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Abstract. We consider numerical methods for solving problems involving total variation (TV) regularization for
semidefinite quadratic minimization problemsminu ‖Ku−z‖22 arising from illposed inverse problems. HereK is a
compact linear operator, andz is data containing inexact or partial information about the “true”u. TV regularization
entails adding to the objective function a penalty term which is a scalar multiple of the total variation ofu; this term
formally appears as (a scalar times) theL1 norm of the gradient ofu. The advantage of this regularization is that it
improves the conditioning of the optimization problem whilenot penalizing discontinuitiesin the reconstructed im-
age. This approach has enjoyed significant success in image denoising and deblurring, laser interferometry, electrical
tomography, and estimation of permeabilities in porus media flow models.

The Euler equation for the regularized objective functional is a quasilinear elliptic equation of the form
[
K∗K+

A(u)
]
u = −K∗z. Here,A(u) is a standard self-adjoint second order elliptic operator in which the coefficientκ

depends onu, by [κ(u)](x) = 1/|∇u(x)|. Following the literature, we approach the Euler equation by means of
fixed point iterations, resulting in a sequence of linear subproblems.

In this paper we present results from numerical experiments in which we use the preconditioned conjugate
gradient method on the linear subproblems, with various multilevel iterative methods used as preconditioners.
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1. Introduction. We examine the numerical properties of various multilevel precon-
ditioners for a class of quasilinear elliptic operators arising in total variation minimization.
These operators typically have discontinuous and highly varying coefficients which may, for
increasingly fine discretizations, have arbitrarily small margin of coercivity.

The outline of the paper is as follows. We first introduce the class of linear illposed
inverse problems, which we formulate as minimization problems, and we give two examples.
We provide a rather detailed motivation for the use of regularization methods in general and
for total variation regularization in particular. Next, we exhibit the Euler equation (first-
order necessary condition) for the minimization problem with total variation regularization.
The Euler equation is a quasilinear integro-partial differential equation and, following the
experience reported in the literature, we approach it computationally by means of fixed-point
iteration. In this way we arrive at a sequence of linear operator problems of the form(

K∗K + αA
)
w = b,

whereK is a bounded (usually compact) operator which typically has properties similar to
those of an integral operator, andA is a second order elliptic operator with rapidly varying and
discontinuous coefficients. It is preconditioners for the elliptic part of this system which form
the focus of this paper. In particular, we consider (after discretization) four preconditioners:
the standard variational multigrid method, the hierarchical basis (HB) multilevel method, and
the “approximate wavelet-modified” hierarchical basis (AWM-HB) method, and the AWM-
HB method with a weightedL2 norm. Our experience indicates that the standard multigrid
method is the most effective of these for this problem. Next, we provide an example of the
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numerical solution of the inverse problem with this method. Finally, we summarize the paper
and our conclusions and indicate possible directions for future work.

2. The Inverse Problem and Regularization.

2.1. Description of the Inverse Problem.Let Ω be the unit square in two dimensions.
We asume we are given some linear operatorK which is defined on a subsetU ⊆ L1(Ω) and
has range in some Hilbert spaceZ. We assume thatK : U 7→ Z is compact. Also we assume
we are given some “data”z ∈ Z for which

z = Kū+ δ(2.1)

for someū ∈ U and some “error”δ.
The inverse problem is to determineū, at least approximately. Sincez may not lie in the

range ofK, the inverse problem is formulated as a least-squares minimization, in which the
goal is to minimize

Φ(u) def=
1
2
‖Ku− z‖2Z(2.2)

over some subset ofL1(Ω).

2.2. Discretization. All of the numerical approximations in this paper are based on dis-
cretizations involving finite element approximations with piecewise bilinear finite elements
on a uniform mesh.

Specifically, letJ be a fixed integer. For each integerk satisfying1 ≤ k ≤ J we set
nk = 2k andhk = 2−k, and we partition the unit square into a collectionTk of n2

k uniform
squares. The corners of these squares form the mesh whose node set we denote byNk. On
this mesh we define the usual continuous piecewise bilinear elements whose span forms the
finite element space which we denote byVk.

