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POLYNOMIAL PRECONDITIONING FOR THE ACTION OF THE MATRIX
SQUARE ROOT AND INVERSE SQUARE ROOT∗
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Abstract. While preconditioning is a long-standing concept to accelerate iterative methods for linear systems,
generalizations to matrix functions are still in their infancy. We go a further step in this direction, introducing
polynomial preconditioning for Krylov subspace methods that approximate the action of the matrix square root
and inverse square root on a vector. Preconditioning reduces the subspace size and therefore avoids the storage
problem together with—for non-Hermitian matrices—the increased computational cost per iteration that arises in
the unpreconditioned case. Polynomial preconditioning is an attractive alternative to current restarting or sketching
approaches since it is simpler and computationally more efficient. We demonstrate this for several numerical examples.
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1. Introduction. Even if a matrix A ∈ Cn×n is sparse, its matrix function f(A)∈Cn×n,
with f : D ⊆ C → C an appropriate function, is typically a full matrix. This is why for
large A one has to resort to computing the action f(A)b for some vector b rather than the full
matrix f(A)—and in most applications, the action is typically all that is required.

Polynomial or rational Krylov subspace methods are then the methods of choice. Rational
Krylov methods require the repeated solution of systems with coefficient matrices A − σI
and various shifts σ. If no efficient solvers are available for such systems, then polynomial
methods are the only viable approach, and it is these methods that we consider in the present
paper.

Polynomial Krylov subspace methods use a nested orthonormal basis v1, . . . , vm of the
Krylov subspacesKm(A, b) = span{b, Ab, . . . , Am−1b}, m = 1, 2, . . ., from which they then
typically extract the Arnoldi approximation fm for f(A)b as

fm = Vm f(V ∗mAVm)V ∗mb, where Vm = [v1| · · · |vm] ∈ Cn×m.

Herein, V ∗mAVm =: Hm ∈ Cm×m is an upper Hessenberg matrix, the entries of which
arise in the orthogonalization process when determining the basis vectors v1, . . . , vm, and
V ∗mb = e1‖b‖, with e1 the first canonical unit vector in Cm and ‖ · ‖ the Euclidean vector
norm.

In the non-Hermitian case, the orthogonalization costs of the Arnoldi process can become
prohibitive if a large number of iterations is required. But even in the Hermitian case there is
no short recurrence formula to update fm+1 from fm (except for the linear system case, i.e.,
f(z) = z−1), which means that all Arnoldi vectors must be stored.

For these reasons, approaches which aim at limiting the dimension m of the Krylov
subspace by using restarts have attracted a lot of attention in the last two decades [1, 22, 23, 28,
29, 42, 64]; see also [35, 36] (and the references therein) for an overview of limited-memory
methods for f(A)b in general. The idea is to express the error f(A)b− fm as the action of
a new matrix function f̂(A)̂b on a new vector b̂ and recurse. Several representations for f̂
have been studied, and the challenge is to formulate one which is numerically stable. This is
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possible if f is a Stieltjes transform [2], a Cauchy-type function as defined in [29], or a Laplace
transform [30]. In all these cases, f̂ is given as an integral, and sufficiently precise numerical
quadrature has to be employed in order to evaluate f̂ and the corresponding functions occurring
after more than one restart.

Another approach that has recently emerged for improving the performance of Krylov
methods for functions of nonsymmetric matrices is to use a truncated Arnoldi process, thus
mimicking the short recurrence available in the symmetric case. This yields local orthogonality
of the basis vectors only, and the approach then combines this with randomized sketching [69],
which allows one to subsequently perform a cheaper (implicit) orthogonalization of the Krylov
basis, thus potentially reducing arithmetic operations, storage, and communication [7, 17, 37,
53]. These sketching methods can often be applied very successfully, in particular for entire
functions like the exponential; see [55] for a theoretical justification. For other functions,
sketched Krylov methods may fail completely though, as spurious Ritz values outside the field
of values of A can cause the methods to essentially break down when they hit a singularity or
branch cut of f ; see [17, Section 5.1.3] and [37, Section 5.4] for examples of this phenomenon.1

For the functions f(z) = z−1/2 and f(z) = z1/2, we here propose polynomial precondi-
tioning as an alternative to keep the Krylov dimensionm—and thus the orthogonalization cost—
small. We extract an approximation of f(A)b from a Krylov subspace Km(Apk−1(A), c),
where pk−1 is an appropriate polynomial of degree k − 1 and c is a suitably chosen starting
vector. The fact that the square root has two branches imposes constraints on pk−1 and A,
as we will discuss in detail in Section 5, covering the practically important case where the
spectrum of A is contained in the right half-plane. While polynomial preconditioning as a
technique for linear systems and eigenvalue computations has been used and investigated for a
long time [4, 21, 27, 43, 45, 46, 60, 61, 65], we believe that its extension to the inverse square
root and the square root are novel, and our numerical experiments will show that polynomial
preconditioning can substantially outperform restarted and sketched approaches.

Since Km(Apk−1(A), b) ⊆ Kmk(A, b), polynomial preconditioning extracts its approxi-
mation from a smaller subspace than the unpreconditioned method when investing the same
number of matrix-vector multiplications. In this sense, the polynomially preconditioned
approximation can be expected to be less accurate than the unpreconditioned Arnoldi approxi-
mation for the same investment of matrix-vector multiplications. This is actually a theorem
for the linear system case and for variational methods that minimize a measure for the error,
like the CG or GMRES methods. The possible gains with polynomial preconditioning for
matrix functions reside in the fact that (i) they allow to reduce storage (for Hermitian and
non-Hermitian matrices), (ii) they reduce arithmetic cost due to orthogonalization (for non-
Hermitian matrices), which can become prohibitive if many iterations are needed, (iii) they
reduce communication cost on parallel machines where orthogonalization requires global
communication, (iv) they avoid restarts which are non-trivial to implement for matrix functions,
and (v) they can exhibit the typical superlinear convergence behavior of Krylov subspace
methods, which is usually lost with restarts.

The square root and inverse square root of a matrix have many applications in a variety of
scientific computing and engineering applications. For example, the square root and inverse
square root of discretized differential operators arise when computing Dirichlet-to-Neumann
and Neumann-to-Dirichlet maps [3, 20], while fractional powers of the graph Laplacian
are used for modeling anomalous diffusion and other non-local phenomena in complex
networks [10, 11, 25]. Applications in data science include sampling from Gaussian Markov

1We briefly mention that another “flavor” of sketched Krylov methods exists which reduces orthogonalization
cost, too, by employing a sketched inner product, possibly together with mixed precision [5, 6, 17, 66]. Such methods,
however, cannot overcome the quadratic dependence of the cost on the iteration number.
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Random fields [56] and whitening to increase the fidelity of stochastic variational Gaussian
processes [57], which require inverse square roots of precision and kernel matrices. Due to the
relation sign(z) = z(z2)−1/2, the inverse square root is also often used in applications where
the action of the matrix sign function is needed, e.g., when working with the overlap Dirac
operator in lattice quantum chromodynamics [15, 67].

To conclude this introduction, let us mention that in the literature two other types of
techniques have been proposed which can be regarded as preconditioning for matrix functions
in a broader sense. The shift-invert (or RD-rational) Lanczos method [51, 68] is a special case
of more general rational Krylov subspace methods. It thus requires the solution of a shifted
linear system in each iteration, a situation that we consider infeasible in the context of this
paper. Additionally, [57] proposes a preconditioning technique for the (inverse) matrix square
root which alters the resulting vector: The method does not return f(A)b, but only a vector
which agrees with f(A)b up to certain rotations. While such a vector is all that is needed for
the specific application considered in [57], it is not possible to use this kind of approach when
the vector f(A)b itself is required (as is typically the case).

