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ANALYSIS OF A ONE-DIMENSIONAL NONLOCAL
THERMOELASTIC PROBLEM∗

NOELIA BAZARRA†, JOSÉ R. FERNÁNDEZ†, AND RAMÓN QUINTANILLA‡

Abstract. In this paper we study a one-dimensional dynamic thermoelastic problem assuming that the elastic
coefficient is negative. Following the ideas proposed by Eringen in the 80s, a nonlocal term is introduced into the
constitutive equation for the displacements, leading to a hyperbolic problem. Then, we consider the numerical
approximation of the problem by using the classical finite element method to approximate the spatial variable and the
implicit Euler scheme to discretize the time derivatives. A discrete stability property is proved, and an a priori error
analysis is done, from which we can conclude the linear convergence of the approximations under suitable regularity
for the continuous solution. Finally, some numerical simulations are presented, including the demonstration of the
numerical convergence and the behavior of the discrete energy for several choices of the constitutive parameters.
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1. Introduction. Thermoelasticity is a topic which has received a huge quantity of
contributions in the literature. We can find a large amount of studies focused on the quantitative
and qualitative properties of the solutions. Among the qualitative ones, we can cite some issues
related to the existence, uniqueness, and the energy decay of the solutions; however, these
properties are only obtained if the tensors that define this problem satisfy certain conditions.
For example, in order to guarantee that this problem is well posed, it is needed that the elasticity
tensor is positive definite (among other conditions; see, for instance, [12, 13]), but the axioms
of thermomechanics do not imply this property. At the same time, it is well known that this
condition does not hold when the solid is initially prestressed or if there exists a flux of initial
heat [5, 6, 7, 8, 9, 10]. Therefore, it is rather natural to study our thermoelastic problem even
in the case that the elasticity tensor is not positive definite.

In this work, we study a one-dimensional thermoelastic problem (see the equations (2.1)–
(2.4) below) when the elastic coefficient is negative. Thus, in order to guarantee the existence
of solutions provided in Appendix A, we assume that the mechanical problem is nonlocal
in the sense of Eringen [3, 4]. In fact, this type of mechanism would allow us to obtain the
existence and the continuous dependence on the data of the solutions.

Keeping in mind the above comments, it will be convenient to recall how we can extend
the nonlocality. Since we are going to work in the one-dimensional homogeneous case, we
restrict ourselves to this setting. In this case, we already know that the system of equations
can be written in the following form:

tx = ρü,

t =

∫ `

0

α(|x− x′|)σ(x′) dx′,

σ = Cux,
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where u is the displacement, σ represents the stress, t is the nonlocal stress, ρ denotes the
mass density, and C is the elastic coefficient.

Usually, the kernel of the nonlocality α(|x− x′|) satisfies several properties [11]. One of
them is that it must correspond to a Green’s function of a certain differential operator, that is,

Lα(|x− x′|) = δ(x− x′),

where δ is the Dirac symbol. When we apply the differential operator to the relation between
the stresses, we find that

Lt = σ,

and so we have

σx = L(ρü).

In this work, we study the thermoelastic problem when the solid is homogeneous and isotropic,
and we also have

L = I − ε2∂xx,

where ∂xx represents the second-order spatial derivative.
Finally, it is worth to note that we impose that

σ = −µ∗ux − βθ, q = mθx, ρη = cθ + βux,

where q is the heat flux, η is the entropy, and θ is the relative temperature. We also recall the
energy equation

ρη̇ = qx.

This article is organized in the following way. The thermomechanical problem is presented
in the next section. We note that, for the sake of simplicity in the writing of this work, we have
sketched the analytical results in Appendix A at the end of the manuscript. Then, in Section 3
we focus on the main part of this contribution, the numerical analysis of this problem. By
using the classical finite element method to approximate the spatial variable and the implicit
Euler scheme to discretize the time derivatives, the fully discrete scheme is introduced. A
discrete stability property is obtained, and an a priori error analysis is performed applying
some technical estimates and a discrete version of Gronwall’s lemma. Linear convergence of
the approximations is derived if we assume additional regularity for the continuous solution.
Some numerical simulations are presented in Section 4 to demonstrate the accuracy of the
approximations in an academical example and the behavior of the discrete energy for some
particular choices of the parameters, obtaining stable and unstable solutions. Finally, the
existence of a unique solution and its regularity are sketched in Appendix A.

2. The thermomechanical model. Let us denote by (0, `), with ` > 0 being the length
of the bar, the one-dimensional domain occupied by the thermoelastic material. As usual, let
x ∈ (0, `) be the spatial and t ∈ [0, T ] the time variable, where [0, T ] is the time interval and
T > 0 is the final time.

