
ETNA
Kent State University and

Johann Radon Institute (RICAM)

Electronic Transactions on Numerical Analysis.
Volume 61, pp. 121–136, 2024.
Copyright © 2024, Kent State University.
ISSN 1068–9613.
DOI: 10.1553/etna_vol61s121

COMPUTATION OF GAUSS-TYPE QUADRATURE RULES∗

CARLOS F. BORGES† AND LOTHAR REICHEL‡

Dedicated to Giuseppe Rodriguez on the occasion of his 60th birthday.
Abstract. Many problems in scientific computing require the evaluation of Gauss quadrature rules. It is important

to be able to estimate the quadrature error in these rules. Error estimates or error bounds often can be computed by
evaluating an additional related Gauss-type formula such as a Gauss-Radau, Gauss-Lobatto, anti-Gauss, averaged
Gauss, or optimal averaged Gauss rule. This paper presents software for both the evaluation of a single Gauss
quadrature rule and the calculation of a pair of a Gauss rule and a related Gauss-type rule. The software is based
on a divide-and-conquer method. This method is compared to both an available and a new implementation of the
Golub-Welsch algorithm, which is the classical approach to evaluate a single Gauss quadrature rule. Timings on
a laptop computer show the divide-and-conquer method to be competitive except for the computation of a single
quadrature rule with very few nodes.

Key words. quadrature, Gauss rule, Gauss-Radau rule, Gauss-Lobatto rule, averaged Gauss rule, optimal
averaged Gauss rule quadrature, divide-and-conquer method, Golub-Welsch algorithm

AMS subject classifications. 65D30, 65D32

1. Introduction. The need to approximate integrals over an interval on the real axis arises
in many applications in mathematics, science, and engineering; see, e.g., Gautschi [23] and
Golub and Meurant [27] for discussions of many applications. It is common to approximate
such integrals by a Gauss quadrature rule. This paper describes software for the computation
of Gauss-type quadrature rules associated with a fairly general real measure with support
on the real axis or part thereof. We assume that the recurrence coefficients of the three-
term recurrence relation for monic orthogonal polynomials determined by the measure are
available and discuss the efficient computation of a Gauss quadrature rule or of a pair of
quadrature rules made up of a Gauss rule and a related Gauss-type quadrature rule from the
recursion coefficients. The Gauss-type rules considered include Gauss-Radau, Gauss-Lobatto,
anti-Gauss, averaged Gauss, and optimal averaged Gauss rules. We note that for classical
measures, as well as for many other measures, the recursion coefficients of the three-term
recurrence relation of orthogonal polynomials are explicitly known; see Gautschi [23] as well
as [15, 16, 17, 18] for examples. This is also the case in many applications in linear algebra,
where the recursion coefficients are generated by the Lanczos algorithm; see [4, 11, 27, 38]
for some illustrations. In the event that the recursion coefficients are not available, we refer to
Gautschi [23, Section 2.2] for a discussion on how they can be computed from the measure
that determines the orthogonal polynomials.

The classical algorithm for computing Gauss-type quadrature rules from recursion coeffi-
cients that are associated with a fairly general measure with support on the real axis is due
to Golub and Welsch [29]; it requires O(n2) arithmetic floating point operations (flops) to
determine the nodes and weights of an n-node Gauss rule from the zeroth moment and the
first 2n− 1 recursion coefficients. We will compare software based on a divide-and-conquer
method to two implementations of the Golub-Welsch algorithm, one provided by Meurant [35]
and one based on a QR algorithm described by Gates and Gragg [21]. The implementation
provided by Gautschi [22] does not exploit the structure of the problem and demands O(n3)

∗Received May 13, 2024. Accepted August 12, 2024. Published online on October 18, 2024. Recommended by
A. Buccini.

†Department of Mathematics, Naval Postgraduate School, Monterey, CA 93943, USA (borges@nps.edu).
‡Department of Mathematical Sciences, Kent State University, Kent, OH 44242, USA

(reichel@math.kent.edu).

121

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
http://doi.org/10.1553/etna_vol61s121

ETNA
Kent State University and

Johann Radon Institute (RICAM)

122 C. F. BORGES AND L. REICHEL

flops to calculate the nodes and weights of an n-node Gauss rule. Therefore, it is not part of
our comparison.

We remark that faster schemes than the Golub-Welsch algorithm are available for the
computation of Gauss quadrature rules associated with certain classical measures. Bogaert [5],
as well as Hale and Townsend [31], describe algorithms that only demand O(n) flops to
compute the nodes and weights of n-node Gauss-Legendre and Gauss-Jacobi quadrature
rules. The latter algorithms are competitive with the Golub-Welsch algorithm with respect to
CPU-time when n is large, and they are faster than the algorithm by Glaser et al. [25], which
also requires O(n) flops and can be applied to a larger class of classical measures including
Legendre, Jacobi, Hermite, and Laguerre measures.

It often is important to estimate the quadrature error when applying an n-node Gauss rule
to determine whether the number of nodes chosen yields an approximation of an integral of
desired accuracy; a rule with too few nodes gives a too large quadrature error, while using
too many nodes results in an unnecessarily large computational burden, in particular if the
integrand is cumbersome to evaluate. Methods for estimating the quadrature error of Gauss
rules therefore have received considerable attention. Recent discussions on error estimation
can be found in, e.g., [14, 32, 37, 42]; see also the paper by Gautschi and Varga [24].

The classical approach to estimate the quadrature error of an n-node Gauss rule associated
with a fairly general measure is to evaluate a related (2n + 1)-node Gauss-Kronrod rule
and use the difference of the values of the Gauss-Kronrod and Gauss rules as an estimate
of the error in the Gauss rule. However, differently from Gauss rules, Gauss-Kronrod rules
are not guaranteed to have all nodes in the convex hull of the support of the measure that
defines the Gauss rule, in fact for some measures some nodes may be complex-valued. This
limits the applicability Gauss-Kronrod rules, because the integrand might not be defined at all
Gauss-Kronrod nodes; see Notaris [36] for a nice survey of Gauss-Kronrod rules and [1] for
some computed examples.

This shortcoming of Gauss-Kronrod rules has prompted the development of several
alternative techniques to estimate the quadrature error of Gauss rules. They include the
evaluation of pairs of an n-node Gauss and

(i) an associated (n+ 1)-node Gauss-Radau rule or an associated (n+ 1)-node Gauss-
Lobatto rule. Pairs of a Gauss rule and a suitable Gauss-Radau rule, or of a Gauss rule
and an appropriate Gauss-Lobatto rule, give upper and lower bounds for the integral
under certain conditions on the integrand. This follows from the remainder formula
for Gauss, Gauss-Radau, and Gauss-Lobatto quadrature rules; see, e.g., Golub and
Meurant [26, 27] or Gautschi [23].

