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A MULTIGRID ALGORITHM FOR HIGHER ORDER FINITE ELEMENTS ON
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Abstract. For most types of problems in numerical mathematics, efficient discretization techniques are of
crucial importance. This holds for tasks like how to define sets of points to approximate, interpolate, or integrate
certain classes of functions as accurate as possible as well as for the numerical solution of differential equations.
Introduced by Zenger in 1990 and based on hierarchical tensor product approximation spaces, sparse grids have
turned out to be a very efficient approach in order to improve the ratio of invested storage and computing time to the
achieved accuracy for many problems in the areas mentioned above.

Concerning the sparse grid finite element discretization of elliptic partial differential equations, recently, the
class of problems that can be tackled has been enlarged significantly. First, the tensor product approach led to the
formulation of unidirectional algorithms which are essentially independent of the numberd of dimensions. Second,
techniques for the treatment of the general linear elliptic differential operator of second order have been developed,
which, with the help of domain transformation, enable us to deal with more complicated geometries, too. Finally,
the development of hierarchical polynomial bases of piecewise arbitrary degreep has opened the way to a further
improvement of the order of approximation.

In this paper, we discuss the construction and the main properties of a class of hierarchical polynomial bases
and present a symmetric and an asymmetric finite element method on sparse grids, using the hierarchical polynomial
bases for both the approximation and the test spaces or for the approximation space only, resp., with standard piece-
wise multilinear hierarchical test functions. In both cases, the storage requirement at a grid point does not depend
on the local polynomial degreep, andp and the resulting representations of the basis functions can be handled in an
efficient and adaptive way. An advantage of the latter approach, however, is the fact that it allows the straightforward
implementation of a multigrid solver for the resulting system which is discussed, too.
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1. Sparse Grids. Though the hierarchical representation of functions for problems
like interpolation or numerical quadrature has a long tradition that at least goes back to
Archimedes, it was only a couple of years ago that a hierarchical approach was studied in
detail for a PDE or, to be more precise, a finite element context [5, 34]. One of the main ad-
vantages of hierarchical bases compared with standard nodal point bases is probably the fact
that its multilevel structure enables us to distinguish between high-level basis functions with
a large support that usually (in the smooth case, at least) already contain a significant part of
the information, and functions living on lower levels whose contribution to an interpolant or
a finite element approximation is rather small. The decrease of the hierarchical coefficients
from level to level can be used, of course, to control adaptive grid refinement, but, if it is
combined with a tensor product approach for the higher dimensional case, it can be used for
an a priori reduction of the number of grid points involved in the calculation, too.

In order to illustrate the transition from the well-known regular full gridG(d)
n with con-

stant mesh width2−n for each coordinate direction to its corresponding sparse gridG̃
(d)
n , let

us look at the subspace splitting that comes along with hierarchical bases on tensor product
elements. Figure 1.1 shows the 1 D case of a piecewise linear hierarchical basis, Fig. 1.2
illustrates the tensor product construction of piecewise bilinear hierarchical basis functions
on quadrilaterals. Note that we use recursive data structures like binary trees for the repre-
sentation of our grid functions.
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FIG. 1.1.Piecewise linear hierarchical basis and corresponding binary tree
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FIG. 1.2.Tensor product approach for two piecewise bilinear hierarchical basis functions

Ford = 2, Fig. 1.3 shows a sector of the theoretically infinite scheme of subspaces. Here,
a standard full gridG(2)

n with (2n−1)2 inner grid points corresponds to a square sector ofn2

subspacesTi1,i2 , andTi1,i2 contains all basis functions with congruent supports of the same
aspect ratio. Obviously, the dimension (i. e. the number of grid points) of all subspacesTi1,i2
with i1 + i2 = c is just 2c−2. Furthermore, for functionsu continuous on the unit square
Q̄, it has been shown that the contribution of allTi1,i2 with i1 + i2 = c to the interpolant
of u is of the same orderO(2−2c) with respect to theL2- or L∞-norm andO(2−c) with
regard to theH1-norm, if ∂4u

