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Abstract. In this paper we introduce a two-dimensional first-kind integral model to describe the interaction
between the soil and an electromagnetic device. This model is used to reconstruct the electrical conductivity of the
soil from electromagnetic data. The definition of the two-dimensional model is derived, and a numerical study of the
forward model based on Gauss–Legendre quadrature formulae is presented. To solve the inverse problem, a linear
system obtained from the discretization of the integral equation in the model is considered. The main difficulty is the
severe ill-conditioning of the system, so the Tikhonov regularization method is applied and different regularization
matrices and choice-rules for the regularization parameter are proposed. Several numerical tests show the effectiveness
of the proposed approach.
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1. Introduction. Electromagnetic induction (EMI) methods are common tools to investi-
gate the conductivity and magnetic distributions of near-surface structures in a non-invasive
way. The study and analysis of subsoil properties via electromagnetic techniques are rele-
vant in various applications, e.g., for environmental and geotechnical investigations [25, 38]
(including soil and water conservation [22, 32]), groundwater prospecting [37, 45], hydrolog-
ical application in arid or semi-arid region [27, 44], precision agriculture [46], claypan soil
properties [3, 47], mapping of soil salinity [33, 35, 48], and environmental quality [23].

A very common device used to measure electromagnetic data is the Ground Conductivity
Meter (GCM). It is composed of a coil transmitter and a coil receiver placed at a fixed distance,
ranging from 0.5m to around 6m. Nowadays, there exists multi-receiver GCM, making
the problem larger and more difficult to solve. In this paper, we focus on single-receiver
instruments. In 1980, McNeill [34] provided an important contribution to understand the
principal properties of such devices, in particular of the Geonics EM31 and EM34 devices.
More recently, the review [43] examined the role of the EM38 and EM38-MK2 devices in
monitoring and mapping saline soils.

An alternating current, flowing into the transmitter, generates a primary magnetic field
HP into the subsurface. In the presence of conductivity variations in the subsurface, eddy
currents are generated producing, in turn, a secondary magnetic field HS. Finally, the ratio
between both fields is recorded by the receiver. These devices can be used considering different
orientations of the coils: horizontal, vertical, or perpendicular. The horizontal orientation
of the coils corresponds to vertical magnetic dipoles (VMD), vertical coils are equivalent to
horizontal magnetic dipoles (HMD), and perpendicular dipoles are denoted by PERP. Different
depths can be reached depending on the configuration of the instrument: distance between the
coils, operating frequency, and orientation.
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When one wants to investigate shallow targets at depths ranging up to several tens of
meters, devices that make use of electromagnetic recordings at low induction number (LIN) are
well suited. The induction number, denoted byB, is a constant which involves the instrument’s
scale and the scale of induced currents within the ground, and it is defined as the ratio between
the inter-coil distance ρ and the skin depth δ of the currents in the ground, i.e.,

B =
ρ

δ
, δ =

√
2

σωµ0
,

where σ is the electrical conductivity of the soil measured in Siemens per meter (S/m), ω
is the angular frequency of the device computed as 2πf , with f the frequency measured in
Hertz (Hz), and µ0 = 4π10−7 Henries per meter (Hm−1) is the magnetic permeability of free
space [2]. We remark that B is a dimensionless quantity since both ρ and δ are measured in
meters.

The GCM devices measure EM coupling ratios between the secondary electromagnetic
field and the primary field. This is a complex number with in-phase (real part) and quadra-
ture (imaginary part) components. The quadrature component is transformed into apparent
conductivity by the formula

σa ≈
4

ωµ0ρ2
Im

(
HS

HP

)
,

where Im represents the imaginary part of the signal ratio. The in-phase part is in general
very small in comparison to the quadrature component. A common assumption is that
B � 1, which means that we are dealing with low conductivity values. In this way, a
linear mathematical model can be applied to reconstruct accurately the electrical conductivity
distribution.

