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MULTI-SCALE SPECTRAL METHODS FOR BOUNDED RADIALLY SYMMETRIC
CAPILLARY SURFACES*

JONAS HAUGT AND RAY TREINENT

Abstract. We consider radially symmetric capillary surfaces that are described by bounded generating curves.
We use the arc-length representation of the differential equations for these surfaces to allow for vertical points and
inflection points along the generating curve. These considerations admit capillary tubes, sessile drops, and fluids in
annular tubes as well as other examples. We present a multi-scale pseudo-spectral method for approximating solutions
of the associated boundary value problems based on interpolation by Chebyshev polynomials. The multi-scale
approach is based on a domain decomposition with adaptive refinements within each subdomain.
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1. Introduction. In a recent work, the second author introduced an adaptive Chebyshev
spectral method for radially symmetric capillary surfaces. These radially symmetric capillary
surfaces give rise to boundary value problems for systems of nonlinear ODEs. Treinen [15]
found approximations of the solutions to these nonlinear systems by using Newton’s method
to generate a sequence of linear problems, and the corresponding sequence of solutions,
when convergent, approach the solution of the nonlinear problem. The solutions of the linear
problems were computed with Chebyshev spectral methods. There were tests put in place to
ensure that the Newton steps were converging to a solution of the nonlinear problem within
a prescribed tolerance, and if that was not achieved, then the resolution of the underlying
approximation scheme was adaptively increased, repeating until convergence was achieved
within the requested tolerance. Overall the performance was fast and robust. However, in that
work some cases were identified where the adaptive step required a rather ungainly number of
points, and the performance suffered. There were also instances where the algorithm did not
converge. These cases are the subject of the current study. We have implemented multi-scale
approaches for these problems, where the problematic regions are isolated and treated with
separate adaptive approaches.

We use Matlab with Chebfun [4] to facilitate some aspects of our work, though we will not
be using all of the automation implemented in Chebfun. We do use Chebfun to generate our
differentiation matrices and for plotting our generating curves with barycentric interpolation.

We will focus on two prototype problems:

e P1 simply connected interfaces that are the image of a disk, and

e P2 doubly connected interfaces that are the image of an annulus.
Within these two prototype problems we investigate subsets of problems that either have been
computationally expensive to solve or where convergence fails altogether. Before we discuss
our multi-scale approach for specific problems, we give a brief background on the underlying
mathematical problems and summarize the algorithm from [15].

We have released Matlab implementations of these algorithms under an open source
license. These files are available in a GitHub repository at
https://github.com/raytreinen.
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2. Mathematical framework for the prototype problems. The mean curvature of a
capillary surface is proportional to its height u, where the height is measured over some fixed
reference level. We will restrict our attention to embedded solutions of the mean curvature
equation

2H = ku,

where H is the mean curvature of the surface, x = pg/o > 0 is the capillary constant with p
defined to be the difference in the densities of the fluids, g the gravitational constant, and o the
surface tension. When the height of the interface u is a graph over the base domain, the mean
curvature H is given by

Vu
V1+ Va2

If the interface is not a graph over the base domain, then H can be defined locally in the sense
that the height of the interface forms a surface that can be interpreted as a manifold. See
Finn [7]. This equation is sometimes known as the Young-Laplace equation or the capillary
equation.

A radial symmetric capillary surface can be described by a system of three nonlinear
ordinary differential equations, parameterized by the arc-length s:

2H=V".

dr

2.1 T cos 1,

2.2) d—u = sin,
ds

2.3) @ = KU — smw’
ds r

where r is the radius, w is the height of the interface, and the inclination angle 1) is measured
from the corresponding generating curve that is described by (r(s), u(s)). The associated
boundary values will come from the natural boundary conditions for each problem and will
correspond to prescribing the inclination angle(s) at one or more radii; the details are described
in what follows.

We defer to Finn [7] and Treinen [15] for background and further references. However,
there are some perspectives and examples that give some insight into the surfaces that we
compute in this paper. The computationally challenging cases we consider here have v
prescribed on the boundary with || > 7/2. Figure 2.1 displays a section of a radially
symmetric sessile drop, and this physical configuration can be represented by an extension of
the solution curve for a capillary surface in a tube. Finn and many others took the approach
of studying (2.1)—(2.3) as an initial value problem with the initial height given by ug, where
r = 0 at s = 0. From the regularity results for these elliptic problems, one is able to deduce
that ) = 0 there. It follows that there is a one-parameter family of solutions of these equations
parameterized by wug, and one finds the unique wug-value that attains a prescribed indication
angle 1, at a prescribed radius b. This process results in a generating curve for a radially
symmetric capillary surface in a tube, and this is also a big theme in [7].

While we do not use this approach in the current work, it could give insight to the reader.
In [7, Section 3.1], Finn describes the correspondence principle that there is a one-to-one
correspondence between sessile drops resting on a plate and capillary surfaces in a tube.
For general sessile drops, this requires a proof that one may extend solutions of (2.1)—(2.3)
past ¥y = m/2. Once the solution has been extended past the vertical point, one stops at a


http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA

Kent State University and
Johann Radon Institute (RICAM)

22 J. HAUG AND R. TREINEN

FIG. 2.1. A radially symmetric sessile drop rests on a plate, and a section of the configuration is shown. The
Sluid interface intersects with the plate at radius b = 3, and the contact angle ~y is m, giving an extremely hydrophobic
drop.

prescribed inclination angle 1, that corresponds to the physical contact angle. With this in
hand, the correspondence with the physical configuration is achieved by the transformation
v = —u — A/k, where the height v describes a sessile drop given by

V~L:m}+)\,

V14 |Vol?

with the Lagrange multiplier A for satisfying the physical volume constraint. We have illus-
trated this in Figure 2.2.