∂x2
1∂x

2
2

and some lower mixed derivatives ofu are continuous on̄Q
(see [7, 8, 30, 35]). For generald, analogous results have been shown for subspacesTi1,...,id
with i1 + ...+ id = c, if ∂2du

∂x2
1...∂x

2
d

and some lower mixed derivatives ofu are continuous on

Q̄ = [0, 1]d (see [8, 30]). Due to these properties concerning cost (number of grid points) and
benefit (order of approximation), it turns out to be more reasonable to deal with triangular
schemes of subspaces as given in Fig. 1.4 instead of using square ones. The grids or patterns
of grid pointsG̃(d)

n resulting from such triangular sections are calledsparse grids. For a
formal definition of sparse grids, see [8, 35].

If S(d)
n andS̃(d)

n denote the corresponding piecewised-linear approximation spaces on
the full gridG(d)

n and on the sparse grid̃G(d)
n , respectively, we get the following representa-

tions that reflect the recursive and tensor product based approach:

(1.1)
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FIG. 1.3. Hierarchical subspace decomposition: subspace scheme for full gridsG
(2)
n , 1 ≤ n ≤ 3, (left)

and corresponding pattern of grid points forn = 3 (right). Each square on the left-hand side shows one subspace
Ti1,i2 and is divided into the (equally shaped) supports of this subspace’s basis functions. The numbers on the right
indicate the subspace index of the respective grid points.

S(d)
n =

∑
1≤i1,...,id≤n

Ti1,...,id = S(1)
n ⊗ S(d−1)

n =
n∑

i1=1

Ti1 ⊗ S(d−1)
n ,

S̃(d)
n =

∑
i1+...+id≤n+d−1

Ti1,...,id =
n∑

i1=1

Ti1 ⊗ S̃
(d−1)
n+d−1−i1 .

This correlation of the approximation spaces clearly shows the main difference between stan-
dard full grids and sparse grids: For the sparse grid, the overall resolution limited byn+d−1
is defined as the sum of the resolutionsij in all coordinate directionsj, whereas for the full
grid, the maximum resolution is defined for each direction separately. Thus, the smaller the
mesh widthh1 is in the first dimension of a sparse grid̃G(d)

n , the coarser the resolution will
be in the remainingd− 1 dimensions.

Besides the regular sparse grids that result from skipping certain subspaces according to
Fig. 1.4, there is a very straightforward access to adaptive grid refinement. The hierarchical
coefficient orhierarchical surplusitself can be used to indicate the smoothness ofu at the
corresponding grid point and, consequently, the necessity to refine the grid here. Figure 1.5
shows a regular 2 D sparse grid and an adaptively refined 3 D one with singularities at the
re-entrant corner and along the three edges starting from there.

Concerning the most important properties of sparse grids, we have at least to look at the
number of grid points involved and at the approximation accuracy in the piecewise multilinear
case. For a detailed analysis, we once again refer to [8, 35]. For generald, the approach de-
scribed above and illustrated in Fig. 1.4 leads to regular sparse grids withO(N(log2(N))d−1)
grid points, if 1

N denotes the smallest mesh width occurring. With some modification, sparse
grids withO(N) grid points can be defined, too. Concerning the approximation quality,
the accuracy of the sparse grid interpolant is only slightly deteriorated fromO(N−2) to
O(N−2(log2(N))d−1) with respect to theL2- or L∞-norm. With regard to theH1-norm,
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FIG. 1.4. Hierarchical subspace decomposition: subspace scheme for sparse gridsG̃
(2)
n , 1 ≤ n ≤ 3, (left)

and corresponding pattern of grid points forn = 3 (right)

FIG. 1.5.Sparse grids: regular example (left) and adaptive one (right)

both the sparse grid interpolant and the finite element approximation to the solution of the
given problem are of the orderO(N−1). Thus, we get a number of grid points that is nearly
or even actually independent ofd (a behaviour known in numerical quadrature from pseu-
dorandom methods, e. g.), but we have to pay for it with only a logarithmic loss in accuracy.
Therefore, sparse grids are a very promising approach for many tasks in numerical mathemat-
ics [4, 6, 9, 11, 12, 14, 16–21,24–26,32] and especially attractive for problems with a large
parameterd.

