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QUASI-MONTE CARLO AND DISCONTINUOUS GALERKIN∗
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Abstract. In this study, we consider the development of tailored quasi-Monte Carlo (QMC) cubatures for
non-conforming discontinuous Galerkin (DG) approximations of elliptic partial differential equations (PDEs) with
random coefficients. We consider both the affine and uniform and the lognormal models for the input random field
and investigate the use of QMC cubatures to approximate the expected value of the PDE response subject to input
uncertainty. In particular, we prove that the resulting QMC convergence rate for DG approximations behaves in the
same way as if continuous finite elements were chosen. Notably, the parametric regularity bounds for DG, which
are developed in this work, are also useful for other methods such as sparse grids. Numerical results underline our
analytical findings.
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1. Introduction. In this paper, we consider the design of tailored quasi-Monte Carlo
(QMC) rules for a class of non-conforming discontinuous Galerkin (DG) methods used to
discretize an elliptic partial differential equation (PDE) with a random diffusion coefficient.
More precisely, we investigate the class of interior penalty DG (IPDG) methods, and we show
that there exist constructible rank-1 lattice rules satisfying rigorous error bounds independently
of the stochastic dimension of the problem.

Let D ⊂ Rd, d ∈ {1, 2, 3}, be a physical domain with Lipschitz boundary, and let
(Ω,Γ,P) be a probability space. Let us consider the problem of finding u : D×Ω→ R which
satisfies {

−∇ · (a(x, ω)∇u(x, ω)) = f(x), x ∈ D,
u(x, ω) = 0, x ∈ ∂D,

(1.1)

for almost all ω ∈ Ω. Many studies in uncertainty quantification typically consider one of the
following two models for the input random field:

1. the affine and uniform model (cf., e.g., [9, 13, 15, 19, 39, 40, 49, 50])

a(x, ω) = a0(x) +

∞∑
j=1

yj(ω)ψj(x), x ∈ D, ω ∈ Ω,

where y1, y2, . . . are independently and identically distributed random variables with
uniform distribution on [− 1

2 ,
1
2 ];

2. the lognormal model (cf., e.g., [21, 22, 23, 24, 30, 38, 51])

a(x, ω) = a0(x) exp

( ∞∑
j=1

yj(ω)ψj(x)

)
, x ∈ D, ω ∈ Ω,

where y1, y2, . . . are independently and identically distributed standard normal ran-
dom variables and a0(x) > 0.
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Here, (ψj)j≥1 are assumed to be real-valued L∞-functions on D such that

∞∑
j=1

‖ψj‖L∞ <∞.

In the study of uncertainty quantification for PDEs, a natural quantity to investigate is the
expected value

E[u] :=

∫
Ω

u(·, ω) dP(ω).

In practice, the problem needs to be discretized in several ways before it is possible to
approximate this quantity numerically. The infinite-dimensional input random field is first
replaced by a finite-dimensional one, meaning that we end up analyzing a dimensionally
truncated PDE solution us. The dimensionally truncated solution of the PDE is replaced by a
finite element solution us,h, and the high-dimensional integral needs to be approximated by an
s-dimensional cubature rule with n cubature nodes Qs,n. The overall error is then comprised
of dimension truncation error, finite element error, and cubature error as

‖E[u]−Qs,n(us,h)‖ ≤ ‖E[u− us]‖+ ‖E[us − us,h]‖+ ‖E[us,h]−Qs,n(us,h)‖,

for some appropriately chosen norm ‖ · ‖. We focus on the cubature error and discuss the
spatial discretization error briefly in Section 5.3. We remark that the order of the last two
error contributions—the finite element error and cubature error, respectively—can be flipped
when the diffusion coefficient is represented using a sequence of bounded random variables
(cf., e.g., [36, 37, 39]), but applying this tactic for the lognormal model would require making
additional assumptions to ensure that the QMC approximation of E[‖us,h‖H2 ] is convergent.
Hence, in this paper, we perform the QMC analysis for the dimensionally truncated, finite
element solution of the parametric PDE.

In recent years, QMC methods have been demonstrated to be very effective at approxi-
mating the response statistics of PDE problems such as (1.1). The success of modern QMC
theory for uncertainty quantification can largely be attributed to the introduction of weighted
spaces (in the sense of Sloan and Woźniakowski [54] and Hickernell [32]) used to analyze
the cubature error. While traditional QMC methods can also exhibit faster-than-Monte-Carlo
convergence rates, as a general rule, the convergence rates of classical QMC methods have
exponential dependence on the dimension of the integration problem in the unweighted set-
ting [53]. However, QMC error bounds developed in weighted spaces for integrands satisfying
certain moderate smoothness and anisotropy conditions can be shown to be independent of the
stochastic dimension while retaining their faster-than-Monte-Carlo convergence rates. For a
detailed survey of the development of QMC methods over the past few decades, see [14].

QMC methods are well suited for large scale computations since they are trivial to
parallelize. Other advantages include the possibility to generate the cubature point sets for
certain classes of QMC methods, such as randomly shifted rank-1 lattice rules or digital nets,
on the fly. Randomization of QMC rules also enables the computation of practical error
estimates. These features make QMC methods ideal for heavy-duty uncertainty quantification
compared to regular Monte Carlo methods (slow convergence rate) or sparse grids (not easily
parallelizable). QMC methods have been applied successfully to many problems such as
Bayesian inverse problems [12, 29, 47, 48], spectral eigenvalue problems [20], optimization
under uncertainty [25, 26, 27], the Schrödinger equation [56], the wave equation [17], problems
arising in quantum physics [28], and various others.
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QMC error bounds in the weighted space setting have the following generic form:

root mean squared error ≤ Cγ,n,s‖G‖s,γ ,

where G : [0, 1]s → R denotes the integrand, γ = (γu)u⊆{1,...,s} denotes a collection of
positive weights, Cγ,n,s > 0 denotes the (shift-averaged) worst case error depending on
the weights γ, the number of QMC nodes n, and the dimension s, while ‖ · ‖s,γ denotes
the norm of an appropriately chosen weighted Sobolev space. The analysis of the cubature
error for PDE uncertainty quantification typically consists of the following steps: first, the
parametric regularity of the integrand needs to be estimated by deriving a priori upper bounds
for the higher-order partial derivatives ∂νG with respect to the (uncertain) variables. In
consequence, these a priori upper bounds can then be used to estimate the weighted Sobolev
norm ‖G‖s,γ of the integrand. Finally, the weights γ in the QMC error bound serve essentially
as free parameters and can be chosen freely to optimize the cubature error bound. Typically,
one chooses the weights in such a way that Cγ,n,s‖G‖s,γ ≤ Cγ,n < ∞ for some constant
Cγ,n > 0 not dependent on s, ensuring that the error rate of the resulting cubature rule can
be bounded independently of the dimension s. From a practical point of view, the weights
that minimize the error bound can be used as inputs to the so-called component-by-component
(CBC) algorithm [10, 42], which produces a QMC rule satisfying the theoretically derived error
bound. For a detailed description of this procedure, the reader is referred to the surveys [36, 37].
There also exist freely available software [6, 35] for the construction of QMC point sets.

A common feature of virtually all of the aforementioned QMC literature related to
PDE uncertainty quantification is that the QMC rule is designed for the non-discretized
PDE problem (1.1), whereas, in practical computations, one only has access to a discrete
approximation of the PDE system. Of course, as long as one uses a conforming finite element
(FE) method to perform the discretization of the PDE, the parametric regularity of the non-
discretized PDE naturally transfers to the discretized PDE problem, and the theory remains
sound even for the discretized PDE system. However, in many cases it is preferable to consider
non-conforming FE methods such as DG methods (e.g., see the books [11, 16, 31, 33, 46]
for a comprehensive overview and [2] for a unified analysis framework for elliptic PDEs
using DG) to solve PDEs with uncertain coefficients. Using DG methods, the inter-element
continuity constraint of conforming FE methods is dropped, and concatenations of arbitrary
local polynomials with support in only one element can be used as test and trial functions.
This property resembles the finite volume (FV) approach, in which the solution per element is
approximated by a local constant. As a consequence, DG methods have similar parallelization
properties as FV (but do not need any reconstructions to achieve higher order). Moreover,
the problem of hanging nodes is intrinsically bypassed in the DG framework allowing for
more general meshes than conforming FE; see [4]. Beyond that, DG directly supports hp
refinement, where both the mesh and the local degree of approximating polynomials can
be adapted locally; see [4, 5, 44]. Lastly, DG comes with an intuitive notion of local mass
conservation, since it is based on inter-element fluxes (and mass conservative in an element
itself). These advantages have made DG methods a popular tool for many applications. In
particular, they have been used in the field of computational fluid dynamics (see [52] for a
survey—notable mentions are DG methods for incompressible Navier–Stokes [7] and shallow-
water equations [1]), multicomponent reactive transport [55], and many more. However, since
discontinuous Galerkin methods are non-conforming, we cannot directly apply the existing
QMC theory.

This paper tries to bridge this theoretical gap. It is structured as follows: Notations and
preliminaries are introduced in Section 2. Section 3 describes randomly shifted lattice rules,
and Section 4 gives a brief overview on the analysis of conforming FE methods. DG in
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the QMC framework is presented in Section 5, and the corresponding parametric regularity
analysis is considered in Section 6. Numerical results, which confirm our theoretical findings,
are given in Section 7, while a short conclusion wraps up our exposition.