‘When one considers (2.1)—(2.3), it is also possible to continue the solutions to these initial
value problems for any arc-length s > 0, and the solutions are known to be analytic. They do,
however, have self-intersections in this global setting of arbitrary s > 0. A classification of all
of these global solutions and an exploration of the asymptotic behavior appears in the work
of Bagley and Treinen [2]. For physical applications one is restricted to selecting connected
pieces of these curves that avoid these self-intersections. Later in this paper we will use this
global perspective to explain why one encounters some of the difficult problems studied here;
Figure 5.1 shows examples of this self-intersection.

2.1. The problem P1. For radially symmetric and simply connected surfaces that are
the image of a disk, we specify boundary conditions by the requirement that at some arc-length
£ > 0, the radius r(¢) attains a prescribed value b > 0 and the inclination angle 1(¢) attains
a prescribed value ¢, € [—m,7]. Figure 2.3 displays a typical example that appeared as a
dashed curve in Figure 2.2. In our formulation the value of the arc-length ¢ is unknown, and
we approach this unknown parameter by re-scaling the problem, defining 7 = s/¢, or s = (7.
Then we define

R(r) :==r(lr) =1r(s),
U(r) :=u(lr) = u(s),
(7)== (1) = Y(s).

This scaling is suitable for the use of Chebyshev polynomials, as the natural domains of R, U,
and W are now [—1, 1]. Then, using the chain rule, from (2.1)—(2.3), we find
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FIG. 2.2. A capillary surface in a tube of radius b = 3 is shown in bold, and the dashed lines illustrate the
extension of this solution up to the inclination angle 1, = . The curves here are sections of the associated radially
symmetric fluid interfaces.
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FIG. 2.3. A capillary surface with radius b = 3 and inclination angle 1, = w. Here the dots along the interface
are the Chebyshev gridpoints for three regions in our domain decomposition. In our figures we include vertical lines
to indicate the radius (or radii) of interest.

(2.4) R'(1) — Lcos¥(7) = 0,
2.5) U'(r) — £sin W (r) = 0,
{sin U

(2.6) (1) +

Setting the column vector v = [R U ¥ /|7, we can use (2.4)—(2.6) to define the nonlinear
operator in the vector equation

2.7 N(v)=0.
We then use the boundary conditions

R(1) —b=0, V(1) =1 =0

(2.8) R(—1) +b=0, U(—1) + ¢ =0,

so that we have some form of a two-point boundary value problem. Here we are prescribing
the natural boundary conditions on a cylinder of radius b. See Figure 2.3. As we discussed
previously, we also allow for the strictly parametric solution, where 7/2 < 1)y, and this then
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provides a model for the sessile drop wetting a disc of radius b. We append (2.7) with these
boundary conditions (2.8) to form the system

N(v)=0.

The resulting solution (R,U) = (r,u) is not a generating curve of the surface, but it is a
section. The generating curve is given by (R(7),U(7)), for 0 < 7 < 1, and the generating
curve has total arc-length ¢.

One final remark on the general nature of this problem is that (2.3) and (2.6) have
singularities at r = R = 0. It is known that this singularity is removable, and the solution is
analytic [7]. We will discuss our numerical approach for this singularity when we return to
the results for this problem. For the time being, we present an alternative form of (2.6) that
is suitable for reducing the numerical error from rounding, as exaggerated by dividing by a
number close to zero. We multiply by R to get

(2.9) R(T)¥' (1) + £sin¥(7) — klR(T)U(T) = 0,

which we use when b is relatively small. When we use (2.9) in place of (2.6), we denote

the changed N by NV; (and F' and L similarly below) when specifying that the difference is

important, and we will refer to those objects without subscripts when no confusion is expected.
We will later approach this nonlinear problem with a Newton method, and we need to use

the Fréchet derivative

F(v) = Z—ZX(V)

In our derivations we used the ideas presented in the nonlinear examples given by Aurentz and
Trefethen [1], and that work also refers to Zeidler [16], which we have found to be a good place
for further reading. Given that v has several components and since some of the computations
in F'(v) involve derivatives with respect to 7, we introduce the differential operator

d
b= dr’
which is applied in a block fashion to v so that R'(7) = [D 0 0 0]v, for example. We also
have need to use an operator version of function evaluation. We denote this operator by D?.
For instance, we have D{R = R(1) and D° ;¥ = W¥(—1). Also, we employ an abuse of
notation by writing R for the R-component of v and similarly for U, ¥, and ¢. With this in
hand, we compute

D 0 £sin ¥ —cos U ]
0 D —flcos ¥ —sin V¥ I
—leziznlll —kl D+ZC(I)§\P Silll?\ll—FLU -
(2.10) F(v)=| D% 0 0 0
L4
D‘l) 0 0 0 ,
0 0 D%, 0
| 0 0 D(f 0 ]

We have need to solve linear systems based on the definition F'(v) := Lv. For F; and Lq, we

merely change the third row to

@2.11)

[D\I/ — kU —klR RD+/lcos¥ sinV¥ — ,%UR] .
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-2.5

FI1G. 2.4. A generating curve for a radially symmetric annular capillary surface with radii a = 1 and b = 5
with inclination angles 1 q , Y, = —m. The fluid is below or to the left of the curve. Restricting the region between
the two vertical lines, this interface forms a symmetric capillary surface in an annular tube. The extended interface
can be used as a component interface in more complicated physical examples. This configuration could be seen as
a generating curve for a radially symmetric liquid bridge spanning the gap between two horizontal plates. In that
usage, the contact with the lower plate is non-wetting, and the contact with the upper plate is wetting. The dots on the
fluid interface are the locations of the Chebyshev grid points for the three regions in the domain decomposition used
to generate this solution curve.