It is important to note that the sparse grid scheme presented first in [35] for PDE applica-
tions has already been known for several years in interpolation, approximation, and recovery
theory as well as in numerical quadrature. There, the idea of reduced tensor product spaces
appears in the context of Smolyak quadrature rules [15, 31, 33] and under several other differ-
ent names (hyperbolic crosses [1], Boolean methods [13]). In numerical quadrature, e. g., the
intention is to choose sets or sequences of grid points of an optimal cost-profit-ratio, i. e. so-
called low-discrepancy sequences or quadrature formulas, respectively [27]. As an example,
Fig. 1.6 shows three patterns originating from 2 D Smolyak rules.
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FIG. 1.6.Smolyak quadrature rules: different grid patterns based on the trapezoidal rule as the 1 D algorithm

2. The Unidirectional Scheme.In a finite element context, hierarchical bases usually
lead to a certain fill-in of the stiffness matrix. This results from the fact that, due to the
hierarchical relations, more basis functions than just neighbouring ones are connected with
respect to the underlying bilinear form. Thus, often, more algorithmic skill has to be invested
in order to ensure that the computational cost of an iterative scheme does not exceed a constant
number of operations per step of the iteration and per grid point. Furthermore, we want
to profit from the tensor product approach by keeping the step from 1 D to the generald-
dimensional case as straightforward as possible. Therefore, the basic structure of the sparse
grid finite element algorithms discussed here seems to be worth while studying.

The main underlying algorithmic principle of our method is the so-calledunidirectional
approach (cf. [4]), i. e. the fact that ad-dimensional problem is reduced to the simpler 1 D case
via recursion. Thus, the parameterd can be handled as an input parameter of the code, and all
algorithmic work can be done in just one dimension. To solve the arising linear systems, we
use iterative schemes like the damped Jacobi iteration, a (preconditioned) conjugate gradient
technique, or a multigrid method that will be discussed in detail in Sect. 4. The kernel of
all those schemes is a routine to computeS · ~u for the stiffness matrixS and arbitrary input
vectors~u, and this product actually is the only part of the iteration where the hierarchical
sparse grid approach comes in. Therefore, we need to have a closer look atS. In a tensor
product approach,d-dimensional hierarchical basis functionsϕi(x1, . . . , xd) are defined as
products of 1 D hierarchical basis functionsϕi,l(xl), 1 ≤ l ≤ d:

ϕi(x1, . . . , xd) :=
d∏
l=1

ϕi,l(xl) .(2.1)

Thus, an entrysi,j of S for the Laplacian, e. g., is of the form

si,j =
d∑
k=1

Istiff
i,j;k ·

∏
l6=k

Imass
i,j;l

 ,(2.2)

where

Istiff
i,j;k :=

∫
Ωi,k∩Ωj,k

∂ϕi,k(xk)
∂xk

· ∂ϕj,k(xk)
∂xk

dxk ,(2.3)

Imass
i,j;k :=

∫
Ωi,k∩Ωj,k

ϕi,k(xk) · ϕj,k(xk) dxk ,(2.4)

andΩi,k = supp(ϕi,k(xk)). Obviously, allsi,j are just sums of products ofd 1 D integrals
Istiff
i,j;k or Imass

i,j;k, respectively, and all that has to be done from an algorithmic point of view
is just to provide those integrals for all 1 D basis functions, i. e. for alli andj, and for all
coordinate directionsk.
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Of course, for an efficient calculation ofS · ~u, we must not compute thesi,j themselves,
since we have lost some sparsity ofS due to the use of hierarchical bases, but just the residuals
or the sums

∑N
j=1 si,juj for 1 ≤ i ≤ N . This is done in a recursive way, such that we get

all of those sums during a few passes through the data structure. In the 1 D case, we start
with a vector~u containing the actual solutionui in all grid pointsi and make a copy~uu of
it. Then, with~u, a top-down-pass (calleddownin the following) through the data structure is
done in hierarchical order, and with~uu, we make a bottom-up pass (calledup). Note that, for
the recursive extension, the separation of the two collection steps indownandup is important
due to the hierarchical connections of the respective basis functions. After that,ui contains
the sum of all productssi,juj originating from grid pointsj hierarchically higher thani and
from i itself, anduui contains allsi,juj from grid pointsj hierarchically lower thani. Finally,
~u := ~u+ ~uu provides

∑N
j=1 si,juj for each grid pointi, and~u now contains the productS ·~u.