If we denote by u and θ the displacement field and the temperature, respectively, taking
into account that

σx = −µ∗uxx − βθx = L(ρü) = ρü− ρε2üxx,
ρη̇ = cθ̇ + βu̇x = qx = mθxx,
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we study the following thermoelastic problem:
Find the displacement u : [0, `]× [0, T ]→ R and the temperature θ : [0, `]× [0, T ]→ R

such that

ρü− ρε2üxx = −µ∗uxx − βθx in (0, `)× (0, T ),(2.1)

cθ̇ = mθxx − βu̇x in (0, `)× (0, T ),(2.2)

u(x, 0) = u0(x), u̇(x, 0) = v0(x), θ(x, 0) = θ0(x) for a.e. x ∈ (0, `),(2.3)
u(0, t) = u(`, t) = θ(0, t) = θ(`, t) = 0 for a.e. t ∈ (0, T ).(2.4)

In the previous system of equations, ρ > 0 is the mass density, µ∗ > 0 is the elasticity
coefficient, β is the thermal coupling, c > 0 is the heat capacity, and m > 0 is the thermal
diffusion. Moreover, ε > 0 is a regularization parameter which inserts the non-locality into
the model. It is worth noting that µ∗ defines a non-positive definite elasticity.

For the sake of clarity in the presentation of the results in this paper, the existence of a
unique solution is sketched at the end of the manuscript in Appendix A. As can be seen there,
the above problem admits a unique solution with the following regularity:

u ∈ C2([0, T ];H1
0 (0, `)) ∩ C([0, T ];H2(0, `)),

θ ∈ C([0, T ];H2(0, `)) ∩ C1([0, T ];L2(0, `)).

We note that, from the above results, we can conclude that the initial data u0, v0, and θ0 must
satisfy the regularity conditions:

u0, θ0 ∈ H1
0 (0, `) ∩H2(0, `), v0 ∈ H1

0 (0, `).

Now, we derive the weak formulation of the problem (2.1)–(2.4). Denoting Y = L2(0, `)
and V = H1

0 (0, `), multiplying equations (2.1) and (2.2) by adequate test functions, and
taking into account the boundary conditions (2.4), we obtain the following variational problem
written in terms of the velocity field v = u̇ and the temperature θ:

Find the velocity field v : [0, T ] → V and the temperature θ : [0, T ] → V such that
v(0) = v0, θ(0) = θ0, and, for a.e. t ∈ (0, T ) and for all w, r ∈ V ,

ρ(v̇(t), w)Y + ρε2(v̇x(t), wx)Y − µ∗(ux(t), wx)Y + β(θx(t), w)Y = 0,(2.5)

c(θ̇(t), r)Y +m(θx(t), rx)Y + β(vx(t), r)Y = 0,(2.6)

where the displacement field u is recovered from the equation:

(2.7) u(t) =

∫ t

0

v(s) ds+ u0.

In the variational equations (2.5) and (2.6), we have used the notation (·, ·)X for the inner
product in the Hilbert space X . Moreover, we will represent by ‖ · ‖X its associated norm.

3. Numerical analysis of a fully discrete approximation. In this section, we study, from
the numerical point of view, the variational problem defined by the variational equations (2.5)
and (2.6) and the relation (2.7).

3.1. Fully discrete approximation. In this section, we introduce a fully discrete ap-
proximation of the above weak formulation. We do this in two steps. In order to provide
the spatial approximation, let us define a uniform partition of the spatial domain denoted by
a0 = 0 < . . . < aM = `, and let us construct the finite element space:

V h =
{
wh ∈ C([0, `]) ∩ V ; wh|[ai,ai+1]

∈ P1([ai, ai+1]), for i = 0, . . . ,M − 1
}
.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

408 N. BAZARRA, J. R. FERNÁNDEZ, AND R. QUINTANILLA

In this definition, we have denoted by P1([ai, ai+1]) the space of affine functions in the
subinterval [ai, ai+1], and, as usual, we let h = ai+1 − ai = `/M be the mesh size. Without
doubt, we could extend the analysis to the case of higher-order finite elements, but we omit it
for the sake of readability.

Now, we can define the discrete initial conditions as

u0h = Phu0, v0h = Phv0, θ0h = Phθ0,

where Ph represents the finite element interpolation operator over V h (see [2] for details).
For the discretization of the time derivatives, we denote by t0 = 0 < . . . < tN = T a

uniform partition of the time interval with time step k = t1 − t0 = T/N and nodes tn = nk,
for n = 0, . . . , N . Of course, the analysis presented in this section could be extended to
the case of non-uniform partitions. We employ the usual notation: let wn = w(tn) be
the value of a continuous function w(t) at time t = tn, and, for a sequence {wn}Nn=0, let
δwn = (wn − wn−1)/k be its divided differences.