Denser Fluid

FIG. 2.5. A ball floats at the fluid interface, and a section is shown of the radially symmetric configuration.
Here the fluid-air interface is an annular capillary surface, and it is possible (or mathematically admissible) that
there could be a vertical point on the solution curve near the ball, so the parametric solutions are required. The
algorithm used to compute this configuration is based on a shooting method, which was the standard approach before
the recent advances in using spectral methods. See McCuan and Treinen [10] for background on this problem.

2.2. The problem P2. If we replace the symmetric and simply connected surfaces that
are the image of the disk considered in Section 2.1 with doubly connected interfaces that are
the image of an annulus, then the scaling argument is preserved. There are differences though,
as the arc-length s = 0 does not correspond to the radius being zero. We reuse (2.4)—(2.6)
and (2.10), but we have boundary conditions

R(1) —b=0, U(1) —p =0,
R(—l)—a:(), ‘I’(—l)—d}a:O,

where we introduce a € (0, b) and ¢, € [—m, 7]. See Figure 2.4. This changes the definition
of N, but not that of F. Notice that in this case R # 0, so there is no singularity. If
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05

Liquid Drop

Denser Fluid

FIG. 2.6. A radially symmetric liquid drop floats on the interface of a denser fluid, and a section of the
configuration is shown. There are three component capillary surfaces used to build this configuration. Here, there are
vertical points on the upper interface of the drop. It is conjectured that the annular component surface must be a
graph over the base domain, but this has not yet been established. As with the floating ball example, the algorithm
used to compute this is based on a shooting method for each interface. See Elcrat and Treinen [6] for details.

[al, [ths] < 7/2, then the resulting solution curves are graphs, and we have a so-called
annular capillary surface in an annular tube, with the inner wall at the radius a and the outer
wall at the radius b [5]. If this restriction of the inclination angles is removed, then the solution
curve can pass through one or both of the “walls” [14]. In either case, these solution curves
form generating curves with total arc-length 2¢. The applications of these surfaces are not only
fluid surfaces in annular tubes but also multiple-component configurations. Figure 2.5 displays
a ball floating on the surface of a liquid, and Figure 2.6 displays a liquid drop floating on the
surface of a denser fluid. In both of these examples it is possible to have vertical points on the
liquid interface, and so we include angles up to ||, |¢»| = 7 to allow for many applications
like these.

3. The spectral method from [15]. We summarize the spectral method developed by
Treinen [15], as it is the fundamental building block of our approach. We also point out that
this approach has its roots in Trefethen’s book [13], Driscoll and Hale [3], and Aurentz and
Trefethen [1], and if the reader is not yet familiar with these works, he or she is strongly
encouraged to read these first, perhaps starting with [1].

Here we present the basic ideas with the backdrop of P1. The flowchart in Figure 3.1
gives the framework of the algorithm, and it applies to both P1 and P2. Here we will merely
discuss the key points of this algorithm.

We will treat the nonlinearity of /N with a Newton method. The core of the algorithm is to
construct N and L, and then we solve the linear equation L(v) dv = —N(v) for dv to build
the update vye;, = v + dv. This iterative process continues until some convergence criterion
is met. This process needs an initial guess to begin, and if that initial guess is sufficiently close
to the solution (and if some additional hypotheses hold), then the convergence is known to
be quadratic. For discussions of the functional analysis in Banach spaces and the associated
convergence, see Kantorovich and Akilov [9] as well as Ortega [12]; later Gragg and Tapia [8]
gave optimal error bounds. For a discussion of the convergence rate in finite-dimensional
problems, see Nocedal and Wright [11]. Here we do not verify the additional hypotheses
needed in these results, as that analysis is outside the scope of this work.

We discuss the initial guesses for Newton’s method when we consider specific problems
below. However, we will not discuss the barriers constructed in [15], which were used to
enforce convergence to physically correct configurations. These barriers are still used here.


http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA

Kent State University and
Johann Radon Institute (RICAM)

MULTI-SCALE SPECTRAL METHODS

Create 10 evenly
Are angles spaced angles
<=pi/2in between +-pi/2 and
magnitude? the prescribed
angles

Initialize
radii,
prescribed
angles

Set angles to pi/2 in
Generate initial magnitude, or
guesses increment to the
next angle in the list

Isb<1?

Sample iterate
Build N and L solution to generate
new initial guesses

Build N1 and L1,
setN=NlandL=L1

Compute
dv = L(v)\N(v)
v=v-dv

Is res_newton <
tol_newton?

yes

Is res_bvp < Increase number of
tol_bvp? chebpts to n+4

yes

Is there
excessive
oscillation?

Increase the number
of chebpts to2n -3

Return Angles <

solutions and prescribed

es
graph angles? ¥

FIG. 3.1. The flowchart describing the general algorithm.
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We will need Chebyshev differentiation matrices in what follows. These matrices can be
realized as representing the linear transformation between two vectors of data corresponding
to particular grid points, say f being mapped to f’. The data at the grid points correspond to
the interpolating polynomials for a function f and its derivative f’, where the data are sampled
at Chebyshev grid points 2; = cos(;) € [—1, 1] with the angles 6; equally spaced over [0, 7].
Of course, these grid points do not need to be fixed, as multiple samplings can be used.