However, other kinds of EM ground conductivity instruments exist and are typically
multi-frequency devices with either fixed or variable coil separations. These devices are
generally related to a high induction number B and require more complex modeling, i.e.,
nonlinear models. In the last few years, a nonlinear one-dimensional electromagnetic model
has been studied in different situations and has been coupled with specific techniques for
evaluating the Jacobian, useful to invert measurement datasets by the Gauss–Newton method
regularized by truncated generalized singular value decomposition [28], together with auto-
matic techniques for estimating the regularization parameter. In [16], the reconstruction of the
electrical conductivity of the soil, assuming known magnetic permeability, considering only
the quadrature component of the measurements was proposed. In [21], the latter algorithm was
adapted to devices that allow for different configurations and can take multiple simultaneous
measurements. In this work, the authors also considered the possibility of processing the
in-phase component of the signal. The algorithm was updated to invert the whole complex
signal sensed by the device, and in [14, 15] it was applied to invert datasets collected in
Sardinia (Italy), at the Molentargius Saline Regional Nature Park. The paper [13] focuses
on the identification of the magnetic permeability distribution under the assumption that the
electrical conductivity is known beforehand. An important result of this work was to give an
analytical expression of the Jacobian with respect to the variation of the magnetic permeability.
A Matlab toolbox for the forward and the inverse procedures has been made publicly available
in [11, 12]. This software was then used in [4] to obtain a two-dimensional reconstruction of
the electrical conductivity of a vertical section of the soil by solving a variational problem as
well as in [5], where an Alternating Direction Multiplier Method was applied. Finally, in [42],
a minimal-norm regularized solution method based on the Gauss–Newton iteration to invert
FDEM data is proposed, while in [6] an efficient implementation of the Gauss–Newton method
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via generalized Krylov subspaces has been developed. We remark that in the papers cited
above, the nonlinear model is one-dimensional, also in case of two-dimensional reconstruc-
tions, which were obtained by juxtaposing one-dimensional approximate solutions. To the best
of our knowledge, two- or three-dimensional nonlinear models have not yet been studied and
analyzed in depth because they are computationally challenging as one needs to consider the
variation of the soil properties in two or three spatial variables, making the problem extremely
large.

In this paper, we focus on the case of measurements at low induction number and we
analyze a two-dimensional linear model, that is derived from a three-dimensional electromag-
netic one. Such a three-dimensional linear forward EM model that computes the apparent
conductivity using integral equations has been developed in [36] starting from Maxwell’s
equations. Other contributions were given in [40, 41], where the three-dimensional integral
equation is transformed into a linear system, considering a discretization of the ground into
prismatic cells.

We show that, for deriving the two-dimensional model using vertical magnetic dipoles,
the integration along the y-axis can be evaluated in terms of elliptic integrals. In other cases,
such as when using horizontal magnetic dipoles, the kernel functions are very complicated,
and numerical integration is required. Since the two integral equations of the model contain
the same unknown, we will consider just vertical magnetic dipoles. The horizontal case will
not be covered in this paper, and it will be a topic of future research.

The numerical approach proposed here for the forward problem is based on the numerical
approximation of the integral appearing in the model to obtain the approximated EM data.
To this end, we opt for a Gauss–Legendre quadrature rule, but other kinds of formulae can
be applied; see, for example, [19]. After that, we focus on the inversion procedure. By a
collocation method, we discretize our problem leading to a linear system of equations to be
solved by minimizing the residual function, i.e., the difference between the reconstructed and
the measured data. The main difficulty is the severe ill-posedness of the problem. This means
that it either has no solution in the desired class, or admits infinitely many solutions, or is
such that small errors in the data may lead to arbitrarily large errors in the solution. For this
reason, the problem needs to be regularized. In this paper, we apply the well-known Tikhonov
regularization which includes an additional term in the least-squares problem to introduce prior
information about the solution. Different regularization matrices can be used. The L-curve
method is applied to choose the regularization parameter. Moreover, we compare this choice
of the parameter with the optimal one.

We remark that, from the same three-dimensional model, we can derive the one-dimen-
sional model studied in [34] and analyzed in [20], in which the authors studied the problem
in different function spaces and applied collocation methods to lead to a linear system of
equations combined with regularization techniques. In [17, 18], a numerical method based on
the Riesz representation theorem operating in a reproducing kernel Hilbert space to compute
the minimal-norm solution in the presence of boundary constraints was proposed.

The structure of this paper is as follows. In Section 2, the derivation of the two-dimensional
model from the three-dimensional model is presented. The study of the forward model by
approximating the integral in the equation is shown in Section 3, while the numerical approach
for solving the inverse problem is reported in Section 4. Finally, Section 5 presents several
numerical tests on synthetic data which show the effectiveness of the whole procedure. The
conclusions are summarized in Section 6.