Thus, apart from the copy process,S · ~u is calculated in place, and, therefore, we need only
two variables per grid point or unknown, resp. The underlying 1 D algorithmic scheme of this
process is shown in the upper part of Fig. 2.1. The recursive extension of the 1 D algorithmic
principle to the general case is given by the lower part of Fig. 2.1. There, ford > 1, the grey
boxes entitledunidir(d-1)have to be replaced by thed− 1-dimensional scheme. Note that it
is important to do the recursive callsbeforethe down, butafter the up step. Concerning the
storage requirement, the influence of the parameterd is very small. Since we can handle the
whole process on the stack, there exist only local copies of parts of the data structure which
are dominated by the copy of thed-dimensional overall structure.

down

up

u
u

uu

u

uu

copy add
Au

unidir(1):

down

up

u
u

uu

u

uu

copy add
Au

unidir(d):

unidir(d−1)

unidir(d−1)

FIG. 2.1.Scheme of the unidirectional algorithm: one-dimensional (top) and generald-dimensional case (bottom)

In conclusion, we want to emphasize that the presented unidirectional algorithmic struc-
ture is independent of whether you work with standard full grids or with sparse grids, and
that it does not depend on the type of hierarchical basis actually chosen. It is just based upon
a hierarchical tensor product approach.

3. Hierarchical Tensor Product Bases of Higher Order. Up to now, piecewise multi-
linear and piecewise constant hierarchical bases have been the focus of interest in the sparse
grid context. However, a first step towards higher order techniques on sparse grids was made
in [32], where a piecewise bicubic hierarchical Hermite basis is used to solve the 2 D bihar-
monic equation∆2u = 0. Since the values of both the function and of its first derivatives
have to be fixed, this approach leads to2d degrees of freedom per grid point in the general
d-dimensional case. Furthermore, recently, concepts for hierarchical polynomial bases of
piecewise arbitrary degree in each coordinate direction have been introduced [9, 10]. Such an
approach allows us to combine the efficiency of sparse grids (which, in some sense, can be
seen as a method of higher order themselves) and their intrinsich-adaptivity (cf. Sect. 1) with
the improved approximation qualities of higher order basis functions. Thus, in spite of a quite
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different approach, there are close relations to thep- andh-p-versions of the finite element
method [2, 3, 22, 23].

In [9], the hierarchical Lagrangian interpolation, a choice of hierarchical polynomials
based onC0-elements with still one degree of freedom per grid point or element, resp., has
been presented and studied in detail ford = 2 andp = 2. In [10], the principle of the
hierarchical Lagrangian interpolation has been extended to arbitrary values ofd andp. In the
following, the characteristics of this approach shall be summarized. Since our tensor product
approach provides us withd-dimensional functions if 1 D functions are defined, only this
simpler case will be regarded in the explanations below.

Obviously, there is exactly one quadratic polynomialϕi that fulfils ϕi(xi) = 1 and
ϕi(xi−hi) = ϕi(xi+hi) = 0 and that can be used, consequently, as a quadratic hierarchical
basis function in grid pointxi with the support[xi − hi, xi + hi]. But, for someϕi of a
degreep > 2, additional degrees of freedom must be fixed. For the construction of a spline
interpolant, e. g., those degrees of freedom are invested in more smoothness. Inp-version-
type algorithms, interpolation conditions at certain points within a typically large element
(Gauß-Lobatto points, e. g.) are used to compensate the degrees of freedom. However, since
we don’t want to work with anything else but classicalh-version-typeC0-elements, we use
thatϕi with support[xi − hi, xi + hi] andϕi(xi) = 1 that is part of the polynomial of degree
p with zeroes at the support’s two boundary points and at thep − 2 next direct hierarchical
ancestorsxk of xi with respect to the hierarchical ordering of the grid points or associated
subspaces (cf. Figs. 1.1, 1.3, and 1.4). Note that those ancestorsxk are situatedoutsidethe
support; they are only used to constructϕi. Consequently, we get just one degree of freedom
in each grid point for arbitraryp, which makes it very comfortable to work with different
polynomial degrees in different grid points or elements, respectively. On the other hand, of
course, due to this reduced number of degrees of freedom, there is only a subspace of the
space of all piecewise polynomials of degreep that can be represented.