2. Notations, preliminaries, and assumptions. Let F := {ν ∈ NN
0 | |supp(ν)| <∞}

denote the set of all multi-indices with finite support supp(ν) := {j ∈ N | νj 6= 0}. Moreover,
we denote the order of a multi-index ν = (ν1, ν2, . . .) ∈ F by

|ν| :=
∑

j∈supp(ν)

νj .

We will also use the shorthand notation {1 : s} := {1, . . . , s}.
The relevant function space for our PDE problem will be V := H1

0 (D). Its dual space
V ′ = H−1(D) is understood with respect to the pivot space H := L2(D), which we identify
with its own dual. We define

‖v‖V := ‖∇v‖H .

Let U be a space of parameters and for the moment not specified. We consider the
variational formulation of the PDE problem (1.1): for all y ∈ U , find u(·,y) ∈ V such that∫

D

a(x,y)∇u(x,y) · ∇v(x) dx = 〈f, v〉 for all v ∈ V,(2.1)

where f ∈ V ′ and 〈·, ·〉 := 〈·, ·〉V ′,V denotes the duality pairing of V and V ′.
Uniform and affine setting. In the uniform and affine setting, we fix the set of parameters

to be U := [− 1
2 ,

1
2 ]N, define

a(x,y) := a0(x) +

∞∑
j=1

yjψj(x), x ∈ D, y ∈ U,

and assume the following:
(U1) a0 ∈ L∞(D) and

∑∞
j=1 ‖ψj‖L∞ <∞;

(U2) there exist amin, amax > 0 such that amin ≤ a(x,y) ≤ amax for all x ∈ D and
y ∈ U ;

(U3)
∑∞
j=1 ‖ψj‖

p
L∞ <∞ for some 0 < p < 1;

(U4) a0 ∈W 1,∞(D) and
∑∞
j=1 ‖ψj‖W 1,∞ <∞, where

‖v‖W 1,∞ := max{‖v‖L∞ , ‖∇v‖L∞};

(U5) the spatial domain D ⊂ Rd, d ∈ {1, 2, 3}, is a convex and bounded polyhedron.
We consider the expected value

E[u] =

∫
U

u(·,y) dy.

Lognormal setting. In the lognormal setting, we fix the set of (admissible) parameters
to be U := Uβ := {y ∈ RN :

∑
j≥1 βj |yj | <∞}, where β := (βj)j≥1 and βj := ‖ψj‖L∞ .

We model the input coefficient as

a(x,y) := a0(x) exp

( ∞∑
j=1

yjψj(x)

)
, x ∈ D, y ∈ U,(2.2)

and assume the following:
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(L1) a0 ∈ L∞(D) and
∑∞
j=1 ‖ψj‖L∞ <∞;

(L2) there hold minx∈D a0(x) > 0 and maxx∈D a0(x) <∞, and we define

amin(y) :=
(

min
x∈D

a0(x)
)

exp

(
−
∞∑
j=1

|yj |bj
)
,

amax(y) :=
(

max
x∈D

a0(x)
)

exp

( ∞∑
j=1

|yj |bj
)
,

for all y ∈ Uβ.
(L3)

∑∞
j=1 ‖ψj‖

p
L∞ <∞ for some 0 < p < 1;

(L4) a0 ∈W 1,∞(D) and
∑∞
j=1 ‖ψj‖W 1,∞ <∞;

(L5) the spatial domain D ⊂ Rd, d ∈ {1, 2, 3}, is a convex and bounded polyhedron.
Since the set U has full measure with respect to the infinite-dimensional product Gaussian

measure µG =
⊗∞

j=1N (0, 1), we can identify [50, Lem. 2.28]

E[u] =

∫
RN
u(·,y)µG(dy) =

∫
U

u(·,y)µG(dy).

Thus, it is sufficient to constrain our parametric regularity analysis of u(·,y) to the parameters
y ∈ U for which the parametric PDE problem is well-defined.

REMARK 2.1.
(i) Let (Ω,Γ,P) be a probability space. Every square-integrable Gaussian random field

Z : D × Ω → R with a continuous, symmetric, and positive definite covariance
function admits a Karhunen–Loève expansion

Z(x, ω) =

∞∑
j=1

√
λjyj(ω)ψj(x), yj

i.i.d.∼ N (0, 1),

where {ψj}∞j=1 constitutes an orthonormal basis for L2(D) and λ1 ≥ λ2 ≥ · · · ≥ 0
with limj→∞ λj = 0. However, not all random fields with such expansions are
Gaussian. Hence, we concentrate on a broader class of random fields characterized
by expansions of the form (2.2), which we refer to as the “lognormal model” for
brevity.

(ii) Assumption (L2) together with [21, Lem. 3.10] ensure that both amax(·) and 1/amin(·)
are integrable with respect to the Gaussian product measure

⊗
j≥1N (0, 1).

3. Quasi-Monte Carlo cubature. Since QMC methods can only be applied to finite-
dimensional integrals and the analysis of the dimension truncation error is independent of
the chosen spatial discretization scheme (cf., e.g., [18, 36]), we restrict our analysis to the
finite-dimensional setting in what follows.

3.1. Uniform and affine model. We are interested in solving an s-dimensional integra-
tion problem

Is(G) :=

∫
[−1/2,1/2]s

G(y) dy.

As our QMC estimator of Is(G), we take

Qran(G) :=
1

nR

n∑
i=1

R∑
r=1

G({ti + ∆(r)} − 1
2 ),
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where ∆(1), . . . ,∆(R) are i.i.d. realizations of a random variable ∆ ∼ U([0, 1]s), {·} denotes
the componentwise fractional part, 1

2 := [ 1
2 , . . . ,

1
2 ]T ∈ Rs, and

ti :=

{
iz

n

}
, for i ∈ {1, . . . , n},(3.1)

where z ∈ {0, . . . , n− 1}s is called the generating vector.
Let us assume that the integrand G belongs to a weighted, unanchored Sobolev space

with bounded first-order mixed partial derivatives, the norm of which is given by

‖G‖2s,γ :=
∑

u⊆{1:s}

1

γu

∫
[−1/2,1/2]|u|

(∫
[−1/2,1/2]s−|u|

∂|u|

∂yu

G(y) dy−u

)2

dyu.

Here, γ := (γu)u⊆{1:s} is a collection of positive weights, dyu :=
∏
j∈u dyj , and

dy−u :=
∏
j∈{1:s}\u dyj , for u ⊆ {1 : s}.

The following well-known result shows that it is possible to construct a generating vector
satisfying a rigorous error bound using a CBC algorithm [42] (see also [14]).

LEMMA 3.1 (cf. [36, Thm. 5.1]). Let G belong to the weighted unanchored Sobolev
space over [0, 1]s with weights γ = (γu)u⊆{1:s}. A randomly shifted lattice rule with n = 2m

points in s dimensions can be constructed by a CBC algorithm such that for R independent
random shifts and for all λ ∈ (1/2, 1], it holds that

√
E∆[|Is(G)−Qran(G)|2] ≤ 1√

R

(
2

n

∑
∅6=u⊆{1:s}

γλu%(λ)|u|
)1/(2λ)

‖G‖s,γ ,

where

%(λ) :=
2ζ(2λ)

(2π2)λ
.

Here, ζ(x) :=
∑∞
k=1 k

−x is the Riemann zeta function for x > 1, and E∆[·] denotes the
expected value with respect to uniformly distributed random shifts over [0, 1]s.

3.2. Lognormal model. We are interested in solving an s-dimensional integration prob-
lem

Iϕs (G) :=

∫
Rs
G(y)

s∏
j=1

ϕ(yj) dy =

∫
[0,1]s

G(Φ−1(w)) dw,

where ϕ : R→ R+ is the probability density function of the standard normal distribution, i.e.,

ϕ(x) :=
1√
2π

exp

(
− 1

2
x2

)
, x ∈ R,(3.2)

and Φ−1 denotes the inverse cumulative distribution function of
∏s
j=1 ϕ(yj).

As our QMC estimator of Is(G) we take

Qϕran(G) :=
1

nR

n∑
i=1

R∑
r=1

G(Φ−1({ti + ∆(r)})),

where ∆(1), . . . ,∆(R) are i.i.d. realizations of a random variable ∆ ∼ U([0, 1]s) and the
nodes t1, . . . , tn ∈ [0, 1]s are defined as in (3.1).
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Let us assume that the integrand G belongs to a special weighted Sobolev space in Rs
with bounded first-order mixed partial derivatives, the norm of which is given by

‖G‖2s,γ :=∑
u⊆{1:s}

1

γu

∫
R|u|

(∫
Rs−|u|

∂|u|

∂yu

G(y)

( ∏
j∈{1:s}\u

ϕ(yj)

)
dy−u

)2(∏
j∈u

$2
j (yj)

)
dyu,

where γ := (γu)u⊆{1:s} is a collection of positive weights, and we define the weight functions

$j(x) := exp(−αj |x|), αj > 0, j ∈ Z+.(3.3)

The parameters αj > 0 in (3.3) are for the moment arbitrary, but we will end up fixing their
values later on in order to obtain dimension-independent QMC convergence for the lognormal
model problem.

