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STRUCTURED CONDITION NUMBERS FOR A LINEAR FUNCTION OF THE
SOLUTION OF THE GENERALIZED SADDLE POINT PROBLEM∗

SK. SAFIQUE AHMAD† AND PINKI KHATUN†

Abstract. This paper addresses structured normwise, mixed, and componentwise condition numbers (CNs) for a
linear function of the solution to the generalized saddle point problem (GSPP). We present a general framework that
enables us to measure structured CNs of the individual components of the solution. Then, we derive their explicit
formulae when the input matrices have symmetric, Toeplitz, or some general linear structures. In addition, compact
formulae for unstructured CNs are obtained, which recover previous results on CNs for GSPPs for specific choices of
the linear function. Furthermore, applications of the derived structured CNs are provided to determine the structured
CNs for the weighted Toeplitz regularized least-squares problems and Tikhonov regularization problems, which
recovers some previous studies in the literature.
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1. Introduction. Generalized saddle point problems (GSPPs) have received significant
attention owing to their extensive applications across numerous fields in scientific computing,
such as computational fluid dynamics [13, 16], constrained optimization [20, 38], and so on.
Consider the following two-by-two block linear system:

Mz ≡
[
A BT

C D

] [
x
y

]
=

[
f
g

]
≡ d,(1.1)

where A ∈ Rm×m, B, C ∈ Rn×m, D ∈ Rn×n, x, f ∈ Rm, y, g ∈ Rn, and BT represents
the transpose of the matrix B. Then (1.1) is referred to as a GSPP if the block matrices
A,B,C, and D satisfy some special properties, such as B = C, symmetric, Toeplitz, or
have some other linear structures [10]. Recently, many efficient iteration methods have been
proposed to solve the linear system (1.1), such as inexact Uzawa schemes [8], Krylov subspace
methods [33], and so on. For a comprehensive survey of applications, algebraic properties,
and iterative methods for GSPPs, we refer to [6] and the references therein.

The GSPP or its special cases originate from a wide range of applications. For example:
(i) The Karush-Kuhn-Tucker (KKT) system (A = AT, B = C, and D = 0, here 0 denotes
the zero matrix of appropriate dimension) is one of the simplest versions of (1.1) and arises
from the KKT first-order optimality condition in constrained optimization problems [10, 36].
(ii) The sinc-Galerkin discretization of ordinary differential equations (ODEs) leads to a
problem of the form (1.1) [3, 4, 7]. (iii) The system (1.1) also comes from a finite element
discretization of time-harmonic eddy current models [2]. (iv) The finite difference discretiza-
tion of time-dependent Stokes equations generates systems in the form of (1.1) [9]. (v) GSPPs
emerge in the weighted Toeplitz regularized least-squares (WTRLS) problems [11] arising
from image restoration and reconstruction problems [17, 30] of the form

min
y∈Rn

‖My − d̃‖22,(1.2)
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where M =

[
W 1/2Q√
λIn

]
∈ R(m+n)×n, d̃ =

[
W 1/2f

0

]
∈ Rm×n, Q ∈ Rm×n(m ≥ n) is a

full rank Toeplitz matrix and W ∈ Rm×m is a symmetric positive definite weighting matrix.
The equivalent augmented system has the structure of a GSPP of the form (1.1) with A being
symmetric and B = C a Toeplitz matrix (see Section 5).

Perturbation theory is extensively used in numerical analysis to examine the sensitivity of
numerical techniques and the error analysis of a computed solution [21]. Condition numbers
(CNs) and backward errors are the two most important tools in perturbation theory. For a
given problem, the CN is a measure of the worst-case sensitivity of a numerical solution with
respect to a tiny perturbation in the input data, whereas the backward error reveals the stability
of any numerical approach. Combined with the backward error, CNs can provide a first-order
estimate of the forward error of an approximated solution.

Rice in [31] presented the classical theory of CNs. It essentially deals with the normwise
condition number (NCN) by employing norms to measure both the input perturbation and the
error in the output data. A notable drawback associated with the NCN lies in its inability to
capture the inherent structure of badly scaled or sparse input data. Consequently, the NCN
occasionally overestimates the true conditioning of the numerical solution. As remedies for
this, the mixed condition number (MCN) and componentwise condition number (CCN) have
seen a growing interest in the literature [18, 32, 35]. The former measures perturbation in the
input data componentwise and the output data error by norms, while the latter measures both
the input perturbation and the output data error componentwise.

Perturbation theory and CNs for the GSPP (1.1) have been widely studied in the literature.
A brief review of the literature on CNs for the GSPP (1.1) is as follows: In [37] the NCN for
the solution z = [xT, yT]T for the KKT system, i.e., the GSPP (1.1) with A = AT, B = C,
and D = 0 was analyzed. In [39], the authors discussed perturbation bounds for the GSPP
when B = C and D = 0, and they derived closed formulae for the NCN, MCN, and CCN
of the solutions z = [xT, yT]T and the individual solution components x and y. The NCN
and perturbation bounds have been investigated in [40] for the solution z = [xT, yT]T of the
GSPP (1.1) with the conditions B = C and D 6= 0. Later, in [28], the MCN and CCN for
z = [xT, yT]T was studied. Additionally, the authors explored the NCN, MCN, and CCN for
the individual solution components x and y. Recently, new perturbation bounds have been
derived for the GSPP (1.1) under the condition B 6= C, without imposing any special structure
on A and D [41].

In many applications, blocks of the coefficient matrix M of the system (1.1) exhibit
linear structures (for example, symmetric, Toeplitz or symmetric-Toeplitz) [12, 16, 34, 42].
Therefore, it is reasonable to ask: how sensitive is the solution when structure-preserving
perturbations are introduced to the coefficient matrix of GSPPs? To address the aforementioned
query, we explore the notion of structured CNs by restricting the perturbations that preserve
the structures inherent in the block matrices ofM.

Furthermore, in many instances, x and y represent two distinct physical entities, for
example in the Stokes equation, x denotes the velocity vector, and y stands for the scalar
pressure field [16]. Therefore, it is important to assess their individual conditioning properties.
To accomplish this, we propose a general framework for assessing the conditioning of x,
y, z = [xT, yT]T and each solution component. In the proposed general framework, we
consider the structured CNs of a linear function L[xT, yT]T of the solution to the GSPP (1.1),
where L ∈ Rk×(m+n). The matrix L serves as a tool for the purpose of selecting solution
components. For example, (i) L = Im+n gives the CNs for [xT, yT]T, (ii) L =

[
Im 0

]
gives

the CNs for x, and (iii) L =
[
0 In

]
gives the CNs for y. Here, Im stands for the identity

matrix of order m.
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The key contributions of this paper are summarized as follows:

• We study the NCN, MCN, and CCN for the linear function L[xT, yT]T, which in turn
provides a general framework enabling us to derive CNs for the solutions [xT, yT]T,
x, y, and each solution component.

• We investigate unstructured CNs for L[xT, yT]T by considering B = C and then
structured CNs when the (1,1)-blockA is symmetric and the (1,2)-blockB is Toeplitz.
We derive explicit formulae for both the unstructured and structured CNs. For
appropriate choices of L, our derived unstructured CN formulae generalize the results
given in the literature [28, 40].

• By considering linear structures of the block matrices A and D with B 6= C, we
provide compact formulae of the structured NCN, MCN, and CCN for the linear
function L[xT, yT]T of the GSPP (1.1).

• Utilizing the structured CN formulae, we derive the structured CNs for the WTRLS
problem and generalize some of the previous structured CN formulae for the Tikhonov
regularization problem. This shows the generic nature of our obtained results.

• Numerical experiments demonstrate that the obtained structured CNs offer sharper
bounds to the actual relative errors than their unstructured counterparts.

The organization of this paper is as follows. Section 2 discusses notation and preliminary
results about CNs. In Section 3 and 4, we investigate the unstructured and structured NCN,
MCN, and CCN for the linear function L[xT, yT]T of the solution of the GSPP. Furthermore,
an application of our obtained structured CNs is provided in Section 5 for WTRLS problems.
Additionally, these CNs are used to retrieve some prior found results for Tikhonov regular-
ization problems. In Section 6, numerical experiments are carried out to demonstrate the
effectiveness of the proposed structured CNs. Section 7 presents some concluding remarks.

2. Notation and preliminaries. In this section, we define some notation and review
some well-known results, which play a crucial role in showing the main findings of this paper.

2.1. Notation. Let Rm×n be the set of allm×n real matrices, and ‖·‖2, ‖·‖∞, and ‖·‖F
stand for the Euclidean norm/matrix 2-norm, infinity norm, and Frobenius norm, respectively.
For x = [x1, x2, . . . , xn]T ∈ Rn, we denote by Dx ∈ Rn×n the diagonal matrix with
Dx(i, i) = xi. The symbol A† denotes the Moore-Penrose inverse of A. Following [15, 26],
the entrywise division of any two vectors x, y ∈ Rn is defined as x

y := [xiyi ], where xi/0 = 0
whenever xi = 0 and infinity otherwise.

For any matrix A = [aij ] ∈ Rm×n, we set |A| := [|aij |], where |aij | denotes the ab-
solute value of the entry aij . For any two matrices A,B ∈ Rm×n, the notation A ≤ B
represents the inequalities aij ≤ bij , for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. For the ma-
trix A = [a1, a2, . . . , an] ∈ Rm×n, where ai ∈ Rm, i = 1, 2, . . . , n, the linear operator
vec : Rm×n 7→ Rmn is defined by vec(A) := [aT1 , a

T
2 , . . . , a

T
n]T. The vec operator satisfies

‖vec(A)‖2 = ‖A‖F . The Kronecker product [19] of two matrices X ∈ Rm×n and Y ∈ Rp×q
is defined by X ⊗ Y := [xijY ] ∈ Rmp×nq, and some of its important properties are listed
below [19, 23]:

vec(XCY ) = (Y T ⊗X)vec(C), |X ⊗ Y | = |X| ⊗ |Y |,(2.1)

where C ∈ Rn×p.
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2.2. Preliminaries. Throughout this paper, we assume that A andM are nonsingular.
We know that if A is nonsingular, thenM is nonsingular if and only if its Schur complement
S = D − CA−1BT is nonsingular [1], and its inverse is expressed as

M−1 =

[
A−1 +A−1BTS−1CA−1 −A−1BTS−1

−S−1CA−1 S−1

]
.(2.2)

Following [15, 26], we employ the following notation: The componentwise distance
between two vectors a and b in Rp is defined as

d(a, b) =
∥∥∥a− b

b

∥∥∥
∞

= max
i=1,2,...,p

{
|ai − bi|
|bi|

}
.

For u ∈ Rp and η > 0, we consider the sets: B1(u, η) = {x ∈ Rp : ‖x− u‖2 ≤ η‖u‖2} and
B2(u, η) = {x ∈ Rp : |xi − ui| ≤ η|ui|, i = 1, . . . , p}. With the above conventions we next
present the definitions of the NCN, MCN, and CCN for a mapping ϕ : Rp 7→ Rq .