This paper is organized as follows: In Section 2 we shortly review left and right pre-
conditioning for linear systems and then show how this can be extended to multiplicative
matrix functions and polynomial preconditioners. In Section 3 we provide algorithmic details
of preconditioned methods for the inverse square root and give a theoretical justification for
why they can be expected to greatly improve convergence speed. We discuss the extension
to the square root in Section 4. Sensible choices for preconditioning polynomials and how
to evaluate them at a matrix argument are considered in Section 5. We then report results for
several numerical experiments in Section 6 before ending with our conclusions in Section 7.

2. Polynomial preconditioning. Preconditioning is a well-established technique for
solving linear systems of equations, i.e., when f(z) = z−1. For any nonsingular matrix M ,
we have that

(2.1) A−1b = (M−1A)−1M−1b = M−1(AM−1)−1b.

The first equality in (2.1) gives rise to left preconditioning, where we compute approximations
xm to A−1b from the Krylov subspaces Km(M−1A,M−1b), and the second equality to
right preconditioning, where we obtain approximations xm = M−1ym with ym from the
Krylov subspace Km(AM−1, b). The challenge is to find a preconditioner such that M−1u is
relatively easy to compute for any vector u and at the same time the preconditioned matrix
AM−1 or M−1A is close enough to the identity such that a typical Krylov subspace method
will take far fewer iterations to converge than the same method using just the matrix A.

The inverse f(z) = z−1 has the property that (z1z2)−1 = z−11 z−12 = z−12 z−11 , and as a
matrix function this translates into the very peculiar property that for any two nonsingular
matrices A and B we have

(AB)−1 = B−1A−1, (BA)−1 = A−1B−1,

which is at the origin of the equalities (2.1) used for preconditioning. The order of the
factors matters unless A and B commute, in which case f(A)g(B) = g(B)f(A) for any two
functions f and g and thus in particular for f(z) = g(z) = z−1; cf. [40].

If we want to transfer the idea of preconditioning to functions f other than z−1, one path
to follow is to identify situations in which f(AB) can easily be connected to f(A) and/or
f(B). The following proposition gives such a result for f a (possibly non-integer) power of a
matrix A and B a polynomial in A.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

384 A. FROMMER, G. RAMIREZ-HIDALGO, M. SCHWEITZER, AND M. TSOLAKIS

PROPOSITION 2.1. Let A ∈ Cn×n, let p be a polynomial, and consider the function zα

for some α ∈ R. If α < 0, then further assume that the matrices A and p(A) do not have
eigenvalues in (−∞, 0]. Then,

(2.2) (Ap(A))α = Aα(p(A))α = (p(A))αAα,

Proof. By [40, Theorem 1.17], we have that if f(z) = g(h(z)), then f(A) = g(h(A)),
assuming that g and h are such that h(A) and g(h(A)) are well defined. We apply this result
with g(z) := zα and h(z) := zp(z), writing f(z) = g(h(z)) = (zp(z))α = zα(p(z))α,
which immediately gives the first equality in (2.2). The second equality follows because Aα

and (p(A))α commute; see [40, Theorem 1.13(a), (e)].
For the functions considered in Proposition 2.1 we thus have, assuming that p(A) and

thus (p(A))α is nonsingular, that

Aαb = (Ap(A))α(p(A))−αb = (p(A))−α(Ap(A))αb.

From this we can get, at least in principle, a left polynomially preconditioned method
for Aαb by extracting the iterates fm as the Arnoldi approximation from the Krylov sub-
space Km(Ap(A), p(A)−αb) and a right polynomially preconditioned method by taking
fm = (p(A))−αf̃m with f̃m being the Arnoldi approximations from the Krylov subspace
Km(Ap(A), b). However, this becomes a computationally feasible approach only if the action
of (p(A))−α on a vector is easy to compute. This is possible for special choices of p and
α = −1/2, the inverse square root, and can be extended to the square root α = 1/2 as we will
describe in the next sections.

3. Polynomial preconditioning for the inverse square root. In this section, we first
describe algorithms for left and right polynomial preconditioning of the inverse square root.
We then analyze the effect that preconditioning has on the spectrum (and thus the condition
number) of the Hermitian positive definite A.

In a polynomially preconditioned method for the inverse square root, we want p(A) to
approximate A−1 so that Ap(A) is close to the identity. At the same time, (p(A))1/2 needs to
be “easy” to evaluate. We thus take p(z) = (q(z))2, where q is chosen as a polynomial that
approximates z−1/2 to achieve both goals at the same time. The relation (2.2) becomes, for
α = −1/2,

A−1/2b = (A(q(A))2)−1/2q(A)b = q(A)(A(q(A))2)−1/2b,

provided we have

(3.1)
(
(q(A))2

)1/2
= q(A).

Whether (3.1) holds or not depends on the branch that we take for the square root and on the
distribution of the eigenvalues of A. We will always assume that we take the principal branch
of the square root given as

z = |z|ei arg(z) 7→
∣∣∣|z|1/2∣∣∣ ei arg(z)/2, for arg(z) ∈ (−π, π],

where i =
√
−1, i.e., we put the branch cut on the negative real axis. Then, for any polynomial

q we have
(
(q(z))2

)1/2
= q(z) if and only if arg(q(z)) ∈ (−π/2, π/2], and thus

(3.2)
(
(q(A))2

)1/2
= q(A) if spec(q(A)) ⊆ C+,
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Algorithm 1 m steps of left polynomially preconditioned Arnoldi for A−1/2b.

1: choose polynomial q such that q(A) approximates A−1/2

2: put c← q(A)b, v1 ← c/‖c‖
3: for j = 1, . . . ,m do . Arnoldi process for preconditioned matrix
4: compute u← Avj , y ← q(A)u, w ← q(A)y
5: for i = 1, . . . , j do
6: hij ← 〈w, vi〉, w ← w − vihij . orthogonalize against previous vectors
7: end for
8: hj+1,j ← ‖w‖
9: vj+1 ← w/hj+1,j

10: end for
11: fm ← Vm(H

−1/2
m e1‖c‖) . V = [v1| · · · |vm], Hm = (hij) ∈ Cm×m upper Hessenberg

with C+ denoting the open right half-plane. We will discuss (3.2) again in Section 5 when we
discuss how to obtain appropriate polynomials q.

With q(A) approximating A−1/2, the matrix A(q(A))2 should, in a loose sense, be closer
to the identity than A is and should thus have a small condition number. This is in turn an
indication that we will require fewer Arnoldi iterations. To be specific, if, e.g., A is Hermitian
and positive definite, then the analysis in [28, Theorem 4.3] shows that the error of the mth
Arnoldi approximation is bounded by an expression of the form C ((

√
κ− 1) / (

√
κ+ 1))

m,
where κ is the condition number of the matrix. See Section 3.2 below for a more in-depth
investigation of the condition number of the polynomially preconditioned matrix.

3.1. Algorithmic aspects. Algorithm 1 describes the left polynomially preconditioned
Arnoldi method to approximate A−1/2b in detail. The Arnoldi process produces the orthonor-
mal basis v1, . . . , vm of Km((q(A))2A, q(A)b) obeying the Arnoldi relation

(q(A))2AVm = VmHm + hm+1,mvm+1e
T
m,

with em the mth canonical unit vector in Cm. The vector H−1/2m e1 for the small matrix Hm

is computed using an appropriate method for dense matrices, for example by computing H1/2
m

via the blocked Schur algorithm [19] and then solving a linear system. In line 4 we explicitly
stress that we compute the preconditioned matrix-vector product in three stages as multipli-
cations with A and two times q(A). This avoids numerically computing a representation of
p(z) = (q(z))2; see Section 5 for further discussion.