In analogy to the affine and uniform setting, the following well-known result gives an
error bound for a QMC rule based on a generating vector constructed using the CBC algorithm.

LEMMA 3.2 (cf. [41] and [22, Thm. 15]). Let G belong to the weighted function space
over Rs with weights γ = (γu)u⊆{1:s}, let ϕ : R → R+ be the standard normal density
defined by (3.2), and let the weight functions $j be defined by (3.3). A randomly shifted lattice
rule with n = 2m points in s dimensions can be constructed by a CBC algorithm such that for
R independent random shifts and for all λ ∈ (1/2, 1], it holds that

√
E∆[|Iϕs (G)−Qϕran(G)|2] ≤ 1√

R

(
2

n

∑
∅6=u⊆{1:s}

γλu
∏
j∈u

%j(λ)

)1/(2λ)

‖G‖s,γ ,

where

%j(λ) := 2

( √
2π exp(α2

j/η∗)

π2−2η∗(1− η∗)η∗

)λ
ζ(λ+ 1

2 ), η∗ :=
2λ− 1

4λ
.

Here, ζ(x) :=
∑∞
k=1 k

−x is the Riemann zeta function for x > 1, and E∆[·] denotes the
expected value with respect to uniformly distributed random shifts over [0, 1]s.

4. Conforming FE methods. In the case of conforming finite element discretizations for
the elliptic PDE problem, it is enough to analyze the parametric regularity of the continuous
problem. The parametric regularity results are inherited by the conforming FE solution. Below,
we briefly recap the main parametric regularity results for the affine and uniform as well as the
lognormal model.

Let us consider the weak formulation (2.1): for all y ∈ U , find u(·,y) ∈ V such that∫
D

a(x,y)∇u(x,y) · ∇v(x) dx = 〈f, v〉 for all v ∈ V.(4.1)

If we use a conforming FE method to solve the equation above, the variational formulation
stays the same:∫

D

a(x,y)∇uh(x,y) · ∇vh(x) dx = 〈f, vh〉 for all vh ∈ Vh,

where the test and trial space Vh is a finite-dimensional subspace of V .
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Uniform and affine setting. It was shown in [9] that the solution to (4.1) satisfies the
regularity bounds

(4.2) ‖∂νyu(·,y)‖V ≤ |ν|! bν
‖f‖V ′
amin

, b := (bj)j≥1, bj :=
‖ψj‖L∞
amin

,

for all finitely supported multi-indices ν ∈ F and y ∈ U . Since Vh is now a subspace of V , it
follows that the same regularity bound holds for the dimensionally truncated FE approximation:

(4.3) ‖∂νyus,h(·,y)‖V ≤ |ν|! bν
‖f‖V ′
amin

.

Lognormal setting. The corresponding regularity bound for the lognormal case is [22]

‖∂νyu(·,y)‖V ≤
|ν|!

(log 2)|ν|
βν
‖f‖V ′
amin(y)

, β := (βj)j≥1, βj := ‖ψj‖L∞ ,

for all finitely supported multi-indices ν ∈ F and y ∈ Uβ. Note that u can be again replaced
by a dimensionally truncated, conforming FE approximation us,h in the above inequality.

5. Discontinuous Galerkin FE methods. In this section, we analyze the DG method
provided that D ⊂ Rd is a convex polyhedron, ∅ 6= U ⊂ RN, f ∈ L2(D), and that there are

0 < amin(y) = min
x∈D̄

a(x,y) and amax(y) = max
x∈D̄

a(x,y) <∞.

This setup holds for both the uniform and affine and the lognormal cases.
In DG, the idea is to modify the variational formulation, and we can no longer exploit

conformity to obtain regularity bounds for the DG solutions to (1.1). This means that the
regularity analysis must be rewritten for the DG system, which will also affect the choice of
the optimal QMC rule for the computation of the expectation of the stochastic response.

The most prominent DG method for the model problem (1.1) is given by the family of
interior penalty (IPDG) methods. For these methods, we define

Vh = {vh ∈ L2(D) : vh|T ∈ Pk(T ) ∀T ∈ Th},

where Pk(T ) denotes the space of (multivariate) polynomials of (total) degree at most k on
T , and Th is supposed to be a member of a shape and contact regular mesh sequence in the
sense of [11, Def. 1.38]. Basically, this says that the mesh elements are neither distorted nor
have arbitrary small angles. Purely for the sake of simplicity in the notation, we assume the
mesh to be geometrically conforming (have no hanging nodes). Importantly, we do not require
our mesh to be simplicial or quadrilateral, etc. In fact, DG methods can easily be used on
significantly more general meshes. Note that Vh does not impose any inter-element continuity
constraints. Thus, we also define the mean value {[·]} and the jump [[·]] on a common face F of
the elements T+ 6= T− ∈ Th by

{[vh]} =
1

2
(vh|T+ + vh|T−) and [[vh]] = vh|T+nT+ + vh|T−nT− ,

where nT denotes the outward pointing unit normal with respect to T . Importantly, the jump
turns a scalar function to a vector function. Likewise, the average of a vector quantity is
defined component-wise, and if F ⊂ ∂D, then we set

{[vh]} = vh|T and [[vh]] = vh|Tn,
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where T refers to the unique T ∈ Th with F ⊂ ∂T and n is the outward pointing unit normal
of D. The set of all faces is denoted by F .

Using these definitions, we can define the DG bilinear form Bh : Vh × Vh → R as

Bh(y;uh(·,y), vh)

=
∑
T∈Th

∫
T

a(x,y)∇uh(x,y) · ∇vh(x)dx

+
∑
F∈F

∫
F

[
θ{[a(x,y)∇vh(x)]} · [[uh(x,y)]]

− {[a(x,y)∇uh(x,y)]} · [[vh(x)]]

+
η(y)

hF
[[uh(x,y)]] · [[vh(x)]]

]
dσ

=
∑
T∈Th

∫
T

a(x,y)∇uh(x,y) · ∇vh(x)dx(5.1)

+
∑
T∈Th

∫
∂T

[
θ{[a(x,y)∇vh(x)]} · uh(x,y)nT (x)

− 1

2
a(x,y)∇uh(x,y) · [[vh(x)]]

+
η(y)

hF
uh(x,y)nT (x) · [[vh(x)]]

]
dσ

and the corresponding linear form L : Vh → R as

(5.2) L(vh) =

∫
D

f(x)vh(x)dx.

Here, hF denotes the diameter of the considered face. The parameter θ ∈ {−1, 0,+1}
is chosen to be equal to 1 for the non-symmetric IP method (NIPDG), equal to 0 for the
incomplete IP method (IIPDG), and equal to −1 for the symmetric IP method (SIPDG). The
role of the parameter η(y) is to penalize jumps in uh across interfaces and thereby stabilize
the method. It is well known that the NIPDG method is stable for parameters η(y) ≥ 0, while
IIPDG and SIPDG methods are stable if η(y) ≥ η̄(y) > 0. Here, η̄(y) depends, among
others, on the infimum and supremum of a(·,y); see Lemma 5.3. Thus, we cannot expect
to choose η independent of y for the IIPDG and SIPDG methods in the lognormal case.
The NIPDG method for η(y) = 0 is attributed to Oden, Babuška, and Baumann [43], but
we exclude it from our considerations (since its analysis is more involved) and assume that
η(y) > 0 is used. For a detailed discussion of these methods, the reader is referred to the
books [11, 16, 31, 33, 46] and the references therein.

5.1. Preliminaries. Notably, Vh 6⊂ H1(D), and thus we have to define a norm that
allows for a generalization of Poincaré’s inequality. We choose

‖vh‖2Vh =
∑
T∈Th

‖
√
a(·,y)∇vh(·)‖2L2(T ) +

∑
F∈F

η(y)

hF
‖[[vh]]‖2L2(F ).

The norm ‖ · ‖Vh actually also depends on y, which is suppressed in the notation. In order to
deduce Poincaré’s inequality, we cite [11, Cor. 5.4]:
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LEMMA 5.1. Let Th be a shape- and contact-regular mesh sequence member. For the
norm

‖vh‖dG =

(∑
T∈Th

‖∇vh‖2L2(T ) +
∑
F∈F

1

hF
‖[[vh]]‖2L2(F )

)1/2

,

there is a constant σ > 0, independent of h, such that

∀vh ∈ Vh : ‖vh‖L2(D) ≤ σ‖vh‖dG

holds.
Here, the notion “shape and contact regular mesh sequence” refers to [11, Def. 1.38] and

requires that each mesh in the sequence admits a simplicial submesh without hanging nodes or
deteriorating simplices.

This can be further adapted to suit our purposes by observing that

(5.3) ‖vh‖L2(D) ≤ σ‖vh‖dG ≤
σ

min{
√
amin(y),

√
η(y)}︸ ︷︷ ︸

=C
Vh
Poin(y)

‖vh‖Vh ∀vh ∈ Vh.