(ii) an associated (n + 1)-node anti-Gauss rule. Pairs of these quadrature rules yield
upper and lower bounds for the integral if the coefficients of an expansion of the
integrand in terms of orthogonal polynomials associated with the measure converge to
zero sufficiently quickly; see [12]. A related method is described in [3]. Anti-Gauss
rules were introduced by Laurie [33]. A recent analysis of their properties is provided
by Díaz de Alba et al. [13].

(iii) an associated (2n + 1)-node averaged Gauss rule. The averaged Gauss rule is the
average of the n-node Gauss rule and the associated (n+ 1)-node anti-Gauss rule.
Averaged rules were introduced by Laurie [33]. The difference between the averaged
Gauss rule and the Gauss rule provides an estimate of the quadrature error for the
Gauss rule. Some computed examples can be found in [40].

(iv) an associated (2n + 1)-node optimal averaged Gauss rules. The latter rules were
introduced by Spalević [41] and have a higher degree of precision than the averaged
Gauss rule with the same number of nodes. The (2n + 1)-node optimal averaged

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

COMPUTATION OF GAUSS-TYPE QUADRATURE RULES 123

Gauss rules can be written as a weighted sum of the n-node Gauss rule and a related
(n+1)-node Gauss-type quadrature rule; see [39]. The difference between the optimal
averaged Gauss rule and the Gauss rule gives an estimate for the quadrature error for
the Gauss rule. Applications to error estimation are described in [40]. Analyses of
properties of optimal averaged Gauss rules can be found in [15, 16, 17, 18, 20].

In all the error estimation approaches (i)–(iv), both the n-node Gauss rule and an associated
(n+1)-node Gauss-type quadrature rule have to be evaluated. Alqahtani et al. [2] describe how
such pairs of quadrature rules can be calculated efficiently by a divide-and-conquer method.
This paper presents software for a divide-and-conquer method that is based on an algorithm
described by Borges and Gragg [9]. The performance of the software is compared to two
structure-respecting implementations of the Golub-Welsch algorithm.

The computation of pairs of Gauss-type quadrature rules by the Golub-Welsch algorithm
demands two applications of this algorithm, one for each quadrature rule. Timings reported
by Alqahtani et al. [2], based on computations on a laptop computer, show the divide-and-
conquer method to require less CPU-time than two applications of the structure-ignoring
implementation of the Golub-Welsch algorithm available in [22] when the quadrature rules
have 100 or more nodes. We have polished the code for the divide-and-conquer method, and our
present implementation demands less CPU-time for computing pairs of Gauss-type quadrature
rules than a structure respecting implementation based on a tridiagonal QR algorithm by Gates
and Gragg [21]. Moreover, the divide-and-conquer method is competitive with regard to CPU-
time also when computing a single Gauss quadrature rule with 32 or more nodes. The accuracy
in the nodes and weights achieved with the divide-and-conquer method typically is higher
than the accuracy obtained with the structure-respecting implementations of the Golub-Welsch
algorithm used for in our comparison. This is illustrated in Section 6. We also note that
divide-and-conquer methods lend themselves well to implementation on parallel computers.
This makes it possible to use a divide-and-conquer algorithm to evaluate quadrature rules with
very many nodes.

This paper is organized as follows. Section 2 describes Gauss quadrature rules and
Section 3 introduces the concept of simply nested pairs of quadrature rules. This concept is
used when computing pairs of quadrature rules, one of which is a Gauss rule and the other
one may be a Gauss-Radau, Gauss-Lobatto, or anti-Gauss rule. The computation of these
rules is based on calculating the partial spectral factorization of tridiagonal matrices. This is
discussed in Section 4. Section 5 defines nested pairs of quadrature rules, which generalizes
the concept of simply nested pairs. Computed examples and timings are presented in Section 6,
and concluding remarks can be found in Section 7.

We remark that this paper does not discuss the evaluation of pairs of an n-node Gauss
rule and an associated (2n+ 1)-node Gauss-Kronrod rule. The reasons for this is that Gauss-
Kronrod rules are not guaranteed to have real nodes and they are more complicated to compute
than the Gauss-type rules considered in this paper; see [1, 10, 34] for algorithms for the
evaluation of Gauss-Kronrod rules.

2. Gauss quadrature rules. Let dw be a non-negative measure on the real axis with
infinitely many points of support and such that all moments µk =

∫
tkdw(t), k = 0, 1, . . .,

are well defined. Gauss quadrature rules are well suited to approximate integrals of the form

(2.1) I(f) =

∫
f(t)dw(t).

The n-node Gauss quadrature rule can be expressed as

(2.2) Gn(f) =

n∑
j=1

f(tj)wj .

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

124 C. F. BORGES AND L. REICHEL

The nodes tj are known to be real, distinct, and live in the convex hull of the support of the
measure dw; the weights wj are positive. We refer to Gautschi [23] for discussions and proofs
of many properties of Gauss quadrature rules.

Gauss rules are related to monic orthogonal polynomials p0, p1, . . . determined by the
inner product

〈f, g〉 =

∫
f(t)g(t)dw(t).

Thus, the polynomial pj is of degree j, has leading coefficient one, and the polynomials satisfy

〈pi, pj〉

{
> 0, i = j,

= 0, i 6= j.

We have p0(t) ≡ 1, and it is convenient to define p−1(t) ≡ 0. It is well known that the
polynomials pk satisfy a three-term recurrence relation of the form

(2.3) pj+1(t) = (t− αj)pj(t)− βjpj−1(t), j = 0, 1, . . . ,

where the coefficients αj and βj are given by

αj =
〈tpj , pj〉
〈pj , pj〉

, j = 0, 1, . . . ,

βj =
〈pj , pj〉

〈pj−1, pj−1〉
, j = 1, 2, . . . ,

and β0 is arbitrary. In our code, we set β0 = µ0. The nodes t1, t2, . . . , tn of the Gauss
rule (2.2) are the zeros of pn; see, e.g., [23] for a proof.

The Gauss rule (2.2) can be associated with the symmetric tridiagonal matrix

(2.4) Tn =


α0

√
β1 0

√
β1 α1

. . .
.