Algorithm 2 gives the details for right preconditioning. We changed the order of factors
in line 4, which allows us to store the preconditioned vectors yj = q(A)vj and use them when
computing fm. In this manner, right preconditioning saves one matrix-vector multiplication
with q(A) as compared to left preconditioning, where we cannot avoid computing q(A)b; see
line 2 in Algorithm 1. If we do not store the yj in Algorithm 2, then the approximation fm
must be computed as q(A)(Vm(H

−1/2
m e1‖b‖)), which needs an additional (matrix-vector)

multiplication with q(A) for all those m for which we wish to compute this approximation.
With left preconditioning, the norm ‖fm‖ (and by extension, also the norms of the

differences ‖fm − fm+k‖, k ≥ 1) can be obtained just from H
−1/2
m e1‖b‖ (and H−1/2m+k e1‖b‖),

since Vm is orthonormal. This is not the case with right preconditioning, where Ym does not
have orthonormal columns.

The matrices (q(A))2A and A(q(A))2 are identical, which is why we can expect that
left and right preconditioning require about the same number of iterations for a given target
accuracy, and this is what we observed in numerical tests not reported here. In conclusion, thus,
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Algorithm 2 m steps of right polynomially preconditioned Arnoldi for A−1/2b.

1: choose polynomial q such that q(A) approximates A−1/2

2: put v1 ← b/‖b‖
3: for j = 1, . . . ,m do . Arnoldi process
4: compute yj ← q(A)vj , u← q(A)yj , w ← Au
5: for i = 1, . . . , j do
6: hij ← 〈w, vi〉, w = w − vihij . orthogonalize against previous vectors
7: end for
8: hj+1,j ← ‖w‖
9: vj+1 ← w/hj+1,j

10: end for
11: fm ← Ym(H

−1/2
m e1‖b‖) . Ym = [y1| · · · |ym], Hm = (hij) ∈ Cm×m upper Hessenberg

right preconditioning has the (minor) advantage of saving one matrix-vector multiplication
with q(A) if we can afford the additional storage for the vectors yj . On the other hand,
when basing a stopping criterion on the size of the difference of consecutive iterates, left
preconditioning allows to compute this criterion more cheaply than right preconditioning.

3.2. Effect of preconditioning on the spectrum. To investigate the effect of precon-
ditioning on the spectrum of A, we restrict ourselves to Hermitian positive definite A since
this is conceptually simpler than more general settings. The preconditioning polynomial q
is constructed as an approximation of the inverse square root on the spectral interval of A,
and clearly the quality of the preconditioner will depend on the quality of this polynomial
approximation. As a measure of this quality, we will in the following assume that we have a
bound of the form

(3.3)
∣∣∣∣ 1√
z
− q(z)

∣∣∣∣ ≤ δ(z), for z ∈ [λmin, λmax],

for the approximation error, where λmin and λmax denote the smallest and largest eigenvalue
of A, respectively. For example, δ(z) ≡ ε corresponds to a uniform bound for the absolute
approximation error on the spectral interval, while δ(z) = ε/

√
z corresponds to a uniform

bound for the relative approximation error.
If we have a uniform relative error bound available, then we can easily find an upper

bound for the condition number of the preconditioned matrix A(q(A))2.
PROPOSITION 3.1. Let A be Hermitian positive definite with smallest and largest

eigenvalue λmin and λmax, respectively. Further, assume that we have a bound (3.3) with
δ(z) = ε/

√
z available, where ε <

√
2− 1 ≈ 0.4142. Then,

κpre ≤
1 + 2ε+ ε2

1− 2ε− ε2
,

where κpre denotes the condition number of A(q(A))2.
Proof. By a direct calculation, equation (3.3) implies that∣∣1− z(q(z))2∣∣ =

∣∣∣∣z(1

z
− (q(z))2

)∣∣∣∣ = z

∣∣∣∣ 1√
z
− q(z)

∣∣∣∣ ∣∣∣∣ 1√
z

+ q(z)

∣∣∣∣
= z

∣∣∣∣ 1√
z
− q(z)

∣∣∣∣ ∣∣∣∣ 2√
z
−
(

1√
z
− q(z)

)∣∣∣∣ ≤ zδ(z)( 2√
z

+

∣∣∣∣ 1√
z
− q(z)

∣∣∣∣)
≤ 2
√
zδ(z) + z(δ(z))2
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FIG. 3.1. Illustration of effects of polynomial preconditioning for the discretized two-dimensional Laplace
operator: Absolute/relative polynomial approximation error on the spectral interval (top left/right), effect on the
spectrum (bottom left), convergence history and predicted slope (bottom right); see the text for details.

for all z ∈ [λmin, λmax]. Inserting δ(z) = ε/
√
z gives

(3.4) max
z∈[λmin,λmax]

|1− z(q(z))2| ≤ 2ε+ ε2.

Due to our assumption that ε <
√

2− 1, the right-hand side of (3.4) is smaller than one so that
z(q(z))2 takes values in [1− 2ε− ε2, 1 + 2ε+ ε2], and the bound for the condition number
directly follows.

EXAMPLE 3.2. We illustrate our theory with a small example. Let A ∈ R2500×2500 be
the discretization of the Laplace operator on a square with 50 interior grid points in each
direction, with condition number κ(A) ≈ 1054. We construct a Chebyshev preconditioning
polynomial with d = 32 (see Section 5.1). The polynomial thus has degree 31.

The top left panel of Figure 3.1 displays the absolute difference between q(z) and the
inverse square root, while the top right panel displays the relative difference. Both in an
absolute and in a relative sense, the largest errors occur towards the left end of the spectrum.
A uniform relative error bound for this specific example is∣∣∣∣∣

1√
z
− q(z)
1√
z

∣∣∣∣∣ ≤ 0.1263 =: ε
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so that according to Proposition 3.1, the condition number ofA(q(A))2 satisfies κpre ≤ 1.7345.
In the bottom left panel of Figure 3.1, we depict the actual eigenvalues of A and A(q(A))2,
together with the bounding interval [1− 2ε− ε2, 1 + 2ε+ ε2]. The actual condition number of
A(q(A))2 is 1.5153 and thus even a bit smaller than predicted by the bounds (and roughly a
factor 700 smaller than the condition number of A). In the bottom right panel of Figure 3.1, we
illustrate the convergence of the unpreconditioned and right preconditioned iteration together
with the estimated convergence slopes based on the condition numbers of A and A(q(A))2,
respectively.

4. Polynomial preconditioning for the square root. For the square root, we could, in
principle, take the same approach as for its inverse: We let q be a polynomial such that q(A)
again approximates A−1/2 and then use

(4.1) A1/2b = (A(q(A))2)1/2(q−1(A)b) = q−1(A)(A(q(A))2)1/2b,

where q−1(z) = 1/q(z). Again, A(q(A))2 will be much better conditioned than A for
appropriate choices of q so that the Arnoldi approximations for its square root should converge
rapidly. The new aspect is that we now also have to compute the action of q−1(A) on a vector.
As the reciprocal of a polynomial, the function q−1(z) is a rational function, and its partial
fraction expansion can be determined from the zeros of q. Thus, evaluating q−1(A)b means
that we have to solve several shifted linear systems with A; just what we also have to do in a
rational Krylov method.