The Poincaré constant CVhPoin(y) can be chosen independently of y in the uniform and
affine setting (there are uniform upper and lower bounds for the equivalence constants between
norms), which is not possible (by our proof techniques—the equivalence constants between
norms depend on y) in the lognormal setting. Together with assumptions (U1)–(U2) and
(L1)–(L2), the following lemmas describe how η(y) should be chosen in order to ensure the
integrability of CVhPoin(y):

LEMMA 5.2 ([11, Lem. 1.46]). Let Th be a member of a shape- and contact-regular mesh
sequence. Then, for all vh ∈ Vh, all T ∈ Th, all F ⊂ ∂T , and hT = diam(T ),

h
1/2
T ‖vh‖L2(F ) ≤ Ctr‖vh‖L2(T ),

where Ctr does not depend on h.
This allows for a stability estimate of the approximate uh.
LEMMA 5.3. Assume that there is τ > 1 (independent of y and h) such that

(5.4) η(y) ≥ τ a
2
max(y)C2

trN∂(θ − 1)2

4amin(y)
,

where Ctr denotes the constant of Lemma 5.2 and N∂ is the maximum amount of faces of a
mesh element (for simplicial meshes, N∂ = d+ 1). There is α > 0 (independent of h) such
that

α‖uh‖2Vh
A
≤ Bh(y;uh(·,y), uh(·,y)) = F (uh(·,y))

≤ ‖f‖L2(D)‖uh‖L2(D) ≤ CVhPoin(y)‖f‖L2(D)‖uh‖Vh ,

which gives the stability estimate

(5.5) ‖uh‖Vh ≤
CVhPoin(y)

α
‖f‖L2(D)

B
=

σ

α
√
amin(y)

‖f‖L2(D),
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where B holds if η(y) ≥ amin(y). Additionally, for the NIPDG method (θ = 1), inequality A
holds with equality and α = 1 independent of η(y) > 0.

Proof. This is a direct consequence of [33, Lemma 7.30] except for the identity B .
However, B follows directly from combining (5.3) and η(y) ≥ amin(y).

Additionally, we define the norm

‖vh‖2V ∗h = ‖vh‖2Vh +
∑
F∈F

hF
η(y)

‖{[a(·,y)∇vh]}‖2L2(F ).

LEMMA 5.4. We have ‖vh‖Vh ≤ ‖vh‖V ∗h . Moreover, if there is a τ̃ > 0 (independent of
y and h) such that

(5.6) η(y) ≥ τ̃ amax(y)2

amin(y)
for all y,

then we have Cequiv > 0 independent of y and h such that

‖vh‖V ∗h ≤ Cequiv‖vh‖Vh for all vh ∈ Vh.

Proof. The first inequality ‖vh‖Vh ≤ ‖vh‖V ∗h is obvious. For the second inequality, we
observe that we need to bound the additional term in the definition of ‖ · ‖V ∗h using∑

F∈F

hF
η(y)

‖{[a(·,y)∇vh]}‖2L2(F ) ≤
∑
F∈F

amax(y)2hF
η(y)

‖{[∇vh]}‖2L2(F )

≤
∑
F∈F

amax(y)2C2
tr

η(y)

∑
T∈Th : ∂T⊃F

‖∇vh‖2L2(T )

≤
∑
T∈Th

amax(y)2C2
trN∂

η(y)
‖∇vh‖2L2(T )

≤
∑
T∈Th

amax(y)2C2
trN∂

amin(y)η(y)
‖
√
a(·,y)∇vh‖2L2(T ).

Here, the second inequality is the discrete trace inequality in Lemma 5.2 using that
hF = diam(F ) ≤ diam(T ) = hT , for F ⊂ T . The constant becomes independent of y
if (5.6) holds.

REMARK 5.5. In the lognormal setting, the condition of Lemma 5.3 can be satisfied by
using the NIPG method corresponding to θ = 1. Lemma 5.4 suggests that we can define

η(y) :=
amax(y)2

amin(y)
for all y.

Analogously, in the affine and uniform case, we can choose

η(y) := η =
a2

max

amin
for all y.

Later on, we will choose η(y) precisely in this way. Although the choice of η(y) is more subtle
for the SIPG and IIPG methods, we experienced that a too large η(y) does not have a visual
effect on the results in Section 7 while a too small η(y) can lead to wrong approximations. In
principle, increasing η adds inter-element diffusion to the method. Thus, enlarging η stabilizes
the method while its scaling ensures that the convergence rates in h do not deteriorate. Too
large η-values have an adversarial effect on the constants of DG methods, but as long as
integrability (concerning y) is ensured, the QMC methods will work.
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5.2. Bounds for the derivatives with respect to the random variable. The ultimate goal
of our analysis is to derive regularity bounds in the flavor of (4.2) and (4.3) for the diffusion
problem that is discretized with an IPDG method instead of continuous finite elements. To this
end, we start with some preliminary considerations before we prove Theorem 5.6 stating that

‖∂νyuh(·,y)‖Vh

≤ C2
equivC

′
DG︸ ︷︷ ︸

=CDG

∑
0 6=m≤ν

(
ν
m

)[∥∥∥∥∂my a(·,y)

a(·,y)

∥∥∥∥
L∞(D)

+

∣∣∣∣∂my η(y)

η(y)

∣∣∣∣
]
‖∂ν−my uh(·,y)‖Vh

under certain conditions. Notably, the derivative ∂νyuh(·,y) is an element of Vh. This can
be seen by similar arguments as conducted in [9] and is a well-known observation when
approximating time-dependent equations by DG methods where the derivative concerns a
unknown time instead of a random variable; see [8] and [11, Sect. 3.1].

To derive this regularity bound for the IPDG methods, we first observe that ∂νyL(vh) = 0
(see (5.2)) and that a(x,y) is continuous with respect to x since a0 and all ψj have been
assumed to be Lipschitz continuous. Thus,

Bh(y;uh(·,y), vh)

=
∑
T∈Th

∫
T

a(x,y)∇uh(x,y) · ∇vh(x)dx

+
∑
T∈Th

∫
∂T

[
θa(x,y)uh(x,y)nT (x) · {[∇vh(x)]}

− 1

2
a(x,y)∇uh(x,y) · [[vh(x)]]

+
η(y)

hF
uh(x,y)nT (x) · [[vh(x)]]

]
dσ,

(5.7)

and we can deduce by Bh(y;uh(·,y), vh) = L(vh) and ∂νyL(vh) = 0 that

0 = ∂νyBh(y;uh(·,y), vh)

(5.7)
=

∑
T∈Th

∫
T

∂νy [a(x,y)∇uh(x,y)] · ∇vh(x)dx

+
∑
T∈Th

∫
∂T

[
θ∂νy [a(x,y)uh(x,y)]nT (x) · {[∇vh(x)]}

− 1

2
∂νy [a(x,y)∇uh(x,y)] · [[vh(x)]]

+ h−1
F ∂νy [η(y)uh(x,y)]nT (x) · [[vh(x)]]

]
dσ

=
∑
T∈Th

∫
T

∑
m≤ν

(
ν
m

)
∂my a(x,y)∇∂ν−my uh(x,y) · ∇vh(x)dx

+
∑
T∈Th

∫
∂T

[
θ
∑
m≤ν

(
ν
m

)
∂my a(x,y)∂ν−my uh(x,y)nT (x) · {[∇vh(x)]}

− 1

2

∑
m≤ν

(
ν
m

)
∂my a(x,y)∇∂ν−my uh(x,y) · [[vh(x)]]
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+ h−1
F

∑
m≤ν

(
ν
m

)
∂my η(y)∂ν−my uh(x,y)nT (x) · [[vh(x)]]

]
dσ

=
∑
T∈Th

∫
T

∑
m≤ν

(
ν
m

)
∂my a(x,y)∇∂ν−my uh(x,y) · ∇vh(x)dx

+
∑
F∈F

∫
F

[
θ
∑
m≤ν

(
ν
m

)
∂my a(x,y)[[∂ν−my uh(x,y)]] · {[∇vh(x)]}

−
∑
m≤ν

(
ν
m

)
∂my a(x,y){[∇∂ν−my uh(x,y)]} · [[vh(x)]]

+ h−1
F

∑
m≤ν

(
ν
m

)
∂my η(y)[[∂ν−my uh(x,y)]] · [[vh(x)]]

]
dσ,

where the third equality is a consequence of the Leibniz product rule and the fourth equality
follows from the definitions of {[·]} and [[·]] analogously to (5.1).

Next, we set vh = ∂νyuh(·,y) and do some algebraic manipulations to obtain

‖∂νyuh(·,y)‖2Vh

= −
∑
T∈Th

∫
T

∑
06=m≤ν

(
ν
m

)
∂my a(x,y)∇∂ν−my uh(x,y) · ∇∂νyuh(x,y)dx

−
∑
F∈F

∫
F

[
θ
∑
m≤ν

(
ν
m

)
∂my a(x,y)[[∂ν−my uh(x,y)]] · {[∇∂νyuh(x,y)]}

−
∑
m≤ν

(
ν
m

)
∂my a(x,y){[∇∂ν−my uh(x,y)]} · [[∂νyuh(x,y)]]

+ h−1
F

∑
0 6=m≤ν

(
ν
m

)
∂my η(y)[[∂ν−my uh(x,y)]] · [[∂νyuh(x,y)]]

]
dσ

= −
∑
T∈Th

∫
T

∑
06=m≤ν

(
ν
m

)
∂my a(x,y)∇∂ν−my uh(x,y) · ∇∂νyuh(x,y)dx

−
∑
F∈F

∫
F

[
θ
∑

0 6=m≤ν

(
ν
m

)
∂my a(x,y)[[∂ν−my uh(x,y)]] · {[∇∂νyuh(x,y)]}

−
∑

06=m≤ν

(
ν
m

)
∂my a(x,y){[∇∂ν−my uh(x,y)]} · [[∂νyuh(x,y)]]

+ h−1
F

∑
0 6=m≤ν

(
ν
m

)
∂my η(y)[[∂ν−my uh(x,y)]] · [[∂νyuh(x,y)]]

]
dσ

−
∑
F∈F

∫
F

(θ − 1)a(x,y)[[∂νyuh(x,y)]] · {[∇∂νyuh(x,y)]}dσ︸ ︷︷ ︸
=:Ψh(∂νyuh)

.