DEFINITION 2.1 ([15, 18]). Let ϕ : Rp 7→ Rq be a continuous mapping defined on an
open set Ωϕ ⊆ Rp, and let 0 6= u ∈ Ωϕ such that ϕ(u) 6= 0.

(i) The NCN of ϕ at u is defined by

K (ϕ, u) = lim
η→0

sup
x 6=u

x∈B1(u,η)

‖ϕ(x)−ϕ(u)‖2/‖ϕ(u)‖2
‖x− u‖2/‖u‖2

.

(ii) The MCN of ϕ at u is defined by

M (ϕ, u) = lim
η→0

sup
x6=u

x∈B2(u,η)

‖ϕ(x)−ϕ(u)‖∞
‖ϕ(u)‖∞

1

d(x, u)
.

(iii) Let ϕ(u) = [ϕ(u)1, . . . ,ϕ(u)q]
T be such that ϕ(u)i 6= 0, for i = 1, 2, . . . , q. Then the

CCN of ϕ at u is defined by

C (ϕ, u) = lim
η→0

sup
x 6=u

x∈B2(u,η)

d(ϕ(x),ϕ(u))

d(x, u)
.

DEFINITION 2.2 ([14]). Let ϕ : Rp 7→ Rq be a mapping defined on an open set
Ωϕ ⊆ Rp. Then ϕ is said to be Fréchet differentiable at u ∈ Ωϕ if there exists a bounded
linear operator dϕ : Rp 7→ Rq such that

lim
h→0

‖ϕ(u+ h)−ϕ(u)− dϕh‖
‖h‖

= 0,

where ‖ · ‖ denotes any norm on Rp and Rq.
When ϕ is Fréchet differentiable at u, we denote the Fréchet derivative at u as dϕ(u).

The next lemma gives closed-form expressions for the above three CNs when the continuous
mapping ϕ is Fréchet differentiable.
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LEMMA 2.3 ([15, 18]). Under the same hypothesis as in Definition 2.1, whenϕ is Fréchet
differentiable at u, we have

K (ϕ;u) =
‖dϕ(u)‖2‖u‖2
‖ϕ(u)‖2

, M (ϕ;u) =
‖|dϕ(u)| |u|‖∞
‖ϕ(u)‖∞

, C (ϕ;u) =

∥∥∥∥ |dϕ(u)| |u|
|ϕ(u)|

∥∥∥∥
∞
,

where dϕ(u) denotes the Fréchet derivative of ϕ at u.
First, consider the case when B = C, i.e., the following GSPP

M
[
x
y

]
:=

[
A BT

B D

] [
x
y

]
=

[
f
g

]
:= d,(2.3)

and let ∆A, ∆B,∆D,∆f , and ∆g be perturbations in A,B,D, f , and g, respectively. Then,
we have the following perturbed problem of (2.3):

(M+ ∆M)

[
x+ ∆x
y + ∆y

]
=

[
A+ ∆A (B + ∆B)T

B + ∆B D + ∆D

] [
x+ ∆x
y + ∆y

]
=

[
f + ∆f
g + ∆g

]
,(2.4)

which has the unique solution
[
x+ ∆x
y + ∆y

]
when ‖M−1‖2‖∆M‖2 < 1. Now, from (2.4),

omitting the higher-order term, we obtain[
∆x
∆y

]
≈M−1

[
∆f
∆g

]
−M−1

[
∆A ∆BT

∆B ∆D

] [
x
y

]
.(2.5)

Using the properties in (2.1), we have the following important lemma:

LEMMA 2.4. Let
[
x
y

]
and

[
x+ ∆x
y + ∆y

]
be the unique solutions of the GSPPs (2.3) and (2.4),

respectively. Then, we have the following perturbation expression:

[
∆x
∆y

]
≈ −M−1

[
R −Im+n

]


vec(∆A)
vec(∆B)
vec(∆D)

∆f
∆g

 ,

where

(2.6) R =

[
xT ⊗ Im Im ⊗ yT 0

0 xT ⊗ In yT ⊗ In

]
.

Proof. The proof follows from (2.5) and using the properties in (2.1).

Let H =

[
A 0
B D

]
and ∆H =

[
∆A 0
∆B ∆D

]
. The authors in [40] investigated unstruc-

tured NCNs and those of [28] studied unstructured MCNs and NCNs for the solution [xT, yT]T

to the GSPP (1.1) when B = C, which are given as follows:
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K u([xT, yT]T) := lim
η→0

sup

{
‖[∆xT, ∆yT]T‖2
η‖[xT, yT]T‖2

:
∥∥[∆H ∆d

]∥∥
F
≤ η

∥∥[H d
]∥∥
F

}
(2.7)

=

∥∥M−1 [R −Im+n

]∥∥
2

∥∥[H d
]∥∥
F

‖[xT, yT]T‖2
,

M u([xT, yT]T) := lim
η→0

sup

{
‖[∆xT, ∆yT]T‖∞
η‖[xT, yT]T‖∞

:
∣∣[∆H ∆d

]∣∣ ≤ η ∣∣[H d
]∣∣}(2.8)

=

∥∥∥∥∥∥|M−1R|
vec(|A|)

vec(|B|)
vec(|D|)

+ |M−1|
[
|f |
|g|

]∥∥∥∥∥∥
∞

/∥∥∥∥[xy
]∥∥∥∥
∞
,

C u([xT, yT]T) := lim
η→0

sup

{
1

η

∥∥∥∥ [∆xT, ∆yT]T

[xT, yT]T

∥∥∥∥
∞

:
∣∣[∆H ∆d

]∣∣ ≤ η ∣∣[H d
]∣∣}(2.9)

=

∥∥∥∥∥D†[xT, yT]T
|M−1R|

vec(|A|)
vec(|B|)
vec(|D|)

+ D†
[xT, yT]T

|M−1|
[
|f |
|g|

] ∥∥∥∥∥
∞

,

whereR is defined as in (2.6).
In the next section, we consider unstructured and structured CNs for a linear function of

the solution of the GSPP (2.3).

3. CNs for a linear function of the solution to the GSPP whenB = C. In this section,
we derive compact NCN, MCN, and CCN formulae for a linear function of the solution to the
GSPP (1.1) when B = C, under both unstructured and structured perturbations. Additionally,
comparisons between unstructured and structured CNs are provided.

3.1. Unstructured CN formulae. In this section, we consider unstructured CNs for
the linear function L[xT, yT]T, where L ∈ Rk×(m+n), and we derive their explicit formulae.
In the following, we define the unstructured NCN, MCN, and CCN for the linear function
L[xT, yT]T. Throughout the paper, we assume that [xT, yT]T 6= 0 for MCN and xi 6= 0
(i = 1, . . . ,m) and yi 6= 0 (i = 1, . . . , n) for CCN.

DEFINITION 3.1. Let [xT, yT]T and
[
(x+ ∆x)T, (y + ∆y)T

]T
be the unique solutions

of the GSPPs (2.3) and (2.4), respectively, and let L ∈ Rk×(m+n). Then we define the
unstructured NCN, MCN, and CCN for the linear function L[xT, yT]T, respectively, as
follows:

K (L[xT, yT]T) := lim
η→0

sup

{
‖L[∆xT, ∆yT]T‖2
η‖L[xT, yT]T‖2

:
∥∥[∆H ∆d

]∥∥
F
≤ η

∥∥[H d
]∥∥
F

}
,

M (L[xT, yT]T) := lim
η→0

sup

{
‖L[∆xT, ∆yT]T‖∞
η‖L[xT, yT]T‖∞

:
∣∣[∆H ∆d

]∣∣ ≤ η ∣∣[H d
]∣∣} ,

C (L[xT, yT]T) := lim
η→0

sup

{
1

η

∥∥∥∥L[∆xT, ∆yT]T

L[xT, yT]T

∥∥∥∥
∞

:
∣∣[∆H ∆d

]∣∣ ≤ η ∣∣[H d
]∣∣} .

Note that when L = Im+n, the above definitions reduce to (2.7)–(2.9). For using
Lemma 2.3, we construct the mapping ψ : Rm2+mn+n2 × Rm+n 7→ Rm+n by

(3.1) ψ([ΩT, fT, gT]T) := L

[
x
y

]
= LM−1

[
f
g

]
,

where ΩT = [vec(A)T, vec(B)T, vec(D)T]T. The following result is crucial for finding the
CNs formulae.
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PROPOSITION 3.2. Let ΩT = [vec(A)T, vec(B)T, vec(D)T]T. Then, for the map ψ
defined in (3.1), we have

K (L[xT, yT]T) = K (ψ, [ΩT, fT, gT]T),

M (L[xT, yT]T) = M (ψ, [ΩT, fT, gT]T),

C (L[xT, yT]T) = C (ψ, [ΩT, fT, gT]T).

Proof. Let ∆ΩT = [vec(∆A)T, vec(∆B)T, vec(∆D)T]T. Then, from (3.1), we obtain

ψ
(
[ΩT + ∆ΩT, fT + ∆fT, gT + ∆gT]T

)
−ψ

(
[ΩT, fT, gT]T

)
= L

[
x+ ∆x
y + ∆y

]
− L

[
x
y

]
= L

[
∆x
∆y

]
.(3.2)

Now, in Definition 3.1, substituting (3.2) and ψ
(
[ΩT, fT, gT]T

)
= L

[
xT, yT

]T
, the proof

follows as a consequence of Definition 2.1.
Since the Fréchet derivative of ψ has a pivotal role in estimating the CNs in Definition 3.1,

it is essential to derive simple expressions for dψ. By applying Lemma 2.4, we obtain the
following results for dψ:

LEMMA 3.3. The map ψ defined above is continuous and Fréchet differentiable at
[ΩT, fT, gT]T, and its Fréchet derivative at [ΩT, fT, gT]T is given by

dψ([ΩT, fT, gT]T) = −LM−1
[
R −Im+n

]
.

Proof. SinceM−1 is continuous in its elements, the linear map ψ is also continuous. Let
∆ΩT = [vec(∆A)T, vec(∆B)T, vec(∆D)T]T. Then

ψ
(
[ΩT + ∆ΩT, fT + ∆fT, gT + ∆gT]T

)
−ψ

(
[ΩT, fT, gT]T

)
= L

[
∆x
∆y

]
.

Hence, the rest of the proof follows from Lemma 2.4.
Applying Lemma 3.3, we obtain the following closed formulae for the unstructured CNs

for the linear function L[xT, yT]T.
THEOREM 3.4. Let [xT, yT]T be the unique solution of the GSPP (2.3). Then the

unstructured NCN, MCN, and CCN for the linear function L[xT, yT]T, respectively, are given
by

K (L[xT, yT]T) =

∥∥LM−1 [R −Im+n

]∥∥
2

∥∥[H d
]∥∥
F

‖L[xT, yT]T‖2
,

M (L[xT, yT]T) =

∥∥∥∥∥∥|LM−1R|
vec(|A|)

vec(|B|)
vec(|D|)

+ |LM−1|
[
|f |
|g|

]∥∥∥∥∥∥
∞

‖L[xT, yT]T‖∞
,

C (L[xT, yT]T) =

∥∥∥∥∥D†L[xT, yT]T
|LM−1R|

vec(|A|)
vec(|B|)
vec(|D|)

+ D†
L[xT, yT]T

|LM−1|
[
|f |
|g|

] ∥∥∥∥∥
∞

.