REMARK 4.1. One can make the relation to rational Krylov methods more explicit: A
general rational Krylov method extracts its iterates from a space of the form π(A)−1Kk(A, b),
where the denominator polynomial π is of degree ≤ k − 1; see, e.g., [34]. Performing m
iterations of a polynomially preconditioned method based on (4.1) would correspond to using
a denominator polynomial π(z) = (q(z))m, i.e., cyclically repeat the same d poles, where d is
the degree of q. Such a cyclic approach is actually common practice in many rational Krylov
methods, as repeated poles allow to reuse matrix factorizations if a direct solver is employed [9,
34]. However, in “standard” implementations of rational Krylov methods, the polynomial part
of the space is built with the same matrix with which shifted systems are solved. In contrast, a
method based on (4.1) would build the polynomial part of the space via multiplications with
A(q(A))2, i.e., extract its approximation from (q(A))−mKm(A(q(A))2, b). Such a method
can thus be regarded as a polynomially preconditioned variant of the standard rational Krylov
subspace method. The main computational work in rational Krylov methods lies in linear
solves, and due to the typically small iteration numbers, orthogonalization cost and memory
requirements are seldom an issue. Therefore, polynomial preconditioning appears to be less
appealing in this setting.

Since our fundamental assumption was that efficient methods for solving shifted systems
are not available, we consider a different approach instead. The idea is to use the identity
A1/2 = A−1/2A, which gives

A1/2b = A−1/2(Ab),

and then use preconditioning for the inverse square root. Note that the square root is also
defined for a singular matrix provided its eigenvalue 0 is semi-simple, whereas the inverse
square root is not. Interestingly, even then we can still proceed by using the (polynomially
preconditioned) Arnoldi approximation for the inverse square root onAb since the eigenvalue 0
is effectively deflated from the computation; a phenomenon termed implicit desingularization
in [11]. The basis for this is the following theorem:
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THEOREM 4.2. Assume that A ∈ Cn×n is singular and that its eigenvalue 0 is a k-fold
semi-simple eigenvalue. Let

A = TJT−1, with T nonsingular and J = ⊕mj=1Jnj
(λj),

be its Jordan canonical form with Jordan blocks

Jnj
=



λj 1 0 · · · 0

0 λj 1
. . . 0

...
. . .

. . .
. . .

...
. . . λj 1

0 · · · · · · 0 λj


∈ Cnj×nj ,

where n =
∑m
j=1 nj . Assume that we order the eigenvalues by enumerating the zero eigenval-

ues first, i.e.,

λ1 = . . . = λk = 0 and n1 = . . . = nk = 1, λj 6= 0, for j = k + 1, . . . ,m.

Denote by tj the columns of T = [t1| · · · |tn], put T¬k = [tk+1| · · · |tn] ∈ Cn×(n−k), and let
V be the subspace of Cn spanned by tk+1, . . . , tn. Furthermore, let Â denote the restriction
of A onto V , defined by

Â : V → V, Âtj = Atj , j = k + 1, . . . , n.

Then Â, as a linear map from V to V , is nonsingular and

A1/2y = Â1/2y for all y ∈ V.
Proof. As a mapping from V to V , the Jordan blocks of Â are the blocks Jnj

(λj),
j = k + 1, . . . ,m, and tk+1, . . . , tn are the corresponding generalized eigenvectors. This
shows that Â is nonsingular. Moreover, the matrix functions A1/2 and Â1/2 can be charac-
terized using their Jordan canonical forms by their action on the generalized eigenvectors
via

A1/2T = TJ1/2, with J1/2 = ⊕mj=1

(
Jnj

(λj)
)1/2

,

Â1/2T¬k = T¬kĴ
1/2, with Ĵ1/2 = ⊕mj=k+1

(
Jnj (λj)

)1/2
.

So, if y =
∑n
j=k+1 ηjtj , then with a = [0 · · · 0 ηk+1 · · · ηn]T we have

A1/2y = A1/2Ta = TJ1/2a = T

[
0k

⊕mj=k+1

(
Jnj (λj)

)1/2
[ηk+1 · · · ηn]T

]

= T¬kĴ
1/2

ηk+1

...
ηn

 = Â1/2T¬k

ηk+1

...
ηn

 = Â1/2y.

If b ∈ Cn is an arbitrary vector and 0 is a semi-simple eigenvalue of A, then the con-
tributions of eigenvectors belonging to this eigenvalue in y = Ab are deflated, i.e., y is of
the form assumed in Theorem 4.2. Moreover then, using the notation of Theorem 4.2, we
have that for any polynomial q, the preconditioned Krylov subspace Km(A(q(A))2, Ab) is
the direct sum of Km(Â(q(Â))2, Âb) and k times the space 0. Practically, this means that
we can now choose q such that q(Â) approximates Â−1/2 with Â nonsingular, and that we
can compute Arnoldi approximations for Â−1/2(Âb) by working with Km(A(q(A))2, Ab)
without any modifications at all.
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5. Choice and evaluation of the polynomial. We now discuss several ways to determine
a suitable preconditioning polynomial q, i.e., a polynomial of a given degree for which q(A) is
a good approximation of A−1/2. Of course, the difficulty of this task and its solution depend
crucially on properties of the matrix A.

An important question is how far we can guarantee or at least expect that the relation (3.1)
is fulfilled for the polynomial that we choose, i.e., whether we have ((q(A))2)1/2 = q(A). In
this respect, we can state the following general result:

THEOREM 5.1. Assume spec(A) ⊆ C+ and that q approximates z−1/2 on spec(A)
uniformly in a relative sense with accuracy 1√

2
, i.e., we have

(5.1) |q(λ)− λ−1/2| ≤ 1√
2
|λ−1/2|, for λ ∈ spec(A).

Then ((q(A))2)1/2 = q(A).

Proof. Since spec(A) ⊆ C+, we have | arg(λ−1/2)| ≤ π
4 for all λ ∈ spec(A). Because

of (5.1), this implies

| arg(q(λ))| < π

2
,

which in turn gives | arg((q(λ))2)| < π, and thus ((q(λ))2)1/2 = q(λ) for all λ ∈ spec(A),
i.e., ((q(A))2)1/2 = q(A).

The assumption on the relative approximation error in (5.1) is quite restrictive. Heuris-
tically, it seems justified to assume that for small values of λ ∈ C+, a polynomial q that
approximates the inverse square root is such that q(λ) ∈ C+, too, since, after all, λ−1/2 ∈ C+

is large with | arg(λ1/2)| ≤ π
4 . For large values of λ though, it might happen that q(λ) ∈ C−.

If this is the case, then we do not have ((q(A))2)1/2 = q(A), meaning that in the left pre-
conditioned method, for example, we are starting with the “wrong” vector c = q(A)b rather
than the correct one ĉ = ((q(A))2)1/2b. The expansions of c and ĉ in terms of the generalized
eigenvectors of A differ in those eigenvectors that belong to the large eigenvalues λ for which
q(λ) ∈ C−. This difference will not affect our computation of A−1/2c too much since the
inverse square root effectively damps the components belonging to eigenvectors with large
eigenvalues.

To summarize this discussion, we see that it is not trivial to guarantee that we have
((q(A))2)1/2 = q(A). In special situations we might be able to actually assert this with
mathematical certainty. In many other cases we might have strong heuristics or numerical
indications that this identity holds. One such situation is when spec(A) ⊂ C+, where
then 1/

√
λ is in the wedge {z ∈ C+, | arg(z)| ≤ π/4}, so that we can expect q(λ) ∈ C+

at least for all eigenvalues λ which are not too large. Moreover, if we do not aim for
particularly high accuracy, then we can accept that for some of the large eigenvalues λ we
violate ((q(λ))2)1/2 = q(λ) when computing the action of the inverse square root. In any
case, i.e., even when ((q(A))2)1/2 6= q(A), left or right polynomial preconditioning always
yields an inverse square root which, though, might be non-primary: With left preconditioning
we obtain f = Bb with B = (A(q(A))2)−1/2((q(A))2)1/2, which satisfies B2 = A−1, and
similarly for right preconditioning. We refer to [40] for further considerations on non-primary,
primary, and principal (inverse) square roots.
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5.1. Chebyshev expansions. A real function f : [a, a] ⊆ R → R which is absolutely
integrable with respect to the weight function w(x) = ((x− a)(a− x))−1/2 gives rise to a
truncated Chebyshev series expansion

k∑
i=0

ciT
[a,a]
i (z),

where T [a,a]
i is the (scaled) Chebyshev polynomial of the first kind of degree i for the interval

[a, a], and the coefficients ci are obtained as

c0 =
1

π

∫ a

a

w(z) · f(z)T
[a,a]
0 (z) dz, ci =

2

π

∫ a

a

w(z) · f(z)T
[a,a]
i (z) dz, i = 1, 2, . . .