Figure 3.1 illustrates the quartic case. Here, the actual grid point isxi = −0.75, and,
due to the hierarchical relations of the points given by the right-hand side of Fig. 3.1, the four
ancestors used for the hierarchical interpolation are−1,−0.5, 0, and1. The left-hand part of
Fig. 3.1, finally, shows the whole resulting interpolant (dotted line) and the part of it that is
afterwards used as the hierarchical basis function inxi (solid line).

−1.0 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1.0

FIG. 3.1. Construction of a hierarchical basis function of degree 4 by hierarchical Lagrangian interpolation
(left) and corresponding hierarchical structure of the grid points (right)

There are several interesting consequences of this construction. First, since the relative
position of the different zeroes ofϕi depends on the hierarchical position of its corresponding
grid pointxi, we get more than one different type of basis functions forp > 2. Actually, there
are two different (but symmetric) basis functions of degree 3, four of degree 4, and, in general,
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2p−2 of degreep. Figure 3.2 shows the basis functions forp = 2 andp = 3, Fig. 3.3 illustrates
the situation forp = 4, where we get two pairs of symmetric polynomials.

FIG. 3.2. Hierarchical basis functions forp = 2 andp = 3 (different scaling for reasons of clarity): con-
struction via hierarchical interpolation (left) and used restriction to the respective hierarchical support (right)

FIG. 3.3. Hierarchical basis functions forp = 4 (different scaling for reasons of clarity): construction via
hierarchical interpolation (left) and used restriction to the respective hierarchical support (right)

Second, though our approach is based on a simple Lagrangian interpolation without any
influence on the position of the respective nodal points, we get no numerical problems due
to oscillations, since only a small and uncritical part of the resulting interpolant is taken into
account. As it can be seen in Fig. 3.4, the shape of the different basis functions does not
change that much even for largerp. I. e., there are only slight changes in the basis functions
when we switch fromp to p + 1, e. g. Therefore, we can expect an only moderate influence
of p on the condition of the stiffness matrix (cf. the discussion and Fig. 4.6 in Sect. 4.3).

A third remark concerns the dependency ofp in xi on this grid point’s hierarchical level.
Since we need points outsideϕi’s support ifp > 2, it is clear that for the point on level 1,
e. g. (i. e.xi = 0.5 for Q =]0, 1[), no basis function withp > 2 can be constructed. Thus,
degreep can only occur starting from levelp− 1 (i. e. i1 ≥ p− 1 for the subspace indexi1;
cf. Sect. 1). Therefore, the exact representation of a polynomialu of degreep, e. g., at least
needs the existence of levelp− 1 and a total of2p−1 + 1 grid points in 1 D.

To study the efficiency of our approach, let us turn to some of its implementational prop-
erties. First of all, the same data structure can be used for arbitraryp ≥ 0, because, in any
case, just the hierarchical coefficient is stored in each grid point. Therefore, ifM denotes
the number of grid points (i. e.M = O(N(log2(N))d−1)), the representation of a function
needs onlyM variables, and the unidirectional algorithm for the matrix-vector product dis-
cussed in Sect. 2 leads to a storage requirement bounded byc ·M with a small constantc
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FIG. 3.4.Resulting hierarchical basis forG(1)
4 andpmax = 5 (different scaling)

neither depending onp nor ond. The algorithmic handling of the different polynomials and
the residuals is done in 1 D procedures only and is organized on the stack. I. e., there are local
vectors of the lengthp+ 1 which are passed on during the recursiveupanddownprocedures
described in Sect. 2. Thus, for a sparse gridG̃