Proof. Let ΩT = [vec(A)T, vec(B)T, vec(D)T]T. Then, from Proposition 3.2 and apply-
ing the NCN formula of Lemma 2.3 for the map ψ, we obtain

K (L[xT, yT]T) = K (ψ, [ΩT, fT, gT]T) =

∥∥∥dψ (ΩT, fT, gT]T
) ∥∥∥

2

∥∥[ΩT, fT, gT]T
∥∥
2

‖ψ (ΩT, fT, gT]T)‖2
.

(3.3)
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Now, substituting the expression of the Fréchet derivative of ψ at [ΩT, fT, gT]T provided in
Lemma 3.3 in (3.3), we get

K (L[xT, yT]T) =

∥∥∥LM−1 [R −Im+n

] ∥∥∥
2

∥∥[H d
]∥∥
F

‖L[xT, yT]T‖2
.

Similarly, applying the MCN formula provided in Lemma 2.3 for ψ, we get

M (L[xT, yT]T) = M (ψ, [ΩT, fT, gT]T) =

∥∥|dψ ([ΩT, fT, gT]T
)
|
∣∣[ΩT, fT, gT]T

∣∣∥∥
∞

‖ψ ([ΩT, fT, gT]T)‖∞
.

(3.4)

Substituting the Fréchet derivative expression provided in Lemma 3.3 in (3.4), we obtain

M (L[xT, yT]T) =

∥∥∥∣∣∣LM−1 [R −Im+n

] ∣∣∣ ∣∣[ΩT, fT, gT]T
∣∣∥∥∥
∞

‖L[xT, yT]T‖∞

=

∥∥∥∥∥|LM−1R|
vec(|A|)

vec(|B|)
vec(|D|)

+ |LM−1|
[
|f |
|g|

] ∥∥∥∥∥
∞∥∥∥L[xT, yT]T

∥∥∥
∞

.

The rest of the proof follows in a similar way.
REMARK 3.5. If we consider L = Im+n, then the formulae for K (L[xT, yT]T),

M (L[xT, yT]T), and C (L[xT, yT]T) reduce to the unstructured CNs K u([xT, yT]T),
M u([xT, yT]T), and C u([xT, yT]T) given in (2.7)–(2.9), respectively. Moreover, if we
choose L =

[
Im 0

]
or L =

[
0 In

]
, after some easy calculations, we can recover the

unstructured CN formulae of [28] for x and y, respectively.

3.2. Structured CNs whenA is symmetric andB = C is Toeplitz. In this section, we
consider the structured NCN, MCN, and CCN of the GSPP (2.3) withA = AT andB ∈ Rn×m
being a Toeplitz matrix. We denote by Sm and T n×m the set of all m×m symmetric matrices
and n×m Toeplitz matrices, respectively. Now, we recall the definition of Toeplitz matrices
and derive a few important lemmas.

DEFINITION 3.6 ([22]). A matrix T = [tij ] ∈ Rn×m is called a Toeplitz matrix if there
exists

t = [t−n+1, . . . , t−1, t0, t1, . . . , tm−1]T ∈ Rm+n−1

such that tij = tj−i, for all 1 ≤ i ≤ n and 1 ≤ j ≤ m.
The generator vector t for T is denoted by vecT (T ).Moreover, for t ∈ Rm+n−1, Toep(t)

denotes the corresponding generated Toeplitz matrix.
As dim(T n×m) = m+ n− 1, consider the basis {Ji}m−1i=−n+1 for T n×m defined as

Ji =

{
Toep([(e

(n)
n−i)

T, 0]T) for i = −n+ 1, . . . ,−1, 0,

Toep([0, (e
(m)
i )T]T) for i = 1, . . . ,m− 1,

where e(m)
i is the i-th column of the identity matrix Im. Moreover, let us define the diagonal

matrix DTnm ∈ R(m+n−1)×(m+n−1) with DTnm(j, j) = aj , where
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a = [1,
√

2, . . . ,
√
n− 1,

√
min{m,n},

√
m− 1, . . . ,

√
2, 1]T ∈ Rm+n−1

such that ‖T‖F = ‖DTnmvecT (T )‖2.
LEMMA 3.7. Let T ∈ T n×m. Then vec(T ) = ΦTnmvecT (T ), where

ΦTnm =
[
vec(J−n+1), . . . , vec(Jm−1)

]
∈ Rmn×(m+n−1).

Proof. Assume that vecT (T ) = [t−n+1, . . . t0, . . . , tm−1]T. Then

T =

m−1∑
i=−n+1

tiJi ⇐⇒ vec(T ) = ΦTnmvecT (T ).

Hence, the proof follows.

Let A ∈ Sm. Then A = AT. Moreover, we have dim(Sm) = m(m+1)
2 =: p. We denote

the generator vector for A by

vecS(A) := [a11, . . . , a1m, a22, . . . , a2m, . . . , a(m−1)(m−1), a(m−1)m, amm]T ∈ Rp.

Consider the basis
{
S
(m)
ij

}
for Sm defined as

S
(m)
ij =

{
e
(m)
i (e

(m)
j )T + (e

(m)
j e

(m)
i )T for i 6= j,

e
(m)
i (e

(m)
i )T for i = j,

where 1 ≤ i ≤ j ≤ m. Then we have the following immediate result for the vec-structure
of A:

LEMMA 3.8. Let A ∈ Sm. Then vec(A) = ΦSm vecS(A), where ΦSm ∈ Rm2×p is
given by

ΦSm =
[
vec(S

(m)
11 ) · · · vec(S

(m)
1m ) vec(S

(m)
22 ) · · · vec(S

(m)
2m ) · · · vec(S

(m)
(m−1)m) vec(S

(m)
mm)

]
.

Proof. The proof follows by using a similar proof method as in Lemma 3.7.
We construct the diagonal matrix DSm ∈ Rp×p, where{

DSm(j, j) = 1 for j = (2m−(i−2))(i−1)
2 + 1, i = 1, 2, . . . ,m,

DSm(j, j) =
√

2 otherwise.

This matrix satisfies the property ‖A‖F = ‖DSmvecS(A)‖2. Consider the set

E =

{
H =

[
A 0
B D

]
: A ∈ Sm, B ∈ T n×m, D ∈ Rn×n

}
,

and let ∆H =

[
∆A 0
∆B ∆D

]
∈ E , i.e., ∆A ∈ Sm, ∆B ∈ T n×m, and ∆D ∈ Rn×n.

Next, we define the structured CNs for the solution of the GSPP (2.3).
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DEFINITION 3.9. Let [xT, yT]T and
[
(x+ ∆x)T, (y + ∆y)T

]T
be the unique solutions

of the GSPPs (2.3) and (2.4), respectively, with the structure E and L ∈ Rk×(m+n). Then the
structured NCN, MCN, and CCN for the linear function L[xT, yT]T are defined as follows:

K (L[xT, yT]T; E)

:= lim
η→0

sup

{
‖L[∆xT, ∆yT]T‖2
η‖L[xT, yT]T‖2

:
∥∥[∆H ∆d

]∥∥
F
≤ η

∥∥[H d
]∥∥
F
,∆H ∈ E

}
,

M (L[xT, yT]T; E)

:= lim
η→0

sup

{
‖L[∆xT, ∆yT]T‖∞
η‖L[xT, yT]T‖∞

:
∣∣[∆H ∆d

]∣∣ ≤ η ∣∣[H d
]∣∣ ,∆H ∈ E

}
,

C (L[xT, yT]T; E)

:= lim
η→0

sup

{
1

η

∥∥∥∥L[∆xT, ∆yT]T

L[xT, yT]T

∥∥∥∥
∞

:
∣∣[∆H ∆d

]∣∣ ≤ η ∣∣[H d
]∣∣ ,∆H ∈ E

}
.

To find the structured CN formulae by employing Lemma 2.3, we define the following
mapping:

ζ : Rl × Rm × Rn 7→ Rm+n(3.5)

ζ
(
[DEw

T, fT, gT]T
)

= L
[
x
y

]
= LM−1

[
f
g

]
,

where

l = n2 + p+m+ n− 1, w =

vecS(A)
vecT (B)
vec(D)

 , and DE =

DSm 0 0
0 DTnm 0
0 0 In2

 .
In the next lemma, we provide the Fréchet derivative of the map ζ at

[
DEw

T, fT, gT
]T

.
LEMMA 3.10. The mapping ζ defined in (3.5) is continuously Fréchet differentiable at[

DEw
T, fT, gT

]T
, and the Fréchet derivative is given by

dζ
(
[DEw

T, fT, gT]T
)

= −LM−1
[
RΦED

−1
E −Im+n

]
,

where

ΦE =

ΦSm 0 0
0 ΦTnm 0
0 0 In2

 .
Proof. The continuity of the linear map ζ follows from the continuity ofM−1. For the

second part, let

∆w =

vecS(∆A)
vecT (∆B)
vec(∆D)

 ,
and consider

ζ
(
[DE(w

T + ∆wT), fT + ∆fT, gT + ∆gT]
)
− ζ

(
[DEw

T, fT, gT]T
)

= L

[
∆x
∆y

]
.(3.6)
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Then, from Lemma 2.3, we obtain

[
∆x
∆y

]
≈ −M−1

[
R −Im+n

]


vec(∆A)
vec(∆B)
vec(∆D)

∆f
∆g



= −M−1
[
R −Im+n

] ΦSm 0 0
0 ΦTnm 0
0 0 In2+m+n




vecS(∆A)
vecT (∆B)
vec(∆D)

∆f
∆g


= −M−1

[
RΦE −Im+n

] D−1E DE∆w
∆f
∆g


= −M−1

[
RΦED

−1
E −Im+n

] DE∆w∆f
∆g

 .(3.7)

Combining (3.7) and (3.6), the Fréchet derivative of ζ at

DEwf
g

 is

dζ
(
[DEw

T, fT, gT]T
)

= −LM−1
[
RΦED

−1
E −Im+n

]
.

Hence, the proof follows.
Using Lemma 3.10 and Lemma 2.3, we next derive compact formulae for the structured

CNs defined in Definition 3.9.
THEOREM 3.11. Let [xT, yT]T be the unique solution of the GSPP (2.3) with the

structure E . Then the structured NCN, MCN, and CCN for the linear function L[xT, yT]T,
respectively, are given by

K (L
[
xT, yT

]T
; E) =

∥∥∥LM−1 [RΦED
−1
E −Im+n

] ∥∥∥
2

∥∥[H d
]∥∥
F∥∥∥L [xT, yT]T∥∥∥

2

,

M (L
[
xT, yT

]T
; E) =

∥∥∥∥∥|LM−1RΦE |

vecS(|A|)
vecT (|B|)
vec(|D|)

+ |LM−1|
[
|f |
|g|

] ∥∥∥∥∥
∞∥∥∥L [xT, yT]T ∥∥∥

∞

,

C (L
[
xT, yT

]T
; E)

=

∥∥∥∥∥∥D†L[xT,yT]T
|LM−1RΦE |

vecS(|A|)
vecT (|B|)
vec(|D|)

+ D†
L[xT,yT]T

|LM−1|
[
|f |
|g|

]∥∥∥∥∥∥
∞

.