So, if the spectrum of A is enclosed in the real interval [a, a] ⊂ (0,∞)—which is the
case in particular if A is Hermitian and positive definite—we can, for a given degree, take
q as the corresponding truncated Chebyshev expansion for z−1/2 on [a, a]. The theory and
the practical implementation of Chebyshev expansions are well studied and understood; see,
e.g., [14]. In particular, we can use a straightforward matrix-vector version of the Clenshaw
recurrence [16, 26] to accurately compute the action of q(A) on a vector b.

If spec(A) ⊆ [a, a], with a > 0, then the relation ((q(A))2)1/2 = q(A), which we need
in order to obtain the principal square root (see (3.1)), is fulfilled for the truncated Chebyshev
expansion polynomial q if q is positive on [a, a]. We can verify this at least numerically by
evaluating the polynomial on a discrete set of points in [a, a].

5.2. Polynomials interpolating at (harmonic) Ritz values. Another way to obtain a
preconditioning polynomial is by using the Arnoldi method itself. The Ritz values, i.e., the
eigenvalues of the upper Hessenberg matrix Hd arising from d steps of the Arnoldi process,
can be used as approximations for the eigenvalues of A (and they tend to first approximate
exterior eigenvalues well); see, e.g. [62, Section 6].

It is therefore a natural idea to choose the preconditioning polynomial q in our method
as the polynomial of degree d − 1 that interpolates 1/

√
z at the d Ritz values. This has the

attractive feature that it does not require any a priori knowledge about the spectral region of A
but rather adapts itself automatically to the spectrum of A. This approach comes at the cost of
d additional Arnoldi steps, i.e., d matrix-vector products and d(d− 1)/2 inner products. The
Arnoldi process for constructing Hd can either be started with the vector b or with a randomly
drawn vector, which might sometimes be preferable; see [48, Section 3.6] for a discussion of
this topic in the context of polynomial preconditioning for linear systems.

Alternatively, one might want to use harmonic Ritz values as interpolation points. These
are the inverses of the Ritz values of A−1 with respect to the space AKd(A, b) and can be
computed as the eigenvalues of

H̃d := Hd + h2d+1,dH
−∗
d ede

∗
d.

The inverse µ−1 of a harmonic Ritz value µ is contained in the field of values F(A−1) ⊂ C
of A−1 [63, Section 5.1], and thus |µ| > 1/max{|z| : z ∈ F(A−1)}. This shows that for a
nonsingular matrix A, the harmonic Ritz values are bounded away from 0, while standard Ritz
values can become 0 (or arbitrarily close to 0) if 0 ∈ F(A). It is this property which often
makes harmonic Ritz values more attractive than standard Ritz values when the function has a
pole at 0. Using preconditioning polynomials based on (harmonic) Ritz-value information has
recently received quite a lot of attention in the context of solving linear systems [46, 47, 48, 49]
and eigenvalue computations [24].
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If the field of values F(A) of A is in C+, then so are its spectrum and its standard as
well as its harmonic Ritz values. So we know that the constructed polynomial q satisfies
((q(µ))2)1/2 = q(µ) = µ−1/2 for the standard or harmonic Ritz values µ, and we can interpret
this as an indication that we may expect that indeed ((q(λ))2)1/2 = q(λ) for λ ∈ spec(A).

When working with interpolating polynomials, care has to be taken to use a representation
which is favorable numerically. Following [52] and [46, 47, 48, 49], we represent in our
numerical experiments the polynomial in its Newton form based on a Leja ordering of the Ritz
values and evaluate it with a Horner-type scheme.

5.3. Polynomials obtained via error minimization. A more involved way to obtain a
preconditioning polynomial is adapting the strategy presented in [70] for GMRES. Let Γ be a
contour, and assume that its interior contains the spectrum of A or at least the major part of
it. Such Γ may be available due to a priori information or it can be constructed as a polygon
from the Ritz values of the Arnoldi process; see [70]. Note that A allows for a canonical
(the “principal”) inverse square root A−1/2 if it has no eigenvalues on (−∞, 0]. Thus, we can
further assume that Γ and its interior exclude (−∞, 0].

If we discretize Γ into a set of points ω = {z1, . . . , zN}, then an inner product for the
space Pd−1 of polynomials of degree at most d− 1 < N is given by

(5.2) 〈p1, p2〉ω =

N∑
i=1

p1(zi)p2(zi)

with corresponding norm ‖ · ‖ω. Here the bar denotes complex conjugation. We obtain the
preconditioning polynomial q(z) by solving the least-squares problem (where we extend ‖ · ‖ω
to functions other than polynomials)

min
q∈Pd−1

‖z−1/2 − q(z)‖ω.

The theoretical justification for this approach is that if the discretization is fine enough,
then the absolute value of the approximation error z−1/2 − q(z) is small on all of the bound-
ary Γ. As this error is holomorphic (note that we excluded (−∞, 0] from the interior of Γ), the
maximum modulus principle [59, Theorem 10.24] states that |z−1/2 − q(z)| cannot attain a
larger value in the interior of Γ. Since Γ is constructed such that it approximately encloses the
eigenvalues of A, q(z) should thus yield a good approximation of z−1/2 for all eigenvalues
of A.

Because of the pole of z−1/2 at 0, it becomes increasingly difficult to acquire a polynomial
with small approximation error the closer Γ is to 0. Thus, it can be helpful to require a
minimum absolute value of Γ. We implement this by replacing the part of Γ closer to 0 than a
user-specified minimum distance by the circular arc of corresponding radius.

As described in [70], the above choice for a polynomial inner product allows us to
use the standard Arnoldi process to construct an implicit polynomial basis. For this, we
represent a polynomial p by the unique vector vec(p) containing its values on z1, . . . , zN ,
i.e., vec(p) = [p(z1), . . . , p(zN )]T. Then the inner product (5.2) corresponds to the standard
Euclidean inner product for these vector representations. If we apply the Arnoldi process to the
matrix diag(z1, . . . , zN ) and the vector [1, . . . , 1]T/N1/2 ∈ RN , then the kth Arnoldi vector
represents the kth orthonormal basis polynomial pk−1(z) (with respect to (5.2)) of degree
k − 1. We express q(z) in terms of these basis polynomials, so the least-squares problem

min
q∈Pd−1

‖z−1/2 − q(z)‖ω = min
αj∈C

‖z−1/2 −
d−1∑
j=0

αjpj(z)‖ω
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is equivalent to

(5.3) min
αj∈C

‖ vec(z−1/2)−
d−1∑
j=0

αj vec(pj)‖2 = min
α∈Cd

‖ vec(z−1/2)− Pdα‖2,

where the matrix Pd = [vec(p0)| . . . | vec(pd−1)] ∈ CN×d contains the Arnoldi vectors as
its columns. Since they are orthonormal, the vector α with components αi is obtained as
α = P ∗d vec(z−1/2). Once α is known, we can evaluate q(A)v using an Arnoldi-like process
that does not require knowledge of Pd; see [70, Section 3] for more information. This process
involves d − 1 matrix-vector products with A and O(d2) vector operations but no inner
products.