(d)
n of depthn and a fixed maximum degree

pmax, there is only an additional storage ofO(n · (pmax + 1)) = O(log2(N) · (pmax + 1)) for
the stack. Since we use a classical Taylor representation~a ∈ Rpmax+1 for all occurring basis
functions and local interpolantsf(x),

f(x) =
pmax∑
k=0

ak ·
xk

k!
,(3.1)

an adaptive treatment ofp can be easily achieved by omitting the leading coefficientap or by
taking into account a newap+1, resp., if suitable criteria for such a process are developed.
However, up to now, no experiments with an adaptive handling ofp have been made. Finally,
in order to avoid repeated calculations with our basis polynomials, we precompute the Taylor
coefficients of each basis functionϕi and several integrals during a setup phase before the
iteration. Due to the2p−2 different basis polynomials of degreep, this leads to an additional
storage requirement ofO(2pmax·(pmax+1)). Sincepmax≤ n+1 for G̃(d)

n due to the hierarchical
Lagrangian approach and sincepmax � n for reasonable applications with biggern, both
termsn · (pmax + 1) and2pmax · (pmax + 1) depending onpmax are significantly smaller than
thec ·M variables of the data structure itself. Consequently, there is only a slight influence
of the polynomial degree on the overall storage requirement.

Concerning the number of arithmetic operations, the only part of the algorithm wherep
is important is the updating and passing of the vectors~a of lengthp + 1 to grid points on
the next lower or higher level, resp. For thedownprocess of Sect. 2, this is equivalent to a
multiplication

~a(son) := T ·D · ~a(father) ,(3.2)

for theupprocess, the updating and passing corresponds to

~a(father) := D · T T · ~a(son) ,(3.3)

whereD ∈ R(p+1)×(p+1) represents a diagonal scaling, andT ∈ R(p+1)×(p+1) is an upper
triangular Toeplitz matrix. Note that bothD andT are constant matrices that do neither
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depend on the actual grid point nor on the hierarchical level. From (3.2) and (3.3), it follows
that the number of arithmetic operations is of the orderO(p2) in each grid point. Thus, if we
work with a fixed maximum degreepmax, we get a total ofO(M ·p2

max) = O(N(log2(N))d−1 ·
p2

max) operations for the product of the stiffness matrixS with a given solution~u. However,
if on each levell degreep := l + 1 is applied with no limit forp, the result is a total of
O(M · (log2(N))2) = O(N(log2(N))d+1) operations.

Finally, after studying the storage requirement and the computational cost of our algo-
rithm, we must have a look at the quality of the underlying sparse grid finite element ap-
proximation. Analogously to the quadratic case, where forG̃

(d)
n an interpolation accuracy

of O(N−3(log2(N))d−1) = O(h3|log2(h)|d−1) with respect to theL2- and theL∞-norm
and an approximation accuracy ofO(N−2) = O(h2) with respect to theH1-norm have
been proved, if ∂3du

∂x3
1...∂x

3
d

and lower mixed derivatives ofu are continuous on̄Q (cf. [9]), we

can show orders ofO(hp+1|log2(h)|d−1) or O(hp), resp., for the general (non-p-adaptive)
situation of a degreep. The proof follows [9], but gets a bit more technical due to the in-
creasing number of types of basis functions for largerp. The smoothness requirements have
to be increased in a corresponding way, and we need now continuous mixed derivatives up to

∂(p+1)du
∂xp+1

1 ...∂xp+1
d

. Note that, of course, the intrinsich-adaptivity of sparse grids is not influenced

or reduced by our higher order approach.

4. Finite Element Algorithms and Multigrid Solution. In this section, first, two types
of sparse grid finite element methods of higher order are presented: a symmetric (Ritz-
Galerkin) one with higher order functions in both the approximation and the test spaces and
an asymmetric (Petrov-Galerkin) one with higher order functions only in the approximation
spaces. Based on the second algorithm, a simple multigrid scheme for the solution of the
resulting system is introduced. Finally, some first numerical results for a simple test problem
are given.