Since we are considering multilevel methods, we shall have need of intergrid transfer
operators. SinceVk−1 ⊂ Vk, any element inVk−1 with nodal coefficient vectoruk−1 can be
represented exactly as an element ofVk by a unique nodal coefficient vectoruk. We take as
Ikk−1 the matrix such thatuk = Ikk−1uk−1 for suchuk−1 anduk. ThusIkk−1 is the matrix
representation (with respect to the nodal bases ofVk−1 andVk) of the identity map from
Vk−1 to Vk. This is our “prolongation” operator. For the “restriction” operator, we take that
operator whose matrix representation is given by the transpose, e.g.,

Ik−1
k

def= (Ikk−1)T .(2.3)

2.3. Examples ofK.

2.3.1. Image deblurring. Here the operatorK is a first kind Fredholm integral operator
with translation invariance, e.g., a convolution. It is of the form

(Ku)(~x) =
∫

Ω

k(~x− ~x′)u(~x′) d~x′,

wherek is a Gaussian kernel of the form

k(~ξ) =
1

2πσ2
exp
(−|ξ|2

2σ2

)
for someσ > 0. The use of total variation regularization in conjunction with deconvolution
or “deblurring” with this model for image processing has been investigated by a number of
authors [1, 5, 9, 10, 11, 13, 21].
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Matrix representations ofK∗K are generally dense. However, as discussed in [9], the ac-
tion ofK∗K on a nodal representation of an FEM function may be carried out inO(n log n)
operations by the use of the FFT. In our numerical investigations we used Vogel’s implemen-
tation [19] of this idea.

As a test pattern for the image reconstruction problem we use the piecewise constant
function shown in Figure 2.1. It is given byUTRUE = χΩ1 + χΩ2 + χΩ3 , where theΩi ⊂ Ω
are given by

Ω1(x, y) =
{

(x− 1/2)2 + (y − 1/2)2) < 1/62
}
,

Ω2(x, y) =
{

1/5 < x < 4/5 and19/40) < y < 21/40
}
,

Ω3(x, y) =
{

9/10 < x+ y < 11/10 and1/8 < x < 7/8 and1/8 < x < 7/8
}
,

andχ(ω) denotes the characteristic function of subsetsω of Ω.
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FIG. 2.1.“Test pattern” UTRUE used for image reconstruction problems. See§2.3.1.

2.3.2. Electrical Impedance Tomography.As a second example we consider the lin-

earized problem from electrical impedance tomography (EIT). In this caseZ =
[
L2(∂Ω)

]m
for somem ≥ 1. Elementsz = Ku ∈ Z in the range ofK are of the form{zj}mj=1, where
eachzj lies inH1/2(∂Ω) ⊂ L2(∂Ω) and is given by

zj(s) = φj(s;u), s ∈ ∂Ω,(2.4)

whereφj(·;u) is a potential function satisfying

∇ ·
(
α(x)∇φj(x;u)

)
= −∇ ·

(
u(x)∇φ̄j(x;u)

)
, in Ω,(2.5) (

α(x)∇φj(x;u)
)
· ~n(x) = 0 on∂Ω.



ETNA
Kent State University 
etna@mcs.kent.edu

258 A comparison of multilevel methods for total variation regularization

Here,α ∈ L∞(Ω) with inf{α(x) : x ∈ Ω} > 0 andφ̄j ∈ H1(Ω) are fixed, given functions.
For j and for each givenu ∈ L∞(Ω) we obtain azj from this set of equations. This defines
the mapK for this example.

The interpretation of the operatorK in this example is that is that it is the Fr´echet deriva-
tive of the “conductivity to Dirichlet” map in the EIT problem. See [4, 22] for details. As
demonstrated in [22],K is continuous as a linear map fromU ⊂ L1(Ω) intoH1/2(∂Ω) if U
is of the form

U = {u ∈ L1(Ω) : ‖u‖L∞(Ω) < C andTV (u) ≤ γ},

whereC andγ are constants andTV is the total variation functional discussed below in Sec-
tion 2.5. The TV-regularization method discussed below implicitly ensures thatK is restricted
to such subsets.

