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EXPERIENCES WITH NEGATIVE NORM LEAST-SQUARE METHODS FOR
THE NAVIER-STOKES EQUATIONS *

P. BOCHEVf

Abstract. This paper is concerned with the implementation and numerical study of a discrete negative norm
least-squares method for the Navier-Stokes equations proposed in [2] and [3]. The main focus of the paper is on the
algorithmic development and computational analysis of this method, including design of efficient preconditioners,
numerical estimates of convergence rates, etc. Our experiments indicate that the negative norm method yields results
that are in agreement with the theoretical error estimates of [3] and compare favorably with the benchmark studies
of [11].
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1. Introduction. In this paper we examine algorithmic and computational issues re-
lated to a negative norm least-squares method for the numerical solution of the stationary,
incompressible Navier-Stokes equations. In the recent years methods of least-squares type
for fluid flow problems have been receiving increasing attention; see e.g., [1]-[9], [15], [16],
[17], and [18] among others. This interest is largely caused by the attractive analytic and
computational features of least-squares methods that are not present in other discretization
schemes, such as mixed Galerkin methods. Most of these features stem from the fact that
weak variational problems in least-squares methods represent necessary minimum conditions
for problem-dependent functionals which are defined by summing up residual norms of the
differential equations. The guiding principle in the choice of the norms is to obtzim-
equivalenfunctionals. Then, corresponding weak problems are in general coercive and their
discretization leads to symmetric and positive definite algebraic systems. Specifically, in the
context of the Navier-Stokes equations application of least-squares variational principles of-
fers the following advantages:

e methods are not subject to the inf-sup (LBB) stability condition; see [12] and [14];

e used in conjunction with Newton linearization least-squares lead to symmetric, pos-

itive definite linear systems, at least in a neighborhood of the solution;

e essential boundary conditions can be enforced in a weak, variational sense.

As a result,

e a single approximating space can be used for both the velocity and the pressure

leading to simplified and more efficient algorithmic design;

e solution of the linearized problems can be accomplished by robust and efficient iter-

ative methods without assembling the discretization matrix;

e approximating spaces are not subject to the essential boundary conditions.
However, without a thorough examination of the settings for the least-squares method many
of these advantages may be lost or utilized incompletely. For example, a least-squares method
based on the primitive variable Navier-Stokes equations may require conforming discretiza-
tions by continuously differentiable finite element spaces, i.e., it will be impractical. Further-
more, if the least-squares functional is not norm-equivalent then resulting methods may fail
to be optimally accurate.
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In this paper we consider a method, developed and analyzed in [2]-[3], that combines
decomposition of the Navier-Stokes equations into a first-order system with the use of nega-
tive Sobolev space norms in the least-squares functional. The first feature allows us to define
a method that can be implemented using standard finite element spaces. Indeed, most of the
recent research in least-squares methods has focused on settings that involve such decom-
positions; see, e.g., [1], [2], [3], [4], [16], and [17]. The second feature leads to a horm
equivalent functional that is meaningful for less regular solutions thab’anctional as-
sociated with the same system. The use of negative norms to measure equation residuals has
been, perhaps, first considered by Glowinski et al. in [13]. However, the method of [13] casts
the Navier-Stokes problem into the framework of an optimal control problem, whereas here
we consider a bona-fide least-squares minimization principle. In that context the first use of
negative norms is due to Bramble et al. [7].

In the next section we introduce the relevant notation. Thej2 iwe state the first-order
velocity-fluxNavier-Stokes system that will be used to define the least-squares method. The
method and a necessarily brief account of the theoretical results established in [2]-[3] are
presented if3. The core of the paper is contained§-5. Section 4 discusses implementa-
tion of the negative norm method, while§b we present computational study of this method
and compare it with two othe? least-squares methods for the velocity-flux Navier-Stokes
equations.

1.1. Notation. In what follows2 will denote an open, bounded regionRA having a
Lipschitz continuous boundary. Throughout the paper vectors will be denoted by bold face
letters, e.g.u and tensors by underlined bold face capitals, 8., In what followsV
will denote the gradient operator aRdf the divergence operator. For tensor variabié$J
will denote a vector whose components are the divergencies of the corresponding columns in
U. With C we denote a positive constant whose meaning and value changes with context.
We recall the standard Sobolev spad¥((2) with corresponding inner products denoted
by (-, -)s,o and norms by|-||s o. Sobolev spaces for vectors and tensors will be denoted by
H*(Q) andH" (1), respectively. Often we will use the spakig (€2) consisting of allH* ()
functions that vanish on the boundary and the sgag€) consisting of all square integrable
functions with zero mean with respect(® The dual of 7} () will be denoted by ~1((2).

For this space we introduce the following norm
(¢, ¢)

(1.1) |p|l-1 = sup -——,
vemi) |Yh

where

¥l = [IVello

is the usual seminorm ol ! (2).