Within this approach, we know the value of q(z) on discrete points on the contour Γ,
which (approximately) contains the spectrum of A. If then q(z) ∈ C+ for these points, then
this can be taken as an indication that indeed q(λ) ∈ C+ for all λ ∈ spec(A) as is required
in (3.1): If q(z) ∈ C+, i.e., Re(q(z)) > 0 not only for the discrete points on the contour Γ but
on all of the contour, then Re(q(z)) > 0 for all z inside the contour since the real part of the
holomorphic function q is harmonic and thus attains its minimum for all z inside Γ on the
boundary Γ; see Section 15.1 and in particular Theorem 15.1g in [38].

We note that we could actually add Re(vec(q)) ≥ 0 as a constraint to (5.3). This constraint
can be written as

0 ≤
[
I 0

] [Re(vec(q))
Im(vec(q))

]
=
[
I 0

] [Re(Pd+1) − Im(Pd+1)
Im(Pd+1) Re(Pd+1)

] [
Re(α)
Im(α)

]
.

Furthermore, we can rewrite (5.3) in a similar manner, separating real and imaginary com-
ponents so that in total we obtain a real inequality-constrained linear least-squares problem.
These are known to be equivalent to convex quadratic programming problems, for which
several efficient algorithms exist; see, e.g., [12, Section 5.2.2] and the references therein. In
the following examples this will not be necessary however, as the constraint will be satisfied
without having been required explicitly in the optimization problem (5.3).

6. Numerical examples. We now illustrate the benefits of polynomial preconditioning
for several examples. The experiments in Examples 6.1 and 6.3 are run in MATLAB R2022a
on a computer with Intel Core i7-1185G7 8-core CPU (3.0 GHz) and 32 GB RAM under
Ubuntu 20.04, while Example 6.2 has been implemented in parallel via C and MPI and was
run on the JUWELS Cluster of the Jülich Supercomputing Centre. Each node of JUWELS
consists of two Intel Xeon Platinum 8168 CPUs running at 2.7 GHz and with 96 GB of RAM;
see [44] for further information.

EXAMPLE 6.1 (Inverse square root for the 3D discrete Laplace operator).
In our first example we take A ∈ Rn×n, n = 106, as the discrete, three-dimensional

Laplace operator on a grid with 100 × 100 × 100 equidistant interior points and choose b
as a vector with normally distributed random entries, scaled to have norm 1. The spectral
interval of A is [6(1− cos

(
π

N+1

)
), 12− 6(1− cos

(
π

N+1

)
)], and we obtained preconditioning

polynomials via the Chebyshev expansion over the spectral interval as described in Section 5.1.
We (numerically) verified that qd−1(z), for the various degrees d− 1 used, does not have a
zero on the spectral interval [a, a] and thus maps [a, a] onto a positive real interval. This means
that by (3.2) we indeed have ((q(A))2)1/2 = q(A).

The top row of Figure 6.1 depicts the relative 2-norm ‖fm − A−1/2b‖/‖A−1/2b‖ of
the error of the Arnoldi approximation fm as a function of the iteration number m; see
Algorithm 2. The “exact” solution A−1/2b that we use to compute the errors is actually an
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FIG. 6.1. Relative error when approximating A−1/2b with Chebyshev preconditioning polynomials of various
degrees d − 1 (d = 1 corresponds to an unpreconditioned method), where A is the discretization of the three-
dimensional Laplace operator and b is a vector with normally distributed random entries, scaled to have norm 1.

approximation computed using a restarted Arnoldi iteration with guaranteed error bounds as
described in [31] with the bound set to 10−14.

The left plot in Figure 6.1 is without preconditioning, and the right plot is for d = 8, i.e.,
we use a degree-7 polynomial as a right preconditioner. Both plots also show the relative
2-norm ‖fm+k − fm‖/‖fm+k‖ of the difference of two iterates (as dashed lines), a quantity
that is easily available also for large matrices—even without explicitly forming the iterates.
Here, the parameter k ≥ 1 controls how frequently this error estimate is evaluated (and thus,
how frequently the inverse square root of the respective m ×m Hessenberg matrix needs
to be computed). The plots show that these norms of the differences start to stagnate at the
same time when the errors start to stagnate, so this observation can be used to devise a simple
stopping criterion. To account for the fact that iterations of the preconditioned method are
much more costly (in particular for higher values of d) than iterations of the plain method but
one expects that much fewer iterations are required for convergence, we make the parameter
k smaller the larger d is. Specifically, in this experiment with d = 1, 2, 4, . . . , 64, we choose
k = 64/d, so that we check the residual norm every 64th iteration in the plain method and
every iteration when d = 64.

The bottom part of Figure 6.1 shows results for various degrees d−1 of the preconditioning
polynomial. The left plot depicts the error as a function of the number of Arnoldi iterations,
while the right plot shows it as a function of the number of matrix-vector multiplications
(mvms). Recall that preconditioning with a degree-(d − 1) polynomial requires 2d − 1
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TABLE 6.1
Timings and operation counts for approximating A−1/2b with Chebyshev preconditioning polynomials of

various degrees, where A is the discretization of the three-dimensional Laplace operator and b is a vector with
normally distributed random entries, scaled to have norm 1. The polynomial q has degree d− 1, i.e., the first row
corresponds to the plain, unpreconditioned Lanczos method. Run times are given both for the standard (1P) and
two-pass (2P) version of the algorithm.

d iterations mvms inner products time 1P (in s) time 2P (in s)
1 512 512 1 024 8.0 14.5
2 288 864 576 12.9 25.8
4 112 784 224 10.7 20.4
8 56 840 112 12.2 20.7
16 28 868 56 10.8 22.8
32 20 1 260 40 16.9 32.6
64 16 2 032 32 24.3 53.9

matrix-vector multiplications per iteration. We can take this plot as an information about the
computational cost, since mvms are the by far most costly operations here. We observe that
the preconditioned Arnoldi methods take increasingly more mvms as d is increased, and they
all take more mvms than the standard method. However, if storage were an issue and we could
not store the 512 Arnoldi vectors, then the standard method could not be performed as such
but rather as a two-pass Lanczos approach, where the first part does not store the basis vectors
but just assembles the tridiagonal matrix Hm (see, e.g., [32, 36]). Once the coefficient vector
H
−1/2
m e1‖b‖ is computed, a second pass is done which then combines the anew computed

basis vectors using these coefficients. In this way, the number of mvms is actually twice as
much—1 024 in our example—as what we see in the plot. Then, if for example we can store
the about 110 vectors needed for preconditioning with d = 4, then the preconditioned method
with its 784 mvms takes 24% less mvms than the standard method.

In Table 6.1 we report the wall clock time for running the plain and preconditioned
Lanczos method, both in a one-pass and two-pass version, together with the number of
iterations, mvms, and inner products needed to reach a relative error norm below 10−12.
Among all tested methods, the plain (unpreconditioned) Lanczos method has the smallest
run time, followed by polynomial preconditioning with d = 4. As explained in the previous
paragraph, for very large-scale problems, it might actually be relevant to compare the plain
two-pass Lanczos method with that of the preconditioned one-pass Lanczos, as the latter
method builds a much smaller subspace and is thus less likely to require two passes due to
memory constraints. We therefore note that for all values of d between 2 and 16, the run time
of the one-pass preconditioned method is lower than that of the two-pass unpreconditioned
method.

EXAMPLE 6.2 (Sign function for the overlap operator in lattice QCD). For a square
matrix A, its sign function sign(A) can be expressed as A(A2)−1/2, so that the computational
burden in computing sign(A)b resides in computing (A2)−1/2b. Note that A2 will not be
computed explicitly; we rather compute A2x for a given vector x as two consecutive mvms
with A.