The basic building blocks of both the nonlinear equation N (v) = 0 and the linearized
equation Ldv = — N are based on DY and D, implemented by the Chebfun commands

DO = diffmat ([n-1 n],0,X);

D1 = diffmat ([n-1 n],1,X);
where X = [—1, 1], n is the number of Chebyshev points we are using, and the input 0 or 1
indicates the number of derivatives. Since DO is rectangular, it becomes an (n — 1) x n identity
matrix interpreted as a dense “spectral down-sampling” matrix implemented as interpolating on
an n-point grid followed by sampling on an (n — 1)-point grid. That is, if we have represented
a function f by the n-sample Chebyshev points stored in the vector f, then DO x f is a vector
of length n — 1 that corresponds to a sampling f at the n — 1 Chebyshev points. We sparsely
construct our operators IV and L using these components in a block fashion. These building
blocks are found by multiplying a linear operator times the vector v that contains the solution
components. Then we use these building blocks to put together /N and the square matrix L. If
b is small, then we construct N7 and L, where we have no excessive numerical error due to
rounding near the singularity.

We always take care that the number of Chebyshev points is chosen so that there is
no evaluation of » = 0, following Trefethen’s treatment of the radial form of the Laplace
equation [13]. The basic loop is

while res_newton > tol_newton

dv = L(v)\N(v);
v = v - dv;
res_newton = norm(dv,’ fro’) /norm(v,’ fro’);

end
The tolerance tol_newton must be met, and we use the relative error measured by the
Frobenius norm. For all of the examples in this paper, we used tol_newton = le-13.

If the Newton’s method fails to converge within a specified maximum number of iterations,
then we increase the number of Chebyshev points, we sample the current state of the iteration
onto the new Chebyshev points, reinitialize the operators N and L as above, and enter another
loop for Newton’s method. Further, we include this process in an outer loop that also tests the
relative error of the iterates even if the Newton’s method converges. We use the Frobenius
norm to compute res_bvp as ||V (v)||/||v||. If this residual is larger than the prescribed
tolerance, then we also increase the number of Chebyshev points. We used a prescribed
tolerance of tol_bvp = 1le-12 in all of the examples in this paper. It may also be that
there is excessive polynomial oscillation across the Chebyshev points and that there are not
enough of these points to accurately resolve the solution. In this case we again increase the
number of Chebyshev points; however, this increase is more aggressive.

If the boundary conditions are specified so that the solution curve will not be a graph over
a base-domain, such as when v, > 7/2, then we use a method of continuation. This applies
to most of the problems considered in this paper. We harvest the sign of 13, and in place of
that boundary condition, we solve ten problems with linearly spaced boundary angles between
7 /2 and |1y | using the converged solution at each step as an initial guess for the next step. We
preserve the number of needed Chebyshev points from the adaptive algorithm while moving
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from one step to the next. In P2, if needed, we do this for the inclination angles at a and b
simultaneously.

4. A multi-scale approach via domain decomposition. We partition the arc-length
domains into two or three subdomains, depending on the problem. The general approach
is to identify a parameter that marks the boundary between the subdomains and then to
put conditions in place so that the solutions on the subdomains extend across this artificial
boundary as a solution for the global problem.

For many of the problems we choose the parameter to be a radius. We use the setting
of P1 to describe the details of the process for that choice of parameter. For some problems
we find the parameter of the inclination angle to be a better choice for marking the boundary
of the subdomains, and we use the setting of P2 to describe the process for that choice of
parameter.

In either case, we build a vector v and construct appropriate operators N(v) and
F(v) = L(v)v for the partitioned domains with the matching conditions included. Then
we follow the basic algorithm as described in the flowchart in Figure 3.1, where the relative
errors and adaptive steps are taken corresponding to each subdomain.

It should be noted that while this is simple enough to describe, the computer code needed
to implement these concepts becomes somewhat lengthy and care must be taken in the adaptive
procedures for generating v, N, and L. We will provide more detail in what follows.

4.1. Pl-study. For this case we require that ¢ = 5 at » = b, and, by symmetry,
1 = — at r = —b. The base code [15] works well in general. However, we are able
to improve the performance if ¢, > 7/2 and b > 1. We then choose a § > 0 and pick
the parameters to mark the subdomain boundaries at 1 = § — b and r = b — §. This
partitions the arc-length domain into three subdomains. Denote those domains by €2, (2o,
and (23, respectively, as one moves from left to right along the solution curve. We also use
these subscripts to denote the restrictions of solutions (r,u, ) on those subdomains. The
arc-lengths at the boundary points are denoted by ¢; and /5.

Physically, the height « and inclination angle i) on 25 will both be approximately zero,
and the radius will be approximately measured by a translation of the arc-length. Thus,
relatively few Chebyshev points are needed to resolve the solution to within the tolerance
requested. On both ; and 23 this is no longer the case, and the adaptive method of continuity
described in Section 3 is used to resolve the solutions there. The conditions over the boundaries
are

uy(l1) = ua(lr), uz(l2) = uz(l2),
Y1(€1) = a(l1), Va(lz) = 3(L2).