We let7;, denote a regular triangulation of the doma&lirinto finite elements. The pa-
rameterh is associated with the size of the finite elements, which can be either triangles or
rectangles. For finite element spaces defined on triangles we use the standard fptation
i.e., P, is the space of all continuous, ov@r piecewise polynomial functions” such that
in each triangles” is a polynomial of degreg. Similarly, @, will be used to denote finite
element spaces defined with respect to a triangulatidn iofto rectangles. In that case, on
each rectangle” is a polynomial function whose degree in each coordinate direction does
not exceed:.

We recall that the spacdd, and Q; have the following property, see, e.g., [10], for
k > 1, given a function, € H*+1(Q), there exists an elemeat’ in P, (or Q) such that

(12) lu—w” s < CR " fufliss, 7 =0,1,
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where the constartt is independent of.

2. The first-order system. We consider the steady state incompressible Navier-Stokes
equations given by

(2.1) —vAu+ (Vu')'u+Vp=finQ
(2.2) Viu=0 inQ,

along with the velocity boundary condition
(2.3) u=0 onl.
In (2.1)-(2.2)u, p andf denote velocity, pressure and given body force, respectivelyyand

is the inverse of the Reynolds number. The system (2.1)-(2.2) is customarily considered with
the zero-mean pressure constraint given by

(2.4) / pd2 = 0.
Q

To effect the first-order transformation of (2.1)-(2.2) we introduce the velocity flux variable
(2.5) U=vu,
which is a tensor with entrids;; = du;/0x;, 1 < 4,5 < n. Then,

(V'U)! = Au
and

(Vu')fu = Uu.

As a result, the Navier-Stokes equations (2.1)-(2.2) can be replaced by the first-order system

(2.6) —(VIU)! + A\ U'u+Vp=f inQ
(2.7) Viu=0 inQ
(2.8) U-Vu'=0 inQ,

along with (2.3) and (2.4). In the new system, momentum equation (2.6) is weighted by
A = 1/v which is convenient for the analysis; see [3]. For simplicity, rescaled pressure and
body force are denoted again by the same symbols. In view of (2.5) and (2.2) the system
(2.6)-(2.8) can be augmented by two additional equations and a boundary condition, given by

(2.9) V(trU) =0 inQ,
(2.10) VxU=0 inQ,
and

(2.12) nxU=0 onl,

respectively.
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3. Negative norm least-squares methoddn this section we outline the least-squares
method developed in [2]-[3] and state the error estimates established in [3]. We recall that
the choice of least-squares functionals is guided by two main objectives. First, the resulting
method should be practical in the sense that it can be implemented using standard finite
element spaces such &s and(Q),. Second, the method should be optimal in the sense that
approximations converge at the rate of the best approximation out of the finite element space,
provided the exact solution is smooth enough.

The first objective can be easily met by using first-order systems to define least-squares
functionals. Indeed, since equations (2.6)-(2.8) involve only first-order derivatives, the func-
tional

JU,u,p) = | — (V'U)"' + \U'a— f + Vp|[§
(3.1) + [[Viulf§ + U — Vu' |3,

defined by summing up th&*-norms of equation residuals leads to a practical method. How-
ever, the second objective requires the least-squares functional to be norm equivalent. To
define such a functional one first has to determine function spaces for the data and the solu-
tion U = (U, u, p) in which the Stokes problem, associated with (2.6)-(2.8) is well-posed.
Then, each equation residual in (2.6)-(2.8) has to be measured in the corresponding data space
norm. This guarantees that the functional with zero data and a linearized convective term will
be equivalent to a norm on the solution space, provided that the Navier-Stokes equations have
a nonsingular solution; see [2]. In particular, we have that (see [9]) the first-order Stokes
problem is well-posed in the spaces

(3.2) X = L*(Q) x HY(Q) x L3()
and
(3.3) Y = HY(Q) x L2(Q) x L*(Q),

for the solution and the data, respectively, and that the a priori estimate relevant to the least-
squares method is given by

341Ul + s + llpllo < C (] = (VAU + Tp|1 + [ Vhullo + U — Vu'|o)
As a result, a norm equivalent functional for (2.6)-(2.8) is given by

J(H, uap) = | - (th)t + vp + )‘Htu - f|2—1
(3.5) +H[Viul[§ + U - va'[f3 .

Estimate (3.4) also indicates that functional (3.1) is not coercive in the norm in which it is
continuous, i.e., it is not equivalent to a norm on a produddéfspaces. In [9] it has been
shown that arL2-functional that isH'-norm equivalent can be defined using the augmented
velocity flux system (2.6)-(2.8), and (2.9)-(2.11):

J(U,u,p) = || = (V'U)" + \U'u — £ + Vp|[§
(3.6) + VA § + U - Va' [§ + V(U5 + IV x Ulfg -

Analysis of finite element methods based on (3.6) can be found in [2]. Although the focus of
this paper is on a different type of least-squares functionals we shall use (3.1) and £3.6) in
to compare and contrast performance of various least-squares methods.

A necessary condition for minimization of (3.5) over the spXcis given by the follow-
ing nonlinear variational problem:
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seek(U, u,p) € X such that

B((U,u,p),(V,v,p))
= (—(V'U)! + Vp+ A\U'u— £, —(V'V)' + X (U'v + V'u) + Vq) _
(3.7) +(Viu,Viv) 4+ (U-Vu', V- Vv) =0

1

forall (V,v,q) € X.