2.4. Illposedness.Minimizers ũ of the least-squares functional (2.2) must satisfy the
normal equation

K∗Kũ = K∗z.(2.6)

However, the compactness ofK implies that, unlessK has finite dimensional range, the eigen-
values of the operator(K∗K) cluster at the origin so that(K∗K)−1 is unbounded. Hencẽu
generally will not exist as an element ofL1(Ω), so that the inverse problem is illposed.

Further insight into the nature of the illposedness is furnished by (attempted) numerical
approximaton of the inverse problem. Specifically, if (2.6) is discretized as in Section 2.2
andũn are computed solutions of the these discrete problems, thenũn will exhibit unwanted
oscillations which increase in frequency and magnitude asn→∞.

We provide an example of this with the deconvolution example of Section 2.3.1, with a
“synthetic data” setz and full matrix representations ofK andK∗ at various grid levels. To
generate the synthetic data, we first formed a numerical representation ofUTRUE as described
in §2.3.1 and given in Figure 2.1, on the levelk = 5 grid (e.g.,25 × 25). From this we
computedKUTRUE , and added1% noise to it (that is, each each of the332 grid points we
added noise which was normally distributed with zero mean and standard deviation1/100) to
obtain the dataz. We then attempted to solve the inverse problem (2.6) with this data, using
the psuedo-inverse of the (full) matrix representations ofK on levels3, 4 and5. (To represent
the synthetic dataz on levels3 and4 we projected it using the restriction operator given in
(2.3).)

The results are shown in Figure 2.2. The behavior illustrated there is typical of distributed
parameter inverse problems. In order to (attempt to) capture the salient features, one must
use a sufficiently fine grid; however, this leads to a highly oscillatory solution which is due
to unboundedness of(K∗K)−1 asn → ∞. These “spurious oscillations” means that the
illposedness is a serious practical matter.

2.5. H1 and total variation regularization. Strategies for approximately recoveringū
must account for the illposedness in some way. Generally, either the search for the solutions
must be restricted to some subset ofL1(Ω) which is sufficiently constrained so as to avoid
spurious oscillations in computed solutions, or, essentially equivalently, we must “regular-
ize” the problem by modifying the objective functional (2.2) so as to supress the unwanted
oscillations.

Below we adopt a regularization based on penalizing thetotal variation of candidate
solutionsũ. Total variation regularization is an alternative to the better-knownH1 regulariza-
tion, which is based on penalizing the square of theH1 norm of candidate solutions. Both of
these regularizations have the advantage that they implicitly limit the minimization of (2.2)
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FIG. 2.2.Results from the computations reported in Section 2.4, illustrating the illposedness of unregularized
inverse problem. Note the difference in scale in the fourth subplot.

to compact subsets ofL1(Ω) so that minimizers are guaranteed to exist. TheH1 regular-
ization is mathematically and computationally more tractable because it yields a quadratic
minimization problem; however, as illustrated in the examples below, it tends to oversmooth
the solution. The key advantage of total variation regularization is that is itpermits disconti-
nuitiesin the computed solutions. However, as discussed below, it results in a nonquadratic
optimization problem, so that the mathematical and numerical analysis are both more in-
volved.

The total variationTV (u) of u ∈ L1(Ω) is defined [7] as

TV (u) def= sup
{∫

Ω

u(x)∇ · g(x) dx : g ∈ C1
0 (Ω; Rn), ‖g‖L∞ = 1

}
.(2.7)

The regularized objective functional is then

1
2
‖Ku− z‖2L2(Ω) + αTV (u)(2.8)
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for some small parameterα. The advantage of this regularization is that it permits functions
u with jump discontinuities, yet sets of the form{u ∈ L1(Ω) : TV (u) ≤ γ} are compact in
L1(Ω) [7]. Hence approximate reconstructions ofu can be stably computed from (2.8) even
when the “true”u is discontinuous.

Foru in the Sobolev spaceW 1,1(Ω), the expression (2.7) becomes

TV (u) =
∫

Ω

|∇u(x)| dx.