Proof. LetwT = [vec(A)TS , vec(B)TT , vec(D)T]T. Following the proof method of Propo-
sition 3.2, we have

K (L
[
xT, yT

]T
; E) = K (ζ, [DEw

T, fT, gT]T),
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M (L
[
xT, yT

]T
; E) = M (ζ, [DEw

T, fT, gT]T),

C (L
[
xT, yT

]T
; E) = C (ζ, [DEw

T, fT, gT]T).

Applying the NCN formula given in Lemma 2.3 for the map ζ, we obtain

K (L[xT, yT]T; E) =

∥∥∥dζ ([DEwT, fT, gT]T
) ∥∥∥

2

∥∥∥∥∥∥
DEwf

g

∥∥∥∥∥∥
2

‖ζ ([DEwT, fT, gT]T)‖2
.(3.8)

Now, substituting the Fréchet derivative of ζ provided in Lemma 3.3 in (3.8), we have

K (L[xT, yT]T; E) =

∥∥∥LM−1 [RΦED
−1
E −Im+n

] ∥∥∥
2

∥∥[H d
]∥∥
F

‖L[xT, yT]T‖2
.

Similarly, applying the MCN formula provided in Lemma 2.3 for ζ, we get

M (L[xT, yT]T; E) =

∥∥∥∥∥∥|dζ ([DEwT, fT, gT]T
)
|

∣∣∣∣∣∣
DEwf

g

∣∣∣∣∣∣
∥∥∥∥∥∥
∞

‖ζ ([DEwT, fT, gT]T)‖∞
.(3.9)

Now, using Lemma 3.10 in (3.9), we obtain

M (L[xT, yT]T; E) =

∥∥∥∥∥∥
∣∣∣LM−1 [RΦED

−1
E −Im+n

] ∣∣∣
∣∣∣∣∣∣
DEwf

g

∣∣∣∣∣∣
∥∥∥∥∥∥
∞

‖L[xT, yT]T‖∞

=

∥∥∥∥|LM−1RΦED
−1
E ||DEw|+ |LM−1|

[
|f |
|g|

]∥∥∥∥
∞

‖L[xT, yT]T‖∞

=

∥∥∥∥∥|LM−1RΦE |

vecS(|A|)
vecT (|B|)
vec(|D|)

+ |LM−1|
[
|f |
|g|

] ∥∥∥∥∥
∞∥∥∥L[xT, yT]T

∥∥∥
∞

.

In an analogous manner, we get

C (L[xT, yT]T; E) =

∥∥∥∥∥∥D†L[xT,yT]T
|dζ

(
[DEw

T, fT, gT]T
)
|

∣∣∣∣∣∣
DEwf

g

∣∣∣∣∣∣
∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥D†L[xT,yT]T
|LM−1RΦE |

vecS(|A|)
vecT (|B|)
vec(|D|)

+ D†
L[xT,yT]T

|LM−1|
[
|f |
|g|

]∥∥∥∥∥∥
∞

.

Hence, the proof is completed.
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REMARK 3.12. Note that the structured MCN and CCN formulae presented in The-
orem 3.11 involve computing the inverse of the matrix M ∈ R(m+n)×(m+n), while the
structured NCN formula involves computing the inverse of both matricesM and DE ∈ Rl×l.
However, DE is a diagonal matrix. Therefore, its inverse can be computed using only O(l)
operations. On the other hand, to avoid computingM−1 explicitly, motivated by [25], we
adopt the following procedure. Notably, the computation ofM−1 is coming in the following
form:

LM−1
[
RΦED

−1
E −Im+n

]
or LM−1RΦE or LM−1.

Thus, first, we solve the systemMX = Y, where Y =
[
RΦED

−1
E −Im+n

]
or RΦE and

then compute LX. The systemMX = Y can be solved efficiently by an LU decomposition.
To compute LM−1, we can solve L = XM. It is worth noting that we only need to perform
the LU decomposition once for all cases; this makes the procedure efficient and reliable.

REMARK 3.13. The Toeplitz matrix B is symmetric-Toeplitz (a special case of a Toeplitz
matrix) if n = m and

b−n+1 = bn−1, . . . , b−1 = b1, where vecT (B) = [b−n+1, . . . , b1, b0, . . . , bn−1]T.

In this case, the basis for the set of symmetric-Toeplitz matrices is defined as
{
J̃i
}n
i=1

, where

J̃1 = Toep([(e(n)n )T, 0]T),

J̃i+1 = Toep([(e
(n)
n−i)

T, (e
(n−1)
i )T]T), for i = 1, . . . , n− 1.

Hence, the structured CNs for the GSPP (2.3) when A is symmetric and B is symmetric-
Toeplitz is given by the formulae as in Theorem 3.11, with

ΦTnm =
[
vec(J̃1), . . . , vec(J̃n)

]
∈ Rn

2×n and

DTnm ∈ Rn×n with DTnm(j, j) = âj ,

where â = [
√
n,
√

2(n− 1),
√

2(n− 2), . . . ,
√

2]T ∈ Rn.
Next, we compare the structured CNs with the unstructured ones given in (2.7)–(2.9).
THEOREM 3.14. With the above notation, when L = Im+n, we have the following

relations:

K ([xT, yT]T; E) ≤ K u([xT, yT]T),

M ([xT, yT]T; E) ≤M u([xT, yT]T),

C ([xT, yT]T; E) ≤ C u([xT, yT]T).

Proof. Since L = Im+n, for the NCN, using the properties of the spectral norm, we obtain∥∥∥M−1 [RΦED
−1
E −Im+n

] ∥∥∥
2
≤
∥∥∥M−1 [R −Im+n

] ∥∥∥
2

∥∥∥∥[ΦED−1E 0
0 Im+n

]∥∥∥∥
2

=
∥∥∥M−1 [R −Im+n

] ∥∥∥
2
.

The last equality follows from the fact that ‖ΦED−1E ‖2 = 1. Hence, the first claim is verified.
Since ΦE has at most one nonzero entry in each row, we find

|M−1RΦE |

vecS(|A|)
vecT (|B|)
vec(|D|)

 ≤ |M−1R||ΦE |
vecS(|A|)

vecT (|B|)
vec(|D|)


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= |M−1R|

 |ΦSm |vecS(|A|)
|ΦTnm |vecT (|B|)

vec(|D|)

 = |M−1R|

 |ΦSmvecS(A)|
|ΦTnmvecT (B)|

vec(|D|)


= |M−1R|

vec(|A|)
vec(|B|)
vec(|D|)

 .
Therefore, from Theorem 3.4, we obtain

M ([xT, yT]T; E) ≤

∥∥∥∥∥∥|M−1R|
vec(|A|)

vec(|B|)
vec(|D|)

+ |M−1|
[
|f |
|g|

]∥∥∥∥∥∥
∞

‖[xT, yT]T‖∞
= M u([xT, yT]T)

and

C ([xT, yT]T; E) ≤

∥∥∥∥∥D†[xT, yT]T
|M−1R|

vec(|A|)
vec(|B|)
vec(|D|)

+ D†
[xT, yT]T

|M−1|
[
|f |
|g|

] ∥∥∥∥∥
∞

= C u([xT, yT]T).

Hence, the proof is completed.

4. Structured CNs whenA andD have linear structures. In this section, we consider
L1 ⊆ Rm×m and L2 ⊆ Rn×n are two distinct linear subspaces containing different classes
of structured matrices. Suppose that dim(L1) = p and dim(L2) = s, and the corresponding
bases are {Ei}pi=1 and {Fi}si=1, respectively. Let A ∈ L1 and D ∈ L2. Then there are unique
vectors

vecL1
(A) = [a1, a2, . . . , ap]

T ∈ Rp and vecL2
(D) = [d1, d2, . . . , ds]

T ∈ Rs

such that

(4.1) A =

p∑
i=1

aiEi and D =

s∑
i=1

diFi.

We obtain the following lemma for the vec-structure of the matrices A and D.
LEMMA 4.1. Let A ∈ L1 and D ∈ L2. Then it holds that vec(A) = ΦL1vecL1(A) and

vec(D) = ΦL2
vecL2

(D), where

ΦL1
=
[
vec(E1) vec(E2) · · · vec(Ep)

]
∈ Rm

2×p,

ΦL2
=
[
vec(F1) vec(F2) · · · vec(Fs)

]
∈ Rn

2×s.

Proof. Assume that vecL1(A) = [a1, a2, . . . , ap]
T ∈ Rp. Then from (4.1), we obtain

vec(A) =

p∑
i=1

aivec(Ei) = ΦL1
vecL1

(A).

Similarly, we can get vec(D) = ΦL2vecL2(D).
The matrices ΦL1 and ΦL2 contain the information about the structures of A and D

with respect to the linear subspaces L1 and L2, respectively. For unstructured matrices,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

STRUCTURED CONDITION NUMBERS GENERALIZED SADDLE POINT PROBLEMS 485

ΦL1
= Im2 and ΦL2

= In2 . On the other hand, there exist diagonal matrices DL1
∈ Rp×p

and DL2
∈ Rs×s with diagonal entries DLj (i, i) = ‖ΦLj (:, i)‖2, for j = 1, 2, such that

‖A‖F = ‖DL1a‖2 and ‖D‖F = ‖DL2d‖2.

To perform a structured perturbation analysis, we restrict the perturbation ∆A of A and
∆D of D to the linear subspaces L1 and L2, respectively. Then there are unique vectors
vecL1

(∆A) ∈ Rp and vecL2
(∆D) ∈ Rs such that

vec(∆A) = ΦL1
vecL1

(∆A) and vec(∆D) = ΦL2
vecL1

(∆D).

Now, consider the following set:

L =

{
M =

[
A BT

C D

]
: A ∈ L1, B,C ∈ Rn×m, D ∈ L2

}
.

Consider the perturbations ∆A, ∆B, ∆C, ∆D, ∆f, and ∆g of the matrices A, B, C, D, f,
and g, respectively. Then, the following perturbed counterpart of the system (1.1)

(M+ ∆M)

[
x+ ∆x
y + ∆y

]
=

[
A+ ∆A (B + ∆B)T

C + ∆C D + ∆D

] [
x+ ∆x
y + ∆y

]
=

[
f + ∆f
g + ∆g

]
(4.2)

has a unique solution
[
x+ ∆x
y + ∆y

]
when ‖M‖2 ‖∆M‖2 < 1. Consequently, neglecting higher-

order terms, we can rewrite (4.2) as

M
[
∆x
∆y

]
=

[
A BT

C D

] [
∆x
∆y

]
≈
[
∆f
∆g

]
−
[
∆A ∆BT

∆C ∆D

] [
x
y

]
.

Using the properties of the Kronecker product mentioned in (2.1), we have the next lemma.