Formally, one can define a least-squares method based on (3.5) by choosing a finite element
subspac&” of X and restricting the variational problem (3.7)Xd; see [2]. Such a method

is, however, only of theoretical interest. Indeed, because the negative norm is not computable,
forming the algebraic problem that corresponds to a discretization of (3.7) over thedXspace

is not feasible. In the next section we introduce a discrete negative norm counterpart of (3.5)
which results in a practical least-squares method.

3.1. The discrete negative nhorm method.To define the discrete negative norm we
follow an approach similar to the one suggested by Bramble et al. in [7]. Consider the
Dirichlet problem

(3.8) —Au=f InQ, u=0 onl.

Let X" ¢ H'(Q) denote a finite element space anddétdenote a finite element solution
operator for (3.8), i.e.,

Shf =wup € X" N H(Q) for f € H-(Q) if and only if u;, solves the
problem:seeku;, € X" N HZ () such that

(3.9) / Vuy, - Vupds = / fondz, Yo, € X"N HYQ).
Q Q
It can be shown (see [7]) that

(3.10) (" f)= sup PO

snexrnmi(Q) |Ph 3

Since the right hand side in (3.10) is restriction of (1.1)b, it follows that

(3.11) [f20=(S"f.f), YVfeH Q).

defines a computable semi-norm &1 1(2), associated with a semi-definite inner product
given by (f,9)-1.n = (S"f,9)0 = (f,S"g)o. However, the cost of computing” may

still be prohibitive. Thus, following [7]S” is further replaced by a symmetric and positive
semidefinite operatdB”, defined orl.2. This operator is assumed to be spectrally equivalent
to S” in the sense that

(3.12) Co(S"¢, )0 < (B"¢, ¢)o < C1(S"¢, ¢)o .

The main consideration in the choice Bf* is computational cost. The cost of computing
B"¢ must be significantly lower than the cost of computiyp. OnceB” is chosen it is
easy to see that

(3.13) If120 = (B"f. f)
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defines a computabkemi-normequivalent to (3.11). Then, a computable discrete negative
normcan be defined (see [7]) by adding to (3.13)Zaterm weighted by,?:

(3.14) 6%, = (S, )0,  where St =ah®l+ B".

The inner product associated with (3.14) is given by

(3.15) (6,6)—n = (57, )0 .

Norm (3.14) is equivalent to (1.1) in the sense that
1
(3.16) gl < llull-n < C (hllullo + ful-1)

for all u € L?(Q). Without the termh21, the lower bound in (3.16) does not hold, i.e., this

equivalence relation is not valid for tleemi-norm(3.13). The additional weight can be

used to tune up the performance of the method and its choice will be discussed later.
Using (3.14) we introduce the following counterpart of (3.5):

T-n(Uy,un,pn) =

(3.17)
| = (VUL + Vi + AU, — £[|2, + [[Viun|[§ + U, — Vuj,[[3 -

We note that residuals of equations (2.9) and (2.10) can be added to (3.17) yielding-an
mentednegative norm functional given by

j—}l,(gh; uh,vph,) =
(3.18) || = (V'U,)" + Vpn + AUjup — £[12), + Vi + U, — Vi [I3
HIV(EO)[+ IV < U3

This functional has not been analyzed in [3] and will not be discussed here.
Let X" denote a finite element subspaceXf whereX is given by (3.2). Then the
least-squares principle for (3.17) is:
seekd;, = (U, up, pr) € X" such that

(3.19)  Tw(Upun,pn) < T-n(Vp Vi an) Wi = (Vy,, Vi, qn) € X"

It is not difficult to see that the Euler-Lagrange equation for the principle (3.19) constitutes a
variational problem of the form
seekd;, = (U,,,up, pr) € X" such that

(3.20) B_nUn, Vi) =0 YV, e X",
where

B—h,(uhm Vh) =
(VU + Vi + AUy — £, (VY. + Vi + A (U + Vi)
+(vtuh; Vch)O + (Hh - vuzvzh, - VV;L)O .

Properties of approximations defined by (3.20) are summarized in the following theorem,
proof of which can be found in [3].
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THEOREM 3.1. Assume thaf{(\, (U(X),u(A),p(N))) | A € A} is a regular branch of
solutions of the Navier-Stokes equations, such that

A3 A= U = (UMW), uN),p(\)

is a continuous map from to W = H' () x [H2(Q) NHE(Q)] x [H(Q) N L2(2)]. Assume
also that for any/ € W, there exist#{, € X" such that

U —Un|x < Ch|U|w .