√
βn−1

0 √
βn−1 αn−1

 ∈ Rn×n,

with positive subdiagonal entries. Its eigenvalues are the nodes t1, t2, . . . , tn of the Gauss rule
and the weights w1, w2, . . . , wn of the Gauss rule are the squares of the first components of
normalized eigenvectors, scaled by the zeroth moment, µ0, of the measure.

3. Computation with simply nested pairs of Gauss rules. We will say that a pair of
related Gauss quadrature rules are simply nested if they are related in the following way:

• The nodes and weights of the first rule are the eigenvalues and scaled squares of the
first elements of the eigenvectors of Tn.

• The nodes and weights of the second rule are the eigenvalues and scaled squares of
the first elements of the eigenvectors of

Tn+1 =

[
Tn γen
γeTn ω

]
for some choices of the real parameters γ and ω. Throughout this paper en denotes
the nth column of an identity matrix of suitable order and the superscript T denotes
transposition.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

COMPUTATION OF GAUSS-TYPE QUADRATURE RULES 125

We are interested in calculating the nodes and weights of both rules as accurately and
efficiently as possible. Historically, the best way of doing this was to use the Golub-Welsch
algorithm twice. No benefit is derived from the first calculation that might simplify the second.
We will take a different approach. Assume that the spectral factorization of the matrix (2.4)
has been computed,

(3.1) Tn = UnΛnU
T
n ,

where Un is a unitary matrix whose columns are the eigenvectors of Tn, Λn is a diagonal
matrix whose diagonal entries are the eigenvalues. Observe that the following unitary similarity
transformation [

Un 0
0 1

]T [
Tn γen
γeTn ω

] [
Un 0
0 1

]
=

[
Λn γUTn en

γeTnUn ω

]
yields a symmetric arrow matrix. Let uT = eT1 Un and vT = eTnUn denote, respectively, the
first and last rows of Un. Then the resulting symmetric arrow matrix can be written as

(3.2) An+1 =

[
Λn γv
γvT ω

]
.

We note that solving the eigenproblem for a symmetric arrow matrix is much faster on parallel
computers than doing so for a symmetric tridiagonal matrix of the same size, since the
eigenvalues and eigenvectors can all be computed simultaneously as the problem possesses
perfect parallelism. Moreover, the problem is conducive to vectorized/pipelined operations.
This makes the computations efficient even without exploiting parallelism.

The codes that accompany this paper1 follow the development in Borges and Gragg [9],
including the use of the zero-finder described therein, which has monotonic global cubic
convergence. We note that careful deflation is critically important.

The code eig_arrow.m provided in the software package that accompanies this paper
implements this method. For reasons of efficiency this code assumes, without validation, that
the shaft elements of the arrow matrix are sorted and that the barb elements are non-negative.
To make the code widely applicable, the code is serial and does not take advantage of the
perfect parallelism of the eigenvalue problem for the symmetric arrow matrix. Moreover, we
have deliberately limited the vectorization in the code to improve readability at the cost of
speed. In particular, although we vectorize the opening step of the zero-finder (evaluating the
secular function at the center of each interior interval), we do not vectorize subsequent steps
as this would result in delicate and confusing code.

We will refer to a partial decomposition of the matrix Tn that consists of the eigenvalues,
and the first and last components of the normalized eigenvectors, as a partial spectral factor-
ization (PSF) of Tn. We observe that the PSF of Tn provides us with sufficient information for
computing the n-point Gauss rule (the eigenvalues and the elements of u), as well as sufficient
information (the eigenvalues and elements of v), when paired with the recurrence coefficients
γ and ω, to compute the (n+ 1)-point Gauss rule by solving a symmetric arrow eigenvalue
problem instead of a symmetric tridiagonal eigenvalue problem.

Let the spectral factorization

An+1 = Un+1Λn+1U
T
n+1

1See the supplementary material:
https://etna.ricam.oeaw.ac.at/volumes/2021-2030/vol61/addition/p121.php.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
https://etna.ricam.oeaw.ac.at/volumes/2021-2030/vol61/addition/p121.php

ETNA
Kent State University and

Johann Radon Institute (RICAM)

126 C. F. BORGES AND L. REICHEL

be known. Then, the nodes of the (n+ 1)-point Gauss rule are given by the diagonal elements
of Λn+1, and the weights (up to the scaling by µ0) are given by the elements of the first row of

[
Un 0
0 1

]
Un+1,

which are given by
[
uT 0

]
Un+1. We see that both rules can be evaluated by first computing

the PSF of Tn and then solving a symmetric arrow eigenvalue problem. This leads to Algorithm
1.

Algorithm 1 Computing a simply nested pair of Gauss rules
1. Compute the PSF of Tn, given by Λn, u, and v.
2. Compute the first Gauss-rule using the diagonal elements of Λn and the squared

elements of u.
3. Compute γ and ω, and let

An+1 =

[
Λn γv
γvT ω

]
.

4. Compute the spectral factorization of An+1 = Un+1Λn+1U
T
n+1.

5. Compute the second Gauss-rule using the diagonal elements of Λn+1 and the squared
elements of

[
uT 0

]
Un+1.

3.1. Some specific simply nested pairs of Gauss-type rules. This section outlines how
Algorithm 1 can be applied to evaluate several known and widely used simply nested pairs of
quadrature rules. Since Algorithm 1 can solve any problem of this type, all that remains to be
discussed are the differences in the computations for specific values of γ and ω in step 3 of the
algorithm. We shall see that in some cases we can further leverage the PSF to evaluate γ and
ω in a very efficient manner.

3.1.1. Computing a simply nested pair of Gauss and Gauss-Radau rules. Let the
measure dw be contained in the bounded real interval [a, b], and let the integrand f in (2.1) be
2n+ 1 times continuously differentiable in this interval. Assume that the 2nth and (2n+ 1)st
derivatives of f are of constant sign in this interval. It then follows from the remainder terms
for Gauss and Gauss-Radau quadrature rules that the user-specified node t̃0 ∈ {a, b} of the
(n+ 1)-node Gauss-Radau rule

(3.3) Rn+1(f) =

n∑
j=0

f(t̃j)w̃j

can be chosen so that the quadrature errors of the Gauss rule (2.2) and the Gauss-Radau
rule (3.3) are of opposite sign. Hence, these quadrature rules bracket the value of the inte-
gral (2.1); see, e.g., Golub and Meurant [27] for details. It is therefore of interest to compute
the nodes and weights for both the rules (2.2) and (3.3). The latter rule can be associated with

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

COMPUTATION OF GAUSS-TYPE QUADRATURE RULES 127

the symmetric tridiagonal matrix

T̃n+1 =



α0

√
β1 0

√
β1 α1

√
β2

.√
βn−2 αn−2

√
βn−1√

βn−1 αn−1

√
βn

0 √
βn α̃n


∈ R(n+1)×(n+1),

where the entry α̃n is chosen so that the Radau node t̃0 is at the desired location.
One can determine α̃n to allocate the node t̃0 at the desired point by combining [26,

eqs (7.5) and (7.6)]. This leads to the formula

α̃n = t̃0 + βneTn (Tn − t̃0I)−1en.