We shall use this throughout. Also, we use a modification, which is based on experience re-
ported in the literature, e.g., [1, 3, 6, 20], and serves the purpose of making theTV functional
TV differentiable, namely, for a fixedβ > 0,

TVβu
def=
∫

Ω

√
|∇u(x)|2 + β2 dx.(2.9)

Our regularized objective function is then, for givenα andβ,

Φα,β(u) def=
1
2
‖Ku− z‖2 + αTVβu.(2.10)

Minimizers of (2.10) must satisfy the first order necessary condition (the Euler equation)
for this functional. It is a quasilinear elliptic equation of the form

K∗Ku+ αA(u)u = K∗z(2.11)

in Ω, subject to homogeneous Neumann boundary conditions. Here, for a givenv, A(v) is
the self-adjoint second order elliptic operator whose action is given by

A(v)u = −∇ ·
(
κ(v)∇u

)
,(2.12)

where the coefficientκ depends onv by

[κ(v)](x) =
1√

|∇v(x)|2 + β2
.(2.13)

2.5.1. Example contrastingH1 and TV regularizations. As noted above, the chief
advantage of the TV regularization is that it allows discontinuities in the reconstructionũ,
whereasH1 regularization oversmooths them. We illustrate this point with a numerical ex-
periment.

On the level5 mesh we computedUTRUE and correspondingly noisy dataz as in Sec-
tion 2.4, as well as a full matrix representation ofK and a sparse matrix discretizations of
A(UTRUE) based on (2.12). For various values ofα in (2.11), we then computed the solu-
tionu by a direct method. In Figure 2.4, we present graphical results of this for three different
values ofα, one of which shows over-regularization, one under-regularization, and one which
lies in between. We also performed the same calculations but withH1 regularization, e.g.,
with A(UTRUE) replaced byA(1) which is (minus) the Laplacian scaled by1/β. These
results are also shown in Figure 2.4.

3. Numerical solution of the minimization problem. As discussed above in§2.5, the
Euler equation for the inverse problem with total variation regularization is given by (2.11),
whereA is the quasilinear elliptic operator given by (2.12). A straightforward computational



ETNA
Kent State University 
etna@mcs.kent.edu

P.S. Vassilevski and J.G. Wade 261

0
0.5

1

0

0.5

1
0

1

2

3

"True" U

0
0.5

1

0

0.5

1
−2

0

2

4

Data

FIG. 2.3. The “true” u and the “data” for the numerical examples discussed in Section 2.5.1, where theH1

andTV regularizations are compared, and in Section 4.2, where numerical approximations of the solution of the
inverse problem withTV regularization are presented.

approach to solving (2.11) is fixed point iteration. That is, give some initial guessu(0), we
compute{u(m)} by u(m+1) = u(m) + δu(m), whereδu(m) satisfies

[K∗K + αA(u(m))]δu(m) = K∗z − [K∗K + αA(u(m))]u(m).(3.1)

As reported in the literature (e.g., [6, 20]), fixed point iteration is fairly robust and effective
for this problem. Our own experience, reported below, confirms this.

The focus of this work is on the solution of (some discretized versions of) the linear
problems (3.1) in the fixed-point iterations. Hence we shall consider the fixed-point counter
m to be fixed, drop the dependence onm from the notation, and write equation (3.1) as

[K∗K + αA]w = f,(3.2)

with the understanding thatA is an ellptic operator of the form (2.12), withv possessing
possibly large gradient.

In the computations presented in Sections 2.4,K was represented as a full matrix. This is
of course impractical for all but the most modest levels of discretization and in general there
is a need for iterative methods and preconditioners. In the following sections we examine the
performance of the preconditioned conjugate gradient method for (3.2).

3.1. Multilevel Preconditioners. We turn now to the construction of the multilevel pre-
conditioners for solving discretized versions of the linearized PDE (3.2), whereA is given by
(2.12) for a given parameterβ.

If the action ofA−1 were available and inexpensive, then a straightforward choice of
preconditioner for (3.2) would beA−1. The obvious advantage of this would be that for each
fixedα > 0 the condition number ofA−1(K∗K + αA) would be bounded independently of
mesh size, so that we could expect favorable performance from the PCG scheme; however,
the condition number would deteriorate asα ↓ 0. This approach has been investigated in
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FIG. 2.4. Results of the numerical investigation, discussed in Section 2.5.1, of the effects of differentα, and
the clear advantage of TV regularization overH1 regularization in resolving discontinuousu.
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some detail numerically in [18]. Based on the experience reported in [18] and the overall
simplicity and generality of this method, it merits some attention in our judgement.