Then, there existc > 0, hy > 0 andid,(A) = (U, (\), @ (A),pr(N)) € CO(A, X") such
that, for all h < hy, {(A\,Un(N)),\ € A} is a regular branch of solutions of (3.20) that is
unigue in the ball

So={Vn € X"[|UN) = Vhlx <a}, VAEA.
Furthermore,

105, () = UM o + an(A) = a1+ 151(A) = (V) o

3.21
(3.21) < CR(TM + [ullz + [O)]1)

4. Implementation. There are several issues that must be addressed in the algorithmic
development of the negative norm least-squares method descril§ddLinFirst, one must
choose a finite element spaXé for the discretization of (3.20). Second, or¥%e& is chosen,

(3.20) yields a nonlinear algebraic system that must be solved in an iterative manner. Third,
the use of norm (3.14) requires evaluation of the operBfar Lastly, the use of this norm

also has impact on the design of solvers for the nonlinear algebraic system. In what follows
we discuss these implementation issues starting with the choice of the discretization space
X",

Because the least-squares method is not subject to stability conditions, such as the inf-
sup condition, the choice &" is only guided by the desired approximation properties. In
particular, here we employ the bilinear spagefor the approximation of all variables, i.e.,

X" = [Qu)" x [Q1 N HH Q)" x [Q1 N LE(Q)],

wheren denotes the space dimension. We will ygé }¥ ; to denote a nodal basis of the
finite element spac€);, and{V; }, to denote a nodal basis for the spaé. Although
components of each can be expressed in terms of the nodal basigfgrwe use the no-
tationV! = (Vi,vi, ¢!) to distinguish the basis components for the different variables. For
simplicity we agree to denote a finite element functigne @, and the set of nodal values

of this function with the same symbol. Thus, depending on the cortext; (U, un, pr)

will be identified either with a finite element function %", or with a block vector whose
blocks are the coefficients of the individual functiongfn We also recall the inequality

1
@) Pl < [ fun (PR < 1O un .

where|| - ||;, denotes the Euclidean normR¥, that is valid for allu;, € Q1.
For the solution of the nonlinear system (3.20) we consider Newton’s method. To define
Newton’s method, let us formally write this problem as

(4.2) Fon(\Uy) =0.
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LetU) = (UY,u),p?) denote an initial guess for Newton’s method. Then, the sequence of
Newton iterateg/ = (U}, uf,pf), k > 1, is generated recursively by solving the linear
systems

(4.3) Dy F_,(\UF M AUE = —F_p(\UF),
and updating/y ! by AU}::
Uy = Uy + AU

If the hypotheses of Theorem 3.1 hold, then it is not difficult to see that Newton’s method
will have a nontrivial attraction ball, i.e., one can guarantee that the linear system (4.3) has
a unique solution. Indeed, let us assume fat (U(A), u(N),p(N))) | A € A} is a regular
branch of solutions to (2.6)-(2.8), (2.3) that is being approximated by solving (3.20). Then,
according to Theorem 3.1 the former problem will have a regular branch of discrete solutions
{O\ (T, (N, 1, (V), pn(N)) | A € A} that is unique in the balf,,. It follows then, that the
Jacobian matrixD;, F_1, (), -) is nonsingular in a nontrivial neighborhoodiaf (). As a re-

sult, the attraction ball of Newton’s method is nontrivial and the mdfrli)dlh()\,u{f‘l) is
guaranteed to be nonsingular, provided ﬂa@fl is close enough tlih()\). Moreover, since

Dy F_p(),-) is exactly the Hessian of (3.5), it follows that the matEPzg,F_h()\,u}’ffl) is
necessarily symmetric and positive definite in a neighborhobﬂ,@i). Owing to the use of
negative inner products this matrix is also dense. As a result, assemblyf , (\, U} ")

is not feasible in practice, i.e., the system (4.3) must be solved by an assembly-free method.
Consequently, symmetry and positive definitenesBoF ", (A, u}j‘l) are essential for prac-

tical implementation of the negative norm method since they allow one to solve (4.3) by robust
iterative methods. In particular, for the solution of (4.3) here we consider a preconditioned
conjugate gradient method implemented without assemblyzm_;,,(/\,u,’f‘l), even at the
element level. The two critical steps at each iteration of this method are computation of the
matrix-vector product oDuF,h(A,u}j‘l) and the conjugate direction vector, and compu-
tation of the action of the preconditioner. We discuss first evaluation of the matrix-vector
product; the choice of the preconditioner and its application are considered later. To this end
let 4, andV, denote arbitrary functions iX" (resp. their coefficient vectors). Then

(4.4) (Va)" - DuF_n\UL™Y) - Uy = DB_w[Uy ™ )(Un, Vi),
where the bilinear forr®B_,[U; | (U, V1) is given by
DB_n U1 (Up, Vi)
= (~(VIUL + VR AU e -
A (U v + (X;,,)tuh)>7h

(4.5)
+ (—(Vtﬂh)t +Vpn + A ((Hﬁ‘l)tuh + quf,fl) :

~(VV) 4 Va4 A (U + () )
+(Vtay, Vivy)o + (U, — VUi, V, — V(vi))o.