2. Derivation of the two-dimensional electromagnetic model. As we said in the
previous section, we focus on the horizontal orientation of the coils, that is, on the vertical
magnetic dipole VMD. The three-dimensional EM-LIN model is a first-kind integral equation
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defined as

(2.1) g(rT , rR;h) = − 16πρ

ωµ0mz

∫
V
GHz(r, rR;h)EHz(r, rT ;h)σ(r) d3r,

where g is the vector of the observed apparent conductivity (i.e., the data recorded by the
device), r = [x, y, z]T is the position vector in the subsurface, rT = [xT , yT , zT ]T and
rR = [xR, yR, zR]T are the position vectors of the transmitter and the receiver, respectively,
ρ is the inter-coil distance, ω is the angular frequency of the device, and µ0 is the magnetic
permeability of the free space. Let us assume that the device is positioned at height h above the
ground. Then, h = zT = zR. The magnetic momentum of the transmitter in the z-direction
is represented by mz , σ(r) is the conductivity distribution of the subsurface at position r,
and V is the three-dimensional domain of σ(r). The magnetic dyadic Green’s function of the
half-space is defined as

GHz(r, rR;h) =
1

4π

[
− y − yR
‖r− rR‖3

~i+
x− xR
‖r− rR‖3

~j

]
,

and the electric field function induced within the earth is computed by

EHz(r, rT ;h) = −ωµ0mz

4π

[
− y − yT
‖r− rT ‖3

~i+
x− xT
‖r− rT ‖3

~j

]
,

where

‖r− rn‖ =
√

(x− xn)2 + (y − yn)2 + (z + h)2, n = T,R,

and the unit vectors ~i and ~j represent the x- and y-directions. Throughout the paper, the
symbol ‖ · ‖ stands for the Euclidean norm; h and ρ are measured in meters.

REMARK 2.1. Notice that the expressions for the electric field and the Green’s function
have the same geometrical dependence. This means that interchanging rT and rR does not
change equation (2.1).

After some algebraic steps, the equation in (2.1) can be explicitly represented as

g(xT , yT , xR, yR;h)

=
ρ

π

∫ +∞

0

∫ +∞

−∞

∫ +∞

−∞

(x− xT )(x− xR) + (y − yT )(y − yR)

‖r− rT ‖3‖r− rR‖3
σ(x, y, z) dx dy dz.

(2.2)

If we integrate the model (2.2) along the y-direction, we obtain the two-dimensional model
corresponding to the VMD configuration that has been studied in [41].

Following [39], the structure of the two-dimensional model implies that the electrical
conductivity does not vary along the y-direction; see Figure 2.1. For simplicity, we also
assume yT = yR = 0. The integral equation of the two-dimensional model is

(2.3) g(xT , xR;h) =
ρ

π

∫ +∞

0

∫ +∞

−∞
k(x, z, xT , xR;h)σ(x, z) dx dz,

where ρ = |xT − xR| and the two-dimensional kernel is obtained by integrating with respect
to y the three-dimensional kernel appearing in (2.2), that is,

k(x, z, xT , xR;h)

=

∫ +∞

−∞

(x− xT )(x− xR) + y2

[(x− xT )2 + y2 + (z + h)2]3/2[(x− xR)2 + y2 + (z + h)2]3/2
dy.
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FIG. 2.1. Representation of the two-dimensional model: the device moves along the x-direction when the
y-direction is fixed. The vertical section of the subsoil of interest is the domain [a, b]× [0, z0].

Defining

c2 := c2(x, z, xT ;h) = (x− xT )2 + (z + h)2,(2.4)

p2 := p2(x, z, xR;h) = (x− xR)2 + (z + h)2,(2.5)

the above kernel can be compactly rewritten as

k(x, z, xT , xR;h) =

∫ +∞

−∞

(x− xT )(x− xR) + y2

[c2 + y2]3/2[p2 + y2]3/2
dy.

We observe that the integrating function is even in a symmetric domain, therefore, we can
compute the integral between 0 and∞, doubling the result, i.e.,

k(x, z, xT , xR;h) = 2

∫ +∞

0

(x− xT )(x− xR) + y2

[c2 + y2]3/2[p2 + y2]3/2
dy.