The preconditioners which we study below are based on this idea. In particular, we
examine the numerical properties of the the PCG scheme for (3.2) where the preconditioner
is one or two multilevelV -cycles for approximating the action ofA−1.

A major difficulty comes from the gradient of the given functionv in (3.2) which may
have very large values. In fact, in our application, this is a typical situation; namely,v will
have highly oscillatory behavior, though being bounded away from zero and bounded above
— see Figure 4.1. It is clear that to capture the oscillatory behavior of the coefficient and the
respective solutionw we have to discretize the problem on a relatively fine grid and discretiza-
tions on coarse grids may generally not have good approximation properties. Therefore, to
develop efficient iterative schemes based on effective preconditioners such as the multilevel
ones, we have to create the coarse problems in analgebraicmanner, rather than using dis-
cretizations of (3.2) on respective coarse grids. That is, we first generate a discretization
of the problem (3.2), using finite elements for example, getting the respective stiffness ma-
trix A = Ah coming from the∇ · (k∇w) part of the problem on a sufficiently fine mesh
and then use algebraic coarsening to define coarse–grid stiffness matrices. That is, letJ as
in Section 2.2 beJ ' logh−1 and defineA(J) = Ah. Assuming that the meshTh has
been obtained byJ ≥ 1 steps of uniform refinement of an initial coarse meshT0, then
A(k−1) =

(
Ikk−1

)T
A(k)Ikk−1, for k = J, J − 1, . . . , 2, 1, whereIkk−1 is the intergrid transfer

matrix discussed in Section 2.2. The sparsity pattern ofA(k) remains the same as that ofAh;
namely, in terms of stencil, we have nine–point stencil representation ofA(k) at each levelk.

Below we consider three types of multilevel preconditonersB(k), which are approxi-
mations ofA(k) and easily invertible. The first of these is based on the standard multigrid
method, discussed in Section 3.1.1. The other two are based on the so–called two–level parti-
tioning of the matrixA(k) that corresponds to a two–space decomposition of the current finite
element spaceVk, which we now discuss.

We assume a decomposition

Vk = V 1
k + Vk−1,(3.3)

which is not necessarily a direct one, and define the following block partitioning ofA(k),

Â(k) =

[
Â

(k)
11 Â

(k)
12

Â
(k)
21 A(k−1)

]
} V 1

k

} Vk−1
.(3.4)

We use the notation “̂A(k)” to distinguish the representation of the elliptic operator in the
computational bases ofV 1

k andVk−1 from the notation “A(k)” representing the operator in

standard nodal basis ofVk. We have,Â(k)
11 = Y

(k)T

1 A(k)Y
(k)

1 , Â(k)
12 = Y

(k)T

1 A(k)Y
(k)

2 ,

Â
(k)
21 = Y

(k)T

2 A(k)Y
(k)
1 andA(k−1) = Y

(k)T

2 A(k)Y
(k)

2 . The blockY (k)
2 = Ikk−1 is the

natural coarse–to–fine (interpolation) transfer matrix, whereas the blockY
(k)
1 comes from

the subspaceV 1
k and represents the natural imbedding ofV 1

k into Vk. For the time being we

will not specify the spaceV 1
k and its corresponding transfer matrixY (k)

1 . We only mention

that in the extreme case one can haveV 1
k = Vk and henceY (k)

1 = I. We assume, though,

that the actions ofY (k)
1 andY (k)T

1 are readily available and inexpensive.
Based on the block–partitioning (3.4) we are now in a position to define our multilevel

preconditionerB(k) for A(k), based on the choice ofV (k)
1 , by a routine recursive argument.