As aresult, components of the matrix-vector prodgtF’_j, (\, L{}’f*) -Up, can be computed
according to the formula

[DyF_n A\ UETY) U] = DB_y U (Un, Vi), i=1,..., M.
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In order to evaluate (4.5) it is necessary to compute several discrete negative inner products
(,-)—n. These inner products are computed according to (3.15), i.e., this process involves
application of the operatds”. Recall thatB” must be spectrally equivalent &'. This can

be accomplished by choosirgf* to be a preconditioner fa$”; see [7]. Although in most
casesB" can be identified with a suitable symmetric matrix, here we prefer to conBitler

as a black-box type algorithm for the Poisson equation. For examBlean be defined in

terms of several multigrid V-cycles for (3.9), see [7], or more generally, by any approximation
scheme for this problem. With these assumptions evaluation of, e.g., the first term in (4.5)
can be accomplished as follows. First, using (3.15), we have that

(—(Vtg’g—l)t + Vp’;;l + )\(gﬁ—l)tuz}iq —f, A (UL + (Xz)tuh)),h
= (@21 + B (~(V'U) + Vph~h + AU e f).
A (UL, + (V) w))
= ah?(~(VU) + Vo MUY T = £ (Ul + (V)W) )
H(B'8A (U + (Vi) )
where
g=—(V'U) 4+ Vp AU ! - f

All terms involvingah? are essentially weighteb-inner products which can be computed
in a standard manner. To compute the remaining teBhsnust be applied tg. For this
purpose we considey as a source term for (3.9) and form the vectors

(glaﬂl)o and (g27¢2)0a Z:]-vaN

where{¢i }}¥ | is a nodal basis fo€; N H}(£2). These vectors are the data for the black-
box evaluator ofB" which returns the nodal coefficients of a finite element functign
representing”g. Thus,

(Bhg, A (UL + (y}@b)tuh))o = (gh, A (U v, + (Xi,)tUh)>0-

The right-hand side above is &% inner product which can now be computed in a standard
manner. Evaluation of all other terms involviij is identical.

Let us now discuss the choice of a preconditioner for the conjugate gradient method.
Here we follow an approach suggested in [7]. Recall that, as a consequence of Theorem
3.1, the formDB_, Uy~ "](-,-) is coercive and continuous A", provided that/} " is
sufficiently close to a nonsingular solution of the Navier-Stokes equations. As a result,

& (I3 + I1val? + Ipall3) < PBoalUf ™1V Vi)

(4.6)
< C(INVG I3 + Ival + lIpal3)

for all v, € X", LetG and D denote matrices with entries given b; = (¢}, ¢{L)0 and
D;; = (V¢i, V) )o, respectively. We introduce a block diagonal mat¥ix with n? blocks
given by G, and a block diagonal matrik,, with n blocks given byD. Consider then the
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block matrix
Gy 0 0
A= 0 D, O
0 0 G

From (4.4) it follows that
V)t DuF_ A\ UFY) -V = DBy U1 (Vi, V) -
Combined with (4.6) this identity yields the bounds

1

C(V”’)t AV < V)" DuFonW U -V SC)' - AV,

i.e., the matrixA4 is spectrally equivalent t@uF_;,,(A,L{}’f_l). To define the preconditioner
for the conjugate gradient method note that (4.1) implies spectral equivaleri¢and the
matrix h21. Definitions of D and B" also imply thatD = B lis spectrally equivalent to
D. As aresult, the matrix

] KL 0 0
0 0 A%

is spectrally equivalent t@uF_h()\,u}’ffl), and can be used to precondition the conjugate
gradient method. To apply this preconditioner we need again the black-box algoritiih.for
Indeed, given a vector,, = (V,,, v, gn), application ofA to V), involves solution of (3.9)
with the velocity component;, serving as a source term. Thus, we first form the data vectors

g1 = (V}L,QS;L)O and g = (v})/,qﬁlﬁ)o, i=1,...,N

and then apply the algorithm fdz".

5. Numerical results. In this section we report numerical experiments with the negative
norm least-squares method implemented as outlingd.ifror all experiments we take to
be the unit square. We consider two examples of planar flows. The first example is an artifi-
cial planar flow, that is we begin with a known smooth velocity and pressure fields and then
compute the data by evaluating the first-order system (2.6)-(2.8) at these fields. Results for
this example are presentedsb.1. The second example involves the fictitious lid driven cav-
ity (or driven cavity) flow. This flow is a popular test example which is well-documented in
many benchmark studies; see, e.g., [11], [15]-[18]. Results for this example are gifeh.in
Lastly, in §5.3 the negative norm method is compared with two other least-squares methods
for the velocity-flux equations based on thé-functionals (3.1) and (3.6), respectively.