For the second equality we separatedm = 0 for face integrals from the rest.
Interestingly, if θ = 1, then the highest-order terms (m = 0) with respect to the faces

cancel, and Ψh(∂νyuh) = 0 for all η(y) > 0. In any case, Ψh can be bounded by first using
Hölder’s inequality, second absorbing a into the constants (twice), third using Lemma 5.2,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

602 V. KAARNIOJA AND A. RUPP

fourth incorporating amin into the volume norms, and finally using Young’s inequality. To wit:

|Ψh(∂νyuh)| ≤
∑
F∈F

√
amin(y)hF

2amax(y)C2
trN∂
‖
√
a(·,y){[∇∂νyuh(·,y)]}‖L2(F )

× |θ − 1|

√
2amax(y)C2

trN∂
amin(y)hF

‖[[
√
a(·,y)∂νyuh(·,y)]]‖L2(F )

≤
∑
F∈F

√
amin(y)hF

2C2
trN∂

‖{[∇∂νyuh(·,y)]}‖L2(F )

×

√
2a2

max(y)C2
trN∂(θ − 1)2

amin(y)hF
‖[[∂νyuh(·,y)]]‖L2(F )

≤

∑
F∈F

amin(y)

2N∂

( ∑
T∈Th : ∂T⊃F

‖∇∂νyuh(·,y)‖L2(T )

)2
1/2

×

[∑
F∈F

2a2
max(y)C2

trN∂(θ − 1)2

amin(y)hF
‖[[∂νyuh(·,y)]]‖2L2(F )

]1/2

≤

[∑
T∈Th

‖
√
a(·,y)∇∂νyuh(·,y)‖2L2(T )

]1/2

×

√
2a2

max(y)C2
trN∂(θ − 1)2

amin(y)

[∑
F∈F

1

hF
‖[[∂νyuh(·,y)]]‖2L2(F )

]1/2

≤ δ
∑
T∈Th

‖
√
a(·,y)∇∂νyuh(·,y)‖2L2(T )

+
a2

max(y)C2
trN∂(θ − 1)2

2δamin(y)

∑
F∈F

1

hF
‖[[∂νyuh(·,y)]]‖2L2(F ),

and δ ∈ (0, 1) can be chosen arbitrarily. Notably, the fourth inequality uses that

∑
F∈F

amin(y)

2N∂

( ∑
T∈Th : ∂T⊃F

‖∇∂νyuh(·,y)‖L2(T )

)2

≤ 1

2N∂

∑
F∈F

( ∑
T∈Th : ∂T⊃F

‖
√
a(·,y)∇∂νyuh(·,y)‖L2(T )

)2

,

and the fact that each element has at most N∂ faces. Hence, each element appears at most N∂
times on the right-hand side. Moreover, we have that( ∑

T∈Th : ∂T⊃F

‖
√
a(·,y)∇∂νyuh(·,y)‖L2(T )

)2

≤ 2
∑

T∈Th : ∂T⊃F

‖
√
a(·,y)∇∂νyuh(·,y)‖2L2(T )
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as each face has at most two neighbors. Thus, if (5.4) holds, we can choose δ = 2
τ+1 ,

and Ψh(∂νyuh) < ‖∂νyuh(·,y)‖2Vh can be incorporated into the norm on the left-hand side
producing a constant that is independent of y:

‖∂νyuh(·,y)‖2Vh
A
. −

∑
T∈Th

∫
T

∑
06=m≤ν

(
ν
m

)
∂my a(x,y)∇∂ν−my uh(x,y) · ∇∂νyuh(x,y)dx

−
∑
F∈F

∫
F

[
θ
∑

0 6=m≤ν

(
ν
m

)
∂my a(x,y)[[∂ν−my uh(x,y)]] · {[∇∂νyuh(x,y)]}

−
∑

06=m≤ν

(
ν
m

)
∂my a(x,y){[∇∂ν−my uh(x,y)]} · [[∂νyuh(x,y)]]

+ h−1
F

∑
0 6=m≤ν

(
ν
m

)
∂my η(y)[[∂ν−my uh(x,y)]] · [[∂νyuh(x,y)]]

]
dσ

=−
∑

0 6=m≤ν

(
ν
m

)[∑
T∈Th

∫
T

∂my a(x,y)

a(x,y)
a(x,y)∇∂ν−my uh(x,y)·∇∂νyuh(x,y)dx

+
∑
F∈F

∫
F

∂my a(x,y)

a(x,y)

[
θ[[∂ν−my uh(x,y)]] · {[a(x,y)∇∂νyuh(x,y)]}

− {[a(x,y)∇∂ν−my uh(x,y)]} · [[∂νyuh(x,y)]]

]
dσ

+
∑
F∈F

∫
F

∂my η(y)

η(y)

η(y)

hF
[[∂ν−my uh(x,y)]] · [[∂νyuh(x,y)]]dσ

]
= (F),

where ‘.’ is to be interpreted as smaller than or equal to up to a positive, multiplicative
constant, which does not depend on h, ν, or y. Importantly, for the non-symmetric IP method
(θ = 1), the symbol ‘.’ at A can be replaced by ‘=’ independently of τ . Otherwise τ ↘ 1
yields an unstable method.

Our next task consists in estimating |(F)|. Hölder’s inequality yields

|(F)| ≤
∑

06=m≤ν

(
ν
m

)∥∥∥∥∂my a(·,y)

a(·,y)

∥∥∥∥
L∞(D)

×

[ ∑
T∈Th

‖
√
a(·,y)∇∂ν−my uh(·,y)‖L2(T )‖

√
a(·,y)∇∂νyuh(·,y)‖L2(D)(5.8a)

+
∑
F∈F

∫
F

∣∣θ[[∂ν−my uh(x,y)]] · {[a(x,y)∇∂νyuh(x,y)]}
∣∣ dσ(5.8b)

+
∑
F∈F

∫
F

∣∣{[a(x,y)∇∂ν−my uh(x,y)]} · [[∂νyuh(x,y)]]
∣∣ dσ](5.8c)

+
∑

0 6=m≤ν

(
ν
m

) ∣∣∣∣∂my η(y)

η(y)

∣∣∣∣ ∑
F∈F

∫
F

η(y)

hF
[[∂ν−my uh(x,y)]] · [[∂νyuh(x,y)]]dσ.(5.8d)
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The former three lines can be bounded separately using |θ| ≤ 1:

|(5.8a)| ≤

[∑
T∈Th

‖
√
a(·,y)∇∂νyuh(·,y)‖2L2(D)

] 1
2

×

[∑
T∈Th

‖
√
a(·,y)∇∂ν−my uh(·,y)‖2L2(T )

] 1
2

,

|(5.8b)| ≤

[∑
F∈F

η(y)

hF
‖[[∂ν−my uh(·,y)]]‖2L2(F )

] 1
2

×

[∑
F∈F

hF
η(y)

‖{[a(·,y)∇∂νyuh(·,y)]}‖2L2(F )

] 1
2

,

|(5.8c)| ≤

[∑
F∈F

η(y)

hF
‖[[∂νyuh(·,y)]]‖2L2(F )

] 1
2

×

[∑
F∈F

hF
η(y)

‖{[a(·,y)∇∂ν−my uh(·,y)]}‖2L2(F )

] 1
2

,

and the last line can be estimated via

|(5.8d)|≤

[∑
F∈F

η(y)

hF
‖[[∂ν−my uh(·,y)]]‖2L2(F )

] 1
2
[∑
F∈F

η(y)

hF
‖[[∂νyuh(·,y)]]‖2L2(F )

] 1
2

.

As a consequence, we obtain by the Cauchy–Schwarz inequality that

|(F)| ≤
∑

0 6=m≤ν

(
ν
m

)[∥∥∥∥∂my a(·,y)

a(·,y)

∥∥∥∥
L∞(D)

+

∣∣∣∣∂my η(y)

η(y)

∣∣∣∣
]

× ‖∂νyuh(·,y)‖V ∗h ‖∂
ν−m
y uh(·,y)‖V ∗h .

Thus, considering Lemma 5.4 and division by ‖∂νyuh(·,y)‖Vh yield the following:

THEOREM 5.6. If (5.4) and (5.6) hold, then there are constants C ′DG, CDG > 0 (indepen-
dent of y and h) such that

‖∂νyuh(·,y)‖Vh

≤ C2
equivC

′
DG︸ ︷︷ ︸

=CDG

∑
06=m≤ν

(
ν
m

)[∥∥∥∥∂my a(·,y)

a(·,y)

∥∥∥∥
L∞(D)

+

∣∣∣∣∂my η(y)

η(y)

∣∣∣∣
]
‖∂ν−my uh(·,y)‖Vh .