Invoking the spectral factorization (3.1), this becomes

α̃n = t̃0 + βneTnUn(Λn − t̃0I)−1UTn en.

Since vT = [v1, v2, . . . , vn] = eTnUn, we can leverage the PSF to get

(3.4) α̃n = βn

n∑
k=1

v2k
λk − t̃0

.

The eigenvalues of Tn live in the largest open interval whose closure is the closed convex hull
of the measure dω. Therefore, the Gauss-Radau rule exits for t̃0 ∈ {a, b}.

To evaluate the Gauss-Radau rule (3.3), we set γ =
√
βn, where βn is a recursion

coefficient for the orthogonal polynomials (2.3), and let ω = α̃n in step 3 of Algorithm 1
using the formula (3.4). The code GaussPlusGaussRadau.m included in the program
package provided with this paper implements this method.

3.1.2. Computing a simply nested pair of Gauss and Gauss-Lobatto rules. Let
the support of the measure dw be contained in the bounded real interval [a, b], and let the
integrand f in (2.1) be 2n times continuously differentiable in this interval. Assume that the
2nth derivative of f is of constant sign in this interval. The user-specified Lobatto nodes
are often chosen to be t̃0 = a and t̃n = b. Then, the quadrature error of the (n + 1)-node
Gauss-Lobatto rule

(3.5) Ln+1(f) =

n∑
j=0

f(t̃j)w̃j

is of opposite sign as the quadrature error of the Gauss rule. This follows from the remainder
terms of Gauss and Gauss-Lobatto quadrature rules; see Golub [26], Golub and Meurant [27],
or Gautschi [23].

The key is choosing the parameters γ and ω in the matrix (3.2) to force the Lobatto
nodes to occur at the locations a and b. Following a construction similar to the one used in
Section 3.1.1, we can once again leverage the PSF to show that

γ =
a− b
Sb − Sa

, ω = a+ γSa,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

128 C. F. BORGES AND L. REICHEL

where

Sa =

n∑
k=1

v2k
λk − a

, Sb =

n∑
k=1

v2k
λk − b

.

Here we use the same notation as in (3.4); see [23, 26, 27] for details. In particular, the
Gauss-Lobatto rule (3.5) exists for the choice of Lobatto nodes of this section. The algorithm
GaussPlusGaussLobatto.m provided with this paper implements the method of the
present section.

3.1.3. Computing a simply nested pair of Gauss and anti-Gauss rules. The anti-Gauss
rule

An+1(f) =

n+1∑
j=1

f(t̃j)w̃j

associated with the Gauss rule (2.2) is characterized by

(I − An+1)(f) = −(I − Gn)(f), ∀ f ∈ P2n+1;

see Laurie [33]. The tridiagonal matrix associated with this anti-Gauss rule is given by

T̃n+1 =



α0

√
β1 0

√
β1 α1

√
β2

.√
βn−2 αn−2

√
βn−1√

βn−1 αn−1

√
2βn

0 √
2βn αn


∈ R(n+1)×(n+1).

We see that γ =
√

2βn and ω = αn in (3.2). The code GaussPlusAntiGauss.m that
accompanies this paper implements the method of this section.

4. Computing the PSF. The critical step when using simply nested pairs of quadrature
rules is computing the PSF of the symmetric tridiagonal matrix (2.4). We describe two
algorithms for doing so.

4.1. Computing the PSF using the QR algorithm. The classical Golub-Welsch algo-
rithm [29] is easy to understand conceptually. The algorithm computes the eigenvalues and
first elements of the normalized eigenvectors of a symmetric tridiagonal matrix Tn ∈ Rn×n.
To do this, one can apply any standard QR algorithm for symmetric tridiagonal matrices and
instead of simply applying the sequence of rotations Qk generated by the algorithm to the
tridiagonal matrix as in

(4.1) QTmQ
T
m−1 · · ·QT1 TnQ1 · · ·Qm−1Qm → Λn,

one simultaneously captures the first row of the eigenvector matrix by applying these rotations
to the transpose of the first axis vector

uT = eT1Q1 · · ·Qm−1Qm.

The right arrow in (4.1) signifies that the rotations Qk are chosen so that the left-hand side
converges to the diagonal matrix Λn as the number of rotations applied increases.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

COMPUTATION OF GAUSS-TYPE QUADRATURE RULES 129

One can compute the PSF by also applying the rotations to the transpose of the last axis
vector,

vT = eTnQ1 · · ·Qm−1Qm.

The determination of the vectors u and v requires just a few additional flops per iteration,
compared to the QR algorithm when applied to only compute the eigenvalues of a symmetric
tridiagonal matrix, and the total flop count remains O(n2) for the matrix Tn.

The code that we provide with this paper (tqrPSF.m) is based on the TQR algorithm
described by Gates and Gragg [21]. If a user supplies two output parameters, then the code
performs a true Golub-Welsch algorithm to generate the eigenvalues and the positive first
elements of the normalized eigenvectors; if a user gives three output parameters, then the code
delivers the PSF as just described.

To avoid unnecessary overflows/underflows every normalization that is required to evalu-
ate the rotations is computed with a call to the function hypot(a,b). This is generally more
accurate than the commonly used approach described, e.g., in [28, Algorithm 5.13]. The use
of this function is particularly attractive in computer languages, such as Julia, that implement
a function hypot(a,b) with correct rounding. Such a function is described in [7]. More
accurate algorithms for constructing Givens rotations, such as the one described in [8], can
yield further improvement.

4.2. Computing the PSF by a divide-and-conquer method. We outline the computation
of the PSF of Tn by using the divide-and-conquer by extension method described in [9, 30].
Algorithms for divide-and-conquer methods consist of a divide phase and a conquer phase.
We outline these phases and use the notation in [9], where further details can be found.