LEMMA 4.2. Let
[
xT, yT

]T
and

[
(x+ ∆x)T, (y + ∆y)T

]T
be the unique solutions of

the GSPPs (1.1) and (4.2), respectively, with the structure L. Then, we have the perturbation
expression:

[
∆x
∆y

]
≈ −M−1

[
H −Im+n

]


vec(∆A)
vec(∆B)
vec(∆C)
vec(∆D)

∆f
∆g

 ,

where

H =

[
xT ⊗ Im Im ⊗ yT 0 0

0 0 xT ⊗ In yT ⊗ In

]
.(4.3)

Next, we define the structured NCN, MCN, and CCN for the linear function L[xT, yT]T

of the solution of the GSPP (1.1) with the structure L.
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DEFINITION 4.3. Let
[
xT, yT

]T
and

[
(x+ ∆x)T, (y + ∆y)T

]T
be the unique solutions

of the GSPPs (1.1) and (4.2), respectively, with the structure L. Suppose L ∈ Rk×(m+n).
Then the structured NCN, MCN, and CCN for L[xT, yT]T, respectively, are defined as follows:

K (L[xT, yT]T; L)

:= lim
η→0

sup

{∥∥L[∆xT, ∆yT]T
∥∥
2

η ‖L[xT, yT]T‖2
:
∥∥[∆M ∆d

]∥∥
F
≤ η

∥∥[M d
]∥∥
F
, ∆M∈ L

}
,

M (L[xT, yT]T; L)

:= lim
η→0

sup

{∥∥L[∆xT, ∆yT]T
∥∥
∞

η ‖L[xT, yT]T‖∞
:
∣∣[∆M ∆d

]∣∣ ≤ η ∣∣[M d
]∣∣ , ∆M∈ L

}
,

C (L[xT, yT]T; L)

:= lim
η→0

sup

{
1

η

∥∥∥∥L[∆xT, ∆yT]T

L[xT, yT]T

∥∥∥∥
∞

:
∣∣[∆M ∆d

]∣∣ ≤ η ∣∣[M d
]∣∣ , ∆M∈ L

}
.

The main objective of this section is to develop explicit formulae for the structured CNs
defined above. To accomplish this, let v be a vector in Rp+2mn+s defined as

v =
[
vecTL1

(A), vec(B)T, vec(C)T, vecTL2
(D)

]T
.

To apply Lemma 2.3, we define the mapping

Υ : Rp+2mn+s × Rm × Rn 7→ Rk(4.4)

Υ
(
[DLv

T, fT, gT]T
)

:= L

[
x
y

]
= LM−1

[
f
g

]
,

where

DL =

DL1
0 0

0 I2mn 0
0 0 DL2

(4.5)

such that ‖M‖F = ‖DLv‖2. In the next lemma, we present an explicit formula for dΥ.

LEMMA 4.4. The mapping Υ defined in (4.4) is continuously Fréchet differentiable at
[DLv

T, fT, gT]T, and the Fréchet derivative is given by

dΥ
(
[DLv

T, fT, gT]T
)

= −LM−1
[
HΦLDL −Im+n

]
,

where ΦL =

ΦL1
0 0

0 I2mn 0
0 0 ΦL2

 andH and DL are defined as in (4.3) and (4.5), respec-

tively.

Proof. The proof follows in a similar way as the proof method of Lemma 3.10.
We now present compact formulae of the structured NCN, MCN, and CCN introduced in

Definition 2.1. We use Lemmas 2.3 and (4.4) to prove the following theorem.
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THEOREM 4.5. The structured NCN, MCN, and CCN for the linear function L[xT, yT]T

of the solution of the GSPP (1.1) with the structure L, respectively, are given by

K (L[xT, yT]T; L) =

∥∥∥LM−1 [HΦLD
−1
L −Im+n

] ∥∥∥
2

∥∥[M d
]∥∥
F

‖L[xT, yT]T‖2
,

M (L[xT, yT]T; L) =

∥∥∥∥∥|LM−1HΦL|


vecL1

(|A|)
vec(|B|)
vec(|C|)

vecL2
(|D|)

+ |LM−1|
[
|f |
|g|

] ∥∥∥∥∥
∞∥∥∥L[xT, yT]T

∥∥∥
∞

,

C (L[xT, yT]T; L)

=

∥∥∥∥∥D†L[xT,yT]T
|LM−1HΦL|


vecL1(|A|)
vec(|B|)
vec(|C|)

vecL2
(|D|)

+ D†
L[xT,yT]T

|LM−1|
[
|f |
|g|

] ∥∥∥∥∥
∞

.

Proof. Similarly to the proof method of Proposition 3.2, we have

K (L[xT, yT]T; L) = K (Υ,
[
DLv

T, fT, gT
]T

),

M (L[xT, yT]T; L) = M (Υ,
[
DLv

T, fT, gT
]T

),

C (L[xT, yT]T; L) = C (Υ,
[
DLv

T, fT, gT
]T

).

Using Lemma 4.4 and the NCN formula provided in Lemma 2.3, we have

K (L[xT, yT]T;L) =

∥∥∥dΥ
(
[DLv

T, fT, gT]T
) ∥∥∥

2

∥∥∥∥∥∥
DLvf

g

∥∥∥∥∥∥
2

‖Υ ([DLvT, fT, gT]T)‖2

=

∥∥∥LM−1 [HΦLD
−1
L −Im+n

] ∥∥∥
2

∥∥[M d
]∥∥
F

‖L[xT, yT]T‖2
.

For the structured MCN, again using Lemmas 2.3 and 4.4, we obtain

M (L[xT, yT]T;L) =

∥∥∥∥∥∥|dΥ
(
[DLv

T, fT, gT]T
)
|

∣∣∣∣∣∣
DLvf

g

∣∣∣∣∣∣
∥∥∥∥∥∥
∞

‖Υ ([DLvT, fT, gT]T)‖∞

=

∥∥∥∥∥∥
∣∣∣LM−1 [HΦLD

−1
L −Im+n

] ∣∣∣
∣∣∣∣∣∣
DLvf

g

∣∣∣∣∣∣
∥∥∥∥∥∥
∞

‖L[xT, yT]T‖∞

=

∥∥∥∥∥|LM−1HΦL|


vecL1(|A|)
vec(|B|)
vec(|C|)

vecL2
(|D|)

+ |LM−1|
[
|f |
|g|

] ∥∥∥∥∥
∞∥∥∥L[xT, yT]T

∥∥∥
∞

.
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The rest of the proof follows similarly.
REMARK 4.6. To compute the inverses ofM and DL, one can follow a similar procedure

as discussed in Remark 3.12.
REMARK 4.7. Considering L = Im+n,

[
Im 0

]
, and

[
0 In

]
in Theorem 4.5, we

obtain the structured NCN, MCN, and CCN for the solutions [xT, yT]T, x, and y, respectively.
REMARK 4.8. For A ∈ Sm and D ∈ Sn, set

ΦS =

ΦSm 0 0
0 I2mn 0
0 0 ΦSn

 and DS =

DSm 0 0
0 I2mn 0
0 0 DSn

 ,
where ΦSm ,ΦSn ,DSm , and DSn are defined as in Section 3.2. Then the structured NCN,
MCN, and CCN when L1 = Sm and L2 = Sn are obtained by substituting ΦL = ΦS ,
DL = DS , vecL1(A) = vecSm(A), and vecL2(D) = vecSn(D) in Theorem 4.5.

Next, consider the linear systemMz = d, whereM∈ Rl×l is any nonsingular matrix
and d ∈ Rl. Then this system can be partitioned as a GSPP (1.1) by setting l = m+ n. Let
∆M∈ Rl×l and ∆d ∈ Rl. Then the perturbed system is given by

(M+ ∆M)(z + ∆z) = (d + ∆d).

In [35] and [32], the following formulae for the unstructured MCN and CCN for the solution
of the above linear system are proposed:

M̃ (z) := lim
η→0

sup

{
‖∆z‖∞
η‖z‖∞

: |∆M| ≤ η|M|, |∆d| ≤ η|d|
}

=

∥∥|M−1||M||z|+ |M−1||d|∥∥∞
‖z‖∞

,(4.6)

C̃ (z) := lim
η→0

sup

{
1

η

∥∥∥∥∆z

z

∥∥∥∥
∞

: |∆M| ≤ η|M|, |∆d| ≤ η|d|
}

=

∥∥∥∥ |M−1||M||z|+ |M−1||d||z|

∥∥∥∥
∞
.(4.7)

REMARK 4.9. Considering ΦSm = Im2 and ΦSn = In2 in the formula for
K ([xT, yT]T;L), we obtain the unstructured NCN forMz = d, whereM∈ Rl×l, d ∈ Rl,
and l = (m+ n), which is given by

K̃ (z) := lim
η→0

sup

{
‖∆z‖2
η‖z‖2

:
∥∥[∆M ∆d

]∥∥
F
≤ η

∥∥[M d
]∥∥
F

}

=

∥∥∥M−1 [H −Im+n

] ∥∥∥
2

∥∥[M d
]∥∥
F

‖z‖2
.

The next theorem compares the structured NCN, MCN, and CCN obtained in Theorem 4.5
and the unstructured counterparts defined above.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

STRUCTURED CONDITION NUMBERS GENERALIZED SADDLE POINT PROBLEMS 489

THEOREM 4.10. Let z = [xT, yT]T and L = Im+n. Then, for the GSPP (1.1) with the
structure L, the following relations holds:

K ([xT, yT]T; L) ≤ K̃ ([xT, yT]T),

M ([xT, yT]T; L) ≤ M̃ ([xT, yT]T),

C ([xT, yT]T; L) ≤ C̃ ([xT, yT]T).

Proof. Since ‖ΦLD−1L ‖2 = 1, the proof follows similar to the proof method of Theo-
rem 3.14. Hence, from Theorem 4.5 and Remark 4.9, we have

K ([xT, yT]T; L) ≤ K̃ ([xT, yT]T).

Now, using the property that the matrices ΦLi , i = 1, 2, have at most one nonzero entry in
each row [24], and similar to Theorem 3.14, we obtain

|ΦL1vecL1(A)| = |ΦL1 |vecL1(|A|) and |ΦL2vecL2(D)| = |ΦL2 |vecL2(|D|).

Then

|M−1HΦL|


vecL1

(|A|)
vec(|B|)
vec(|C|)

vecL2(|D|)

+ |M−1|
[
|f |
|g|

]
≤ |M−1||H|


vec(|A|)
vec(|B|)
vec(|C|)
vec(|D|)

+ |M−1|
[
|f |
|g|

]

≤ |M−1|
[
|xT| ⊗ Im Im ⊗ |yT| 0 0

0 0 |xT| ⊗ In |yT| ⊗ In

]
vec(|A|)
vec(|B|)
vec(|C|)
vec(|D|)

+ |M−1|
[
|f |
|g|

]

= |M−1||M|
[
|x|
|y|

]
+ |M−1|

[
|f |
|g|

]
.