(5.9)

For NIPDG (θ = 1), one may choose C ′DG = 1.
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5.3. A brief note on error estimates. The error estimate does not significantly deviate
from standard DG error estimates. Thus, we keep it short and refer to the already mentioned
references [11, 33] for the details. We start by introducing the broken H2-space

H2(Th) = {v ∈ L2(D) : v|T ∈ H2(T )}

and observe the following:
COROLLARY 5.7. Under the assumptions of Lemma 5.4, there is a constant M (indepen-

dent of y and h) such that for all wh ∈ H2(Th) and all vh ∈ Vh, we have

Bh(wh, vh) ≤M‖wh‖V ∗h ‖vh‖Vh .

This follows directly from the Cauchy–Schwarz inequality and Lemma 5.4. Thus, Strang’s
lemma [33, Rem. 4.9] implies that for any wh ∈ Vh

‖u− uh‖V ∗h ≤
(

1 +
MCequiv

α

)
‖u− wh‖V ∗h .

We choose wh to be the local L2-projection Πu of u and will need to estimate the
respective terms of ‖u−Πu‖V ∗h . Exploiting the standard scaling arguments of DG analysis,
we arrive at the following:

THEOREM 5.8. Let u(·,y) ∈ Hk+1(D) and the assumptions of Lemmas 5.3 and 5.4
hold. Then we have

1

CVhPoin(y)
‖u(·,y)− uh(·,y)‖L2(D) ≤ ‖u(·,y)− uh(·,y)‖V ∗h

. max
{√

η(y), amax(y),
√

1
η(y)

}
hk|u(·,y)|Hk+1(D).

Notably, the convergence order for SIPG can be increased by one using a duality argument as
in [11, Sect. 4.2.4] if we have elliptic regularity. Importantly, the FE error in the QMC setting
will be integrated with respect to y. That is why we additionally assume that |u(·,y)|Hk+1(D)

is integrable with respect to y. By standard elliptic regularity theory, this holds for example
when D is a bounded, convex domain, the diffusion coefficient a is Lipschitz continuous, and
the source term f ∈ L2(D). For k = 1, the integrability of the seminorm is shown in [57].

6. Parametric regularity analysis.

6.1. Uniform and affine setting. In this setting, the regularity analysis is completely
analogous to the conforming FE setting. Specifically, the choice of η(y) is not as critical as in
the lognormal case to be discussed later on: η(y) can be chosen independently of y and large
enough to satisfy Lemmas 5.3 and 5.4.

LEMMA 6.1 (Regularity bound in the uniform and affine setting). Let assumptions (U1)–
(U5) hold with η sufficiently large (independently of y). Let b = (bj)j≥1 with
bj :=

CDG‖ψj‖L∞(D)

αamin
. Then for all ν ∈ F and y ∈ U , it holds that

‖∂νyuh(·,y)‖Vh ≤ |ν|!b
ν C

Vh
Poin

α
‖f‖L2(D).
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Proof. This is an immediate consequence of [36, Lem. 9.1] (in fact, it already appears
in [9]), but since the proof is short, we present it for completeness. The proof is carried out by
induction with respect to the order of the multi-indices ν ∈ F . In the affine setting, we make
use of the fact that

∂νya(x,y) =


a(x,y) if ν = 0,

ψj(x) if ν = ej , j ≥ 1,

0 otherwise,

where ej denotes the jth Euclidean standard unit vector.
The base of the induction is resolved by observing that the claim is equivalent to the a

priori bound when ν = 0; see Lemma 5.3.
Let ν ∈ F , and suppose that the claim has already been proved for all multi-indices with

order less than |ν|. Then it is a consequence of Theorem 5.6 and the fact that ∂mη(y) = 0,
for |m| ≥ 1, that

‖∂νyuh(·,y)‖Vh ≤ CDG

∑
0 6=m≤ν

(
ν
m

)∥∥∥∥∂my a(·,y)

a(·,y)

∥∥∥∥
L∞(D)

‖∂ν−my uh(·,y)‖Vh

≤
∑

j∈supp(ν)

νjbj |ν − ej |!bν−ej
CVhPoin

α
‖f‖L2(D)

= bν(|ν| − 1)!

( ∑
j∈supp(ν)

νj

)
CVhPoin

α
‖f‖L2(D)

= bν |ν|!
CVhPoin

α
‖f‖L2(D),

as desired.

6.2. Derivation of the QMC error in the uniform and affine setting. In what follows,
we define the dimensionally truncated solution by setting

us,h(·,y) := uh(·, (y1, . . . , ys, 0, 0, . . .)), y ∈ [− 1
2 ,

1
2 ]s.

THEOREM 6.2. Let assumptions (U1)–(U5) hold, and suppose that n = 2m, m ∈ N.
There exists a generating vector constructed by the CBC algorithm such that√√√√E∆

∥∥∥∥∫
[−1/2,1/2]s

us,h(·,y) dy −Qran(us,h)

∥∥∥∥2

L2(D)

=

{
O(n−1/p+1/2) if p ∈ (2/3, 1),

O(n−1+ε) for arbitrary ε ∈ (0, 1/2) if p ∈ (0, 2/3],

where the implied coefficient is independent of s in both cases when the weights (γu)u⊆{1:s}
in Lemma 3.1 are chosen to be

γu =

(
|u|!
∏
j∈u

bj√
%(λ)

)2/(1+λ)

for u ⊆ {1 : s}

and

λ =

{
p

2−p if p ∈ (2/3, 1),
1

2−2ε for arbitrary ε ∈ (0, 1/2) if p ∈ (0, 2/3].
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Proof. In the uniform and affine setting, CVhPoin is independent of y, and so we can proceed
with the usual derivation of the QMC weights. Let the assumptions of Lemma 3.1 be in effect.
Furthermore, suppose that assumptions (U1)–(U3) and (U5) hold. Then for almost all x ∈ D,
we have from Theorem 3.1 that

E∆

∣∣∣∣ ∫
[−1/2,1/2]s

us,h(x,y) dy −Qran(us,h(x, ·))
∣∣∣∣2

≤
(

2

n

)1/λ
1

R

( ∑
∅6=u⊆{1:s}

γλu%(λ)|u|
)1/λ

×
∑

u⊆{1:s}

1

γu

∫
[−1/2,1/2]|u|

(∫
[−1/2,1/2]s−|u|

∂|u|

∂yu

us,h(x,y) dy−u

)2

dyu

≤
(

2

n

)1/λ
1

R

( ∑
∅6=u⊆{1:s}

γλu%(λ)|u|
)1/λ ∑

u⊆{1:s}

1

γu

∫
[−1/2,1/2]s

∣∣∣∣ ∂|u|∂yu

us,h(x,y)

∣∣∣∣2dy.

Integrating over x ∈ D on both sides and using Fubini’s theorem, we obtain

E∆

∥∥∥∥∫
[−1/2,1/2]s

us,h(·,y) dy −Qran(us,h)

∥∥∥∥2

L2(D)

≤
(

2

n

)1/λ
1

R

( ∑
∅6=u⊆{1:s}

γλu%(λ)|u|
)1/λ

×
∑

u⊆{1:s}

1

γu

∫
[−1/2,1/2]s

∥∥∥∥ ∂|u|∂yu

us,h(·,y)

∥∥∥∥2

L2(D)

dy

≤
(

2

n

)1/λ
(CVhPoin)2

R

( ∑
∅6=u⊆{1:s}

γλu%(λ)|u|
)1/λ

×
∑

u⊆{1:s}

1

γu

∫
[−1/2,1/2]s

∥∥∥∥ ∂|u|∂yu

us,h(·,y)

∥∥∥∥2

Vh

dy,

where we used the discrete Poincaré inequality (5.3). (Recall that in the uniform and affine
setting, the Poincaré constant can be bounded independently of y.) We can now apply
Lemma 6.1 to obtain

E∆

∥∥∥∥∫
[−1/2,1/2]s

us,h(·,y) dy −Qran(us,h)

∥∥∥∥2

L2(D)

≤
(

2

n

)1/λ (CVhPoin)4‖f‖2L2(D)

α2R

( ∑
∅6=u⊆{1:s}

γλu%(λ)|u|
)1/λ ∑

u⊆{1:s}

1

γu
(|u|!)2

∏
j∈u

b2j .

It is easy to verify that the upper bound is minimized by choosing (cf., e.g., [39, Lem. 6.2])

γu =

(
|u|!
∏
j∈u

bj√
%(λ)

)2/(1+λ)

for u ⊆ {1 : s}.(6.1)

By plugging in these weights into the error bound, we obtain
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∥∥∥∥∫
[−1/2,1/2]s

us,h(·,y) dy −Qran(us,h)

∥∥∥∥2

L2(D)

≤
(

2

n

)1/(2λ) (CVhPoin)2‖f‖L2(D)

α
√
R

( ∑
u⊆{1:s}

(
|u|!
∏
j∈u

bj√
%(λ)

) 2λ
1+λ

%(λ)|u|

︸ ︷︷ ︸
=:C(s,λ)

)λ+1
2λ

.