To compute the integral above we consider three different cases, in which elliptic integrals of
the first and second kinds are involved:

• if c2 > p2, i.e., |x− xT | > |x− xR|, then

k(x,z, xT , xR;h)

=
2

cp2(c2 − p2)2

[[
(c2 + p2)(x− xT )(x− xR)− 2c2p2

]
E

(
1− p2

c2

)
+p2

[
c2 + p2 − 2(x− xT )(x− xR)

]
K

(
1− p2

c2

)]
;

• if c2 < p2, i.e., |x− xT | < |x− xR|, then

k(x,z, xT , xR;h)

=
2

pc2(c2 − p2)2

[[
(c2 + p2)(x− xT )(x− xR)− 2c2p2

]
E

(
1− c2

p2

)
+c2

[
c2 + p2 − 2(x− xT )(x− xR)

]
K

(
1− c2

p2

)]
;
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• if c2 = p2, then we are computing the electrical conductivity in a point x exactly in
the middle between xT and xR, i.e., |x− xT | = |x− xR|. In this case, we have

k(x, z, xT , xR;h) =
π

8c5
[
c2 + 3(x− xT )(x− xR)

]
.

In the above formulas, K(q2) denotes the complete elliptic integral of the first kind and E(q2)
the complete elliptic integral of the second kind defined as

K(q2) =

∫ 1

0

1√
(1− t2)(1− q2t2)

dt, E(q2) =

∫ 1

0

√
1− q2t2√
1− t2

dt, q2 < 1.

Let us remark that the dependence of the kernel k on z and h comes from the quantities c2 and
p2 defined in (2.4) and (2.5), respectively.

3. Numerical approximation for the forward model. First of all, we need to solve the
forward model to obtain the measurements g(xT , xR;h). In applications, we are interested
in a limited zone since we cannot take measurements in an unbounded domain. For this
reason, we consider the two-dimensional domain [a, b]× [0, z0], with z0 > 0; see Figure 2.1.
Let us assume that the conductivity vanishes from a certain depth z0 onward. Therefore,
equation (2.3) becomes

(3.1) g(xT , xR;h) =
ρ

π

∫ z0

0

∫ b

a

k(x, z, xT , xR;h)σ(x, z) dx dz.

In general, the integral above cannot be computed analytically, so we approximate the
integrals appearing in (3.1) by Gauss–Legendre quadrature formulae with n1 and n2 nodes,
respectively [26]. The Gauss–Legendre quadrature rule is a well-known formula used for
approximating the definite integral of a function on the interval [−1, 1], but it can be suitably
adapted to our case in the following form

ρ

π

∫ z0

0

∫ b

a

k(x, z, xT , xR;h)σ(x, z) dx dz ≈ Gn1,n2
,

with

Gn1,n2
:=

ρ

π

n1∑
i1=1

n2∑
i2=1

λi1µi2k(xi1 , zi2 , xT , xR;h)σ(xi1 , zi2),

xi1 = a+
b− a

2
(si1 + 1), λi1 =

b− a
2

wi1 , i1 = 1, . . . , n1,

zi2 =
z0

2
(s̃i2 + 1), µi2 =

z0

2
w̃i2 , i2 = 1, . . . , n2,

where si1 , s̃i2 ∈ (−1, 1) are the zeros of the Legendre orthogonal polynomial in [−1, 1]
and wi1 , w̃i2 are the corresponding weights for the n1 and n2 Gauss–Legendre formula,
respectively. This choice of nodes and weights is the only one that allows an m-point
quadrature rule to integrate exactly polynomials of degree 2m− 1.

We report now two different examples to show the effectiveness of the quadrature for-
mula and the accuracy of the approximated electromagnetic data, i.e., the measurements
g(xT , xR;h). For simplicity, we have considered the same number of nodes in the two
variables, i.e., n1 = n2.
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EXAMPLE 3.1. In this first example, we consider σ(x, z) = e(−(0.3(x−4)2+2(z−1.5)2))

as the function for the conductivity profile. The transmitter and receiver are positioned at
xT = 2 and xR = 3, the height at which the measurements are taken is fixed at h = 1, and
the integration limits are a = 0, b = 10, and z0 = 5. In this case, we have

(3.2) g(xT , xR;h) =
ρ

π

∫ 5

0

∫ 10

0

k(x, z, xT , xR;h)e(−(0.3(x−4)2+2(z−1.5)2)) dx dz,

where the kernel k(x, z, xT , xR;h) is defined in Section 2.