Consider the spectral factorization (3.1) of the matrix Tn defined by (2.4). We would like
to compute the PSF of Tn and for this purpose introduce the split index s for some 1 ≤ s ≤ n.
Regard the block form of the matrix Tn,

Tn =

 T̆1
√
βs−1es−1 0√

βs−1eTs−1 αs−1

√
βseT1

0
√
βse1 T̆2

 ,
where T̆1 is the leading principal (s − 1) × (s − 1) submatrix of Tn and T̆2 is the trailing
principal (n− s)× (n− s) submatrix. Our discussion below assumes that 1 < s < n, but the
values s = 1 and s = n are permitted; in the former case the matrix T̆1 is empty and in the
latter case T̆2 is empty.

We begin by solving the smaller eigenvalue problems

T̆k = ŬkΛ̆kŬ
T
k , k = 1, 2,

in what is known as the divide phase or split phase. Here Ŭk is an orthogonal matrix whose
columns are the eigenvectors of T̆k, and Λ̆k is a diagonal matrix whose diagonal entries are
the eigenvalues. Define the orthogonal block diagonal matrix

Ûn =

Ŭ1 0
1

0 Ŭ2

 ∈ Rn×n,

where “1” denotes the scalar one. Letting v1 = ŬT1 es ∈ Rs−1 and u2 = ŬT2 e1 ∈ Rn−s, we
obtain

(4.2) ÛTn TnÛn =

 Λ̆1

√
βs−1v1 0√

βs−1vT1 αs−1

√
βsuT2

0
√
βsu2 Λ̆2

 .

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

130 C. F. BORGES AND L. REICHEL

Note that only the last row of the matrix Ŭ1 and the first row of Ŭ2 are required to determine
the vectors v1 and u2.

The matrix (4.2) is the sum of a diagonal matrix and a “cross”. It is convenient to permute
the rows and columns symmetrically so that the “cross” is moved to the last row and column.
Define the permutation matrix

P̂n = [e1, e2, . . . , es−1, es+1, es+2, . . . , en, es] ∈ Rn×n.

Then,

P̂Tn Û
T
n TnÛnP̂n =

 Λ̆1 0
√
βs−1v1

0 Λ̆2

√
βsu2√

βs−1vT1
√
βsuT2 αs−1


is an arrow matrix, which we shall denote by A. There are efficient methods for computing
the PSF of an arrow matrix. Such methods are discussed by Borges and Gragg [9] as well as
by Gu and Eisenstat [30]. We refer to these references for details.

Assume that we have computed the spectral factorization of A = UTΛU . Then in the
conquer phase of the algorithm, we obtain

UT P̂Tn Û
T
n TnÛnP̂nU = Λ.

The eigenvector matrix of Tn is given by ÛnP̂nU , and we can recover its first and last rows as
follows

eT1 ÛnP̂nU =
[
uT1 0 . . . 0

]
U

and

eTn ÛnP̂nU =
[
0 0 vT2 0

]
U.

This yields the PSF of Tn. Clearly, we need only compute the PSF of each of the subproblems
to construct the PSF for the original problem.

We have described one application of the split phase. Divide-and-conquer codes apply the
splitting repeatedly until only 1× 1 or 2× 2 matrices remain. In the code that accompanies
this paper (dandcPSF.m), the eigenvalue problems for the 2×2 matrices are solved by using
a modification of the code in Borges [6] that restricts itself to real symmetric 2× 2 matrices
with a non-negative off-diagonal element. The code dandcPSF.m calls the standard math
library function hypot() to prevent unnecessary overflow/underflow and gives demonstrably
more accurate results over a wider range of inputs than other common approaches.

We note that dandcPSF.m is a recursive serial implementation of the algorithm. The
code is deliberately written to be easy to use and modify. A non-recursive and/or fully parallel
version would demand less CPU-time.

5. Computation of nested pairs of Gauss rules. This section extends the approach
described above to a more general setting. We say that a pair of related Gauss quadrature rules
are nested if they are related in the following way:

• The nodes and weights of the first rule are the eigenvalues and squares of the first
components of the eigenvectors of Tn.

• The nodes and weights of the second rule are the eigenvalues and squares of the first
components of the eigenvectors of

Tn+1 =

 Tn γ1en 0
γ1eTn ω γ2eT1

0 γ2e1 T̄

 ,
where T̄ is a symmetric tridiagonal matrix and γ1, γ2, and ω are scalars.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

COMPUTATION OF GAUSS-TYPE QUADRATURE RULES 131

Algorithm 2 Computing a nested pair of Gauss rules
1. Compute the PSF of Tn, given by Λn, u1, and v1.
2. Compute the first Gauss rule using the diagonal elements of Λn and the squared

elements of u1.
3. Compute the PSF of T̄ , given by Λ̄, u2, and v2.
4. Compute γ1, γ2, and ω, and let

A =

 Λn 0 γ1v1
0 Λ̄ γ2u2

γ1vT1 γ2uT2 ω

 .
5. Compute the spectral factorization of A = UΛUT .
6. Compute the second Gauss-rule using the diagonal elements of Λ and the squared

elements of
[
uT1 0 . . . 0

]
U .

Now recall the derivation in Section 4.2 with the substitutions T̆1 = Tn and T̆2 = T̄ . It is
straightforward to verify that we can compute the nested pair of rules with Algorithm 2. In the
degenerate case, when the matrix T̄ is void (and therefore also γ2), Algorithm 2 simplifies to
Algorithm 1.

5.1. Computation of pairs of Gauss and optimal averaged Gauss rules. The difference
between the values of the Gauss rule (2.2) and the associated (2n+ 1)-node optimal averaged
Gauss quadrature rule

(5.1) S2n+1(f) =

2n+1∑
j=1

f(t̃j)w̃j

often provides an accurate estimate of the quadrature error of the Gauss rule; see [39, 40] for
illustrations.

It is well known that the nodes and weights of the optimal averaged Gauss rule (5.1) are
the eigenvalues and the squared first components of the normalized eigenvectors, respectively,
of the concatenated symmetric tridiagonal matrix

(5.2) T̂2n+1 =

 Tn
√
βnen 0√

βne
T
n αn

√
βn+1e

T
1

0
√
βn+1e1 JTnJ

 ∈ R(2n+1)×(2n+1),

where J ∈ Rn×n is the counter-identity; see, e.g., [2, 41]. This construction shows that the
Gauss rule and the optimal averaged Gauss rule are a nested pair, and, hence, we can compute
both using Algorithm 2.

