, 9 (2020), pp. 899–933.

[27] T. MACH, L. REICHEL, AND M. VAN BAREL, Adaptive cross approximation for Tikhonov regularization in
general form, Numer. Algorithms, 92 (2023), pp. 815–830.

[28] F. NATTERER, The Mathematics of Computerized Tomography, SIAM, Philadelphia, 2001.
[29] Y. PARK, L. REICHEL, G. RODRIGUEZ, AND X. YU, Parameter determination for Tikhonov regularization

problems in general form, J. Comput. Appl. Math., 343 (2018), pp. 12–25.
[30] M. PASHA, S. GAZZOLA, C. SANDERFORD, AND U. O. UGWU, TRIPs-Py: Techniques for regularization of

inverse problems in Python, arXiv preprint arXiv:2402.17603, 2024.
https://arxiv.org/abs/2402.17603

[31] L. REICHEL AND G. RODRIGUEZ, Old and new parameter choice rules for discrete ill-posed problems, Numer.
Algorithms, 63 (2013), pp. 65–87.

[32] L. I. RUDIN, S. OSHER, AND E. FATEMI, Nonlinear total variation based noise removal algorithms, Phys. D,
60 (1992), pp. 259–268.

[33] Y. SAAD, Iterative Methods for Sparse Linear Systems, 2nd. ed., SIAM, Philadelphia, 2003.
[34] M. STONE, Cross-validatory choice and assessment of statistical prediction, J. R. Stat. Soc. Ser. B, 36 (1974),

pp. 111–147.
[35] Y. ZHANG AND W. YE,L2/3 regularization: Convergence of iterative thresholding algorithm, J. Vis. Commun.

Image Represen., 33 (2015), pp. 350–357.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
https://etna.ricam.oeaw.ac.at/vol.38.2011/pp233-257.dir/pp233-257.pdf
https://etna.ricam.oeaw.ac.at/vol.53.2020/pp329-351.dir/pp329-351.pdf
https://etna.ricam.oeaw.ac.at/vol.59.2023/pp202-229.dir/pp202-229.pdf
https://arxiv.org/abs/2402.17603