DEFINITION 1 (MULTILEVEL PRECONDITIONERS).
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• B(0) = A(0);

• For 1 ≤ k ≤ J , defineB(k) byB(k)−1
=
[
Y

(k)
1 , Y

(k)
2

]
B̂(k)−1

[
Y

(k)
1 , Y

(k)
2

]T
,

where

B̂(k) =

[
B

(k)
11 0

Â
(k)
21 B(k−1)

][
I B

(k)−1

11 Â
(k)
12

0 I

]
.

TheÂ(k)
ij here are from (3.4), and theB(k)

11 is depends the choice ofV (k)
1 ; we discuss

it further below.
The blockB(k)

11 in this definition is an approximation of the block̂A(k)
11 of Â(k) in a

space complementary toVk−1 (in Vk). It gives rise to the so–called smoothing iteration in the
multigrid method. Hence the choice ofB(k)

11 depends on the properties of the spaceV 1
k and

the means by whicĥA(k)
11 is approximated.

To implement the action ofB(k)−1
one needs the actions ofB(k)−1

11 and of the transfor-

mation matricesY (k)
r as well as the actions of their transpositionsY

(k)T

r , r = 1, 2 at every
level k. The factored form of̂B(k) can be utilized to get the inverse actions ofB̂(k) in the
usual forward and backward elimination sweeps. Algorithmically, for a givenb ∈ Vk repre-
sented in the standard nodal basis, the computationw = B(k)−1

b in the nodal basis may be
expressed as follows.

1. Transformb to the two-level basis:

b1 = Y
(k)T

1 b andbk−1 = Y
(k)T

2 b.
2. Perform the forward elimination, creating intermediate vectorsφ andψ:

φ = B
(k)−1

11 b1k,

ψ = (B(k−1))−1
(
bk−1 − Â(k)

21 b
1
k

)
.

3. Perform the backward elimination:

wk−1 = ψ andw1 = φ−B(k)−1

11 Â
(k)
12 wk−1.

4. Transform(w1, wk−1) to the nodal basis:

w = Y
(k)

1 w1 + Y
(k)

2 wk−1.

We turn now to three main choices we have made in our numerical tests.

3.1.1. Multigrid method. We denote this preconditioner byB(k)
MG. It is a standard vari-

ational multigrid “V(1,1)” cycle; it is not of the form ofB(k) given in Definition 1. However,
it can be discussed in terms of the decomposition 3.3: hereV 1

k = Vk, so thatY (k)
1 = I and

Â
(k)
11 = A(k). ForB(k)

11 we have chosen the symmetric Gauss–Seidel approximation toA(k).
Namely, ifA(k) = D(k) − L(k) − U (k) is split into diagonal, strictly lower triangular and
strictly upper triangular parts, thenB(k)

11 = (D(k) − L(k))D(k)−1
(D(k) − U (k)).

Algorithmically, for a givenb ∈ Vk, the computationw = (B(k)
MG)−1b may be expressed

in a manner similar to the algorithm given above forB(k)−1
, as follows.

1. Compute the projectionbk−1 of b upon the coarse grid:

bk−1 = Y
(k)T

2 b.
2. Perform one symmetric Gauss–Seidel “smoothing iteration”:

φ = B
(k)−1

11 b.
3. Compute the residualb−Aφ, project it to the coarse grid, and solve the coarse grid

equation:
ψ = (B(k−1)

MG )−1
(
bk−1 − Â(k)

21 b
1
k

)
.
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4. Perform the “coarse–grid update”:
w = φ+ Y

(k)
2 ψ.

5. Perform one symmetric Gauss–Seidel “smoothing iteration”:

w = w + B
(k)−1

11 (b−Aw).

For more details on multigrid we refer to Bramble [2] or Oswald [12].