Some explanation of the initial guesses for the underlying Newton’s method is in order,
although we keep this brief as [15] contains the formulas for the functions we need. On
)1 we use a circular arc that meets the boundary conditions at = —b and is horizontal at
r = —b+ 0. On 3 we use a line with zero height. On €23 we again use a circular arc that
meets the boundary conditions at » = b and is horizontal at r = b — §. We also prescribe
the heights of these circular arcs so that the heights match the boundaries of the subdomains.
Since we are primarily interested in problems where [i),| > 7/2, we use these guesses to
produce a converged solution for || = /2, and then we use the method of continuation to
feed that converged solution to problems with a sequence of increasing boundary angles up

to [p].
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The computational vector is v = [Ry Ry Rz Uy Uy U3 U1 Wy W3 {4 £ £3]T, and the math-
ematical description of IV is given by

i R (11) — ¢1cos ¥y(m1) T
R, (12) — €2 cos Ua(Ta)
Ry (73) — {3 cos W3(73)
U{(Tl) 761 sinllll(ﬁ)
Ué(’Tg) —62 Sin\I/Q(TQ)
Ué(Tg) —63 Sin\Dg(Tg)

‘11/1(7'1) + bsinDi(ni) %II%HIEI;?()H) - liglUl(Tl)
Wh(r2) + R — kol (72)
‘I’é(Tg) + fasinPalrs) Sll%r;g_;()m) - K€3U3(Tg)
Ri(-1)+b
Ri(1)+b—26
Wi (=1) +
Uq(1) — Wa(-1)
Ro(~1)+b—6
U:(1) — Uaz(-1)

Ro(1) —b+6
Ua(1) — W3(—1)
R3(—1)—b+4
Us(1) — Us(-1)

Rs(1) — b
L Ws(1) — ¢ i

For ¢ = 1, 2,3 we allocate in each of these subdomains an independent variable 7;, and at
the appropriate step of the algorithm, the number of grid-points in each 7; will be adaptively
increased if the tolerances for the residual of IV restricted to €2; is not met, as indicated
in Figure 3.1. We scale the problem as in Section 3 to determine these arc-lengths ¢;, for
1 = 1,2, 3, in the process of solving the problem. Then, L is given by the block matrix

M1 Mo
4.1 L= |My M|,
M3z M3

where My = I @ D, using the Kronecker product and where I is the identity on R6*6, and

[ ¢ sin T, 0 0 —cos ¥y 0 0
0 fo sin Wq 0 0 —cos Uy 0
Moo — 0 0 {3 sin W4 0 0 —cos U3
270 cos Ty 0 0 —sin ¥y 0 0 ’
0 —{5 cos Uy 0 0 —sin Wy 0
i 0 0 —{3cos U3 0 0 —sin U3
[=hspdy 0 0 —kly 0 0
My = 0 ooy 0 0 -kl 0 |,
2 .
0 0 —tasin¥y iy s 0 —kls
D+ Loty 0 0 -kUp 0 0
May = 0 D+ etz 0 0 -kl 0 |,
0 0 D+ fgets 0 —rUs
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and the blocks corresponding to the boundary conditions and matching conditions are given by

Dy 0 0 0 0 0 0 0 0 000
DY 0 0 0 0 0 0 0 0 000
0 0 0 0 0 0 D, 0 0 000
0 0 0 0 0 0 Dy -D°% 0 0 0 0
0 D% 0 o0 0 0 0 0 0 000
0 0 0 DY -D° 0 0 0 0 000
Mai =1 DY 0 0 0 o [+Mz=1 g 0 0 000
0 0 0 0 0 0 0 DY -D% 0 0 O
0 0 D% 0 0 0 0 0 0 000
0 0 o o DY -D° 0 0 0 000
0 0o DY 0 0 0 0 0 0 000
| 0 0 0 0 0 0 | |0 0 DY 0 0 0f

With these objects in hand we use the general algorithm from the flowchart in Figure 3.1.

For measures of performance, we are primarily interested in the size of the linear systems
used and the number of Newton iterations needed for convergence. To give an approximation
of the sizes of these problems, let n,, be the length of the computational vector v, giving the
size of the linear system. We denote the number of Newton iterations by ., and this roughly
indicates how many times the algorithm solves a system of size n, x n,. Note that since
the size of v is potentially growing in the adaptive phases, these numbers only give an upper
bound for the complexity of the problem.

While it would be possible to compute the exact numbers, we find that this approach
illuminates the process well enough without the extra detail. Of course we are also interested
in the configurations where the multi-scale algorithm converges when the program from [15]
fails to meet the same tolerances. Some examples of these experiments are collected in
Table 4.1. Figure 4.1 displays the last example from the table. We focused on problems with
large radii b, so the approach indicated by (2.11) was not used. In the example computed for
Figure 2.3, the condition numbers for L started at 2,169.05 and decreased to 1,555.35 over the
141 iterations needed. In the example computed for Figure 4.1, the condition numbers for L
started at 1,843 and increased to 669,032 with the adaptive addition of grid-points over the
139 iterations needed. While this ending condition number starts getting large, the converged
solution satisfies the tolerance of the boundary value problem, and the extra points that cause
the increase in the condition number were only added when the converged Newton steps did
not lead to a configuration that met the tolerance of the BVP.