As we do not know the exact analytical value of integral (3.2), we consider as the “exact”
solution the approximation G512,512. Table 3.1 shows in the second column the results of
the approximated integral Gn1,n2

for different values of n1 = n2. Moreover, the error
|G512,512 − Gn1,n2

| between the approximation and the “exact” solution is displayed in the
last column.

TABLE 3.1
Approximation of g(xT , xR;h) for Example 3.1.

n1 = n2 Gn1,n2
|G512,512 − Gn1,n2

|
4 0.03856252983724 4.24 · 10−3

8 0.03466252927568 3.45 · 10−4

16 0.03431463330623 3.28 · 10−6

32 0.03431791466368 1.47 · 10−9

64 0.03431791613395 1.05 · 10−13

As it is expected, by increasing the number of nodes, the error decreases, obtaining an
error of order 10−13 with n1 = n2 = 64.

EXAMPLE 3.2. In this example, we consider the same profile for the conductivity, but we
change the position of the transmitter and the receiver to xT = 4, xR = 5, and h = 0.5. The
domain of integration remains the same.

Again, the exact solution g(xT , xR;h) is not available, so we consider as “exact” solution
the approximation G512,512. From the second and third columns of Table 3.2, we see that,
similarly as above, by increasing the number of nodes, the error decreases, obtaining an error
of order 10−14 with n1 = n2 = 128.

These results suggest that for any position of the device, the approximation of the right–
hand side g is accurate enough to proceed with the inversion procedure.

TABLE 3.2
Approximation of g(xT , xR;h) for Example 3.2.

n1 = n2 Gn1,n2
|G512,512 − Gn1,n2

|
4 0.08096960456951 1.04 · 10−2

8 0.06769701833225 2.86 · 10−3

16 0.07000055270036 5.52 · 10−4

32 0.07054715911392 5.56 · 10−6

64 0.07055271762885 2.71 · 10−9

128 0.07055272034261 2.08 · 10−14
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4. Inversion algorithm. We now write (3.1) in matrix form. We collocate the equation
at the nodes xTj1

∈ [a, b] and xRj1
= xTj1

+ ρ, hj2 ∈ [0, hmax], with j1 = 1, . . . ,m1 and
j2 = 1, . . . ,m2. In this way, our discretized integral equation (3.1) can be written as

ρ

π

n1∑
i1=1

n2∑
i2=1

λi1µi2k(xi1 , zi2 , xTj1
, xRj1

;hj2)σ(xi1 , zi2) = g(xTj1
, xRj1

;hj2),

and the corresponding linear system of equations can be written as

M̂σ = g,

where M̂ is a fourth-order tensor with entries

(M̂)i1,i2,j1,j2 =
ρ

π
λi1µi2k(xi1 , zi2 , xTj1

, xRj1
;hj2),

while σ and g are n1×n2 andm1×m2 matrices, respectively, with entries (σ)i1,i2 = σ(xi1 , zi2)
and (g)j1,j2 = g(xTj1

, xRj1
;hj2).

To simplify the resolution of the system, we rearrange the matrices and the tensor in
lexicographical order obtaining the linear system of equations

(4.1) Mσ = g,

where M is the m1m2 × n1n2 coefficient matrix and σ and g are n1n2 and m1m2 vectors,
respectively.

For simplicity, we consider N := n1 = n2 = m1. We vary m2, that is, the number
of heights above the ground at which the measurements are collected. We remark here that,
in applications, m2 is much smaller than N , since the device used for the measurements is
hand-used. This means that we will always deal with a very underdetermined system and,
consequently, there will exist infinitely many solutions of (4.1).

A solution σ of the linear system (4.1) exists only if the right-hand side g belongs to
the range of M . In real applications, the data values are affected by perturbations due to
measuring and rounding errors, so one cannot be sure that the perturbed right-hand side lies in
the range of M . In other words, the system (4.1) is an ill-posed problem. Therefore, we solve
the least-squares minimization problem with a nonnegative constraint on the solution, i.e.,

min
σ∈Rn1n2

‖Mσ − g‖2,

s.t. σi ≥ 0.