There are significant advantages to be had by exploiting the structure of the matrix (5.2).
First, we note that the PSF of JTnJ can be determined from the PSF of the matrix Tn without
arithmetic cost by swapping the roles of u and v from the PSF of Tn, and second, we can
exploit the massive deflation in the arrow matrix that results from this symmetry. In particular,
the matrices JTnJ and Tn have the same spectra. Because of this we will not pursue solving
this problem by Algorithm 2 directly but instead refer the reader to the method discussed in [2]
that fully exploits the structure. The code GaussPlusOptimalAveragedGauss.m that
is supplied with this paper implements a structure-exploiting divide-and-conquer method.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

132 C. F. BORGES AND L. REICHEL

3 4 5 6 7 8 9 10 11 12

log
2
(n)

-12

-10

-8

-6

-4

-2

0

2

4

6

lo
g

2
(C

P
U

 t
im

e
)

Time to compute Gauss-Legendre rules

D&C Partial Spectral Factorization

TQR Golub-Welsch

FIG. 6.1. A log-log plot of the average CPU times for computing Gauss rules by the PSF D&C and TQR G-W
algorithms across a range of sizes.

6. Some computations with the software described. This section examines the perfor-
mance of the codes in the software package that accompanies this paper. Further examples and
scripts that illustrate how the functions of the package can be called are provided in separate
files.

All testing is done in MATLAB version R2023b on a Dell Precision desktop computer with
an Intel(R) Core(TM) i7-7700K CPU @ 4.20GHz with 16.0 GB of RAM. The computations
are carried out in MATLAB with about 15 significant decimal digits. Some also compare
with functions in the Chebfun program package [19]. This package, which is implemented
in MATLAB, replaces functions by accurate expansions in terms of piece-wise Chebyshev
polynomials and allow a user to carry out accurate computations with functions. Chebfun
implements the function jacpts for computing the nodes and weights of Gauss quadrature
rules with a Jacobi weight function

(6.1) w(t) = (1− t)α(1 + t)β , −1 < t < 1, α, β > −1.

Both accuracy and execution time (CPU-time) of the algorithms are illustrated. All
timings are done with the MATLAB command timeit(). We refer to the divide-and-
conquer algorithm applied to the computation of the partial spectral resolution as the PSF D&C
algorithm. Our implementation of the Golub-Welsch algorithm [29] based on the tridiagonal
QR algorithm described by Gates and Gragg [21] is referred to as TQR G-W. We compare the
accuracy of this method to an implementation of the Golub-Welsch algorithm made available
by Meurant [35] and refer to the latter implementation as MMQ G-W. The MATLAB function
eig can be applied to the tridiagonal matrix (2.4) to compute the nodes and weights of the
n-node quadrature rule determined by this matrix. This approach ignores the tridiagonal
structure of Tn and requires O(n3) flops. Finally, we also compare the accuracy with that of
the Chebfun function jacpts.

We begin by comparing timings of the PSF D&C algorithm and the TQR G-W algorithm
when generating one Gauss-Legendre rule for a varying number of nodes. Figure 6.1 shows
the PSF D&C algorithm to be faster for all quadrature rules with n ≥ 32 nodes. Timings are
reported for n = 2k and k = 3, 4, . . . The reported times are average CPU-times in seconds
over several runs.

Figure 6.2 displays timings for the PSF D&C algorithm and the TQR G-W algorithm
when applied to compute pairs of an n-node Gauss and an associated (n+ 1)-node anti-Gauss

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

COMPUTATION OF GAUSS-TYPE QUADRATURE RULES 133

3 4 5 6 7 8 9 10 11 12

log
2
(n)

-12

-10

-8

-6

-4

-2

0

2

4

6

lo
g

2
(C

P
U

 t
im

e
)

Time to compute Gauss plus Anti-Gauss rules

Nested D&C

Traditional

FIG. 6.2. A log-log plot of the average CPU-times for computing a nested pair of Gauss and anti-Gauss rules
using both the nested D&C approach and by using a traditional approach where the n-node Gauss rule and the
(n+ 1)-node anti-Gauss rule are both computed with independent applications of the TQR G-W algorithm.

3 4 5 6 7 8 9 10 11 12

log
2
(n)

-12

-10

-8

-6

-4

-2

0

2

4

6

8

lo
g

2
(C

P
U

 t
im

e
)

Time to compute Gauss plus Optimal Averaged Gauss rules

Nested D&C

Traditional

FIG. 6.3. A log-log plot of the average CPU-times for computing a nested pair of Gauss and optimal averaged
Gauss rules using both the nested D&C approach and by using a traditional approach where the n-node Gauss rule
and the (2n+ 1)-node optimal averaged Gauss rule are both computed with independent applications of the TQR
G-W algorithm.

quadrature rule for the Legendre measure and n = 2k with k = 3, 4, . . . The PSF D&C
algorithm is referred to as “nested”, since it computes the Gauss and anti-Gauss rules together
for each value of n. The TQR G-W algorithm is called twice for each value of n. This
approach is referred to as “traditional.” The traditional approach can be seen to be slower than
the nested D&C approach for all values of n. The timings reported are average CPU-times in
seconds over several runs.

Figure 6.3 differs from Figure 6.2 only in that the (n + 1)-node anti-Gauss rules are
replaced by the (2n + 1)-node optimal averaged rules. The reduction in CPU-time that is
achieved by using the PSF D&C algorithm can be seen to be even larger than in Figure 6.2.

The following graphs compare the accuracy achieved with the algorithms considered in
this paper. The nodes for the n-node Gauss rule with a Jacobi weight function (6.1) with

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

134 C. F. BORGES AND L. REICHEL

0 500 1000
0

2

4

6

8

10

S
c
a
le

d
 e

rr
o
r

-
N

o
d
e
s

eig()

0 500 1000
0

2

4

6

8

10

jacpts()

0 500 1000
0

2

4

6

8

10

PSF D&C

0 500 1000
0

2

4

6

8

10

TQR G-W

0 500 1000

10-10

100

R
e
la

ti
v
e
 e

rr
o
r

-
W

e
ig

h
ts

0 500 1000

10-10

100

0 500 1000

10-10

100

0 500 1000

10-10

100

FIG. 6.4. Errors in the nodes and weights determined by several of the algorithms considered. The TQR G-W
method yields the worst accuracy, while the accuracy achieved with PSF D&C is competitive.

0 500 1000
0

5

10

15

20

25

S
c
a
le

d
 e

rr
o
r

-
N

o
d
e
s

TQR G-W

0 500 1000
0

5

10

15

20

25
MMQ G-W

0 500 1000

10
-15

10
-10

R
e
la

ti
v
e
 e

rr
o
r

-
W

e
ig

h
ts

0 500 1000

10
-15

10
-10

FIG. 6.5. Errors in the nodes and weights determined by the TQR G-W algorithm and the MMQ G-W
algorithm [35].