5.1. Numerical results: smooth solution.For all examples in this section we consider
an exact solution given by

u = (exp(z)cos(y) + sin(y), — exp(x) sin(z) + (1 — xs))f ,

U = vu,
(5.1) = "

p = sin(y)cos(x) + xy* — % —sin(1)(1 — cos(1)) .
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TABLE 5.1
Convergence rates of the negative norm methodvfer 0.2 and varying tolerances in the computation®f

A~Ttolerance]] 10-T [ 10=2 [ 103 [ 1071 J 10> | BA

Variable L2-error rate
u -0.614 | 0.370 | 1.861 | 1.869 | 1.869 -
u -0.717 | -0.052 | 1.535| 1.586 | 1.587 | 1.000
P -1.261 | -0.066 | 1.559 | 1.580 | 1.584 | 1.000
[ Variable ]| H'-error rate I

-0.632 | 0.791 | 1.014 | 1.016 | 1.016 | 1.000
-1.110 | -0.349 | 0.652 | 0.665 | 0.666 -
-1.439 | -0.622 | 0.677 | 0.707 | 0.708 -

Sl [e{fS

TABLE 5.2
Convergence rates of the negative norm method with a fixed tolerand’fand varyinga

[ Error ] L2-error rate [ H'-error rate [
[o ]l 0 [02] 1 [BAJ 002 1 [BA]
u 1.850 | 1.869 | 1.873 - 1.018 | 1.016 | 1.015 | 1.000
U 1.559 | 1.587 | 1.605| 1.000 || 0.585| 0.666 | 0.701 -
D 1.219 | 1.584 | 1.584 | 1.000 || 0.134 | 0.708 | 0.686

Since this exact solution is a fictitious flow which does not depenf@rall computa-
tions are carried wittRe = 1. Owing to the use of); elements in the implementation, the
expected asymptotic rate of convergence for the negative norm mettiddjsi.e., forh
small enough we expect that

(5.2) IU = Uyllo + [[u = uplly + [lp = pallo < Ch.

Note that in (5.2) thé(h) convergence rate for the velocity approximation is asserted in the
norm of H'(£2), whereas for the velocity flux and the pressure variables this rate is asserted
in the norm ofL2(£2). As aresult, (5.2) is optimal when the velocity flux and the pressure are
approximated by finite element spaces of one degree less than the spaces used for the velocity
approximation. Here, we have chosg@n elements for all variables solely for simplicity of
the implementation.

Our first goal is to investigate how the choiceBf anda in (3.14) affects validity of
(5.2). Theoretically, this estimate should hold as long as the opeBitoemains spectrally
equivalent taS* (condition (3.12)), and is positive (otherwise (3.14) reduces to the semi-
norm (3.13)). To asses the importance of (3.12) wenfix= 0.2 and compute numerical
rates of convergence for varying operatd@$. (This choice ofo will become evident be-
low.) For this purposeB” is evaluated using an iterative Poisson solver defined on the space
Q1 N HE(Q). The different choices foB" are obtained by varying the relative tolerance
for this solver. A large tolerance corresponds to an opetatothat does not satisfy (3.12)
well, whereas tighter tolerances yield operatBfsthat are spectrally equivalent &. Next,
we consider how (5.2) is affected by the choicenofFor this purpose the tolerance of the
Poisson solver foB" is fixed equal tal0~°, and computations are carried with= 0 and
a = 1. For all cases, convergence rates are estimated by computing approximate solutions
on uniform grids with 17x17 and 33x33 grid lines respectively. Corresponding results are
summarized in Tables 5.1-5.2. These tables contain results for both the rates asserted by es-
timate (5.2), as well as for rates that are not included in this estimate. The former are given
in bold face symbols, with the column BA containing the expected rates (5.2). From the data
in Table 5.1 we can conclude that the spectral equivalence condition (3.12) is critical for the
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FIG. 5.1.Dependence of preconditioned conjugate gradient iterationa on

performance of the negative norm method. The first two columns in this table demonstrate a
complete loss of convergence whaf fails to satisfy (3.12), whereas the last three columns
show that onceB” becomes spectrally equivalent $&, then approximations converge ac-
cording to (5.2). We note that the individuit-rates forU andp are better thaw(h) which,

most likely, is caused by the use of equal order approximation spaces for all variables. Ta-
ble 5.2, on the other hand, suggests that the choiceisfless important for the validity of
asymptotic convergence rates in (5.2). Wheg= 0, the only significant drop occurs in the
asymptotic rate for théf'-norm error of the pressure. However, this error is not included in
(5.2) and, as a result, the total erfdd — U, [|o + |[u — a1 + [|p — pal|o still converges at
arate ofO(h).

Next we consider the importance 8f* and« for the overall performance of the pre-
conditioned conjugate gradient method used to solve the discrete equationsc Qingears
in the definition of the negative norm (3.14) its choice affects the properties of the algebraic
system corresponding to the discrete variational probléth, on the other hand, appears
in both the negative norm (3.14) and the preconditioner (4.7). However, here we are only
interested in the effect d8* upon the preconditioner. Thus, in what follows we assume that
B in (3.14) is fixed and usBI’;/ to denote the operator employed in (4.7).