Each component of σ has to be nonnegative, since σ is the physical quantity that represents
the electrical conductivity. Furthermore, the system is very ill-conditioned so it is necessary
to introduce a regularization term [24]. In our numerical experiments, we use Tikhonov
regularization, that is,

min
σ∈Rn1n2

‖Mσ − g‖2 + ν‖Lσ‖2,

s.t. σi ≥ 0,
(4.2)

where ν > 0 is the regularization parameter and L is a regularization matrix.
Let us remark that a closed form of the solution of the constrained problem (4.2) generally

is not available. Many authors have developed different strategies to solve constrained least-
squares problems [9, 10]. In this paper, we compute an approximation of the nonnegative
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exact solution in the following way. Let Ω denote the nonnegative cone, and let PΩ be the
orthogonal projector from Rn to Ω. It is trivial to see that PΩ(x), with x ∈ Rn, can be
computed by setting all negative entries of x to zero. As an approximation of the nonnegative
solution of (4.2) we consider

σΩ = PΩ((MTM + νLTL)−1MTg),

that is, we compute an approximation of the solution by solving the unconstrained Tikhonov
problem with a post-projection on the nonnegative cone. The vector σΩ generally is a
good approximation of σexact, nevertheless there exist other methods to compute accurate
approximations of σexact, for example modulus-based iterative methods; see, e.g., [1, 49]. In
the following, in order not to burden the notation, we write σ in place of σΩ.

The accuracy of the reconstruction depends on the choice of ν. In our experiments, we
consider eight values of ν ∈ [10−5, 5 · 10−2], and we pick the parameter between them using
two methods. In our first approach, since we deal with synthetic data, we know the exact
distribution of the electrical conductivity, so we can select the “best” regularization parameter,
that is, the one that minimizes the error between the reconstruction σν and the exact solution
σexact

νbest = arg min
ν
‖σν − σexact‖.

We also tested the L-curve criterion [29, 30, 31], since it can be used in real-world scenarios,
i.e., when the noise level and the exact solution are unknown. It determines the regulariza-
tion parameter as the corner, i.e., the point of maximum curvature, of the log-log plot of
the (semi)norm ‖Lσν‖ of the regularized solution against the corresponding residual norm
‖Mσν − g‖, where σν is the approximated solution corresponding to the trial regularization
parameter ν.

The matrix L incorporates desirable properties for the solution. It is typically a diagonal
weighting matrix (for instance, the identity matrix) or a discrete approximation of a differential
operator. For two-dimensional problems, such as in image restoration, one may consider

D1,⊗ =

[
In2 ⊗D1

D1 ⊗ In2

]
∈ R2n2(n1−1)×n1n2 ,

where ⊗ denotes the Kronecker product, In2
is the identity matrix of order n2, and

D1 =

−1 1
. . . . . .

−1 1

 ∈ R(n1−1)×n1

is an approximation to the first derivative operator.
We remark that the matrix D1 provides a good regularization operator in one-dimensional

problems. If it is used in two-dimensional ones, then numerical experiments show that some
artifacts, like vertical lines, appear in the recovered solutions. These are not present when the
regularization matrix D1,⊗ is used. This is due to the fact that the latter matrix considers not
only the “vertical” direction but also the “horizontal” one.

REMARK 4.1. When we use L = D1,⊗ in the regularization term of equation (4.2), we
substitute L by the upper triangular matrix R ∈ Rn1n2×n1n2 obtained from the economy-size
QR decomposition of L [28], since the orthogonal matrix Q has no effect on the norm.

Finally, in this paper, we perform numerical simulations with synthetic data, that is, we
know the exact solution, and the forward model generates the exact measurement datasets ĝ.
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We add to the data a Gaussian noise vector to simulate experimental errors

g = ĝ + e = ĝ +
ε‖ĝ‖
√
m1m2

w,

where w is a normally distributed random vector with zero mean and unit variance and ε
stands for the noise level.

5. Numerical experiments. In all experiments, we consider the two-dimensional domain
[a, b]× [0, z0], with a = 0, b = 10, and z0 = 5. We fix the inter-coil distance ρ = 1, which
is typical for the EM38 device. Of course, other configurations can be used and give similar
results.