By using the well-known implicit Euler scheme, we have the following fully discrete
problem:

Find the discrete velocity {vhkn }Nn=0 ⊂ V h and the discrete temperature {θhkn }Nn=0 ⊂ V h
such that vhk0 = v0h, θhk0 = θ0h, and, for n = 1, . . . , N and for all wh, rh ∈ V h,

ρ(δvhkn , wh)Y + ρε2((δvhkn )x, w
h
x)Y − µ∗((uhkn )x, w

h
x)Y + β((θhkn )x, w

h)Y = 0,(3.1)

c(δθhkn , rh)Y +m((θhkn )x, r
h
x)Y + β((vhkn )x, r

h)Y = 0,(3.2)

where the discrete displacement field uhkn is obtained from the equation:

(3.3) uhkn = k

n∑
j=1

vhkj + u0h.

Thanks to the definition of the coefficients of the problem and applying the classical
Lax-Milgram lemma, it is easy to show that the above fully discrete problem has a unique
solution.

3.2. Discrete stability and a priori error analysis. Now the aim of this section is to
prove the main theoretical results: the discrete stability of the solution to the problem (3.1)–
(3.3) and an a priori error estimates. First, discrete stability is summarized in the following
lemma:

LEMMA 3.1. There exists a positive constant C which is independent of the discretization
parameters h and k, but depending on the constitutive data and the final time, such that

‖vhkn ‖V + ‖uhkn ‖V + ‖θhkn ‖Y ≤ C, for n = 1, . . . , N.

Proof. Taking wh = vhkn as a test function in equation (3.1), we find that

ρ(δvhkn , vhkn )Y + ρε2((δvhkn )x, (v
hk
n )x)Y − µ∗((uhkn )x, (v

hk
n )x)Y + β((θhkn )x, v

hk
n )Y = 0,

and keeping in mind that

(δvhkn , vhkn )Y ≥
1

2k

[
‖vhkn ‖2Y − ‖vhkn−1‖2Y

]
,

((δvhkn )x, (v
hk
n )x)Y ≥

1

2k

[
‖(vhkn )x‖2Y − ‖(vhkn−1)x‖2Y

]
,

µ∗((uhkn )x, (v
hk
n )x)Y ≤ C(‖(uhkn )x‖2Y + ‖(vhkn )x‖2Y ),

β((θhkn )x, v
hk
n )Y = −β(θhkn , (vhkn )x)Y ≤ C(‖θhkn ‖2Y + ‖(vhkn )x‖2Y ),
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where we have used the Cauchy-Schwarz inequality several times as well as Cauchy’s inequal-
ity

(3.4) ab ≤ εa2 + 1

4ε2
b2, a, b, ε ∈ R, ε > 0,

and where C is a generic positive constant independent of h and k that may change its value
at each occurrence, it follows that

ρ

2k

[
‖vhkn ‖2Y − ‖vhkn−1‖2Y

]
+
ρε2

2k

[
‖(vhkn )x‖2Y − ‖(vhkn−1)x‖2Y

]
≤ C

(
‖(uhkn )x‖2Y + ‖(vhkn )x‖2Y + ‖θhkn ‖2Y

)
.

Now, we obtain the estimates for the discrete temperature. Taking rh = θhkn as a test
function in the discrete equation (3.2), we obtain

c(δθhkn , θhkn )Y +m((θhkn )x, (θ
hk
n )x)Y + β((vhkn )x, θ

hk
n )Y = 0.

If we take into account that

(δθhkn , θhkn ))Y ≥
1

2k

[
‖θhkn ‖2Y − ‖θhkn−1‖2Y

]
,

β((vhkn )x, θ
hk
n )Y ≤ C(‖(vhkn )x‖2Y + ‖θhkn ‖2Y ),

we find that

c

2k

[
‖θhkn ‖2Y − ‖θhkn−1‖2Y

]
≤ C(‖(vhkn )x‖2Y + ‖θhkn ‖2Y ).

Combining the estimates for the discrete velocity field and the discrete temperature, it follows
that

ρ

2k

[
‖vhkn ‖2Y − ‖vhkn−1‖2Y

]
+
ρε2

2k

[
‖(vhkn )x‖2Y − ‖(vhkn−1)x‖2Y

]
+

c

2k

[
‖θhkn ‖2Y − ‖θhkn−1‖2Y

]
≤ C

(
‖(uhkn )x‖2Y + ‖(vhkn )x‖2Y + ‖θhkn ‖2Y

)
.

After a multiplication by k and a summation up to n, we have

‖vhkn ‖2Y + ‖(vhkn )x‖2Y + ‖θhkn ‖2Y ≤ Ck
n∑
j=1

(
‖(uhkj )x‖2Y + ‖(vhkj )x‖2Y + ‖θhkj ‖2Y

)
+ C(‖v0h‖2V + ‖θ0h‖2Y ).

Finally, keeping in mind that

‖(uhkn )x‖2Y ≤ Ck
n∑
j=1

‖(vhkj )x‖2Y + C‖(u0h)x‖2Y ,

using a discrete version of Gronwall’s inequality (see [1] for example), we obtain the desired
discrete stability.