4.1. Different Choices of the Test Space.Up to now, without explicitly mentioning it,
we have started out from a standard Ritz-Galerkin approach of a symmetric choice of the ap-
proximation and test spaces. Indeed, in our first experiments with a preconditioned conjugate
gradient method or a damped Jacobi iteration as a solver, the polynomial bases from Sect. 3
were used for both spaces. However, for efficient multigrid algorithms, straightforward grid
transfer operators between nodal point bases of different levels are essential. Here, things
become more complicated with our polynomial bases. In the left part of Fig. 4.1, the simple
case of the grid transfer with piecewise linear basis functions is illustrated, where a linear
combination of three neighbouring fine grid functions based on the(1

2 , 1,
1
2 ) stencil leads to

the corresponding coarse grid one. Problems arise already in the quadratic case shown on
the right-hand side of Fig. 4.1, where no linear combination of three equally shaped fine grid
functions can result in the corresponding coarse grid one. Therefore, a totally new type of fine
grid function (dashed line) with a doubled support has to be defined in the coarse grid points.
Forp > 2, this situation becomes even worse due to the increasing number of different basis
polynomials.

Switching to standard piecewise linear hierarchicaltestfunctions turns out to be a remedy
for these problems. Now, the residuals can be passed from level to level according to the left
part of Fig. 4.1. At this point, it is important to remember that the different polynomial
degrees for the test and approximation spaces cause no problems at all, since we always have
just one degree of freedom per grid point – for arbitrary values ofp. However, since this
Petrov-Galerkin approach leads to asymmetric stiffness matrices, iterative solution strategies
that need symmetry like the conjugate gradient method can not be used any longer.
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FIG. 4.1.Change of level: linear (left) and quadratic case (right)

Concerning the accuracy of the solutions, both variants turn out to be of the same quality.
For the situation of the 2 D Laplace model problem from Sect. 4.3, Fig. 4.2 compares the
maximum errors of the higher order test functions (solid lines) and the piecewise linear ones
(dashed lines) for different values ofn andp ∈ {2, 4, 6}.

FIG. 4.2.Comparison of the achieved accuracy: piecewise linear (solid lines) and higher order test functions
(dashed lines)

4.2. A Multigrid Scheme. For a sparse grid̃G(d)
n , there are no natural finer or coarser

grids in a standard multigrid sense likeG(d)
n−1 andG(d)

n+1 are for the full gridG(d)
n . However,

due to the tensor product approach, we can refine or coarsen in each coordinate direction
separately. Therefore, each full gridGi1,...,id with mesh widthshl = 2−il , 1 ≤ l ≤ d,
consisting of the grid points from allTj1,...,jd with jl ≤ il, 1 ≤ l ≤ d (cf. Figs. 1.3 and 1.4 for

the 2 D case), and being contained inG̃(d)
n can be seen as a coarse grid with respect toG̃

(d)
n .

This suggests a choice of coarse grids closely related to the well-known semi-coarsening
schemes [28, 29]. Thus, preceded by one damped Jacobi smoothing step onG̃

(d)
n , a sequence

of coarse grid corrections of again one damped Jacobi step on the respective coarse grid is
executed for various full (semi-) coarsened gridsGi1,...,id . Figure 4.3 illustrates two possible
variants of this coarse grid correction scheme for 2 D problems. Note that, in contrast to Figs.
1.3 and 1.4, each small square in Fig. 4.3 stands for a standard full gridGi1,i2 . Now, a coarse
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grid correction step is made on allGi1,i2 represented in grey colour. Thus, on the left-hand

side, each full grid contained iñG(2)
n is visited, whereas on the right-hand side, the coarse

grid correction is restricted to thoseGi1,i2 with i1 + i2 = n+ 1 or i1 = i2 ≤ n/2. Since it is
known from [16, 17, 21] that the reduced coarse grid selection of the right-hand side of Fig.
4.3 is sufficient in order to achieve multigrid efficiency, this variant has been chosen for the
numerical experiments.