3.1.2. Hierarchical basis method.The classical HB method of Yserentant [23] corre-
sponds to the case in whichV 1

k is the standard two-level hierarchical complement ofVk−1 in
Vk. It is given by(Ik − Ik−1)Vk, whereIk stands for the nodal interpolation; namely, for any
continuous functionv, Ikv ∈ Vk is defined as

Ikv =
∑
xi∈Nk

v(xi)ϕ
(k)
i ,

where{ϕ(k)
i , xi ∈ Nk} stands for the nodal basis ofVk andNk is the nodal set (the vertices

of the rectangles fromTk) at levelk. That is,(Ikv)(xi) = v(xi) for all xi ∈ Nk. In this case
the blockY (k)

1 is given by

Y
(k)
1 =

[
I
0

]
} Nk \ Nk−1

} Nk−1
.(3.5)

3.1.3. Approximate wavelet-modified hierarchical basis method.Here we consider
the approximate wavelet-modified hierarchical basis or AWM-HB preconditioner. The block
Y

(k)
1 has a more complicated structure, coming from a corresponding spaceV 1

k = (I −
Qak−1)(Ik − Ik−1)Vk, whereIk is as in Section 3.1.2, andQak−1 stands for an approximate
L2–projection operator with some readily-available matrix representationΠk. The exactL2–
projection operatorQk is defined in the usual way; namely,

(Qkv, ϕ) = (v, ϕ), for all ϕ ∈ Vk.

We remark that if we letQak−1 = 0 then we recover the classical HB method. Due to the
(modification) term−Qk−1(Ik − Ik−1)Vk the above method is called approximate wavelet
modified HB. The name “wavelet” stands for the extreme case ofQak−1 = Qk−1, since it
that case one gets the wavelet (L2–orthogonal) decompositionVk = Wk ⊕ Vk−1, where
Wk = (Qk − Qk−1)Vk. The latter is impractical to use since no simple locally supported
bases ofWk are available.

Note that to compute the actions of the exact projectionQk, one has to solve a mass–
matrix problem at levelk i.e., with the mass matrix

G(k) =
{

(ϕ(k)
j , ϕ

(k)
i )
}
xi,xj∈Nk

.(3.6)

Although the mass matrices are well–conditioned it may become too costly to evaluate the
exact projectionsQk. To define an optimal order preconditionerB(k) it turns out that it is
sufficient to have a good approximationsQak toQk. For an analysis and implementations of
the AWM–HB–preconditioners we refer to Vassilevski and Wang [16], [17], see also Vas-
silevski and Wang [15] and the survey Vassilevski [14]. The choice we have made in the
present numerical tests forQak is based on very simple approximation of the inverse of the
coarse grid mass matrixG(k−1)−1

, namely,

G̃(k)−1
= D(k−1)−1

.(3.7)
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FIG. 4.1. The coefficientκ, as given by (2.13) in the operatorA = A(UTRUE), withUTRUE is described
in Section 2.3.1, andβ = 1/10. The mesh in this figure is32 × 32 (k = 5).

whereD(k−1) is the main diagonal ofG(k−1). With this, for our matrix prepresentationΠk

of Qak we used

Πk = Ikk−1G̃
(k−1)−1 (

Ikk−1

)T
D(k).

The matrix representation of the transformation matrix blockY
(k)

1 then reads as

Y
(k)

1 = [I −Πk]
[
I
0

]
} Nk \ Nk−1

} Nk−1
·(3.8)

Finally, the blockB(k)
11 in Definition 1 corresponded to the symmetric Gauss–Seidel approx-

imation toÂ(k)
11 = Y

(k)T

1 A(k)Y
(k)

1 . The latter we formed explicitly as a sparse matrix using

the fact thatY (k)
1 is a sparse matrix.

4. Numerical Experiments.

4.1. Performance of the preconditioned CG methods.To gain some insight into the
effectiveness of the methods of Section 3.1 for the probem (3.1), we performed a set of comp-
tutations using the preconditioned conjugate gradient method to find approximate solutions of
the formAu = f , whereA = A(v) as given in (2.12) withβ = 1/10 and withv = UTRUE
as described in Section 2.3.1. For a level-5 mesh (32 × 32), the resulting a coeffientκ, as
given by (2.13), is shown in Figure 4.1. We tookf = Aw wherew(x, y) = cos(3x) cos(5y).