Secondly, we provide the main a priori error estimates result. This is stated in the following
theorem:
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THEOREM 3.2. If we denote by (u, v, θ) the solution to the variational problem (2.5)–
(2.7) and by {uhkn , vhkn , θhkn }Nn=0 the solution to the discrete variational problem (3.1)–(3.3),
then we have the following a priori error estimates, for all {whn}Nn=0, {rhn}Nn=0 ⊂ V h:

max
0≤n≤N

{
‖vn − vhkn ‖2V + ‖un − uhkn ‖2V + ‖θn − θhkn ‖2Y

}
≤ Ck

N∑
j=1

(
‖v̇j − δvj‖2V

+ ‖θ̇j − δθj‖2Y + ‖vj − whj ‖2V + ‖θj − rhj ‖2V + Ij

)
+
C

k

N−1∑
j=1

(
‖vj − whj − (vj+1 − whj+1)‖2V + ‖θj − rhj − (θj+1 − rhj+1)‖2Y

)
+ C max

0≤n≤N

(
‖vn − whn‖2V + ‖θn − rhn‖2Y

)
+ C

(
‖v0 − v0h‖2V + ‖u0 − u0h‖2V + ‖θ0 − θ0h‖2Y

)
,

where Ij represents the integration error defined as

(3.5) Ij =

∥∥∥∥∥
∫ tj

0

v(s) ds− k
j∑
l=1

vj

∥∥∥∥∥
2

V

and C is again a generic positive constant independent of h and k but depending on the
constitutive data and the final time.

Proof. First, we obtain the a priori error estimates for the velocity field. Subtracting the
variational equation (2.5) at time t = tn and for a test function w = wh ∈ V h ⊂ V and the
discrete variational equation (3.1), we have, for all wh ∈ V h,

ρ(v̇n − δvhkn , wh)Y + ρε2((v̇n − δvhkn )x, w
h
x)Y − µ∗((un − uhkn )x, w

h
x)Y

+ β((θn − θhkn )x, w
h)Y = 0,

and so we find that, for all wh ∈ V h,

ρ(v̇n − δvhkn , vn − vhkn )Y + ρε2((v̇n − δvhkn )x, (vn − vhkn )x)Y

− µ∗((un − uhkn )x, (vn − vhkn )x)Y + β((θn − θhkn )x, vn − vhkn )Y

= ρ(v̇n − δvhkn , vn − wh)Y + ρε2((v̇n − δvhkn )x, (vn − wh)x)Y
− µ∗((un − uhkn )x, (vn − wh)x)Y + β((θn − θhkn )x, vn − wh)Y .

Now, taking into account that

(δvn − δvhkn , vn − vhkn ))Y ≥
1

2k

[
‖vn − vhkn ‖2Y − ‖vn−1 − vhkn−1‖2Y

]
,

((δvn − δvhkn )x, (vn − vhkn )x)Y ≥
1

2k

[
‖(vn − vhkn )x‖2Y − ‖(vn−1 − vhkn−1)x‖2Y

]
,

µ∗((un − uhkn )x, (vn − vhkn ))x)Y ≤ C(‖(un − uhkn )x‖2Y + ‖(vn − vhkn )x‖2Y ),
β((θn − θhkn )x, w)Y = −β(θn − θhkn , wx)Y ≤ C(‖θn − θhkn ‖2Y + ‖wx‖2Y ),
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where C is a generic positive constant independent of h and k that may change its value at
each occurrence, using several times the Cauchy-Schwarz and Cauchy’s inequality (3.4), it
follows that, for all wh ∈ V h,

1

2k

[
‖vn − vhkn ‖2Y − ‖vn−1 − vhkn−1‖2Y

]
+

1

2k

[
‖(vn − vhkn )x‖2Y − ‖(vn−1 − vhkn−1)x‖2Y

]
≤ C

(
‖v̇n − δvn‖2V + ‖vn − wh‖2V + ‖θn − θhkn ‖2Y + ‖vn − vhkn ‖2Y + ‖(vn − vhkn )x‖2Y

+ ‖(un − uhkn )x‖2Y + (δvn − δvhkn , vn − wh)Y + ((δvn − δvhkn )x, (vn − wh)x)Y
)
.

Secondly, we derive the error estimates for the temperature. Therefore, if we subtract the
variational equation (2.6) at time t = tn and for a test function r = rh ∈ V h ⊂ V and the
discrete variational equation (3.2), we obtain, for all rh ∈ V h,

c(θ̇n − δθhkn , rh)Y +m((θn − θhkn )x, r
h
x)Y + β((vn − vhkn )x, r

h)Y = 0,

and so it follows that, for all rh ∈ V h,

c(θ̇n − δθhkn , θn − θhkn )Y +m((θn − θhkn )x, (θn − θhkn )x)Y

+ β((vn − vhkn )x, θn − θhkn )Y

= c(θ̇n − δθhkn , θn − rh)Y +m((θn − θhkn )x, (θn − rh)x)Y
+ β((vn − vhkn )x, θn − rh)Y .