To determine the importance affor the conjugate gradient method we fix the tolerances
for B" and B} equal tol0~°. Then we compare the number of preconditioned conjugate
gradient iterations needed to achieve the same relative error tolerance in the solution of the
linear system for values af between 0 and 1. Corresponding results for 9x9, 17x17 and
33x33 uniform grids are summarized in Figure 5.1. From these plots we can conclude that
unlesse > 0, performance of the conjugate gradient method degrades significantly. Indeed,
for all three gridsa. = 0 results in the highest number of iterations (101, 133 and 174,
respectively), while taking even a small positivee.g.,c = 0.05 helps to reduce the number
of iterations more than twice. Even more importantly, when- 0 we see that the number
of iterations grows as the number of grid lines increases, i.e., convergence of the conjugate
gradient method is not independent/af This behavior can be explained by noting that
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TABLE 5.3
Number of conjugate gradient iterations with different preconditioners: 0.2 and10~5 tolerance forB"

Grid size
Preconditioner|| 5x5 | 9x9 | 17x17 | 33x33
none 122 | 220 419 759
Jacobi 37 52 102 185
4.7) 44 48 52 53
TABLE 5.4

Number of preconditioned conjugate gradient iterations for different choicﬁ;of

A~T tolerance

Grid 0.5 | 0.1 | 0.001| 0.0001 | 0.00001
9x%x9 137 | 49 48 48 48
17 x 17 258 | 56 52 52 52

settinga = 0 in (3.17) yields a least-squares functional defined using the seminorm (3.13)
for which the lower bound in (3.16) does not hold. From Fig. 5.1 it also appeara that
0.2 is sufficient to assure convergence of the conjugate gradient method which is virtually
independent o, with the fastest convergence occurring in the rab@s < o < 0.30.
Thus, one can infer the existence of an optimal valuexfoiThis value appears to depend
mildly on the grid parametet, e.g., for 9x9 grids it is given by ~ 0.2 whereas for 33x33
grids it is given bya ~ 0.3. The ability of (4.7) to provide convergence independerit far
these values af is also illustrated by the data in Table 5.3. This table compares the number
of conjugate gradient iterations without preconditioning, using a Jacobi preconditioner, and
using (4.7).

Lastly, to determine how the choice HZ’} affects the preconditioner we fix = 0.2
and vary the tolerance in the Poisson solver used to condputéCorresponding results are
summarized in Table 5.4. The data in this table suggests that preconditioner (4.7) is not very
sensitive with respect to the quality B% and that the overall performance of the conjugate
gradient method depends more critically®n

5.2. Numerical results: driven cavity flow. The two-dimensional lid driven cavity flow
is often used to test numerical solvers for the Navier-Stokes equations. Although this example
represents a fictitious flow it is well-documented in the literature and there is an abundance of
benchmark results available for comparison. We recall that for the driven cavity flovd
and that the velocity boundary condition is giventy= (1,0) on the top surface of the
unit square and zero otherwise. For this example we have considered a Reynolds number
of 100 and bilinear spaces defined on uniform triangulations of 17x17, 33x33, and 45x45
finite elements. Our numerical results are presented in Figures 5.2-5.3. Figure 5.2 contains
directional plot of the velocity field and a contour plot of the vorticity, computed using 33x33
finite elements. For the second plot vorticity has been obtained using the computed velocity
flux variable, i.e..o = U}, — U",. Plots in Fig. 5.2 appear to be in a good agreement with
similar plots reported in, e.g., [11]. Although the “eyeball” norm comparison with [11] is
satisfactory, in Figure 5.3 we present a more quantitative measure for the performance of the
least-squares method. In this figure velocity profiles through the geometrical center of the
cavity are compared with the benchmark results of [11] computed using a finite difference
scheme with 129x129 nodes. The first component of the velocity, denotedibyplotted
along the vertical line: = 0.5, whereas the second component, denoted Ii/plotted along
the horizontal liney = 0.5. We see that the-velocity is very close to the benchmark data
even for the coarse 17x17 grid, whereas matching the benchmaalbcity is problematic for
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FiG. 5.2.Driven Cavity flow at Re=100: velocity field and vorticity contours

this grid size. However, increasing the grid size to 33x33 and then to 45x45 yields significant
improvement in the-velocity profile.

In §5.1 we saw that choosing = 0 leads to reducedl ! -rates for the pressure approxi-
mation. In the present setting we found that the most affected variable is again the pressure.
Specifically,a = 0 leads to highly oscillatory pressure approximations. On the other hand,
even a small positiver is sufficient to eliminate the oscillations. These observations are il-
lustrated in Fig. 5.4 which shows contour lines of pressure approximations computed with
a = 0anda = 0.01.

5.3. Comparison with L? velocity flux methods. In this section we compare the neg-
ative norm method with the twé? least-squares methods based on (3.1) and (3.6), respec-
tively. For all three methods we consider implementation ughdfinite element spaces.

