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FAST SOLUTION OF MSC/NASTRAN SPARSE MATRIX PROBLEMS USING A
MULTILEVEL APPROACH ∗

C.-A. THOLE†, S. MAYER‡, AND A. SUPALOV§

Abstract. As part of the European Esprit project EUROPORT, 38 commercial and industrial simulation codes
were parallelized for distributed memory architectures. During the project, sparse matrix solvers turned out to be
a major obstacle for high scalability of the parallel version of several codes. The European Commission therefore
launched the PARASOL project to develop fast parallel direct solvers and to test parallel iterative solvers on their
applicability and robustness in an industrial framework.

This paper presents initial results using a special multilevel method as preconditioner for matrices resulting
from MSC/NASTRAN linear static analysis of solid structures. P-elements in MSC/NASTRAN allow the polyno-
mial degree of the base functions to be specified either globally or for each element. Solution dependent adaptive
”refinement” of the p-level can be selected. Discretisations with lower p-level can therefore be used as coarser grids
for a multilevel method.

Tests have been performed using such a method as preconditioner for a regular cube and a complicated industrial
part, which were modelled by tetrahedrons and hexagonal elements. Preliminary performance comparisons on small
test cases (about 10000 degrees of freedom) indicate that the multilevel approach is at least as fast as the currently
available fastest iterative MSC/NASTRAN solver. Substantial performance improvements are expected for full-size
industrial problems.
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1. Introduction.

1.1. Parallel computing needs iterative solvers.The significant amount of work re-
quired to move large commercial application programs to parallel architectures in a portable
way has hindered the acceptance of parallel technology in industry, thereby preventing this
technology from being fully utilised to increase competitiveness. Therefore, the European
Commission supported industry in Europe through the ESPRIT initiative EUROPORT by
partially funding the porting of 38 industrially relevant codes (including PAM-CRASH,
MSC/NASTRAN, POLYFLOW, STAR-CD, and others) to parallel computers [11].

EUROPORT adopted the message passing paradigm for parallelization that, clearly, re-
quires some programming effort. However, it provides the only way to obtain portability
across virtually all HPC platforms including those with shared memory and clusters of work-
stations.

Figure 1.1 shows the performance of the parallel CFD-code POLYFLOW using two dif-
ferent solvers [10]. POLYFLOW is a fully implicit special purpose CFD code for strongly
non-linear problems involving rheologically complex liquid flows (plastic) in industrial pro-
cessing applications. The coat hangar die test case simulates the production of thin foils, a
fluid flow problem involving in each time step the solution of a sparse matrix problem with
48000 degrees of freedom (dofs). Figure 1.1 shows that the direct solver actually slows down,
if more than 16 processors are used. An iterative solver based on domain decomposition is
even faster and more than 16 nodes can be used efficiently.
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As representative for performanc results from structural analysis simulation, figure 1.2
shows the elapsed times for the parallel sparse matrix solver used in MSC/NASTRAN.
MSC/NASTRAN is a widely used structural analysis code and its parallel sparse matrix
solver is highly optimized. The test case is a sparse matrix resulting from static analysis
of a BMW-3 series car body, which consists out of 249911 dofs mostly resulting from shell
elements. For the solution of this matrix problem a speed-up of 4.9 is achieved on 8 proces-
sors. This is an excellent result for a sparse direct matrix solver, however, in general a higher
scalability is desired in order to (cost-)efficiently solve much larger problems as they are used
in industry today.
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FIG. 1.1.Performance of POLYFLOW on an IBM-SP2 for the coat-hanger-die test case.
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FIG. 1.2.Performance of MSC/NASTRAN on an IBM-SP2 for the BMW-3 series test case.

In order to overcome this situation the Esprit PARASOL project was launched.
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1.2. PARASOL - An integrated programming environment for parallel sparse ma-
trix solvers. Considerable progress has been achieved in the development of fast and robust
iterative solvers for the solution of sparse matrix problems resulting from the discretisation of
partial differential equations. This holds in particular for domain decomposition algorithms
and hierarchical solvers like multigrid methods. However, most of the commercial codes are
still structured such that the sparse matrix problem is set up and afterwards solved without
any additional information about the underlying partial differential equations. This limits the
use of iterative solvers to CG methods using incomplete factorisations as preconditioners (and
to Algebraic Multigrid).