Now, keeping in mind that

(δθn − δθhkn , θn − θhkn )Y ≥
1

2k

[
‖θn − θhkn ‖2Y − ‖θn−1 − θhkn−1‖2Y

]
,

m((θn − θhkn )x, (θn − rh)x)Y ≤ ε‖(θn − θhkn )x‖2Y + C‖θn − rh‖2V ,
β((vn − vhkn )x, w)Y ≤ C(‖(vn − vhkn )x‖2Y + ‖w‖2Y ),

where ε > 0 is assumed small enough, using again the Cauchy-Schwarz and Cauchy’s
inequality (3.4), we have, for all rh ∈ V h,

1

2k

[
‖θn − θhkn ‖2Y − ‖θn−1 − θhkn−1‖2Y

]
≤ C

(
‖θ̇n − δθn‖2Y + ‖θn − rh‖2V

+ ‖θn − θhkn ‖2Y + ‖(vn − vhkn )x‖2Y + (δθn − δθhkn , θn − rh)Y
)
.

Combining the estimates for the velocity field and the temperature, we find that, for all
wh, rh ∈ V h,

1

2k

[
‖vn − vhkn ‖2Y − ‖vn−1 − vhkn−1‖2Y

]
+

1

2k

[
‖(vn − vhkn )x‖2Y − ‖(vn−1 − vhkn−1)x‖2Y

]
+

1

2k

[
‖θn − θhkn ‖2Y − ‖θn−1 − θhkn−1‖2Y

]
≤ C

(
‖v̇n − δvn‖2V + ‖vn − wh‖2V + ‖θn − θhkn ‖2Y + ‖vn − vhkn ‖2Y + ‖(vn − vhkn )x‖2Y

+ (δvn − δvhkn , vn − wh)Y + ((δvn − δvhkn )x, (vn − wh)x)Y + ‖θ̇n − δθn‖2Y
+ ‖(un − uhkn )x‖2Y + ‖θn − rh‖2V + (δθn − δθhkn , θn − rh)Y

)
.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

412 N. BAZARRA, J. R. FERNÁNDEZ, AND R. QUINTANILLA

Multiplying these estimates by k and after a summation up to n, we have, for all {whj }nj=1,
{rhj }nj=1 ⊂ V h,

‖vn − vhkn ‖2Y + ‖(vn − vhkn )x‖2Y + ‖θn − θhkn ‖2Y

≤ Ck
n∑
j=1

(
‖v̇j − δvj‖2V + ‖vj − whj ‖2V + ‖θj − θhkj ‖2Y + ‖vj − vhkj ‖2Y

+ ‖(vj − vhkj )x‖2Y + ‖θ̇j − δθj‖2Y + ‖θj − rhj ‖2V
+ (δvj − δvhkj , vj − whj )Y + ((δvj − δvhkj )x, (vj − whj )x)Y

+ ‖(uj − uhkj )x‖2Y + (δθj − δθhkj , θj − rhj )Y
)

+ C(‖v0 − v0h‖2V + ‖θ0 − θ0h‖2Y ).

Finally, taking into account that

k

n∑
j=1

(δvj − δvhkj , vj − whj )Y

= (vn − vhkn , vn − whn)Y + (v0h − v0, v1 − wh1 )Y

+

n−1∑
j=1

(vj − vhkj , vj − whj − (vj+1 − whj+1))Y ,

k

n∑
j=1

((δvj − δvhkj )x, (vj − whj )x)Y

= ((vn − vhkn )x, (vn − whn)x)Y + ((v0h − v0)x, (v1 − wh1 )x)Y

+

n−1∑
j=1

((vj − vhkj )x, (vj − whj − (vj+1 − whj+1))x)Y ,

k

n∑
j=1

(δθj − δθhkj , θj − rhj )Y

= (θn − θhkn , θn − rhn)Y + (θ0h − θ0, θ1 − rh1 )Y

+

n−1∑
j=1

(θj − θhkj , θj − rhj − (θj+1 − rhj+1))Y ,

‖un − uhkn ‖2V ≤ C
(
k

N∑
j=1

‖vj − vhkj ‖2V + ‖u0 − u0h‖2V + In

)
,

where In is the integration error defined by (3.5), and applying a discrete version of Gronwall’s
inequality (see again [1]), we arrive at the a priori error estimates.

As an example of application of the above a priori error estimates result, we derive a
convergence order under suitable regularity conditions. So, let us assume that the continuous
solution to problem (2.5)–(2.7) has the regularity

u ∈ H3(0, T ;Y ) ∩ C2([0, T ];H2(0, `)), θ ∈ H2(0, T ;Y ) ∩ C1([0, T ];H2(0, `)).

From the previous a priori error estimates, using well-known properties of the approximation
by finite elements (see [2]) and some estimates provided in [1] in the study of damage problems,
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we may conclude that there exists a positive constant C independent of h and k such that

max
0≤n≤N

{
‖vn − vhkn ‖V + ‖un − uhkn ‖V + ‖θn − θhkn ‖Y

}
≤ C(h+ k).