α = β = −1/2 are explicitly known, tj = cos(2j−1
2j π), j = 1, 2, . . . , n. We compare these

nodes to the nodes t̃j computed by the algorithms discussed and plot |tj− t̃j |/ε where machine
epsilon is given by ε = 2−52. The top panels of Figure 6.4 display these errors for several
methods. The MATLAB function eig, the function jacpts of Chebfun, and the PSF D&C
algorithm all yield about the same accuracy, while the errors in the nodes evaluated with the
TQR G-W method generally are larger.

The bottom panels of Figure 6.4 show the relative errors in the computed weights. This is
a semi-log plot in the y-axis to better resolve the differences. The exact weights of the n-node
Gauss rule defined above are wj = π/n, j = 1, 2, . . . , n. Denote the computed weights by
w̃j . The panels show the value |wj − w̃j |/|wj |. The function jacpts is seen to determine
the weights exactly,2 while the errors in the weights determined by the PSF D&C algorithm
are of about the same size as those computed by eig; the TQR G-W method yields weights
with less accuracy.

2This is because the jacpts code explicitly traps this case and forces a correct answer.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

COMPUTATION OF GAUSS-TYPE QUADRATURE RULES 135

Figure 6.5 performs the same computations but only to compare the two TQR Golub-
Welsch approaches. We can see that the Golub-Welsch algorithm presented in this pa-
per is more accurate. Further examples can be found in the files Accuracy_Tests.pdf and
Performance_Tests.pdf.

7. Conclusion. The paper provides software for the application of the divide-and-conquer
algorithm presented by Borges and Gragg [9] to the calculation of the nodes and weights a
Gauss quadrature rule (2.2) or of pairs of a Gauss rule and a related Gauss-type quadrature
rule. Also software for the Golub-Welsch algorithm [29] is made available. Computations
show the divide-and-conquer method to require less CPU time on a laptop computer than the
Golub-Welsch algorithm for quadrature rules with more than about 32 nodes and typically
yields higher accuracy. When pairs of Gauss-type quadrature rules are desired, the divide-and-
conquer algorithm requires less CPU time for any number of nodes.

Supplementary material. The accompanying software is available at
https://etna.ricam.oeaw.ac.at/volumes/2021-2030/vol61/addition/p121.php

in form of a compressed file entitled GaussRules.zip. Installation details are discussed in the
README.md file. Licence information are in License.md.

Acknowledgment. We would like to thank Gérard Meurant for a pointer to his imple-
mentation of the Golub-Welsch algorithm.

REFERENCES

[1] G. S. AMMAR, D. CALVETTI, AND L. REICHEL, Computation of Gauss-Kronrod quadrature rules with
non-positive weights, Electron. Trans. Numer. Anal., 9 (1999), pp. 26–38.
https://etna.ricam.oeaw.ac.at/vol.9.1999/pp26-38.dir/pp26-38.pdf.

[2] H. ALQAHTANI, C. F. BORGES, D. LJ. DJUKIĆ, R. M. MUTAVDZIĆ DJUKIĆ, L. REICHEL, AND M. M.
SPALEVIĆ, Computation of pairs of related Gauss-type quadrature rules, Appl. Numer. Math., in press.

[3] H. ALQAHTANI AND L. REICHEL, Simplified anti-Gauss quadrature rules with applications in linear algebra,
Numer. Algorithms, 77 (2018), pp. 577–602.

[4] A. H. BENTBIB, M. EL GUIDE, K. JBILOU, AND L. REICHEL, A global Lanczos method for image restoration,
J. Comput. Appl. Math., 300 (2016), pp. 233–244.

[5] I. BOGAERT, Iteration-free computation of Gauss-Legendre nodes and weights, SIAM J. Sci. Comput., 36
(2014), pp. A1008–A1026.

[6] C. F. BORGES, An improved formula for Jacobi rotations, Preprint on arXiv, 2018.
https://arxiv.org/abs/1806.07876v1

[7] , Algorithm 1014: An improved algorithm for hypot(x,y), ACM Trans. Math. Software, 47 (2021), Art. 9,
12 pages.

[8] , Fast compensated algorithms for the reciprocal square root, the reciprocal hypotenuse, and Givens
rotations, Preprint on arXiv, 2021. https://arxiv.org/abs/2103.08694

[9] C. F. BORGES AND W. B. GRAGG, A parallel divide and conquer algorithm for the generalized symmetric
definite tridiagonal eigenvalue problem, in Numerical Linear Algebra, eds. L. Reichel, A. Ruttan, and
R. S. Varga, de Gruyter, Berlin, 1993, pp. 11–29.

[10] D. CALVETTI, G. H. GOLUB, W. B. GRAGG, AND L. REICHEL, Computation of Gauss-Kronrod rules, Math.
Comp., 69 (2000) 1035–1052.

[11] D. CALVETTI AND L. REICHEL, Tikhonov regularization of large linear problems, BIT Numer. Math., 43
(2003), pp. 263–283.

[12] D. CALVETTI, L. REICHEL, AND F. SGALLARI, Application of anti-Gauss quadrature rules in linear algebra,
in Applications and Computation of Orthogonal Polynomials, W. Gautschi, G. H. Golub, and G. Opfer,
eds., Birkhäuser, Basel, 1999, pp. 41–56.

[13] P. DÍAZ DE ALBA, L. FERMO, AND G. RODRIGUEZ, Solution of second kind Fredholm integral equations by
means of Gauss and anti-Gauss quadrature rules, Numer. Math., 146 (2020), pp. 699–728.

[14] D. LJ. DJUKIĆ, R. M. MUTAVDŽIĆ DJUKIĆ, A. V. PEJČEV, AND M. M. SPALEVIĆ, Error estimates of
Gaussian-type quadrature formulae for analytic functions on ellipses - a survey of recent results, Electron.
Trans. Numer. Anal., 53 (2020), pp. 352–382.
https://etna.ricam.oeaw.ac.at/vol.53.2020/pp352-382.dir/pp352-382.pdf

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
https://etna.ricam.oeaw.ac.at/volumes/2021-2030/vol61/addition/p121.php
https://etna.ricam.oeaw.ac.at/vol.9.1999/pp26-38.dir/pp26-38.pdf
https://arxiv.org/abs/1806.07876v1
https://arxiv.org/abs/2103.08694
https://etna.ricam.oeaw.ac.at/vol.53.2020/pp352-382.dir/pp352-382.pdf

ETNA
Kent State University and

Johann Radon Institute (RICAM)

136 C. F. BORGES AND L. REICHEL

[15] D. LJ. DJUKIĆ, R. M. MUTAVDŽIĆ DJUKIĆ, L. REICHEL, AND M. M. SPALEVIĆ, Internality of generalized
averaged Gauss quadrature rules and truncated variants for modified Chebyshev measures of the first
kind, J. Comput. Appl. Math., 398 (2021), Art. 113696, 11 pages.