The aim of PARASOL[9] is to bring together developers of industrial finite element
codes and experts in the area of parallel sparse matrix solvers in order to test innovative
solvers in an industrial environment for performance and robustness. Direct and iterative
parallel sparse matrix solvers will be developed and integrated into the PARASOL library.
Based on the Rutherford-Boeing sparse matrix file format specification [5], an interface spec-
ification was developed suited for parallel machines. This parallel interface is also able to
transport geometry and other information which might be needed by iterative solvers. Based
on this interface, parallel direct solvers as well as iterative sparse matrix solvers are being
developed by CERFACS, GMD, ONERA, RAL and University Bergen. The iterative solvers
use domain decomposition methods and hierarchical approaches. Industrial simulation codes
will be modified in such a way that they support the parallel interface and will evaluate the
different solvers on industrial test cases. In addition to the CFD-code POLYFLOW, PARA-
SOL involves the structural analysis codes MSC/NASTRAN and DNV SESAM as well as
the metal forming code INDEED from INPRO and ARC3D from APEX (simulation of com-
posite rubber metal part deformations).

Typical problem sizes for MSC/NASTRAN and DNV SESAM are in the order of106–
107 degrees of freedom. Metal forming and CFD codes require the solution of a sparse matrix
in each time step. This restricts the problem size to about105–106 in these cases.

2. MSC/NASTRAN p-element discretisations.The hierarchical solver developed by
GMD has been evaluated first on test cases generated by MSC/NASTRAN. MSC/NASTRAN
is a commercial structural analysis code used for the analysis and optimisation of the static
and dynamic behavior of structures. This includes a variety of products such as cars, air-
planes, satellites, ships and buildings. An overview of the technical basis of MSC/NASTRAN
is given in [7].

In order to support the user in achieving the desired accuracy with minimal effort, MSC
has extended the MSC/NASTRAN element basis by p-elements. For these elements, an error
estimator is provided and in several steps the order of each base function is adapted until the
desired accuracy is reached. Neighbouring elements might arrive at different order (even in
different directions). Solid elements, which may be used as p-elements, are the standard solid
elements (see also [7]):

1. HEXA: six sided solid element,
2. PENTA: five sisded solid element,
3. TETRA: four sided solid element.

MSC/NASTRAN supports adaptive p-elements for linear static as well as normal modes anal-
ysis and non-adaptive p-elements also for frequency response and transient analysis. For each
of the p-elements or for a group, it is possible to specify an initial and maximal order of the
base functions or to set a uniform p-order.

3. A hierarchical solver exploiting p-elements.A multigrid solver requires the def-
inition of a coarse grid, interpolation, restriction, coarse-grid problem and the smoothing
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procedures. In the context of unstructured grids for finite element applications, four different
approaches have been proposed:

1. Hierarchy of nested grids. A number of theoretical papers on hierarchical methods
assume that a sequence of grids is already given. Each finer grid is a strict refinement of a
coarser grid and therefore the vector space of the coarse grid base functions are a subset of
the vector space of the base functions related to the fine grid [4]. In practice, this approach
can only be applied, if the finite element solver uses some kind of adaptive refinement.

2. Merging finite elements. PLTMG [2, 3], is an example in which elements are
merged according to certain rules. In this way a non-nested sequence of grids may be gener-
ated. Edge swapping is used to further improve the coarsening.

3. Fictitious space method. The fine grid is projected onto an auxiliary regular grid
[8]. The solution on the regular grid by multigrid methods is used as a preconditioner in an
iterative gradient algorithm for the unstructured grid problem.

4. Algebraic Multigrid. A subset of the degrees of freedom and related matrix, interpo-
lation and restriction are defined solely on the basis of the matrix coefficients [6]. Algebraic
Multigrid has been successfully applied problems resulting from a single partial differen-
tial equation and promising results are also reported for matrices resulting from systems of
equations [12].
The approach used for MSC-NASTRAN p-elements is based on the first strategy, using the
following definitions:

1. Gh the discretisation of the computational domain;
2. Vp(Gh) vector space spanned by the base functions generated by the p-element

approach;
3. V1(Gh) vector space spanned by the linear base functions;
4. V 1

p (Gh) subspace of allf ∈ Vp(Gh), for whichf evaluates to 0 at the nodal points
of Gh.