i

i i

i

1 1

2 2

i
1

i
2

G

FIG. 4.3. Sparse grid multigrid scheme: coarse grid correction on all contained full gridsGi1,i2 (left) and
reduced choice of coarse subgrids (right)

Figure 4.4 gives some results for the multigrid convergence of the algorithm described
above, applied to 1 D (left) and 2 D (right) Laplace model problems. Here,p denotes the
maximum polynomial degree of the hierarchical basis functions used, andρ is the average
factor by which the maximum error is reduced after each kind of V-cycle described above for
sparse grids̃G(d)

n , 4 ≤ n ≤ 9. Note that no kind of optimization has been made concerning
the number of smoothing steps on the coarse and the fine grids or concerning the damping
factors. That is why the convergence rates are far from being optimal for such simple prob-
lems. However, here, it is just the convergence behaviour’s independence ofp that is in the
centre of interest.

p 2 3 4 5 6
ρ 0.18 0.19 0.18 0.18 0.18

p 2 3 4 5 6
ρ 0.50 0.52 0.51 0.52 0.53

FIG. 4.4.Average multigrid convergence rates for 1 D (left) and 2 D (right) Laplace problems

4.3. A Numerical Example. As a simple example and model problem, we study the
Laplace equation in two dimensions on the unit squareQ with Dirichlet boundary conditions
and the smooth solution

u(x1, x2) := sin(πx1) sinh(πx2)/ sinh(π).(4.1)

To solve the resulting linear system, the multigrid algorithm based on a damped Jacobi
smoothing onG̃(2)

n and successive coarse grid correction steps on a reduced choice of full
subgrids (cf. the right-hand side of Fig. 4.3) presented in the previous section has been used.
Figure 4.5 shows the behaviour of theL∞-norm‖ẽ(2)

n ‖∞ of the error on the regular sparse
gridsG̃(2)

n and the factorsρn of error reduction,ρn := ‖ẽ(2)
n+1‖∞/‖ẽ

(2)
n ‖∞, for increasingn

and2 ≤ p ≤ 6. For degreep, the approximation quality turns out to be a little bit worse
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than the orderO(hp+1) = O(2−n(p+1)) of the full grid case, which is due to the additional
logarithmic factor typical for sparse grids. Nevertheless, the higher order approximation
properties can be seen clearly.

FIG. 4.5.L∞-error on G̃(2)
n (left) and factorsρn of error reduction (right) for variousn andp

Figure 4.6 shows the spectral condition number of the diagonally preconditioned stiff-
ness matrix for different regular sparse gridsG̃(2)

n and 2 ≤ p ≤ 6. In comparison with
the behaviour known from hierarchical polynomials in ap- or h-p-version context (cf. [36],
e. g.), the influence of the polynomial degree on the condition number turns out to be quite
moderate. This was to be expected, because, due to the fact that we only use a small part
of the respective hierarchical interpolants as our actual basis function, the shape of the basis
functions does not differ that much (cf. Fig. 3.4, e. g.).

FIG. 4.6.Condition of the (diagonally preconditioned) stiffness matrix for sparse gridsG
(2)
n

5. Concluding Remarks. In this paper, two unidirectional algorithms for higher order
finite element discretizations on sparse grids have been discussed. Both are based upon a
hierarchical Lagrangian construction ofd-dimensional hierarchical tensor product bases of
piecewise arbitrary polynomial degreep, and both open the way to some kind ofp-adaptivity,
if suitable criteria for the adaptive handling ofp are developed. Due to the simple and cheap
construction, handling, and storage of the resulting polynomial bases, this approach provides
a very promising access to finite element methods of higher order on sparse grids. Further-
more, starting from the asymmetric method with different test and approximation spaces, a
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simple multigrid scheme has been developed that allows the fast solution of the arising lin-
ear systems. Thus, we have now an efficient sparse grid implementation of our higher order
method. The next step will be to extend this approach to more general differential operators
and domains as presented in [10] for the piecewise linear case.
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