Consequently, by Theorem 4.5, we have

M ([xT, yT]T; L) ≤

∥∥∥∥|M−1||M| [|x||y|
]

+ |M−1|
[
|f |
|g|

]∥∥∥∥
∞

‖[xT, yT]T‖∞
,

C ([xT, yT]T; L) ≤

∥∥∥∥∥∥∥∥
|M−1||M|

[
|x|
|y|

]
+ |M−1|

[
|f |
|g|

]
|
[
xT, yT

]T |
∥∥∥∥∥∥∥∥
∞

.

Now, consider l = m+ n, z = [xT, yT]T and d = [fT, gT]T in (4.6) and (4.7). Then, from
the above results, we obtain the following relations:

M ([xT, yT]T; L) ≤ M̃ ([xT, yT]T) and C ([xT, yT]T; L) ≤ C̃ ([xT, yT]T).

Hence, the proof follows.

5. Application to WTRLS problems. Consider the WTRLS problem (1.2) and let
r = W (f − Qy). Then the minimization problem (1.2) can be expressed as the follow-
ing augmented linear system

M̂
[
r
y

]
:=

[
W−1 Q
QT −λIn

] [
r
y

]
=

[
f
0

]
.(5.1)
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Identifying A = W−1, B = QT, D = −λIn, x = r, and g = 0, we can see that the
augmented system (5.1) is in the form of the GSPP (2.3). Therefore, finding the CNs of the
WTRLS problem (1.2) is equivalent to the CNs of the GSPP (2.3) for y with g = 0. This can
be accomplished by Theorem 3.4. Before that, we reformulate (2.2) (with B = C) as

M−1 =

[
M N
K S−1

]
,

where

M = A−1 +A−1BTS−1BA−1, N = −A−1BTS−1,

K = −S−1BA−1, S = D −BA−1BT.

THEOREM 5.1. Let y be the unique solution of the problem (1.2) and r = W (f −Qy).
Then the structured NCN, MCN, and CCN for y, respectively, are given by

K rls(y; E)

=

∥∥∥[(rT ⊗ K̃)ΦSmD
−1
Sm (K ⊗ yT + rT ⊗ S̃−1)ΦTnmD

−1
E yT ⊗ S̃−1 −K̃ −S̃−1

]∥∥∥
2

‖y‖2/
∥∥∥[M̂ d

]∥∥∥
F

,

M rls(y; E) =
‖Ny‖∞
‖y‖∞

,

C rls(y; E) =
∥∥D†yNy∥∥∞ ,

where

Ny =
∣∣∣(rT ⊗ K̃)ΦSm

∣∣∣ vecS(|A|) +
∣∣∣((K ⊗ yT) + (rT ⊗ S̃−1))ΦTnm

∣∣∣ vecT (|QT|)

+ |S̃−1||D||y|+ |K||f |,

K̃ = −S̃−1QTW, and

S̃ = −(λIn +QTWQ).

Proof. Let L =
[
0 In

]
∈ Rn×(m+n), A = W−1, B = QT, D = −λIn, x = r, and

g = 0. Then, from Theorem 3.4, we have

LM−1
[
RΦED

−1
E −Im+n

]
=
[
K̃ S̃−1

] [
R −Im+n

] [ΦED−1E 0
0 Im+n

]
=
[
(rT ⊗K)ΦSmD

−1
Sm (K̃ ⊗ yT + rT ⊗ S̃−1)ΦTnmD

−1
Tnm yT ⊗ S̃−1 −K̃ −S̃−1

]
.

Hence, the expression for K rls(y; E) is obtained from Theorem 3.4. The rest of the proof
follows in a similar manner.

Since, in most cases of the WTRLS problem, the weighting matrixW and the regularization
matrix D = −λIn has no perturbation, we consider ∆A = 0 and ∆D = 0. Moreover,
as g = 0, we assume ∆g = 0. Then, the perturbation expansion in Lemma 2.4 can be
reformulated as[

∆x
∆y

]
= −M−1

[
Im ⊗ yT −Im
xT ⊗ In 0

] [
vec(∆B)

∆f

]
= −

[
Rrls −

[
M
K

]] [
vec(∆B)

∆f

]
,
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where

Rrls =

[
M ⊗ yT + xT ⊗N
K ⊗ yT + xT ⊗ S−1

]
.

Now, applying a similar method as in Section 3.2, we obtain the following expressions for the
NCN, MCN, and CCN for L[xT, yT]T when B = C and g = 0.

THEOREM 5.2. Let ∆B ∈ T n×m. With the above notations, the structured NCN, MCN,
and CCN for the GSPP (2.3), respectively, are given by

K̂ (L[xT, yT]T) := lim
η→0

sup

{
‖L[∆xT, ∆yT]T‖2
η‖L[xT, yT]T‖2

:
∥∥[∆B ∆f

]∥∥
F
≤ η

∥∥[B f
]∥∥
F

}

=

∥∥∥∥L [RrlsΦTnmD−1Tnm −
[
M
K

]]∥∥∥∥
2

∥∥[B f
]∥∥
F

‖L[xT, yT]T‖2
,

M̂ (L[xT, yT]T) := lim
η→0

sup

{
‖L[∆xT, ∆yT]T‖∞
η‖L[xT, yT]T‖∞

:
∣∣[∆B ∆f

]∣∣ ≤ η ∣∣[B f
]∣∣}

=

∥∥∥∥|LRrlsΦTnm |vecT (|B|) +

∣∣∣∣L [MK
]∣∣∣∣ |f |∥∥∥∥

∞
‖L[xT, yT]T‖∞

,

Ĉ (L[xT, yT]T) := lim
η→0

sup

{
1

η

∥∥∥∥L[∆xT, ∆yT]T

L[xT, yT]T

∥∥∥∥
∞

:
∣∣[∆B ∆f

]∣∣ ≤ η ∣∣[B f
]∣∣}

=

∥∥∥∥D†L[xT, yT]T
|LRrlsΦTnm |vecT (|B|) + D†

L[xT, yT]T

∣∣∣∣L [MK
]∣∣∣∣ |f |∥∥∥∥

∞
.

Proof. For applying Lemma 2.3, we define

ζ̂ : Rm+n−1 × Rm 7→ Rm+n

ζ̂
(
[DTnmvecT (B)T, fT]T

)
:= L

[
x
y

]
= LM−1

[
f
0

]
.

Then, the map ζ̂ is continuously Fréchet differentiable at [DTnmvecT (B)T, fT]T with

dζ̂
(
[DTnmvecT (B)T, fT]T

)
= −L

[
RrlsΦTnmD−1Tnm −

[
M
K

]]
.

The rest of the proof follows similarly to Theorem 3.11.

Using the above result, we can derive the following structured CNs for the problem (1.2),
when the weighting matrix and the regularization matrix have no perturbation.
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COROLLARY 5.3. The structured NCN, MCM, and CCN for the solution y of the WTRLS
problem (1.2), respectively, are given by

K̂ rls(y) =

∥∥∥[(K̃ ⊗ yT + rT ⊗ S̃−1)ΦTnmD
−1
Tnm −K̃

]∥∥∥
2

∥∥[Q f
]∥∥
F

‖y‖2
,

M̂ rls(y) =

∥∥∥|(K̃ ⊗ yT + rT ⊗ S̃−1)ΦTnm |vecT (|QT|) + |K̃||f |
∥∥∥
∞

‖y‖∞
,

Ĉ rls(y) = ‖D†y|(K̃ ⊗ yT + rT ⊗ S̃−1)ΦTnm |vecT (|QT|) + D†y|K̃||f |‖∞,

where K̃ = S̃−1QTW and S̃ = −(λIn +QTWQ).
Proof. Substituting L =

[
0 In

]
∈ Rn×(m+n), B = QT, A = W−1, D = −λIn, and

x = W (f −Qy) in Theorem 5.2, the proof follows.

REMARK 5.4. We consider the Tikhonov regularization problem

min
w∈Rn

{
‖BTw − f‖22 + λ‖Rw‖22

}
,

where R is the regularization matrix and λ > 0 a regularization parameter. Then, substituting
L =

[
0 In

]
∈ Rn×(m+n), A = Im, D = −λRTR, x = (f − BTw), and y = w in

Theorem 5.2, we can recover the structured NCN, MCN, and CCN formulae for a Toeplitz
structure discussed in [29].

6. Numerical experiments. In order to verify the reliability of the proposed structured
CNs, we present several numerical experiments in this section. All numerical tests are
conducted using MATLAB R2023b on an Intel Core i7-10700 CPU, 2.90GHz, 16GB memory,
with machine precision µ = 2.2× 10−16.

We construct the perturbations to the input data as follows:

∆A = 10−q ·∆A1 �A, ∆B = 10−q ·∆B1 �B, ∆C = 10−q ·∆C1 � C,(6.1)

∆D = 10−q ·∆D1 �D, ∆f = 10−q ·∆f1 � f, ∆g = 10−q ·∆g1 � g,(6.2)

where ∆A1 ∈ Rm×m,∆B1,∆C1 ∈ Rn×m, and ∆D1 ∈ Rn×n are random matrices preserv-
ing the structures of original matrices. Here, � represents the entrywise multiplication of two
matrices of the same dimensions.

Suppose that [xT, yT]T and [x̃T, ỹT]T are the unique solutions of the original GSPP and
the perturbed GSPP, respectively. To estimate an upper bound for the forward error in the
solution, the normwise, mixed, and componentwise relative errors in L[xT, yT]T, respectively,
are defined by:

relk =
‖L[x̃T, ỹT]T − L[xT, yT]T‖2

‖L[xT, yT]T‖2
, relm =

‖L[x̃T, ỹT]T − L[xT, yT]T‖∞
‖L[xT, yT]T‖∞

,

relc =

∥∥∥∥L[x̃T, ỹT]T − L[xT, yT]T

L[xT, yT]T

∥∥∥∥
∞
.

The following quantities

η1 ·K (L[xT, yT]T), η2 ·M (L[xT, yT]T), η2 · C (L[xT, yT]T) and

η1 ·K (L[xT, yT]T;S), η2 ·M (L[xT, yT]T;S), η2 · C (L[xT, yT]T;S),
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with S = {E ,L}, are the estimated upper bounds of relk, relm, and relc obtained by the CNs in
the unstructured and structured cases, respectively. Here, the quantities η1 and η2 are defined
as [27]:

η1 =



∥∥∥∥[∆H ∆d
]∥∥∥∥
F∥∥∥∥[H d

]∥∥∥∥
F

when S = E ,

∥∥∥∥[∆M ∆d
]∥∥∥∥
F∥∥∥∥[M d

]∥∥∥∥
F

when S = L,

and

η2 = min{η :
∣∣[∆M ∆d

]∣∣ ≤ η ∣∣[M d
]∣∣}.