We have

V1(Gh) ⊂ Vp(Gh), V1(Gh) ⊂ Vp(Gh) and span
(
V1(Gh) ∪ V 1

p (Gh)
)

= Vp(Gh).

In MSC/NASTRAN, the stiffness matrixK and vectorsu for p-elements are organised
as follows:

K =
[
K11 K1d

Kd1 Kdd

]
, u =

[
u1

ud

]
.

K11 andu1 correspond to the degrees of freedom related toV1(Gh),Kdd andud to those
of V 1

p (Gh). For the solution of

Ku = f,

two algorithms similar to those discussed by Axelsson [1] were implemented to improve the
approximation of the solutionu.

Method D:

uν,0 = uν

uν,1d = Kdd
−1
(
fd −Kd1u

ν,0
1

)
uν,21 = K11

−1
(
f1 −K1du

ν,1
d

)
uν,2d = Kdd

−1
(
fd −Kd1u

ν,2
1

)
uν+1 = uν,2
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Method R(n):

uν,0 = uν

for i = 1 to n do
uν,i1 = RELAX

(
K11,

(
f1 −K1du

ν,i−1
1

)
, uν,i−1

1

)
uν,id = RELAX

(
Kdd,

(
fd −Kd1u

ν,i
1

)
, uν,i−1
d

)
uν,n+1

1 = K11
−1 (f1 −K1du

ν,n
d )

uν,n+1
d = uν,nd
for i = n+ 2 to 2n+ 1 do

uν,id = RELAX
(
Kdd,

(
fd −Kd1u

ν,i
1

)
, uν,i−1
d

)
uν,i1 = RELAX

(
K11,

(
f1 −K1du

ν,i−1
1

)
, uν,i−1

1

)
uν+1 = uν,2n+1

Here,RELAX (K, f, ū) performs a smoothing step on the problemKu = f with ū as
initial approximation to the solution. Pointwise Gauß-Seidel iterations have been used for the
numerical experiments.

Method D-CG and method R(n)-CG denote algorithms, in which the respective proce-
dures have been used as the preconditioner for a conjugate gradient method.

Method D corresponds to a two-space method. In this case, three large systems of equa-
tions have to be solved in each iteration step. Because this is very expensive, this method has
been used only for comparisons with method R(n). Methods R(n) and R(n)-CG are called
p-solvers in the rest of this paper.

FIG. 4.1.BCELL test case.

4. Numerical results for a model problem. Figure 4.1 shows the grid for the 3D
BCELL test case, in which HEXA p-elements are used to approximate a cube. The four
corners at the bottom are fixed, and parallel forces are applied to the top corners of the cube.
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TABLE 4.1
BCELL test cases.

test case p-level size linear dofs total dofs non-zeros
BCELL4.2 2 fixed 4× 4× 4 363 1263 153153
BCELL8.2 2 fixed 8× 8× 8 2175 8007 1153991
BCELL8.2a 2 adaptive 8× 8× 8 2175 7995 675393

TABLE 4.2
Reduction factors for the BCELL test cases.

test case method
D R(1) R(2) R(3) R(4) R(5)

BCELL4.2 .876 .860 .745 .702 .666
BCELL8.2 .865 .850 .740 .703 .684 .673
BCELL8.2a .877

Table 4.1 shows the basic properties of the different variants of the test case. The small differ-
ence between the number of degrees of freedom for the cases with fixed and adaptive p-level
2 is due to bubble functions, which are used in addition to the linear base functions for those
elements, which remain linear. A factor 4 between the linear degrees of freedom and the total
degrees of freedom for the BCELL8.2 case results in a reduction of about 10 of the effort for
an LU decomposition.