The sign function of a large, non-Hermitian matrix arises in the overlap operator in lattice
Quantum Chromodynamics (QCD) as we now shortly explain. QCD is the fundamental
physical theory of the quarks and gluons as the constituents of matter, and their interaction
via the strong force is described by the Dirac operator. The Wilson-Dirac operator Dw arises
as a discretization of the Dirac operator on a finite four-dimensional Cartesian lattice. The
Wilson-Dirac operator acts on discrete spinor fields which have twelve components per grid
point, corresponding to all possible combinations of three color and four spin indices [33].
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Now, Dov(µ), the overlap Dirac operator at the chemical potential µ, preserves chiral
symmetry, an important physical property, on the lattice while other discretizations as, e.g.,
Dw do not. To be specific, the overlap Dirac operator takes the form [13, 39, 54]

Dov(µ) = I + ρΓ5sign(Γ5Dw(mw, µ))︸ ︷︷ ︸
=:Q(mw,µ)

.

Here, Γ5 is a simple diagonal matrix which acts as the identity on spinor components belonging
to spins 1 and 2 and as the negative identity on those belonging to spins 3 and 4, and ρ ∈ (0, 1)
is a mass parameter, typically close to 1. In the argument of the sign function, Dw(mw, µ)
is the massless Dirac-Wilson operator with an appropriately chosen shift mw ∈ (−2, 0) and
a chemical potential of µ. It is the presence of µ 6= 0 that makes Q(mw, µ) non-Hermitian;
see [13]. For notational simplicity, we abbreviate Q(mw, µ) as Qµ from now on.

In our computations, we use a Dirac matrix for a grid with dimensions 64×323 com-
ing from a physically relevant ensemble provided by the lattice QCD group at the Uni-
versity of Regensburg via the Collaborative Research Centre SFB-TRR55, with parame-
ters m0 = −0.332159624413 and csw = 1.9192 [8]. Hence, Qµ has 25 165 824 rows and
columns. We took mw = −1.4 and µ = 0.3, which are physically relevant values. All our
results relate to the evaluation of (Q2

µ)−1/2b, where b is a vector with uniformly distributed
random entries. In an actual simulation in lattice QCD, one has to solve systems with Dov(µ)
repeatedly, using an iterative solver. Each iteration then requires an evaluation of sign(Qµ)b
for some vector b, and this in turn is obtained by computing Qµ · (Q2

µ)−1/2b.
We obtain the preconditioning polynomial q via interpolation at the Ritz values (of Q2

µ)
as outlined in Section 5.2. Since all Ritz values were always contained in the right half-plane,
so were the values of q(z) = z−1/2 at these Ritz values, which is important in view of (3.1).
When using harmonic Ritz values instead of standard Ritz values, we consistently needed
about 10% more iterations across all tested values of d. For this reason, we do not report
results using harmonic Ritz values. For this example, we report results for left preconditioning
with results for right preconditioning being virtually the same.

Our numerical experiments were run on 64 and 256 nodes on the JUWELS Cluster, and
we use 2 MPI processes per node and 24 OpenMP threads per process.2 As the “exact"
solution f∗, we took the unpreconditioned fm+k with m = 6 000 and k = 64 as before, and
we obtained the error measure ‖fm − fm+k‖2/‖fm+k‖2 ≈ 3.0 · 10−10.

Computing H−1/2m for the Hessenberg matrices Hm is done using the SLEPc library [58],
with its cost in seconds as a function of m shown in the right plot of Figure 6.2. The time to
obtain H−1/2m was around five times larger than that for running the whole Arnoldi process
with m = 6 000 when running on 64 nodes on JUWELS, rendering the computation of
‖fm+k − fm‖2/‖fm+k‖2 ten times more expensive than the time for the Arnoldi method for
that value of m. These times appear to be overly large, and we are convinced that they could
be reduced substantially by looking at the details of the implementation. Rather than doing
that, though, we decided to simply exclude the time needed for checking the stopping criterion
from all the timings reported in Table 6.2. Note that the unpreconditioned method would have
to check the stopping criterion more often and evaluate the sign function on larger Hessenberg
matrices, so excluding this from the timings is in favor of the unpreconditioned method.

The unpreconditioned case converges quite slowly, so that running the Arnoldi method
with full orthogonalization up to m = 6 000 is certainly not realistic in practice because of
the very high orthogonalization cost. For our comparison with the preconditioned methods,
we therefore reduced the iteration number of the unpreconditioned Arnoldi method to 1 600

2code available at https://github.com/Gustavroot/sign_function_LQCD_with_polyprec
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FIG. 6.2. Results for approximating (Qµ)2)−1/2b with Arnoldi-preconditioning polynomials of various
degrees and b a uniformly distributed random vector. Left: relative error as a function of the Arnoldi basis size up to
a value of 1 600. Right: time (in s) to compute H

−1/2
m as a function of m with SLEPc.

TABLE 6.2
Timings and operation counts for approximating ((Qµ)2)−1/2b with Arnoldi-preconditioning polynomials q

of various degrees d− 1 and b a uniformly distributed random vector. The polynomial q has degree d− 1, i.e., the
first row corresponds to the plain, unpreconditioned Arnoldi method.

d iterations mvms inner products time 64 nodes (in s) time 256 nodes (in s)
1 1 600 3 200 1 279 200 127.8 105.8
8 296 8 910 42 510 25.7 9.8

16 140 8 742 9 991 12.3 7.8
32 72 9 198 3 125 11.6 7.4
64 33 8 636 2 578 10.6 5.5

iterations. This resulted in a relative error of around 4.0 · 10−5 at m = 1 600, which we then
used as the stopping criterion in the preconditioned runs, too. The left part of Figure 6.2
displays the relative error as a function of the iteration counts, and Table 6.2 gives operations
counts and timings. We checked the error every k = 64/d iterations.

From Figure 6.2 and Table 6.2 we see that, as in the previous example, polynomial
preconditioning reduces the number of iterations while increasing the total number of mvms.
Still, the reduction in execution time is very pronounced for the preconditioned methods,
because orthogonalization costs dominate when a large number of iterations have to be
performed. The fastest preconditioned method arises for d = 64, and it is by a factor of
twelve faster than the unpreconditioned method when using 64 nodes and by a factor of
19 on 256 nodes. In the additional Figure 6.3, we provide convergence plots for the best
three preconditioned methods from Table 6.2, now going down to a relative error of 10−9, a
precision which is very difficult to attain for the unpreconditioned algorithm due to tremendous
time and memory requirements. For this higher accuracy, d = 32 and d = 64 take almost
the same time, while d = 16 takes about 10% more time since the orthogonalization cost,
which grows quadratically in the number of iterations, starts to prevail. The case d = 64 with
m = 94 is 135 times faster than the unpreconditioned one with m = 6 000 on 256 nodes
(which achieves comparable accuracy).

EXAMPLE 6.3 (Square root of graph Laplacian). As our last example we study another
nonsymmetric problem, which is known to be notoriously difficult to solve both for sketched
and for restarted Krylov subspace methods; see, e.g., [17, Section 5.1.3] and [37, Section 5.4],
where a similar (but much smaller) model problem is considered. We let A be the adjacency
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FIG. 6.3. Results for approximating ((Qµ)2)−1/2b with Arnoldi-preconditioning polynomials of various
degrees and b a uniformly distributed random vector. Solid lines: relative error ‖fm − f∗‖/‖f∗‖, dashed lines:
error measure ‖fm − fm+k‖/‖fm+k‖ with k = 64/d.