All simulations have been performed using MATLAB version 9.15 (R2023b). The most
expensive part of the computations is building the tensor M̂ , because of the expression of
the kernel of the two-dimensional model. The matrices were constructed on an Intel® Xeon®

Gold 6136 CPU 3.00GHz processor with 128GB of RAM and 32 cores, running the Ubuntu
GNU/Linux operating system. Then, we solve the inverse problem on a laptop computer Intel®

Core® i7 CPU 2.80GHz, with 16GB of RAM and 8 cores, running the Debian GNU/Linux
operating system.

We consider three different profiles for the conductivity to investigate the performances
of the proposed algorithm. We gauge accuracy through the Relative Reconstruction Error

RRE(σ) =
‖σ − σexact‖
‖σexact‖

.

EXAMPLE 5.1. In this first example, we consider the following distribution for the
electrical conductivity

σ(x, z) = e−(0.3(x−4)2+2(z−1.5)2),

that visually corresponds to a sphere with an increasing value of the conductivity towards
the center; see Figure 5.1(a). We set N = 32 and m2 = 5, with hmax = 1.3 meters. In this
case, the coefficient matrix M in system (4.1) is a 160× 1024 matrix with condition number
κ2(M) ≈ 1012. We first consider a noise level of 10−4, and we use the identity matrix as
regularization operator.

In Figure 5.1(a) we report the exact solution, while Figure 5.1(b) and Figure 5.1(c) show
the reconstructions obtained with the best regularization parameter, νbest, and the one with the
regularization parameter estimated by the L-curve, νcor, respectively. Both reconstructions
are very accurate due to the “small” amount of noise present in the data. The first row of
Table 5.1 shows the estimated regularization parameters νbest and νcor and the RRE for the
corresponding regularized solutions. We observe that in both cases we obtain a small error
when the large ill-conditioning of the problem is taken into account.

We now compare the application of the standard Tikhonov regularization method with the
one with a general regularization term. More precisely, we test as regularization matrices the
identity matrix I and D1,⊗. We add a noise level of 10−3 to the exact data. Figure 5.2 shows
the different reconstructions obtained by the best regularization parameter νbest. To illustrate
that D1,⊗ is a very effective regularization operator, we plot in Figure 5.2(c) a single column
of the reconstruction, and we compare it with the exact solution. We can see that, even if the
value of the maximum is not recovered, we are able to reproduce accurately the shape of the
conductivity profile, correctly identifying the depth at which the maximum is placed.
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FIG. 5.1. Reconstructions of the electrical conductivity for Example 5.1 from data generated by adding a noise
level of 10−4: the plots show the exact solution (a), the approximate solution corresponding to the best regularization
parameter νbest (b), and the approximate solution corresponding to the regularization parameter νcor estimate by the
L-curve (c).
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FIG. 5.2. Reconstructions of the electrical conductivity for Example 5.1 from data generated by adding a noise
level of 10−3. The plots show the approximate solution corresponding to the best regularization parameter νbest
with regularization matrix I (a) and D1,⊗ (b). The panel (c) reports the 13-th column of the reconstruction of the
electrical conductivity obtained with reg. matrix D1,⊗ (blue dashed line) compared to the exact solution (gray solid
line).

We can notice that, in all cases where the algorithm is not able to recover the maximum
value of the conductivity, the linear system is strongly underdetermined. Furthermore, the
reason for this may also reside in the over-smoothing effect of Tikhonov regularization.
However, the results are acceptable enough since we are able to find the position and the
shape of the sphere. Improved accuracy often can be achieved by either using non-smooth
regularization terms (e.g., `1-norm [8]) or by employing iterative regularization methods like
iterated Tikhonov [7].

EXAMPLE 5.2. We consider the electrical conductivity distribution

σ(x, z) = e−(0.7(x−2.5)2+2(z−2.5)2s + e−(0.7(x−8)2+3(z−1.5)2),

which visually corresponds to two spheres; see Figure 5.3(a). We set N = 64 and 15 heights
for the measurements, i.e., m2 = 15, with hmax = 1.5 meters. We first consider a noise
level of ε = 10−4, and then we set ε = 10−3. The results for the different noises levels and
regularization matrices are reported in Table 5.1.

Figures 5.3(b) and (c) display the best reconstructions, i.e., with νbest, obtained with the
regularization matrix D1,⊗ for the two different levels of noise. In this case, the reconstruction
of the exact solution is more challenging since we deal with two conductive objects placed
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relatively close. The algorithm is able to find the shape of the spheres and the depth at which
they are located, even if the values of the conductivity are not exactly computed.