The term C(s, λ) can be bounded independently of s:

C(s, λ) =

s∑
`=0

(`!)2λ/(1+λ)%(λ)
1

1+λ `
∑

u⊆{1:s}
|u|=`

∏
j∈u

b
2λ/(1+λ)
j

≤
∞∑
`=0

(`!)2λ/(1+λ)%(λ)
1

1+λ `
1

`!

( ∞∑
j=1

b
2λ/(1+λ)
j

)`
,

where the series can be shown to converge by the d’Alembert ratio test provided that

2λ

1 + λ
≥ p and

1

2
< λ ≤ 1.

We can ensure that both conditions are satisfied by choosing

(6.2) λ =

{
p

2−p if p ∈ (2/3, 1),
1

2−2ε for arbitrary ε ∈ (0, 1/2) if p ∈ (0, 2/3].

We conclude that by choosing the weights (6.1) and the parameter (6.2), we obtain the QMC
convergence rate√√√√E∆

∥∥∥∥∫
[−1/2,1/2]s

us,h(x,y) dy −Qran(us,h(x, ·))
∥∥∥∥2

L2(D)

=

{
O(n−1/p+1/2) if p ∈ (2/3, 1),

O(n−1+ε) for arbitrary ε ∈ (0, 1/2) if p ∈ (0, 2/3],

where the implied coefficient is independent of s in both cases. This concludes the proof.
REMARK 6.3. Let G : Vh → R be a bounded linear functional. The same proof technique

can be applied mutatis mutandis to show that there exists a generating vector constructed by
the CBC algorithm using the weights specified in Theorem 6.2 such that√

E∆

∣∣∣∣ ∫
[−1/2,1/2]s

G(us,h(·,y)) dy −Qran(G(us,h))

∣∣∣∣2 = O(nmax{−1/p+1/2,−1+ε}),

where the implied coefficient is independent of the dimension s with arbitrary ε ∈ (0, 1/2).
We note that the QMC convergence rate is at best essentially linear, and it is always better

than O(n−1/2).
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6.3. Lognormal setting. In the lognormal setting, we set

η(y) :=
(maxx∈D a0(x))2

minx∈D a0(x)
exp

( ∞∑
j=1

3βj |yj |
)
,(6.3)

where βj = ‖ψj‖L∞ is defined as in Section 2. Then we have for all multi-indices m with
|m|∞ := supj≥1mj ≤ 1 that∥∥∥∥∂my a(·,y)

a(·,y)

∥∥∥∥
L∞(D)

≤ βm for all y ∈ Uβ,∣∣∣∣∂my η(y)

η(y)

∣∣∣∣ ≤ 3|m|βm for a.e. y ∈ Uβ

(note that the second inequality holds almost everywhere since the derivatives of (6.3) are
discontinuous on a set of measure zero), and the recurrence relation (5.9) takes the form

(6.4) ‖∂νyuh(·,y)‖Vh ≤ CDG

∑
0 6=m≤ν

(
ν
m

)
(1 + 3|m|)βm‖∂ν−my uh(·,y)‖Vh ,

where we used Theorem 5.6 with CDG > 0 which is independent of y. In this case, the assump-
tions of Lemma 5.3 are satisfied since we use NIPG while the assumptions of Lemma 5.4 are
satisfied by construction with τ̃ = 1. In the ensuing analysis, we only consider the first-order
parametric regularity for simplicity.

LEMMA 6.4. Let assumptions (L1)–(L5) hold. It holds for all ν ∈ F with 0 6= |ν|∞ ≤ 1
and a.e. y ∈ Uβ that

‖∂νyuh(·,y)‖Vh ≤ C
|ν|
DG4|ν|Λ|ν|β

ν‖uh(·,y)‖Vh ,(6.5)

where the sequence of ordered Bell numbers (Λk)∞k=0 is defined by the recursion

Λ0 := 1 and Λk :=

k∑
`=1

(
k

`

)
Λk−`, k ≥ 1.

Proof. We prove the claim by induction with respect to the modulus of ν. The base step
is resolved by observing that, for any ν = ek, it follows from (6.4) that

‖∂eky uh(·,y)‖Vh ≤ CDG(1 + 3)βek‖uh(·,y)‖Vh = CDG4|ek|Λ|ek|β
ek‖uh(·,y)‖Vh ,

as desired.
Next, let ν ∈ F be such that 0 6= |ν|∞ ≤ 1, and suppose that the claim holds for all

multi-indices with order < |ν|. Then (6.4) implies that

‖∂νyuh(·,y)‖Vh

≤ CDGβ
ν‖uh(·,y)‖Vh

∑
0 6=m≤ν

(
ν

m

)
(1 + 3|m|)C

|ν−m|
DG 4|ν−m|Λ|ν−m|

≤ C |ν|DG4|ν|βν‖uh(·,y)‖Vh
∑

0 6=m≤ν

(
ν

m

)
Λ|ν−m|,
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where we used CDG ≥ 1 and the inequality (1 + 3`)4n−` ≤ 4n for all 1 ≤ ` ≤ n. The claim
follows by simplifying the remaining sum using the generalized Vandermonde identity:

∑
0 6=m≤ν

(
ν

m

)
Λ|ν−m| =

|ν|∑
`=1

Λ|ν|−`
∑
|m|=`

(
ν

m

)
=

|ν|∑
`=1

Λ|ν|−`

(
|ν|
`

)
= Λ|ν|.

This concludes the proof.
COROLLARY 6.5. Let assumptions (L1)–(L5) hold. It holds for all ν ∈ F with

0 6= |ν|∞ ≤ 1 and a.e. y ∈ Uβ that

‖∂νyuh(·,y)‖Vh ≤ C
|ν|
DG4|ν|

|ν|!
(log 2)|ν|

βν
σ

αamin(y)1/2
‖f‖L2 .

Proof. The claim follows by plugging the a priori bound (5.5) into (6.5) and using the
well-known estimate [3, Lem. A.3]:

Λ|ν| ≤
|ν|!

(log 2)|ν|
,

which yields the assertion.

6.4. Derivation of the QMC error in the lognormal setting. In analogy to Section 6.2,
the dimensionally truncated solution is given by

us,h(·,y) := uh(·, (y1, . . . , ys, 0, 0, . . .)), y ∈ Rs.

THEOREM 6.6. Let assumptions (L1)–(L5) hold, and let η(y) be chosen as in (6.3).
There exists a generating vector constructed by the CBC algorithm such that√√√√E∆

∥∥∥∥ ∫
Rs
us,h(·,y)

s∏
j=1

ϕ(yj) dy −Qϕran(us,h)

∥∥∥∥2

L2(D)

=

{
O(n−1/p+1/2) if p ∈ (2/3, 1),

O(n−1+ε) for arbitrary ε ∈ (0, 1/2) if p ∈ (0, 2/3],

where the implied coefficient is independent of s in both cases when the weights (γu)u⊆{1:s}
in Lemma 3.1 are chosen to be

γu =

(
|u|!
∏
j∈u

βj

2(log 2) exp(β2
j /2)Φ(βj)

√
(αj − βj)%j(λ)

)2/(1+λ)

,

where

αj =
1

2

(
βj +

√
β2
j + 1− 1

2λ

)
and

λ =

{
p

2−p if p ∈ (2/3, 1),
1

2−2ε for arbitrary ε ∈ (0, 1/2) if p ∈ (0, 2/3].
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Proof. We note that

1

amin(y)1/2
≤ 1

minx∈D a0(x)1/2

∏
j≥1

exp( 1
2βj |yj |) for all y ∈ Uβ,

which yields the upper bound∥∥∥∥ ∂|u|∂yu

us,h(·,y)

∥∥∥∥2

Vh

. Ĉ
2|u|
DG

(|u|!)2

(log 2)2|u|

(∏
j∈u

β2
j

)∏
j≥1

exp(βj |yj |),

where ĈDG := 4CDG.
Since our definition of η(y) ensures that η(y) ≥ amin(y), we obtain∫

D

‖us,h(x, ·)‖2s,γ dx

=
∑

u⊆{1:s}

1

γu

∫
R|u|

∫
D

(∫
Rs−|u|

∂|u|

∂yu

u(x,y)
∏
j 6∈u

ϕ(yj) dy−u

)2∏
j∈u

$2
j (yj) dyu

≤
∑

u⊆{1:s}

1

γu

∫
Rs

∥∥∥∥ ∂|u|∂yu

u(·,y)

∥∥∥∥2

L2(D)

∏
j 6∈u

ϕ(yj)
∏
j∈u

$2
j (yj) dy

≤
∑

u⊆{1:s}

1

γu

∫
Rs
CVhPoin(y)

2
∥∥∥∥ ∂|u|∂yu

u(·,y)

∥∥∥∥2

Vh

∏
j 6∈u

ϕ(yj)
∏
j∈u

$2
j (yj) dy

.
∑

u⊆{1:s}

Ĉ
2|u|
DG

γu
(|u|!)2

(∏
j∈u

βj
log 2

)2

×
∫
Rs

s∏
j=1

exp
(
2βj |yj |)

∏
j 6∈u

ϕ(yj)
∏
j∈u

$2
j (yj) dy,

where we used CVhPoin(y) ≤ σ√
amin(y)

. Thus,∫
D

‖us,h(x, ·)‖2s,γ dx

≤
∑

u⊆{1:s}

Ĉ
2|u|
DG

γu
(|u|!)2

(∏
j∈u

βj
log 2

)2

×
(∏
j 6∈u

∫
R

exp(2βj |yj |)ϕ(yj) dyj︸ ︷︷ ︸
≤2 exp(2β2

j )Φ(2βj)

)(∏
j∈u

∫
R

exp(2βj |yj |)$2
j (yj) dyj

)

≤
∑

u⊆{1:s}

Ĉ
2|u|
DG

γu
(|u|!)2

( s∏
j=1

2 exp(2β2
j )Φ(2βj)

)

×
(∏
j∈u

β2
j

2(log 2)2 exp(2β2
j )Φ(2βj)

∫
R

exp(2βj |yj |)$2
j (yj) dyj

)
.