4. Numerical results. Finally, we describe the numerical scheme implemented in MAT-
LAB for solving the fully discrete problem (3.1)–(3.3), and we provide some numerical
examples to demonstrate the accuracy of the approximations and the behavior of the solution.

4.1. Numerical scheme. As a first step, given the solution vhkn−1 and θhkn−1 at time tn−1,
the variables vhkn and θhkn are obtained by solving the following discrete linear problem, for all
wh, rh ∈ V h,

ρ(
1

k
vhkn , wh)Y + ρε2((

1

k
vhkn )x, w

h
x)Y − µ∗(k(vhkn )x, w

h
x)Y + β((θhkn )x, w

h)Y

= ρ(
1

k
vhkn−1, w

h)Y + ρε2((
1

k
vhkn−1)x, w

h
x)Y + µ∗((uhkn−1)x, w

h
x)Y ,

c(
1

k
θhkn , rh)Y +m((θhkn )x, r

h
x)Y + β((vhkn )x, r

h)Y = c(
1

k
θhkn−1, r

h)Y .

The numerical scheme was implemented on a 3.2 GHz PC using MATLAB, and a typical
run took about 0.22 sec of CPU time using the parameters h = k = 0.001.

4.2. Numerical convergence. In order to verify the accuracy of the finite element
approximations, the first simulation corresponds to an academical example.

We have slightly modified the equations (2.1) and (2.2) into the form

ρü− ρε2üxx = −µ∗uxx − βθx + F1 in (0, `)× (0, T ),

cθ̇ = mθxx − βu̇x + F2 in (0, `)× (0, T ),

where the supply terms F1 and F2 are given by

F1(x, t) = et(6x+ x(x− 1)− 17), F2(x, t) = et(6x+ x(x− 1)− 7).

In this example, we have used the following data:

` = 1, T = 1, ρ = 1, ε = 3, µ∗ = 2, β = 3, c = 1, m = 2,

and the initial conditions, for all x ∈ (0, 1),

u0(x) = v0(x) = θ0(x) = x(x− 1).

Therefore, the exact solution to this one-dimensional problem with homogeneous boundary
conditions can be easily calculated, and it is given as, for a.e. (x, t) ∈ [0, 1]× [0, 1],

u(x, t) = θ(x, t) = etx(x− 1).

We consider estimates for the approximation errors of the form:

max
0≤n≤N

{
‖vn − vhkn ‖V + ‖un − uhkn ‖V + ‖θn − θhkn ‖Y

}
,

and we present them in Table 4.1 for several values of the discretization parameters h and k.
Moreover, the evolution of the error depending on the parameter h + k is illustrated in
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TABLE 4.1
Example 1: Numerical errors for some values of h and k.

h ↓ k → 0.01 0.005 0.002 0.001 0.0005 0.0002 0.0001
1/23 0.170084 0.170118 0.170136 0.170147 0.170153 0.170156 0.170156
1/24 0.084983 0.084966 0.084970 0.084974 0.084977 0.084978 0.084979
1/25 0.042547 0.042481 0.042475 0.042475 0.042476 0.042477 0.042477
1/26 0.021395 0.021259 0.021241 0.021237 0.021237 0.021237 0.021237
1/27 0.010926 0.010666 0.010630 0.010621 0.010619 0.010618 0.010618
1/28 0.005878 0.005405 0.005333 0.005315 0.005310 0.005309 0.005309
1/29 0.003608 0.002837 0.002702 0.002666 0.002656 0.002655 0.002655
1/210 0.002690 0.001649 0.001417 0.001351 0.001331 0.001328 0.001327
1/211 0.002342 0.001151 0.000823 0.000708 0.000671 0.000666 0.000664
1/212 0.002214 0.000960 0.000574 0.000411 0.000346 0.000336 0.000332
1/213 0.002172 0.000889 0.000479 0.000287 0.000193 0.000173 0.000166
1/214 0.002160 0.000865 0.000443 0.000239 0.000126 0.000096 0.000083
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FIG. 4.1. Example 1: asymptotic constant error.

Figure 4.1. We notice that the convergence of the algorithm is clearly observed, and the linear
convergence, stated in the previous section, is achieved.

Now, we ask ourselves what happens if the final time T increases. Since the constant C
obtained in Theorem 3.2 depends on the constitutive data but also on T , we modify the
previous example by assuming that T varies between the values 1 and 10 and by using the
same data but with the discretization parameters h = k = 10−3. It is worth noting that, since
this dependence is exponential (see [1] and the references cited therein), we have restricted
ourselves to a maximum final time T = 10 for the sake of clarity. Therefore, in Figure 4.2 we
display the evolution of the numerical error with respect to the final time. As it was expected,
it seems that an exponential growth is found.