TABLE 4.1
Solutions that are the image of a disk with radius b are collected for a selection of inclination angles. The size
of the corresponding linear system is given by n.,, for the length of the computational vector v, while the number of
Newton iterations is given by ny . We label the columns corresponding to the multi-scale code by MS. The value of §
used for each experiment is included. If the algorithm did not converge, then it is labeled as dnc.

b | vy | basecoden, | basecodeny | MScoden, | MScode ny | &
11 |« 154 53 90 130 2
29 | 37/8 | 298 16 246 132 3
29 | 7 586 58 246 132 3
40 | 7 dnc 270 139 5
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FIG. 4.1. A capillary surface with an inclination angle of 1, = m and an extremely large radius of b = 40.
The vertical axis has been scaled to make the vertical displacement visible in this example. Here, the density of the
grid-points in the middle zone of the domain decomposition is roughly one grid-point per unit length, and the upward
swings of the interface are completely captured by the left and right zones. Without the domain decomposition, the
density in the center would be much larger in order to accurately resolve the upswing behavior in the outer zones.

4.2. P2-study. For the class of problems P2 that are the image of an annulus, given
0 < a < b < oo, we require that ¢ = ¢, at r = a and v = 1) at r = b. We use our approach
for two types of configurations: first, where a < oo and b is somewhat large, and second,
where 0 < @ < 1 and b is moderately sized. To accomplish this we use three different domain
decompositions.

‘We first consider a case with three radial zones or subdomains, and refer to it as 3RZ
below. We choose a § > 0 and pick our parameters to mark the boundaries at r = a + ¢
and r = b — J to partition the arc-length domain into three subdomains just as we did in
Section 4.1. The primary difference in this case is that the last 12 rows of N (v) corresponding
to the boundary conditions and matching conditions are replaced with

Rl(—l) —a
Ri(l)—a+4
\Ill(_l) _1/%1
Uy (1) — ¥a(-1)
Ro(—1)—a+0
Ui(1) = Us(—1)
Ro(1)—b+4
Wa(1) — W3(-1)
R3(-1)—b+4
Uz(1) — Us(—1)
R3(1) —b
Ws(1) — e

and L is unchanged. If a < 1, then the row replacement of (2.11) is used in 2, and we
illustrate those details in the following cases. Table 4.2 and Table 4.3 include some experiments
that highlight the performance here. Table 4.2 has cases with 1), < 0 and Table 4.3 has cases
with v, > 0. Figure 4.2 displays the last example from Table 4.2.

For the next case under consideration, we split the domain into two regions as described
in Section 4, where we again use the radius as the parameter that marks the boundary between
the two subdomains. We use 2y for the arc-lengths on the left of = a + § and 2, for the
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FI1G. 4.2. An annular capillary surface with radii a = 1 and b = 75 with inclination angles g,y = —.
The vertical axis has been scaled like in the last example. The character of the density and the zones capturing the
regions of height change are both the same here. Note that the adaptive algorithm places more grid-points on the left
upward swing of the interface in comparison to the right downward swing despite the fact that the total displacement
is less on the left.

TABLE 4.2
Solutions that are the image of an annulus with radii a and b, a selection of inclination angles focused on
Yy, = —m, and the total number of points as before.

alb |, vy base n, |base ny |3RZ n, |3RZ ny |2RZ n, |2RZ npy |
1|5 |—7n/2 —m/2 46 8 114 69 80 6 04
1|5 |—157/16|—157/16 |46 58 114 175 80 117 04
1|5 |—m - 82 63 114 189 80 138 0.4
1|44 |—7/2 —m/2 586 24 198 67 248 21 3
1|44|—157/16| —157/16 | 1162 |71 198 158 476 134 3
1|44 | —m - 1174 |73 198 171 464 152 3
1|47 | —7m/2 —m/2 dnc 198 69 dnc 5
147 —m - dnc 246 183 dnc 5
1|75|—m -7 dnc 462 186 dnc 7

arc-lengths to the right of a + . We refer to this case as 2RZ for two radial zones. Here we
are primarily interested in small values of a and modest values of b, as we can see from the
performance indicated in Table 4.2. We have v = [Ry Ry Uy Uy W1 Wy £ €57 and

/1(7'1) — 41 COS \111(7'1)
/2(7'2) — EQ COS \PQ(TQ)
U{(’Tl) — El Sinllll(ﬁ)
)

S

=eliey

U} (1) — losin Uy (13)
Ry (1) W (1) + 41 sin Wy (11) — kb1 Ry (1) Ur (1)
wiore | wi s el )
R1(—1) —a
R1<1) —a—90
Wi(=1) + 9
(1) — Wa(-1)
Ro(1) —
L Uy(1) — oy i
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TABLE 4.3
Solutions that are the image of an annulus with radii a and b, a selection of inclination angles focused on
1y = m, and the total number of points as before. For the base code example marked with *, we increased the initial
number of Chebyshev points n from 15 to 19 to eliminate excessive oscillation.

al|b |, | Yy | basen, | baseny | 3RZn, | 3RZny | 2RZn, | 2RZny | 6
1|5 |- |mx |58* 56* 114 151 80 135 04
118 -7 |x | 298 65 126 157 152 137 2
1|44 |- |7 | 1174 808 210 174 dnc 3
1147 |-7 |7 |dnc 318 179 dnc 3
1|75|-n|xm |dnc 510 177 dnc 5

Then we compute the Fréchet derivative F'(v) = Lv to find the following expression for L:

D 0 0 0 £ sin ¥y 0 —cos ¥, 0
0 D 0 0 0 losin Uy 0 —cos Uy
0 0 D 0 —{1 cos ¥y 0 —sin Uy 0
0 0 0 D 0 —fl5 cos Wy 0 —sin Wy
\Illl — HE1 U1 0 —K£1R1 0 D + 1€1 COs \111 0 sin \I/] — HR1 U1 0
0 ~agpte 0 — K0y 0 D+ 2tz 0 KUs
DY, 0 0 0 0 0 0 0
DY 0 0 0 0 0 0 0
0 0 0 0 DY, 0 0 0
0 0 0 0 DY -D%, 0 0
0 DY 0 0 0 0 0 0
L 0 0 0 0 DY 0 0 0 |

The initial guesses for the underlying Newton’s method are somewhat different in this
case and the next. For the problems considered up to now, we used knowledge of the expected
geometry of the solution to guide the initial guesses. In the problems with small a and modest
b, where |1),], |1p| > 7/2, we do not have particularly helpful estimates for the solution. So
we use the base code from [15] to generate a solution where the angles are sgn(t, )7 /2 at
r = a and sgn(y)7w/2 at r = b. Then we interpolate this solution on our subdomains to
generate initial guesses for the process as we begin the method of continuation, increasing the
magnitude of the angles incrementally up to |4, [1)p].

Some examples of these experiments are collected in Tables 4.2—4.4 and can be compared
with the three subdomain results there. Figures 4.3 and 4.5 contain the last example from
Table 4.4. Figure 4.4 has a smaller value of b so that the hook near « is more visible.

This leads us to our final case. Our goal here is to provide a refinement for the configuration
pictured in Figure 4.3. We use the domain decomposition we just described based on two
subdomains 2; and €2 as a starting place. Then we mark some 1), and we divide the subdomain
2, into two regions (2, and {23; however, the starting point of these algorithms will not in
general have angles that would fall in €2,. We proceed with the method of continuation to
increase the magnitude of the prescribed angle at » = a through 21 evenly spaced values
starting with magnitude 7 /2 and ending at |}, |, which is presumably a value near 7. We use
the two radial subdomain formulation up to but not including the last step in this continuation.
On that last step we pick ¢ = —7/2 when 9, < 0, and we split {; into 2, and Q. This
gives us three subdomains, and the boundary between (2, and {2 is marked by 1, while the
boundary between (g and ()5 is marked by r = a + §. Then, in this setting we have the
arc-length 7 for €2, and the arc-length over 5 is #; — £. The matching conditions at 1 are
given by
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FIG. 4.3. An annular capillary surface with radii a = 0.05 and b = 5 and inclination angles 1q = —31m/32

and Yy, = — using 2RZ. This is the first of our “hook” examples. The left zone is requiring quite a few grid-points
to pass through the vertical point and continue up to 1q.

0s 1 15 2 25
R

FIG. 4.4. An annular capillary surface with radii a = 0.05 and b = 3 and inclination angles 1q = —31m/32

and Yy, = —m using A2RZ. Here the radius b is less than the previous example, and the domain decomposition based

on a partition of the inclination angles is used. The number of grid-points near the left vertical point is still large, and
the visibility of the small hook is poor. We will zoom in on this feature in the next figures.

017 1 o1f
) -012¢ < 1 012+ C
044t \ 0141 \"“”———_....___\

046 1 016
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FIG. 4.5. Zooming in on the hook with radii a = 0.05 and b = 5 and inclination angles 1o = —31m /32 and
Yy, = —m. The display on the left uses 2RZ and the display on the right uses A2RZ. While there are significantly
Sfewer grid-points used in the second approach here, the angle 1 = — is still elusive.
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We then roughly proceed as before. We first generate

Rl (1) — Lo cos Uy (T4)
Ri5(75) — £ cos Vg(75)
R/Q(T2) — 52 COS \1’2(7'2)
U(/y(Ta) - Ea sin \Ijoz Ta)
Us(7s) — L5 sin Us(75)
UQ/(TQ) — 62 Sin \I’Q(TQ)

\I/;(Ta)Ra(Ta) + £, sin \Ija('ra) - ﬂgaRa(Ta)Ua(Ta)
Wi (8)Rp(7p) + £p sin Wp(7p) — klgRp(73)Us(7s)
h(r2) + LR — klaUs(72)
R.(-1)—a

N(v) = Ro(1) = Rg(—1)
U, (—1) — ¢,
\I/a(]') - 1/)
Ua(1) = Us(=1)
Rﬁ(l) —a—90
Vp(=1) =4
Wp(1) — Wa(-1)
RQ(*l) —a—90
Us(1) — Ua(-1)
Ro(1) — b
o (1) — 9o

Then the blocks of L in (4.1) that need to be updated for this case are given by

M21 =

Moy =

(! — klo U, 0 0 —klo Ry, 0 0
0 \I/% - ﬁfﬁUﬁ 0 0 —K@BRB 0 ,
0 0 =lasp ¥, 0 0 —Kly 0
- 2
D+ ¢, cos ¥, 0 0 —kRLU,, 0 0
0 D +{gcos Vg 0 0 —kRgUpg 0 ,
I 0 0 ESES 0 —KUs

and the blocks corresponding to boundary conditions and matching conditions are given by

M3z, =

DY,

| @
-

DY -
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TABLE 4.4
Annular-type solutions with radii a and b, a selection of inclination angles, and the total number of points. In
this table all cases had § = 0.2. The 3RZ cases that do not converge are due to the poor suitability of the standard
initial guesses for these problems.