We choose the matrix L as Im+n,
[
Im 0

]
, and

[
0 In

]
, so that the CNs for [xT, yT]T, x,

and y, respectively, are obtained.
EXAMPLE 6.1. Consider the GSPP (2.3), where the data matrices A,B,D, f , and g are

given as follows:

A =



ε1 ε1 −0.01 10 10 −30 30 10 30
ε1 ε1 ε1 −0.01 10 10 −30 30 10
−0.01 ε1 ε1 ε1 −0.01 10 10 −30 30

10 −0.01 ε1 ε1 ε1 −0.01 10 10 −30
10 10 −0.01 ε1 ε1 ε1 −0.01 10 10
−30 10 10 −0.01 ε1 ε1 ε1 −0.01 10
30 −30 10 10 −0.01 ε1 ε1 ε1 −0.01
10 30 −30 10 10 −0.01 ε1 ε1 ε1
30 10 30 −30 10 10 −0.01 ε1 ε1


∈ S9,

B =


8 1 2 3 4 5 6 7 8

−0.02 8 1 2 3 4 5 6 7
−0.03 −0.002 8 1 2 3 4 5 6
−0.04 −0.03 −0.002 8 1 2 3 4 5
−0.05 −0.04 −0.03 −0.002 8 1 2 3 4

 ∈ T 4×9,

D = 0.05 ∗ std(BT). ∗ randn(n, n),

f = [1, . . . , 1,m− 1, 1]T ∈ R9, and g = randn(n, 1) ∈ R4, where randn(m,n) denotes
the m× n random matrix generated by the MATLAB command randn and std(BT) denotes
the standard deviation of BT. Here, m = 9 and n = 4. For the perturbations to the input data
constructed as in (6.1)–(6.2) with q = 7, ∆B1 ∈ T n×m is a randomly generated Toeplitz
matrix, ∆A1 = 1

2 (Â+ ÂT), and Â ∈ Rm×m,∆D1 ∈ Rn×n are random matrices.
The numerical results for different choices of ε1 are reported in Tables 6.1–6.3 using the

formulae presented in Theorems 3.4 and 3.11. The sizes of η1 and η2 are about 10−8 and 10−7,
respectively, for all cases. It can be observed that the structured CNs, in all cases, are much
smaller (almost one order less) than their unstructured counterparts. Moreover, the estimated
upper bounds proposed by the CNs for relk, relm, and relc are sharper in the structured case
than in the unstructured ones. Notably, the structured MCN and CCN give sharper bounds
than the NCN for the relative error as they are of the same order or one order larger than relm
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TABLE 6.1
Comparison of the unstructured and structured NCN, MCN, and CCN with their corresponding relative errors

when L = I13 for Example 6.1.

ε1 relk K ([xT, yT]T) K ([xT, yT]T; E) relm M([xT, yT]T) M([xT, yT]T; E) relc C([xT, yT]T) C([xT, yT]T; E)

10 7.2266e-07 2.6621e+03 2.5899e+03 6.7684e-07 1.3407e+02 7.4069e+01 7.5571e-06 1.9545e+03 9.1963e+02

100 1.1562e-06 2.5310e+03 2.4517e+03 8.2825e-07 1.2620e+02 6.1160e+01 7.5375e-06 1.1485e+03 5.5659e+02

10−1 1.7604e-06 2.9961e+03 2.9210e+03 1.7656e-06 1.4518e+02 7.4370e+01 1.1800e-05 1.1229e+03 5.0019e+02

10−2 5.2202e-07 1.8120e+03 1.7515e+03 5.1969e-07 1.1842e+02 5.5675e+01 5.1819e-06 1.4140e+03 8.8193e+02

10−2 6.1932e-07 3.1643e+03 3.0814e+03 5.5990e-07 1.6201e+02 8.4378e+01 3.5558e-06 1.2309e+03 7.3506e+02

10−3 2.4807e-06 1.6465e+03 1.5744e+03 2.0678e-06 1.1802e+02 7.9648e+01 1.3033e-05 1.2165e+03 7.7459e+02

10−4 1.2229e-06 3.0661e+03 2.9578e+03 1.3129e-06 1.5980e+02 9.0334e+01 6.3654e-06 1.2789e+03 9.3070e+02

TABLE 6.2
Comparison of the unstructured and structured NCN, MCN, and CCN with their corresponding relative errors

when L =
[
I9 0

]
for Example 6.1.

ε1 relk K (x) K (x; E) relm M (x) M (x; E) relc C (x) C (x; E)

10 7.9185e-07 2.9377e+03 2.8591e+03 5.8903e-07 1.1477e+02 6.7631e+01 7.5571e-06 4.9310e+02 2.6889e+02

100 9.0322e-07 2.0236e+03 1.9605e+03 9.7497e-07 1.3501e+02 6.2699e+01 2.7439e-06 3.3927e+02 1.5957e+02

10−1 1.9559e-06 3.4895e+03 3.4010e+03 1.8283e-06 1.4073e+02 7.9523e+01 1.1800e-05 1.1229e+03 5.0019e+02

10−2 3.6024e-07 1.3749e+03 1.3294e+03 4.2107e-07 9.5080e+01 4.5826e+01 5.9700e-07 1.4140e+03 8.8193e+02

10−2 6.4001e-07 2.9172e+03 2.8412e+03 7.1460e-07 1.5484e+02 8.2478e+01 2.9604e-06 1.1599e+03 6.2412e+02

10−3 1.4527e-06 7.9932e+02 7.6489e+02 2.1781e-06 9.3409e+01 6.0897e+01 6.8343e-06 2.9309e+02 1.9108e+02

10−4 8.9097e-07 3.1005e+03 2.9895e+03 1.0788e-06 1.3093e+02 6.4355e+01 4.5008e-06 1.2789e+03 9.3070e+02

TABLE 6.3
Comparison of the unstructured and structured NCN, MCN, and CCN with their corresponding relative errors

when L =
[
0 I4

]
for Example 6.1.

ε1 relk K (y) K (y; E) relm M (y) M (y; E) relc C (y) C (y; E)

10 7.2081e-07 2.6548e+03 4.5585e+02 6.7684e-07 1.3407e+02 7.4069e+01 5.3298e-06 1.9545e+03 9.1963e+02

100 1.1662e-06 2.5513e+03 4.1391e+02 8.2825e-07 1.2620e+02 6.1160e+01 7.5375e-06 1.1485e+03 5.5659e+02

10−1 1.7531e-06 2.9773e+03 6.4241e+02 1.7656e-06 1.4518e+02 7.4370e+01 1.9676e-06 1.9721e+02 1.0083e+02

10−2 5.3000e-07 1.8351e+03 3.2251e+02 5.1969e-07 1.1842e+02 5.5675e+01 5.1819e-06 8.0176e+02 4.6153e+02

10−2 6.1861e-07 3.1725e+03 5.2490e+02 5.5990e-07 1.6201e+02 8.4378e+01 3.5558e-06 1.2309e+03 7.3506e+02

10−3 2.5575e-06 1.7068e+03 2.3662e+02 2.0678e-06 1.1802e+02 7.9648e+01 1.3033e-05 1.2165e+03 7.7459e+02

10−4 1.2378e-06 3.0646e+03 6.8237e+02 1.3129e-06 1.5980e+02 9.0334e+01 6.3654e-06 2.9429e+02 1.8874e+02

and relc, respectively. This indicates that it is more preferable to apply M (L[xT, yT]T; E)
and C (L[xT, yT]T; E) to measure the true conditioning of the GSPP (2.3).

EXAMPLE 6.2. In this example, we consider the GSPP (2.3) arising from the WTRLS
problem [11]. Here m = n, and the Toeplitz matrix B is given as

B = [bij ] ∈ T n×n with bij =
1√
2πσ

e−
(i−j)2

2σ2 ,

A ∈ Rn×n is set to be a positive diagonal random matrix, and D = −νIn (ν > 0). The
right-hand side vector is taken as d = randn(2n, 1) ∈ R2n.

We select σ = 2 and ν = 0.001 as in [10]. We set q = 8 and construct perturbation
matrices as in Example 6.1. In all cases, we observed η1 ≈ O(10−9) and η2 ≈ O(10−8).
The numerical results for the structured and unstructured NCN, MCN, and CCN and the exact
relative errors are reported in Tables 6.4–6.6 for different values of n.
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We use Theorem 3.11 and Remark 3.13 to compute the structured CNs and Theorem 3.4
to compute the unstructured CNs. The results presented in Tables 6.4–6.6 reveal that the
structured NCN, MCM, and CCN are much smaller than the unstructured ones for all values n.
Specifically, for large matrices (with dimensions ofM taken up to 400), the structured CNs
are approximately an order of magnitude smaller than the unstructured ones, showcasing the
superiority of the proposed structured CNs.

TABLE 6.4
Comparison of the unstructured and structured NCN, MCN, and CCN with their corresponding relative errors

when L = I2n for Example 6.2.

n = m relk K ([xT, yT]T) K ([xT, yT]T; E) relm M([xT, yT]T) M([xT, yT]T; E) relc C([xT, yT]T) C([xT, yT]T; E)

50 4.1808e-07 2.8177e+04 2.4798e+04 4.6643e-07 1.4438e+03 5.3588e+02 3.3769e-05 5.7501e+04 2.0978e+04

100 2.4188e-07 4.8911e+03 4.6982e+03 2.5583e-07 1.4305e+02 4.1253e+01 1.4497e-05 1.1440e+04 2.4661e+03

150 5.3749e-07 1.9378e+04 1.7985e+04 6.1184e-07 5.5108e+02 1.3986e+02 2.4998e-04 3.6099e+05 8.1050e+04

200 7.5206e-07 3.2373e+04 9.4706e+03 8.8297e-07 1.0386e+03 4.5302e+02 9.7741e-05 2.0373e+05 4.4730e+04

TABLE 6.5
Comparison of the unstructured and structured NCN, MCN, and CCN with their corresponding relative errors

when L =
[
In 0

]
for Example 6.2.

n = m relk K ([xT, yT]T) K ([xT, yT]T; E) relm M([xT, yT]T) M ([xT, yT]T; E) relc C([xT, yT]T) C([xT, yT]T; E)

50 3.8496e-07 2.7536e+04 2.4281e+04 4.1735e-07 1.2042e+03 4.6611e+02 3.2289e-06 1.0158e+04 3.1020e+03

100 3.0293e-07 7.0491e+03 6.7372e+03 3.7151e-07 2.7486e+02 7.2328e+01 6.2591e-06 6.5226e+03 1.2953e+03

150 7.2376e-07 2.7944e+04 2.5692e+04 8.4422e-07 7.5098e+02 2.0082e+02 6.3056e-05 3.6099e+05 8.1050E+04

200 8.0141e-07 3.6034e+04 3.2041e+04 7.4664e-07 1.0283e+03 4.1526e+02 9.7741e-05 2.0067e+05 4.4730e+04

TABLE 6.6
Comparison of the unstructured and structured NCN, MCN, and CCN with their corresponding relative errors

when L =
[
0 In

]
for Example 6.2.

n = m relk K ([xT, yT]T) K ([xT, yT]T; E) relm M([xT, yT]T) M([xT, yT]T; E) relc C([xT, yT]T) C([xT, yT]T; E)

50 4.2087e-07 2.8235e+04 7.2137e+03 4.6643e-07 1.4438e+03 5.3588e+02 3.3769e-05 5.7501e+04 2.0978e+04