We computed approximations of the solution ofAu = f using preconditioned conjugate
gradients with various multilevelV -cycle preconditioners on levelsk = 4, 5, 6 and7. The
preconditioners which we used in these computations were: the multigrid method, the HB
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FIG. 4.2. Shown here are convergence histories for the preconditioned conjugate gradient method for the
example described in Section 4.1. TheL2 norms of the residuals are plotted versus iteration count. The symbols* ,
x , + ando represent the various methods:* indicates MG,x indicates HB,+ indicates AWM-HB, ando indicates
AWM-HB with weighted norm.

method, the AWM-HB method, and the “weighted” AWM-HB method. The latter is the
AWM-HM method as described in Section 3.1.3, except that in place of the standard mass
matrixG(k) we used the weighted mass matrix

G(k)
w

def=
{

(κϕ(k)
j , ϕ

(k)
i )
}
xi,xj∈Nk

instead ofG(k) as given by (3.6). The results of these computations are presented in Fig-
ure 4.2. Our experience, as reported here, indicates the clear superiority of the multigrid
preconditioner for this problem.

4.2. Computational solution of an inverse problem.Finally, we performed the nu-
merical minimization ofΦα,β as described in (2.10) of Section 2.5, via the fixed point it-
eration (3.1), for the deconvolution problem with noisy data as described in Section 2.3.1.
Because the results of Section 4.1 sugguest a clear superiority of the multigrid preconditioner
for this problem, we used it in the inverse problem.

We performed the minimization on the level6 (64× 64) mesh. The parametersα andβ
were set to10−6 and10−1, respectively, The stopping criterion for the fixed point iterations
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FIG. 4.3.Computational results of the inverse problem described in Section 4.2.

TABLE 4.1
For the example described in Section 4.2, shown here are, for each of the fixed point iterations, the number of

preconditioned conjugate gradient (PCG) iterations taken in solving (3.1) (the maximimum allowed was 40), theL2

norm of the residual at the end of the PCG iterations, and an estimate of the relativeL1 norm of the resulting step
δu.

FP iter. # # PCG iter’s ‖residual‖2 Relative F.P. stepsize
1 14 3.271e-06 1.121
2 40 2.467e-06 0.527
3 40 1.495e-06 0.1904
4 40 1.834e-06 0.3213
5 40 1.262e-06 0.3524
6 40 7.913e-07 0.1646
7 40 3.743e-07 0.07962
8 40 1.418e-07 0.02539
9 40 5.58e-08 0.01049
10 40 2.349e-08 0.006164

was when the approximation of relativeL1 norm‖δu(m)‖1/‖u(m)‖1 of the fixed-point step
δu(m) fell below10−2. (The approximateL1 norms were computed simply by taking thel1
norm of the nodal coefficients.) On each fixed point iteration, at most 40 PCG iterations were
allowed in the approximate solution of (3.1). The performance of this scheme is reported in
Table 4.1; the resulting recontruction ofu is shown in Figure 4.3.

5. Summary. We have given a rather detailed motivation for the use of total varia-
tion regularization for distributed parameter inverse problems. While having the advantage
of allowing discontinuities in the reconstructions, this method is computationally intensive.
Specifically, the use of this regularization for minimization problems results in the objective
functional (2.8) with nonlinear Euler equation (2.11). Fixed point iteration for this equation
leads to a sequence of linear problems of the form (3.2),[K∗K + αA]w = f . We have ex-
amined the numerical performance of the preconditioned conjugate gradient method for this
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equation, using as the preconditioner various multilevel approximations of theA−1.
As indicated in§4.1, of the preconditioners we studied, the standard multigrid method

was clearly superior. Further, the numerical results of§4.2 demonstrate that this approach is
reasonable effective for the minimization problem with total variation regularization, at least
for the deconvolution problem.

However, the results of that section also suggest a need for further improvement. In
particular, Table 4.1 shows that on each of the fixed point iterations (except the first), the
preconditioned conjugate gradient method terminated after the maximimum prescribed num-
ber of iterations (forty). This suggests that good approximations ofA−1 are not necessarily
good approximations for[K∗K + αA]−1. SinceK∗K is compact and its eigenvalues con-
verge rapidly to zero, a possible strategy for approximating[K∗K + αA]−1 would be to use
a multigrid approximation ofA−1 together with a low-rank approximation forK∗K, and the
Sherman-Morrison formula for perturbations of matrix inverses (see, e.g., [8]). This idea will
be pursued in future work.
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