TABLE 6.3
Timings and operation counts for approximating L1/2b with two choices for the preconditioning polynomials of

various degrees d− 1. Left: polynomials interpolate at the Ritz values (see Section 5.2). Right: error minimizing
polynomials (see Section 5.3). L is the graph Laplacian of the network Kamvar/Stanford. The first row
corresponds to the unpreconditioned Arnoldi method.

interpolation of Ritz values error minimization
d iters mvms inprods time (in s) iters mvms inprods time (in s)
1 928 929 860 256 333.0 928 929 860 256 333.0
2 576 1 732 331 202 141.7 544 1 693 298 932 393.9
4 312 2 190 97 044 58.1 272 1 965 77 252 125.3
8 176 2 650 30 856 37.7 144 2 221 24 132 67.4

16 102 3 180 10 542 35.1 78 2 479 9 546 60.7

matrix of a directed graph, Din the diagonal matrix which contains the in-degrees of all nodes
on the diagonal, and L = Din −A the corresponding in-degree Laplacian.

The square root L1/2—a fractional Laplacian—is an important tool for modeling non-
local dynamics on the network; see, e.g., [10, 50]. It is evident from its definition that all
column sums of L are zero, and it is thus singular. Its spectrum is contained in the closed
right half-plane as can be seen via Gershgorin’s theorem, while its field of values is not;
see [41, Theorem 1.6.6]).

We are interested in forming L1/2b, where b is a randomly chosen canonical unit vector ei.
As outlined in Section 4, we apply our method to approximate L−1/2(Lb), which is possible
despite L being singular; cf. Theorem 4.2. To increase numerical stability, we run the Arnoldi
method with reorthogonalization in this example. The graph we took is Kamvar/Stanford
from the SuiteSparse matrix collection [18], so L has 281 903 rows and columns and 2 594 228
nonzero entries.

In Figure 6.4 and the left part of Table 6.3 we report results obtained with right precondi-
tioning, using polynomials interpolating at the Ritz values (see Section 5.2), this time aiming
for a relative error of 10−7. Given the large problem size, as in Example 6.1, we take as the
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FIG. 6.4. Results for approximating L1/2b with Arnoldi-preconditioning polynomials of various degrees (d = 1
corresponds to an unpreconditioned method), where L is the graph Laplacian of the network Kamvar/Stanford
and b is a randomly chosen canonical unit vector ei.

“exact” solution, which we use to compute the errors, the approximation obtained with the un-
preconditioned Arnoldi method with a stricter tolerance 10−10. The parameter k that controls
how frequently we check the stopping criterion is chosen as k = 32/d in this experiment. As
in the previous example, the benefits of polynomial preconditioning become very apparent:
As orthogonalization cost largely dominates the overall cost of the unpreconditioned method,
run time is reduced by a factor of about 9 when going from the unpreconditioned Arnoldi to
a polynomially preconditioned Arnoldi method with d = 8 or d = 16. Note that Table 6.3
now reports complete timings, including the time spent in evaluating H−1/2m b (via the function
sqrtm of MATLAB followed by a linear system solve). As opposed to Example 6.2, the time
spent in these evaluations now represents only a small fraction (from 0.5% for d = 16 to 2.8%
for d = 1) of the total computing time.

The right part of Table 6.3 shows results obtained with preconditioning polynomials
solving the least-squares problem discussed in Section 5.3. For this, we run 60 Arnoldi
iterations and apply the MATLAB function boundary to the Ritz values to construct the
boundary Γ. We choose a minimum absolute value of 0.1 for all of Γ and discretize the
modified boundary in steps of uniform size 0.005. In view of (3.1) we tested whether for the
discrete points z on the boundary we have q(z) ∈ C+, which was indeed always the case. We
refrain from showing convergence plots here, as they do not give additional insight beyond
what we see in Figure 6.4 for the Arnoldi polynomial.
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TABLE 6.4
Timings and operation counts for approximating L1/2b by sketched-and-truncated or restarted Krylov methods,

where L is the graph Laplacian of the network Kamvar/Stanford and b is a random vector of unit norm. For
each class of methods, only the value of k leading to the most efficient outcome is reported in this table.

method trunc./rest. length k mvms inner products time (in s)
sketched FOM 20 1 900 37 790 79.9
restarted Arnoldi 200 1 800 179 100 91.8
deflated restarted Arnoldi 100 1 400 69 300 60.9

The least-squares polynomials are complex and thus necessitate complex arithmetic even
though L and b are real. This is in contrast to the interpolating polynomials which are real
because all Ritz values are. As a consequence, with least-squares polynomials, the run time
increases for d = 2 compared to the unpreconditioned case and remains larger than the run
times with the interpolation polynomials for the same values of d. However, fewer matrix-
vector and inner products are needed, so we expect this approach to be more beneficial in
cases where complex arithmetic is needed anyways.

To conclude this example, we compare to the performance of competing methods that
can be used to reduce storage and orthogonalization cost when approximating functions of
nonsymmetric matrices. Specifically, we compare with the sketched FOM method from [37]3

as well as with quadrature-based restarting [29]4, both with and without implicit deflation [23].
The results are depicted in Figure 6.5.

For the restarted Arnoldi method, we vary the restart lengths from 20 to 200 and allow
at most 3000 mvms overall. Without implicit deflation, the method only manages to reach
the desired accuracy of 10−7 for the largest restart length k = 200, within nine restart cycles.
This requires 1 800 mvms as well as 179 100 inner products and takes 91.8 seconds.

When using implicit deflation, we aim to deflate k/10 approximate eigenvectors (which is
typically a suitable value). This speeds up convergence, particularly for k = 50 and k = 100.
The overall most efficient method is then for k = 100, taking 60.9 seconds.

In sketched FOM, the Krylov basis is computed by a k-truncated orthogonalization, i.e.,
each new basis vector is only orthogonalized against the k preceding basis vectors (so that
k = 2 mimics the Lanczos process). We try different truncation parameters ranging from
2 to 30. Several observations can be made: For the smaller truncation lengths, the method
stagnates or diverges long before reaching the target accuracy. In general, convergence is very
irregular and erratic, which also means that error estimates and stopping criteria can become
unreliable. Additionally, the practical choice of a good truncation parameter appears to be
non-trivial, as there seems to be no systematic dependence of performance on the truncation
parameter (e.g., k = 5 performs better than k = 10 and k = 20 performs better than k = 30).
The method performs best for k = 20 and manages to reach the desired accuracy within 1 900
iterations, requiring 79.9 seconds.

Overall, the preconditioned Arnoldi method with d = 8 or d = 16 outperforms the most
efficient other method by a factor of roughly 2 in wall clock time.

7. Concluding remarks. We presented a way to use polynomial preconditioning in
the Arnoldi method for computing the action of the inverse square root of a matrix on a
vector, and by expansion, also for the square root itself. Due to the reduction of the number
of Arnoldi steps, the polynomially preconditioned method saves on orthogonalization and
storage cost, and these savings can be very substantial, particularly in the non-Hermitian case.

3available at https://github.com/MarcelSchweitzer/sketched_fAb.
4available at https://github.com/guettel/funm_quad.
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FIG. 6.5. Results for approximating L1/2b by sketched-and-truncated or restarted Krylov methods with various
truncation/restart lengths k, where L is the graph Laplacian of the network Kamvar/Stanford and b is a randomly
chosen canonical unit vector.

While an extension to inverse pth roots is possible, in principle, by using polynomials which
are pth powers, polynomial preconditioning cannot be applied for general matrix functions.
When it can be applied, though, it is conceptually and computationally simpler than other
approaches such as sketching and restarting, which also aim at avoiding long recurrences. This
is confirmed by our numerical examples which show that polynomial preconditioning may
substantially outperform these other approaches. We also discussed why it is important to take
into account that the square root has two branches.
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