Finally, we consider a new case where the initial conditions do not satisfy the required
regularity. So, we solve the same problem as before without supply terms and the final time
T = 1 but with the following initial conditions, for all x ∈ (0, 1),

u0(x) = v0(x) = θ0(x) =

{
x/2 if x ∈ [0, 0.5],

−x+ 1 if x ∈ (0.5, 1].

That is, in this case the initial conditions are not continuous, and they do not have the regularity
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FIG. 4.2. Example 1: evolution of the numerical error depending on the final time.

imposed in Theorem 3.2. Since we cannot calculate the exact solution, we replace it by the
numerical solution obtained with parameters h = 2−18 and k = 10−6.

Therefore, in Table 4.1 we provide the numerical errors for several values of the discretiza-
tion parameters h and k; however, due to the expected loss of regularity, we have used the
L2-norm in all the terms. As can be seen, it seems that convergence is found. Moreover, in
Figure 4.2 the evolution of these L2 numerical errors are displayed depending on the parameter
h+ k. It is worth noting that we have also analyzed the behavior of the H1-norm, as we did
for the regular solution, but it does not decrease with h and k.

TABLE 4.2
Example 1: L2-numerical errors for some values of h and k with non-regular initial conditions.

h ↓ k → 0.001 0.005 0.002 0.0001 0.0005 0.0002 0.00001
1/23 0.186744 0.186918 0.187023 0.187058 0.187076 0.187086 0.187090
1/24 0.130162 0.130293 0.130372 0.130399 0.130412 0.130420 0.130422
1/25 0.091082 0.091177 0.091235 0.091255 0.091264 0.091270 0.091272
1/26 0.063886 0.063954 0.063997 0.064011 0.064019 0.064023 0.064024
1/27 0.044858 0.044905 0.044936 0.044947 0.044953 0.044956 0.044957
1/28 0.031485 0.031514 0.031536 0.031544 0.031548 0.031551 0.031552
1/29 0.022044 0.022053 0.022066 0.022072 0.022075 0.022077 0.022078
1/210 0.015339 0.015323 0.015327 0.015331 0.015334 0.015335 0.015336
1/211 0.010526 0.010484 0.010476 0.010477 0.010479 0.010480 0.010480
1/212 0.006999 0.006933 0.006911 0.006909 0.006909 0.006910 0.006910
1/213 0.004324 0.004229 0.004194 0.004187 0.004185 0.004185 0.004185
1/214 0.002214 0.002047 0.001990 0.001978 0.001974 0.001972 0.001972

4.3. Energy decay. Following the definition of the continuous case, we can define the
discrete energy as

(4.1) Ehkn = ρ||vhkn ||2Y + ρε2||(vhkn )x||2Y + ||(uhkn )x||2Y + c||θhkn ||2Y .

Now, we simulate two different problems. First, we present the case of an exponentially
stable solution. Since the elastic term is not positive, we try to find suitable solutions of the
form u(x, t) = ewt sin(nx) and θ(x, t) = ewt cos(nx).
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FIG. 4.3. Example 1: Asymptotic constant error in the L2-norm with non-regular initial conditions.

Substituting them into equations (2.1) and (2.2), we obtain

ρw2ewt sin(nx) + ρε2w2n2ewt sin(nx) = µ∗ewtn2 sin(nx) + βewtn sin(x),

cwewt cos(nx) = −mewtn2 cos(nx)− βwewtn cos(nx).

That is, we arrive at the system:

ρ(1 + ε2n2)w2 = µ∗n2 + βn,

cw = −mn2 − βnw.

Since we are looking for a solution that decays exponentially, we need that w is negative, and
so we have the following solution:

(4.2) w = −

√
µ∗n2 + βn

1 + ε2n2
, m = −w(c+ βn)

n2
.

From the definition of the material coefficients, we have to assume that µ∗n + β > 0 and
c+ βn > 0, which is obtained if β > max{−c/n,−µ∗n}.

It is worth noting that, in order to impose the above functions as possible solutions, we
need to consider Neumann boundary conditions for the temperature variable θ instead of
Dirichlet type.

In this first case, we use the following data:

T = 12, ` = π, ρ = 1, ε = 3, µ∗ = 1, β = 2, c = 4,

where m is obtained from (4.2), and the initial conditions are given by, for all x ∈ (0, π),

u0(x) = sin(nx), v0(x) = w sin(nx), θ0(x) = cos(nx).

Taking the discretization parameters h = π
1000 and k = 0.00001, the evolution in time of the

discrete energy is illustrated in Figure 4.4 (in both natural and semi-log scales) for three values
of the parameter n = 1, 3, 5. As can be seen, for every value it converges to zero, and an
exponential decay seems to be achieved.
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FIG. 4.4. Evolution in time of the discrete energy (natural and semi-log scales) for the good choice of the
parameters.

Now, we will show what happens in the general case, when the parameters w and m do
not satisfy the adequate conditions (4.2). For the sake of simplicity in the presentation, in the
rest of this section we restrict ourselves to the simplest case n = 1.