We recall here that we are solving a linear system of dimensions 960 × 4096 with a
condition number of the order of 1016. We note that this value may be an effect of round-off
errors introduced when computing the condition number since the singular values of M
decay very quickly to zero. These results illustrate the effectiveness of the algorithm for
ill-conditioned and underdetermined problems.
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FIG. 5.3. Reconstructions of the electrical conductivity for Example 5.2 from data generated by adding a noise
level of 10−4 (b) and 10−3 (c), compared to the exact solution (a). The regularization matrix is D1,⊗ and the
regularization parameter is νbest.

EXAMPLE 5.3. As a last example, we consider a test function for the electrical conductiv-
ity that simulates the presence of a layer in the subsoil in which the electrical conductivity is
completely different with respect to the environment; see Figure 5.4(a).

As above, we set N = 64 and m2 = 15, so the system matrix is the same as the previous
example, i.e., the dimensions of M are 960× 4096 and its condition number is roughly equal
to 1016.

In Figure 5.4(a) we report the exact profile, while the solution obtained with νbest with a
noise level of 10−3 and regularization matrix I is shown in Figure 5.4(b). Moreover, a plot of
a single column of the solution is depicted in Figure 5.4(c).
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FIG. 5.4. Reconstructions of the electrical conductivity for Example 5.3 from data generated by adding a noise
level of 10−3 (b), compared to the exact solution (a). The regularization matrix is I and the regularization parameter
is νbest. Panel (c) reports the reconstruction of the 38-th column (blue dashed line) as well as the exact solution (gray
solid line).
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In Figure 5.4(b) we can observe that the position of the layer in the subsoil is correctly
identified. Let us stress that, in this example, we have a nonsmooth single profile of the con-
ductivity; see Figure 5.4(c). We remark that also for nonsmooth variation of the conductivity
in the profile of the exact solution, we can obtain acceptable results. In particular, the value of
the maximum of the conductivity is almost correctly identified in the center of the layer. For
instance, Figure 5.4(c) depicts the 38-th column of the reconstruction compared to the exact
step solution.

The RRE for all performed simulations as well as the regularization parameters νbest
and νcor for varying dimensionality, noise level, and regularization matrix, are displayed in
Table 5.1.

TABLE 5.1
RRE and regularization parameters νbest and νcor for Example 5.1, Example 5.2, and Example 5.3.

N m2 ε L νbest RRE(σbest) νcor RRE(σcor)

32 5 10−4 I 5 · 10−5 0.2781 1 · 10−4 0.2865
Example 5.1 32 5 10−3 I 1 · 10−4 0.3067 5 · 10−5 0.3596

32 5 10−3 D1,⊗ 5 · 10−4 0.3606 5 · 10−3 0.4988
64 15 10−4 I 1 · 10−5 0.4653 5 · 10−3 0.7369

Example 5.2 64 15 10−4 D1,⊗ 1 · 10−5 0.4326 1 · 10−4 0.6033
64 15 10−3 I 5 · 10−5 0.5907 5 · 10−3 0.7370
64 15 10−3 D1,⊗ 5 · 10−5 0.4631 5 · 10−3 0.9191
32 15 10−3 I 1 · 10−4 0.6308 1 · 10−3 0.6973

Example 5.3 32 15 10−3 D1,⊗ 5 · 10−4 0.6486 1 · 10−2 0.7457
64 15 10−3 I 5 · 10−5 0.6314 5 · 10−3 0.8107
64 15 10−3 D1,⊗ 1 · 10−4 0.6777 1 · 10−3 0.6894

6. Conclusions. In this paper we analyzed a two-dimensional model to study the subsoil,
mathematically represented by a linear integral equation of the first-kind, which describes
the interaction between the soil and an electromagnetic device. A numerical resolution of
the forward and inverse problems has been proposed with the aim of reconstructing the
electrical conductivity distribution of the subsoil. For the forward model, a Gauss–Legendre
quadrature formula for approximating the EM data has been applied. On the other hand,
a collocation method, combined with Tikhonov regularization with different regularization
matrices and rules for choosing for the regularization parameter, has been employed for the
inverse problem. Numerical experiments investigated the performance of the method and
confirmed the effectiveness of the whole approach. Extensions to the three-dimensional case
and a possible reduction of the computational cost are presently being developed by the
authors.
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