[16] , Internality of generalized averaged Gauss quadrature rules and truncated variants for modified
Chebyshev measures of the third and fourth kinds, Numer. Algorithms, 92 (2023), pp. 523–544.

[17] D. LJ. DJUKIĆ, L. REICHEL, AND M. M. SPALEVIĆ, Internality of generalized averaged Gaussian quadrature
rules and truncated variants for measures induced by Chebyshev polynomials, Appl. Numer. Math., 142
(2019), pp. 190–205.

[18] , Internality of generalized averaged Gauss rules and their truncations for Bernstein-Szegő weights,
Electron. Trans. Numer. Anal., 45 (2016), pp. 405–419.
https://etna.ricam.oeaw.ac.at/vol.45.2016/pp405-419.dir/pp405-419.pdf

[19] T. A. DRISCOLL, N. HALE, AND L. N. TREFETHEN, Chebfun Guide, Pafnuty Publications, Oxford, 2014.
[20] L. FERMO, L. REICHEL, G. RODRIGUEZ, AND M. M. SPALEVIĆ, Averaged Nyström interpolants for the

solution of Fredholm integral equations of the second kind, Appl. Math. Comput., 467 (2024), Art. 128482,
20 pages.

[21] K. GATES AND W. B. GRAGG, Notes on TQR algorithms, J. Comput. Appl. Math., 86 (1997), pp. 195–203.
[22] W. GAUTSCHI, OPQ: A MATLAB suite of programs for generating orthogonal polynomials and related quadra-

ture rules, available at https://www.cs.purdue.edu/archives/2002/wxg/codes/.
[23] , Orthogonal Polynomials: Computation and Approximation, Oxford University Press, Oxford, 2004.
[24] W. GAUTSCHI AND R. S. VARGA, Error bounds for Gaussian quadrature of analytic functions, SIAM J.

Numer. Anal., 20 (1983), pp. 1170–1186.
[25] A. GLASER, X. LIU, AND V. ROKHLIN, A fast algorithm for calculating the roots of special functions, SIAM

J. Sci. Comput., 29 (2007), pp. 1420–1438.
[26] G. H. GOLUB, Some modified matrix eigenvalue problems, SIAM Rev., 15 (1973), pp. 318–334.
[27] G. H. GOLUB AND G. MEURANT, Matrices, Moments and Quadrature with Applications, Princeton University

Press, Princeton, 2010.
[28] G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations, 4th ed., Johns Hopkins University Press, Baltimore,

2013.
[29] G. H. GOLUB AND J. H. WELSCH, Calculation of Gauss quadrature rules, Math. Comp., 23 (1969), pp. 221–

230.
[30] M. GU AND S. C. EISENSTAT, A divide-and-conquer method for the symmetric tridiagonal eigenproblem,

SIAM J. Matrix Anal. Appl., 16 (1995), pp. 172–191.
[31] N. HALE AND A. TOWNSEND, Fast and accurate computation of Gauss-Legendre and Gauss-Jacobi quadra-

ture nodes and weights, SIAM J. Sci. Comput., 35 (2013), pp. A652–A674.
[32] D. R. JANDRLIĆ, DJ. M. KRTINIĆ, LJ. V. MIHIĆ, A. V. PEJČEV, AND M. M. SPALEVIĆ, Error bounds of

Gaussian quadrature formulae with Legendre weight function for analytic integrands, Electron. Trans.
Numer. Anal., 55 (2022), pp. 424–437.
https://etna.ricam.oeaw.ac.at/vol.55.2022/pp424-437.dir/pp424-437.pdf

[33] D. P. LAURIE, Anti-Gaussian quadrature formulas, Math. Comp., 65 (1996), pp. 739–747.
[34] , Calculation of Gauss-Kronrod quadrature rules, Math. Comp., 66 (1997), pp. 1133–1145.
[35] G. MEURANT, home page: https://gerard-meurant.fr/.
[36] S. NOTARIS, Gauss-Kronrod quadrature formulae - a survey of fifty years of research, Electron. Trans. Numer.

Anal., 45 (2016), pp. 371–404.
https://etna.ricam.oeaw.ac.at/vol.45.2016/pp371-404.dir/pp371-404.pdf

[37] A. V. PEJČEV, A note on “Error bounds of Gaussian quadrature formulae with Legendre weight function for
analytic integrands” by M. M. Spalević et al., Electron. Trans. Numer. Anal., 59 (2023), pp. 89–98.
https://etna.ricam.oeaw.ac.at/vol.59.2023/pp89-98.dir/pp89-98.pdf.

[38] L. REICHEL, H. SADOK, AND A. SHYSHKOV, Greedy Tikhonov regularization for large linear ill-posed
problems, Int. J. Comput. Math., 84 (2007), pp. 1151–1166.

[39] L. REICHEL AND M. M. SPALEVIĆ, A new representation of generalized averaged Gauss quadrature rules,
Appl. Numer. Math., 165 (2021) pp. 614–619.

[40] , Averaged Gauss quadrature formulas: Properties and applications, J. Comput. Appl. Math., 410
(2022), Art. 114232, 18 pages.

[41] M. M. SPALEVIĆ, On generalized averaged Gaussian formulas, Math. Comp., 76 (2007), pp. 1483–1492.
[42] H. SUGIURA AND T. HASEGAWA, Error bounds for Gauss-Jacobi quadrature of analytic functions on an

ellipse, Math. Comp., 94 (2025), pp. 359–379.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
https://etna.ricam.oeaw.ac.at/vol.45.2016/pp405-419.dir/pp405-419.pdf
https://www.cs.purdue.edu/archives/2002/wxg/codes/
https://etna.ricam.oeaw.ac.at/vol.55.2022/pp424-437.dir/pp424-437.pdf
https://gerard-meurant.fr/
https://etna.ricam.oeaw.ac.at/vol.45.2016/pp371-404.dir/pp371-404.pdf
https://etna.ricam.oeaw.ac.at/vol.59.2023/pp89-98.dir/pp89-98.pdf