If we use the data

T = 10, ` = π, ρ = 1, ε = 3, β = 2, c = 4, w = −
√
µ∗ + β

1 + ε2
, m = 2,

and the same initial conditions as before, taking the discretization parameters h = π
1000 and

k = 0.0001, then the evolution in time of the discrete energy defined in (4.1) is displayed
in Figure 4.5 (in both natural and semi-log scales) for different values of µ∗. We note that
the parameter m does not satisfy the condition m = −w(c+ β), and so we cannot expect an
exponential decay. In fact, we should have an exponential growth in general. As can be clearly
seen, after a finite time (which is smaller when the parameter µ∗ increases), the discrete energy
explodes, and an exponential growth is found.
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FIG. 4.5. Evolution in time of the discrete energy (natural and semi-log scales) for several values of the
parameter µ∗.
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Finally, using the data

T = 2.5, ` = π, ρ = 1, ε = 3, β = 2, c = 4, m = 2,

and the initial conditions, for all x ∈ (0, π),

u0(x) = v0(x) = θ0(x) = x(x− π),

and taking the discretization parameters h = π
1000 and k = 0.0001, the evolution in time of

the discrete energy defined above is displayed in Figure 4.6 (in both natural and semi-log
scales) again for different values of the parameter µ∗. As expected, for all the choices of the
parameter µ∗, the solution explodes, and it exhibits an exponential growth which is faster
when µ∗ increases.
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FIG. 4.6. Evolution in time of the discrete energy (natural and semi-log scales) depending on the parameter µ∗.
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Appendix A. Existence and regularity of the solution. In the previous sections of this
work, we have studied, from the numerical point of view, the problem determined by the
system (2.1)–(2.2) with initial conditions (2.3) and boundary conditions (2.4). Therefore, it
will be convenient to guarantee the existence and the regularity of the solutions to this problem.

We are going to study it in the Hilbert space

H = H1
0 (0, `)×H1

0 (0, `)× L2(0, `),

and we consider the scalar product associated to the norm

‖(u, v, θ)‖2 =

∫ `

0

(
ρv2 + ρε2v2x + (λ− µ∗)u2x + cθ2

)
dx,

where λ is a positive number greater than µ∗.
Setting Lv = v − ρε2vxx, this operator is an isomorphism between H1

0 (0, `) ∩H2(0, `)
and L2(0, `). Therefore, it admits an inverse L−1. Thus, we can write our problem in the
following abstract form:

(A.1)
dU

dt
= AU, U(0) = (u0, v0, θ0),
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where

A

uv
θ

 =

 v
L−1[−µ∗uxx − βθx]
c−1[mθxx − βvx]

 .
We can observe that the domain of this operator is composed by the elements (u, v, θ) of

the Hilbert spaceH such that u, θ ∈ H2(0, `) ∩H1
0 (0, `) and v ∈ H1(0, `). We can also see

that

〈AU,U〉 =
∫ `

0

(λuxvx −mθ2x) dx.

Therefore, we can guarantee the existence of a positive constant C such that

〈AU,U〉 ≤ C‖U‖2.

Finally, we can also note that there exists a positive constantK such that (KI−A) is surjective.
In fact, given (f1, f2, f3) ∈ H we obtain the system

Ku− v = f1,

KLv + µ∗uxx + βθx = Lf2,

cKθ −mθxx + βvx = cf3.

If we substitute the first equation into the remaining two ones, then we find that

K2Lu+ µ∗uxx + βθx = Lf2 +KLf1,

cKθ −mθxx + βKux = cf3 − βf1.

We can observe that (Lf2 +KLf1, cf3 − βf1) ∈ H−10 (0, `)×H−1(0, `). At the same time,
the bilinear form given by

〈(u, θ), (ũ, θ̃)〉 = 〈K(K2Lu+ µ∗uxx + βθx)ũ, (cKθ −mθxx + βKux)θ̃〉

is bounded in H1
0 (0, `)×H1

0 (0, `), and, if K is large enough, it is also coercive. Therefore,
we can guarantee the existence of a solution in the domain of the operator A.

If we apply the Lumer-Phillips corollary of the Hille-Yosida theorem, we can conclude that
the operator A generates a contractive semigroup. Therefore, we can conclude the following
existence and uniqueness result:

THEOREM A.1. The operator A defined previously is the infinitesimal generator of a C0

contractive semigroup on the Hilbert space H. Thus, for any initial data (u0, v0, θ0) ∈ H,
there exists a solution to the abstract problem (A.1) with the following regularity:

U ∈ C([0,∞);Dom(A)) ∩ C1([0,∞);H).
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It is well-known that the existence of a C0-semigroup also provides the continuous
dependence of the solutions with respect to the initial data and supply terms (when they
are imposed). Therefore, we can guarantee that our problem is well posed in the sense of
Hadamard.
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