Recalling that $j(y) = exp(−αj |y|), the remaining integral is bounded as long as we choose

αj > βj .(6.6)
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In fact, if (6.6) holds, then∫
R

exp(2βj |yj |)$2
j (yj) dyj =

1

αj − βj
,

and we obtain∫
D

‖us,h(x, ·)‖2s,γ dx ≤
∑

u⊆{1:s}

Ĉ
2|u|
DG

γu
(|u|!)2

( s∏
j=1

2 exp(2β2
j )Φ(2βj)

)

×
(∏
j∈u

β2
j

2(log 2)2 exp(2β2
j )Φ(2βj)(αj − βj)

)
.

The remainder of the argument is completely analogous to the derivation presented for the
continuous setting in [22]: the weights γu enter the expression for the upper bound in the
same manner as in the continuous setting, leading us to conclude that the error criterion is
minimized by setting

αj =
1

2

(
βj +

√
β2
j + 1− 1

2λ

)
and choosing the weights

γu =

(
|u|!
∏
j∈u

βj

2(log 2) exp(β2
j /2)Φ(βj)

√
(αj − βj)%j(λ)

)2/(1+λ)

,

with λ chosen as in (6.2) and p as in (L3).
REMARK 6.7. Let G : Vh → R be a bounded linear functional. Similarly to the affine and

uniform setting, it can be shown that there exists a generating vector constructed by the CBC
algorithm using the weights specified in Theorem 6.6 such that√√√√E∆

∣∣∣∣ ∫
Rs
G(us,h(·,y))

s∏
j=1

ϕ(yj) dy −Qran(G(us,h))

∣∣∣∣2 = O(nmax{−1/p+1/2,−1+ε}),

where the implied coefficient is independent of the dimension s with arbitrary ε ∈ (0, 1/2).

7. Numerical results. We consider (1.1) with f(x) = x1 in D = (0, 1)2 and investigate
the errors in the means of the numerical approximations of the unknown u. For the affine case,
we set U = [− 1

2 ,
1
2 ]N and truncate the series expansion for the input random coefficient into

s = 100 terms, i.e.,

aaffine(x,y) = 5 +

100∑
j=1

yj
(k2
j + `2j )

1.3
sin(kjπx1) sin(`jπx2),

where (kj , `j)j≥1 is an ordering of elements of Z+ × Z+ such that the sequence
(‖ψj‖L∞(D))j≥1 is not increasing. In the lognormal case, we define U = RN and consider
the dimensionally truncated coefficient with s = 100 terms

alognormal(x,y) = exp

 100∑
j=1

yj
(k2
j + `2j )

1.3
sin(kjπx1) sin(`jπx2)
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FIG. 7.1. Root mean squared error for the affine case for first-order polynomial DG methods. The NIPG method
with η = 10 is depited blue, while the SIPG method with η = 100 is depicted red, and the SIPG method with η = 10
is depicted green, and the conforming finite element solution is black. The green graph is omitted in the right picture.

with an analogously defined sequence (kj , `j)j≥1. In this case, we have ‖ψj‖L∞(D)∼j−1.3,
and the expected convergence independent of the dimension is O(n−0.8+ε), ε > 0.

We use in all experiments an off-the-shelf generating vector [34, lattice-39101-1024-
1048576.3600] using a total amount of 16384, 32768, 65536, 131072, 262144, and 524288
cubature points with R = 16 random shifts. Although this generating vector has not been
obtained using the CBC algorithm with the weights derived in Theorems 6.2 and 6.6, we found
this off-the-shelf generating vector to perform well yielding the optimal rate of convergence.
Thus, this confirms our analytical findings without excluding that there might be even better
lattice rules. In practice, the off-the-shelf lattice rule has comparable performance to tailored
lattice rules. The finite element discretization uses discontinuous Galerkin methods (the
implementation of which is based on the ‘Finite Element Simulation Toolbox for UNstructured
Grids: FESTUNG’ [45]) on a grid of mesh size 1

16 . Additionally, the DG methods are
compared to a conforming finite element implementation on 30× 30 elements.

Thus, the spatial grid of the discontinuous Galerkin method is significantly coarser than
the conforming finite element grid. We do so to underline that it is generally considered
‘unfair’ to compare discontinuous Galerkin and conforming finite elements on the same grid
since DG usually has many more degrees of freedom. There are several ways to compensate
this imbalance (count degrees of freedom, number non-zero entries in the stiffness matrix, . . . ).
However, we will see that the accuracy of the DG and conforming element methods is of
minor importance in the numerical experiments. Thus, we skip a detailed discussion about a
fair comparison.

Figure 7.1 displays the numerical results for the affine case and locally linear DG or
conforming finite element approximation. We recognize that the green plot for the SIPG
method with η = 10 does not show the expected convergence behavior (with respect to the
number of cubature points). This nicely resembles our analysis, which highlights that SIPG
needs a large enough η to work stably, while the NIPG method is stable for all η > 0. We
clearly see that SIPG (with η = 100, red), NIPG (with η = 10, blue), and conforming linear
finite elements (black) all show a very similar convergence rate (between 1.098 and 1.1) in the
number of cubature points indicating that all three methods work similarly well in the affine
case.
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FIG. 7.2. Root mean squared error for the lognormal case. The NIPG method with η = 10 is depicted in red,
the SIPG method with η = 10 is depicted in blue, and the conforming finite element solution is black. The left picture
illustrates DG and conforming finite elements for locally linear polynomial approximation, while the second picture
shows only DG for a locally quadratic approximation.

In Figures 7.1 and 7.2 we recognize that the error plots of all stable methods are almost
identical. Thus, we conclude that the cubature error dominates the discretization error, and
hence the particular choice of the discretization appears to be almost irrelevant.

Figure 7.2 deals with the lognormal case. The left picture uses linear approximations
of SIPG, NIPG, and the conforming finite element method, while the right picture displays
the results for second-order SIPG and NIPG. In the left picture, we see that, again, all three
methods work fine and similarly well. Their convergence rates are approximately 1.03 with
only insignificant differences. Interestingly, we see similar convergence rates and absolute
errors for the second-order SIPG and NIPG approximations. Thus, we deduce that the influence
of the accuracy of the conforming finite element or DG approximation of the PDE does not
significantly influence the convergence behavior (not even the constants) of the QMC method
in our cases.

Notably, the NIPG method is robust concerning η, and we do not see visual differences in
the error plots if we choose η(y) as described in the remark in Section 5.1.

8. Conclusion. We have designed QMC cubatures using DG discretizations of an elliptic
PDE with a random coefficient. Our analytical and numerical findings are consistent with the
results derived from the conforming approximations in the literature.

In this study, we assumed the data to allow for solutions u ∈ H2 with respect to the
spatial variable. At the cost of some technical but standard extensions of the DG analysis,
we can extend our results to the case that u ∈ H3/2+ε in space. Moreover, using discrete
gradients and lifting operators, we believe our results can be transferred to the case of u having
minimal spatial regularity. We dropped extensive discussions on spatial regularity as detailed
in the DG literature. For QMC methods, the advantages of DG are its more regular execution
patterns and the additional local mass conservation. In that sense, it preserves more physics
than continuous finite element methods. However, we are not aware of any indications that
DG works under milder regularity assumptions than continuous finite elements.
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[54] I. H. SLOAN AND H. WOŹNIAKOWSKI, When are quasi-Monte Carlo algorithms efficient for high-dimensional

integrals?, J. Complexity, 14 (1998), pp. 1–33.
[55] S. SUN AND M. F. WHEELER, Analysis of discontinuous Galerkin methods for multicomponent reactive

transport problems, Comput. Math. Appl., 52 (2006), pp. 637–650.
[56] Y. SUZUKI AND D. NUYENS, Rank-1 lattices and higher-order exponential splitting for the time-dependent

Schrödinger equation, in Monte Carlo and Quasi-Monte Carlo Methods, B. Tuffin and P. L’Ecuyer, eds.,
vol. 324 of Springer Proc. Math. Stat., Springer, Cham, 2020, pp. 485–502.

[57] A. L. TECKENTRUP, R. SCHEICHL, M. B. GILES, AND E. ULLMANN, Further analysis of multilevel Monte
Carlo methods for elliptic PDEs with random coefficients, Numer. Math., 125 (2013), pp. 569–600.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