100 2.3999e-07 4.8471e+03 1.1173e+03 2.5583e-07 1.4305e+02 4.1253e+01 1.4497e-05 1.1440e+04 2.4661e+03

150 5.2664e-07 1.8878e+04 5.6962e+03 6.1184e-07 5.5108e+02 1.3986e+02 2.4998e-04 9.0978e+04 3.1977e+04

200 7.4779e-07 3.2089e+04 9.2643e+03 8.8297e-07 1.0386e+03 4.5302e+02 5.4363e-05 2.0373e+05 3.4820e+04

EXAMPLE 6.3. In this example, we consider the GSPP arising from the discretization of
the Stokes equation by an upwind scheme [5]:

−µ∆u +∇p = f̃ in Ω,

∇ · u = g̃ in Ω,

u = 0 on ∂Ω,∫
Ω

p(x)dx = 0,

(6.3)

where Ω = (0, 1)× (0, 1) ∈ R2, ∂Ω is the boundary of Ω, µ is the viscosity parameter, ∆ is
the Laplace operator,∇ represents the gradient,∇· is the divergence, u is the velocity vector,
and p is the scalar function representing the pressure. By discretizing (6.3), we obtain the
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TABLE 6.7
Comparison of the unstructured and structured NCN, MCN, and CCN with their corresponding relative errors

when L = Im+n for Example 6.3.

r relk K̃ (z) K ([xT, yT]T; L) relm M̃(z) M([xT, yT]T; L) relc C̃(z) C([xT, yT]T; L)

3 4.6396e-08 1.0866e+02 1.0325e+02 9.2530e-08 1.0315e+02 8.3160e+01 9.2530e-08 1.0315e+02 8.3160e+01

4 1.0295e-07 1.2567e+03 1.1946e+03 4.0283e-07 1.1158e+03 8.9754e+02 4.0283e-07 1.1158e+03 8.9754e+02

5 1.3490e-07 1.1905e+03 1.1256e+03 5.3926e-07 1.2062e+03 9.4423e+02 5.3926e-07 1.2062e+03 9.4423e+02

6 1.1442e-07 1.4744e+03 1.3738e+03 3.8692e-07 1.1110e+03 8.5833e+02 3.8692e-07 1.1110e+03 8.5833e+02

7 1.4617e-07 2.5853e+03 2.5366e+03 5.2901e-07 1.1384e+03 9.1026e+02 5.2901e-07 1.1384e+03 8.1026e+02

8 5.1493e-08 2.6605e+03 2.1679e+03 2.0993e-07 1.0634e+03 8.8527e+02 2.0993e-07 1.0634e+03 8.8527e+02

9 7.7302e-08 1.2791e+03 1.0043e+03 2.5382e-07 1.0339e+03 8.2775e+02 2.5382e-07 1.0339e+03 8.2775e+02

10 1.2621e-07 1.5807e+04 1.5205e+04 4.5006e-07 1.0406e+04 8.3004e+03 4.5006e-07 1.0406e+04 8.3004e+03

GSPP (1.1) with

A =

[
Ir ⊗ T + T ⊗ Ir 0

0 Ir ⊗ T + T ⊗ Ir

]
∈ R2r2×2r2 ,

BT =

[
Ir ⊗G
G⊗ Ir

]
∈ R2r2×r2 ,

C = −B, D = 0,

where

T =
µ

h2
tridiag(−1, 2,−1) ∈ Rr×r and G =

1

h
tridiag(−1, 1, 0) ∈ Rr×r.

Here, tridiag(a, b, c) denotes the tridiagonal matrix with diagonal entries b, sub-diagonal
entries a and super-diagonal entries c. Note that for this test problem µ = 0.1, m = 2r2, and
n = r2, and we choose d = [fT, gT]T so that the exact solution is given by
z = [1, 1, . . . , 1]T ∈ Rm+n. To avoid making A too sparse, we add X = 0.5(X1 + XT

1 ) to
A, where X1 = sprandn(m,n, 0.1). Here, sprandn(m,n, 0.1) denotes an m× n sparse
random matrix with a density of 0.1.

The perturbations in the input data are constructed as in (6.1)–(6.2) with q = 8,
∆A1 = 1

2 (Â+ ÂT), where Â ∈ Rm×m is a random matrix. The numerical result for the
structured and unstructured NCN, MCN, and CCN with L = Im+n are presented in Table 6.7
for r = 3, 4, . . . , 10. Since the block matrix A is symmetric, we compute the structured NCN,
MCN and CCN using Theorem 4.5 and Remark 4.8 with D = 0. The unstructured CNs are
computed using (4.6), (4.7), and Remark 4.9.

We observe η1 ≈ O(10−9) and η2 ≈ O(10−8) in all cases. The results reported in
Table 6.7 demonstrate that for all values of r, the structured MCN and CCN are almost one
order smaller than the unstructured MCN and CCN. Moreover, the estimated upper bounds
of the relative error of the solution produced by the structured CNs are sharper than those
obtained by the unstructured CNs irrespective of the increasing size ofM (taken up to 300).

EXAMPLE 6.4. Consider the following second-order ODE [4]:

(6.4)


u
′′

1 (t)− u
′

2(t)− 1

t
u2(t) = 0,

u
′

1(t)− 1

t
u1(t) + u

′′

2 (t)− 2

t2
u2(t) = σ(t), 0 < t < 1,

u1(0) = 0, u1(1) = 0, u
′

1(0) = 0, and u2(0) = 0,
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where σ(t) = 3t3 − 4t2 + 13t − 2/t and the exact solutions are u1(t) = t2(1 − t)2 and
u2(t) = 3t3 − 4t2 + t.

The sinc discretization [4] of the second-order ODE system (6.4) yields the GSPP (1.1)
(with m = n). The block matrices A,B,C, and D are computed using the formulae provided
in [4, pp. 114–115]. To exploit the Toeplitz structures for A and D, we define them as follows:

A = D = T1 + T2 ∈ Rn×n.

The other block matrices are given by

BT =
1

2
(K1T1 + T1K1) +K2 ∈ Rn×n and C = −1

2
(K1T1 + T1K1) +K3 ∈ Rn×n,

where T1, T2 ∈ Rn×n are defined by

T1 =



0 −1 1
2 . . . (−1)n−1

n−1

1 0
. . . . . .

...

− 1
2 1

... −1 1
2

...
. . . . . . 0 −1

− (−1)n−1

n−1 . . . − 1
2 1 0


,

T2 =



π2

3 −2 2
22 . . . 2(−1)n−1

(n−1)2

−2 π2

3

. . . . . .
...

2
22 −2

... −2 2
22

...
. . . . . . π2

3 −2
2(−1)n−1

(n−1)2 . . . 2
22 −2 π2

3


,

and

K1 := Dχ1
, Ki

C := DχiC
, Ki

G := DχiG
, Ki =

1

2
(Ki

C +Ki
G),

χ1 = [g1(t−N ), g1(t−N+1), . . . , g1(tN )]T,

χiC := [giC(t−N ), giC(t−N+1), . . . , giC(tN )]T, i = 2, 3,

χiG := [giG(t−N ), giG(t−N+1), . . . , giG(tN )]T, i = 2, 3,

g1 = h
µ1

φ′
,

g2C = g3C = −h2 µ0

(φ′)2
, g2G = −h2

(
1

φ′

(
µ1

φ′

)′
+

µ0

(φ′)2

)
,

g3G = h2

(
1

φ′

(
µ1

φ′

)′
− µ0

(φ′)2

)
.

The functions µ1(t), µ0(t), and φ(t) are given by µ1(t) = 1, µ0(t) = − 1
t , and

φ(t) = ln(t/(1− t)). Moreover, n = 2N + 1, h = π/
√

2N , and tk = φ−1(kh). Further, we
select f = 0 ∈ Rn and g = randn(n, 1) ∈ Rn using the MATLAB command randn.

We take q = 7 and generate the perturbation matrices as in (6.1)–(6.2) with ∆A and
∆D being Toeplitz. The numerical results for the structured and unstructured CNs and the
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TABLE 6.8
Comparison of the unstructured and structured NCN, MCN, and CCN with their corresponding relative errors

when L = I2n for Example 6.4.

n relk K̃ (z) K ([xT, yT]T; L) relm M̃(z) M([xT, yT]T; L) relc C̃(z) C([xT, yT]T; L)

41 2.1668e-07 8.4401e+02 8.3043e+02 1.3862e-06 1.4301e+02 5.2023e+01 9.6646e-05 1.1794e+04 5.2908e+03

81 1.6126e-07 1.5963e+03 1.2802e+03 1.2767e-07 2.0050e+02 3.0540e+01 2.5905e-05 4.8140e+04 1.0074e+03

121 4.4422e-07 3.2151e+03 3.2054e+03 3.3468e-07 4.0321e+02 9.9676e+01 5.6058e-06 1.7998e+04 8.6974e+03

161 4.6746e-07 6.4824e+03 4.4279e+03 4.2745e-07 8.7713e+02 9.7876e+01 1.8302e-05 1.1962e+05 9.1779e+04

201 1.1583e-06 1.0882e+04 1.0725e+04 9.4135e-07 1.0197e+03 7.0819e+02 1.2433e-05 1.2847e+05 8.9705e+04

relative errors for N = 20, 40, 60, 80, 100 are reported in Table 6.8. We find that for all
cases, η1 and η2 are approximately of order 10−8 and 10−7, respectively. We compute the
structured NCN, MCN, and CCN using Theorem 4.5, where the block matrices A and D have
Toeplitz structures. The unstructured CNs are computed using (4.6), (4.7), and Remark 4.9.
The solution z = [xT, yT]T ∈ R2n is computed using the MATLAB functionM\d, where
d = [fT, gT]T ∈ R2n.

The results in Table 6.8 illustrate that, for all values of N, the structured CNs provide
sharper upper bounds for the relative error in the solution. Furthermore, the structured MCN
and CCN are nearly an order of magnitude smaller than the unstructured ones, even as the size
of the matrixM increases (taken up to 402).

7. Conclusions. In this paper, by considering structure-preserving perturbations of the
block matrices, we have investigated the structured NCN, MCN, and CCN for the linear
function L[xT, yT]T of the solution of GSPPs. We present compact formulae of structured
CNs for L[xT, yT]T in two cases. First, when B = C is Toeplitz and A is symmetric. Second,
when B 6= C and the matrices A and D possess linear structures. Furthermore, we have
obtained unstructured CN formulae for B = C, which generalize previous results for the
CNs of GSPPs when L is Im+n,

[
Im 0

]
, and

[
0 In

]
. Additionally, relations between

structured and unstructured CNs are obtained. It is found that the structured CNs are always
smaller than their unstructured counterparts. An application of the obtained structured CN
formulae is provided for finding the structured CNs for WTRLS problems, and they are also
used to retrieve some prior found results for Tikhonov regularization problems. Numerical
experiments are performed to validate the theoretical findings pertaining to the proposed
structured CNs. Moreover, empirical investigations indicate that the proposed structured MCN
and CCN give much more accurate error estimations of the solution of GSPPs compared to
unstructured CNs.
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