As a result, for smooth solutions, the asymptotic rate of convergence for the negative norm
method is given again by (5.2), whereas for the augmefitedethod (3.6) the corresponding
estimate reads

(5.3) U~ U1+ [lu ="y + [lp = p" ]l < Chs

see [2]. Since functional (3.1) is not norm-equivalent, no theoretical error estimates are avail-
able for this least-squares method. Note that in contrast to (5.2), estimate (5.3) asserts optimal
convergence in the norm éf! for all variables We recall that this is a consequence of the
H'-norm equivalence of (3.6). Therefore, a fair comparison between (3.17) and (3.6) is
hardly possible. For example, (5.3) is optimal when all unknowns are approximated by equal
order finite element spaces, as is the case here, whereas (5.2) is optimal when the velocity
field is approximated by spaces of one degree higher than us&f dadp. Similarly, (5.2)

is valid as long adJ € Hl(Q), p € H'(Q) andu € H?(Q), whereas (5.3) requires all com-
ponents to be at least i?(2). Thus, results of this section should not be viewed as a direct
juxtaposition of the two methods but rather as a suggestion for the most appropriate scope of
each method.
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FiG. 5.3. Velocity profiles: negative norm least-squares for 17x17 (short dashes), 33x33 (long dashes) and
45x45 (solid line) bilinear elements vs. benchmark results of [11] (dots)

TABLE 5.5
Convergence rates for the —! method and.? least-squares methods (3.6) and (3.1).

L? error rates HT error rates

Method || negative | (3.6) | (3.1) negative | (3.6) | (3.1)
1.869 | 1.921 | 0.944 1.016 | 1.002 | 0.918
1587 | 1.776 | 0.881 0.666 | 1.091 | 0.594
1.584 1.741 | 0.706 0.708 1.530 | 0.531

3 (cl=

5.3.1. Smooth solutions.For the negative norm method we consider the rates obtained
whena = 0.2 and the tolerance faB" is set to10~°; see Table 5.1. Asymptotic conver-
gence rates for thé&2-methods are estimated using approximate solutions computed on a
pair of uniform grids with 17x17 and 33x33 grid lines, respectively. Corresponding results
are summarized in Table 5.4. Like in Tables 5.1-5.2, bold face in this table is used to denote
asymptotic rates for the error components which are included in (5.2) and (5.3). The asymp-
totic rates of (3.6) in Table 5.5 are in excellent agreement with (5.3) and are higher than the
H'-norm rates of the negative norm method. There is less difference ib%morm rates
of these methods, but the augmenfeédmethod still has better convergence. In contrast, the
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FIG. 5.4.Pressure contours faRe = 100 and 33x33 elementst = 0.01 (top) anda: = 0 (bottom)

method (3.1) consistently yields suboptimal convergence rates. |h%merm of the error
these rates are of approximately one order less than the rates for (3.6) Hh-therm of the
error (3.1) converges at half the rate of (3.6). Although&iienorm rates for (3.1) are closer
to the rates of the negative norm method, in fifenorm the former converges twice as fast
as (3.1).

The data in Table 5.5 leads to the unambiguous conclusion that for smooth solutions the
augmented.?-method ranks first, while the method (3.1) offers the worst performance. The
main cause for this dismal performance of (3.1) is in the lack of norm-equivalence of the
underlying least-squares functional. These results are consistent with numerical experiments



ETNA

Kent State University
etna@mcs.kent.edu

60 Experiences with negative norm least—-square methods

u-velocity
x=0.5

v-velocity

FiG. 5.5.Velocity profiles for the Driven Cavity flow: negative norm method (dashed lines) v&2threthod
(3.6) (solid lines).

performed using other non-norm equivalent functionals, where suboptimal convergence rates
were also observed; see [6].

From the data in Table 5.5 we can conclude that, although performance of the negative
norm method is not dramatically inferior to that of (3.6), the less complicated and straightfor-
ward implementation of thé&2-method makes it more convenient when the exact solution is
smooth enough. As we shall see in the next section, the real advantage of the negative norm
method is revealed when solutions of the Navier-Stokes equations are not sufficiently regular.

5.3.2. Driven cavity flow. Discontinuity of the boundary data in the driven cavity flow
leads to velocity fields that are not sufficiently regular for the least-squares method (3.6).
Indeed, analysis of this method requires that minimization is carried over the space

X = {(U,u,p) € H'(Q) x HY(Q) x H'(Q) N L3(Q)|u=0,nx U =0 onT};

see [2]. In view of the definition (2.5) it follows that components of the velocity field should
be at least inH?(2), which is not the case with the driven cavity flow. The lack of regu-
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FIG. 5.6.Driven cavity flow at Re=100: negative norm method vs.tRemethod (3.6).

larity in the solution leads to poor performance of the method (3.6) for this problem. This
can be seen from the plots presented in Fig. 5.5. Here we compare velocity profiles through
the center of the cavity computed by (3.6) (solid lines) and the negative horm method (3.17)
(dashed lines), with the benchmark results of [11], using 17x17 bilinear elements. Although
(3.6) yields reasonable approximation for thevelocity, it significantly underestimates the
v—velocity component. These results suggest that the negative norm method has an advan-
tage over thel.2-method for problems with less regular solutions. Similar conclusions can
be drawn from the results presented in Fig. 5.6. This figure contains velocity fields and vor-
ticity contours computed by the negative norm method (3.17) andéithmethod (3.6) using

33x33 bilinear elements. Plots in Fig. 6.6 clearly indicate a qualitative difference between
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these two methods, moreover, approximations computed by (3.6) do not compare well with
the benchmark [11].
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