a b|a Uy base n, |base ny |3RZ n, |3RZ ny |2RZ n, |2RZ nn

0.05|1|—157/16 | —157/16 | 1162 78 dnc 332 198

0.05(1|-317/32|—7 2314 82 dnc 620 250

0.05(3|—157/16 | —157/16 | 2650 134 114 333 80 150

0.05|5|—m/2 —7/2 154 18 126 157 80 5

0.05|5|—-31n/32| -7 dnc 426 358 620 228
TABLE 4.5

Solutions that are the image of an annulus with radii a and b, a selection of inclination angles, and the total
number of points as before. In this table all cases had 6 = 0.2.

a b|g Uy 3RZ n, |3RZ ny |2RZ n, |2RZ n | A2RZ 1, | A2RZ ny
0.05|2|—157/16 | —157/16 | 366 535 332 184 210 20
0.05(2|—617/64 | —7 654 551 620 197 354 25
0.05(2|—-31n/32| -7 654 577 620 227 642 39
0.05(3|—157/16|—157/16 | 114 359 80 150 138 31
0.05|3|—617/64 | —7 366 404 332 193 138 38
0.05(3|—-31n/32| -7 654 447 620 236 354 36
0.05|5|—157/16|—157/16 | 126 284 80 145 138 29
0.05|5|—617m/64|—m 378 322 332 186 138 37
0.05|5|-31n/32| -7 426 358 620 228 210 34

With these objects in hand, we again use the algorithm from the flowchart in Figure 3.1.
These results are compared to the previous approaches in Table 4.5, and in each of the cases
considered here, the base code failed.

In the example computed for Figure 4.2, the condition numbers for L started at 2,323.54
and increased to 191,742 with the adaptive addition of grid-points over the 186 iterations
needed. In the example computed for Figure 4.3, the condition numbers for L started at
13,913.6 and increased to 36,681,500 with the adaptive addition of grid-points over the 228
iterations needed. In the example computed for Figure 4.4, the condition numbers for L
increased from 257,701 to 10,298,600 over the 316 iterations needed. However, in this case
some components saw a decrease in the condition number, and the large condition number
is in the final increase of points. In general, the increases in the condition number along the
iterations is primarily due to the adaptive algorithm. While these ending condition numbers do
get large, Newton’s method converges, and more importantly, the converged solutions satisfy
the tolerance for the boundary value problem. This illustrates how demanding the underlying
mathematical problem is.

5. Conclusions and closing remarks. We have shown how several domain decomposi-
tions can improve performance over the adaptive Chebyshev spectral method in [15]. These
new codes are primarily aimed at addressing problematic configurations identified in that work.
The nonlinearities in the equations lead to complicated behavior that is nontrivial to classify,
and as such it is difficult to determine beforehand which approach will lead to success. For
the general scope of the annular problems, the existence theory is only partially completed,
and the uniqueness of solutions is completely open [14]. With this perspective, it may take
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FIG. 5.1. Two curves from the families of global solutions of (2.1)—(2.3). One curve has a value of r = 0 with
two component curves horizontally tangent there, and the other has a minimum value of r that corresponds to a loop
containing a vertical point. If one takes the limit of this positive minimum r value of the loop to r = 0, then there is
a singular pinching off of the loop, and the curve is extremely difficult to resolve for very small values of this loop
radius. Also, while these are solutions of the capillary equations, the points of self-intersection are just artifacts of the
global solutions to the mathematical equations with large arc-length s > 0. Physical fluids may be described by
connected pieces of these curves as needed for an application so long as they do not contain any self-intersection
points. At the beginning of the paper there were examples of physical configurations that could be built up from these
connected pieces of the curves using both annular spans and components spanning r = 0.

some experimenting with the number of subdomains and the location of the corresponding
boundary points to achieve success.

For example, in the configurations where ¢,,%, = —m, when 0 < a < 1 and b is
moderately sized, the performance of the base code [15] is poor or fails completely, depending
on how small a is. These configurations correspond to a singular limiting process that was
explored by Bagley and Treinen [2]. In that work the global solutions of (2.1)—(2.3) were
considered for all arc-lengths. These global solutions were classified into families of solutions,
and the leftmost vertical point of the interface was a parameter used in this classification.
When the radius of that leftmost vertical point is positive, the curve forms a loop there. As the
radius of that vertical point goes to zero, the loop collapses into two curves that are tangent
at r = 0, as indicated in Figure 5.1. (A rigorous study of this phenomenon has not yet been
undertaken.) This behavior highlights the difficulty of the problem. While our attempts to use
this multi-scale approach for this problem has improved the performance, we are still unable
to find solutions up to ¥, = —7 in some cases.

Our 3RZ code is designed to address a < oo and b somewhat large. Table 4.2 shows that
this is working well. It does not function particularly well when b is closer to a, as seen in
Table 4.4. This could be improved by using the initial guess scheme introduced for the 2RZ
case.

Our 2RZ code is designed to address 0 < a < 1 with moderate values of b, and while it
does well with this difficult problem, getting to ¥, = — is quite difficult. The A2RZ case
is an attempt to resolve this, and while there is further improvement, getting all the way to
1, = — in all cases is still elusive.

This paper has focused on certain choices of inclination angles at particular radii. The
opposite choices for those inclination angles lead to reflections of the surface over the radial
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and work equally well. In general there are four parameters to explore, and it is possible

that there are other difficult cases that we have not yet encountered. The programs we have
written are available at the GitHub site referenced in the introduction and could be modified to
treat these new cases as they are discovered.

We would like to thank the anonymous referees for their constructive and helpful com-

ments.
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