Tables 4.2 and 4.3 show performance results for the BCELL test cases. For methods D
and R(n), in Table 4.2 (as well as in the other tables in this paper), the reduction factor for one
iteration of thel2-norm of the residual after 100 iteration is given. In the case of CG methods
(cf. Table 4.3), the number of iterations to reduce thel2-norm of the residual by 6 orders
of magnitude is given. The results for BCELL4.2 and BCELL8.2 indicate that the reduction
factor and the number of CG iterations is independent of the grid size. The results show also
that R(n)-CG is much more efficient than R(n) for this test case. (R(n) needs 73 iterations
for 6 digits residual reduction.) A comparison with D-CG and D shows that some coarse-
grid frequencies benefit from CG-acceleration. The solution of test case BCELL8.2a by R(n)
requires about twice as many iteration steps as BCELL8.2. A comparison with D-CG shows
that in this case the smoothing is not as effective as before. The reason for this deterioration
might be those elements which interface second order elements with first order elements.

In order to improve the smoothing, experiments have been performed using block re-
laxation. 3x3 blocks and 15x15 blocks ensure that all dofs related to one node are treated
together. However, the results in Table 4.4 show no improvements. Block relaxation involv-
ing all dofs related to the same element might yield some improvement.

The behavior of the p-solver for tetrahedral elements was evaluated with the TET5000-
4-P test case. For this test case, each cube of the BCELL geometry is divided into 5 TETRA
elements and a fixed order of 2 was requested for all elements. Table 4.5 shows that in this
case the relation between the total number of dofs and the linear part is even more favourable.
R(1)-CG requires 19 iterations like in the BCELL8.2 case.

5. Industrial test case. In addition to the model problems, one practical case has been
considered. The KNUCK-MOD-P uses 454 HEXA and 121 PENTA elements. Figure 6.1
shows the geometry of this test case. The number of R(1)-CG iterations is larger compared
to the BCELL8.2a problem (c.f. Table 5.1). This most likely results from the presence of
distorted finite elements that are typically found in discretisations of the industrial designs.
The methods intended for alleviation of this difficulty are currently under investigation.
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TABLE 4.3
Number of iterations for the BCELL test cases.

test case method
D-CG R(1)-CG R(2)-CG R(3)-CG R(4)-CG R(5)-CG

BCELL4.2 20 19 14 12 11
BCELL8.2 20 19 14 12 11 11
BCELL8.2a 20 53 30 23 20 17

TABLE 4.4
Number of iterations for the BCELL test cases using block Gauß- Seidel relaxation as smoothener with various

block sizes.

test case block size R(1)-CG R(3)-CG
BCELL8.2 1× 1 19 12
BCELL8.2 3× 3 19 11
BCELL8.2a 1× 1 53 23
BCELL8.2a 15 × 15 54 23

6. Performance comparison.The p-solver is implemented in Fortran 90 and uses the
DGSF routine from the IBM ESSL library for sparse matrix decomposition. This solver is
compared to MSC/NASTRAN (version 69) solvers on the basis of elapsed time on a dedicated
IBM SP-2 thin2 node with 512 Mbytes of main memory. For all solvers the data fits into
main memory and therefore swapping does not influence the computing times. Therefore,
it should be mentioned that the reduced memory requirements of iterative solvers are not
reflected. Also, highly optimised MSC/NASTRAN solvers are being compared to a prototype
implementation of the p-solver. The measurements of Table 6.1 show that already for these
small test cases the prototype implementation of the p- solver outperforms all tested iterative
MSC solvers as of version 69. Only in the case of the KNUCK-MOD-P test case is the MSC
direct solver faster.

For the p-solver, the time for the preparation and all iterations is given. The major part of
the preparation time is spent in the DGSF sparse matrix decomposition routine; for example
8 seconds out of 13 for the KNUCK-MOD-P benchmark. The fact that the MSC direct solver
needs only 13 seconds for a problem with 4 times as many degrees of freedom shows the
quality of the MSC direct solver implementation and the improvement potential of the IBM
ESSL library routine.

7. Summary. The results show that a hierarchical solver can efficiently treat second
order sparse matrix problems. There is a difference of a factor of 4 in the effort which is
needed for model problems and realistic test cases. In any case, the p-element solvers were
able to outperform actual MSC/NASTRAN iterative solvers (as of version 69) on the models
used for these tests.

With respect to parallelism, the p-solver is already a substantial improvement. The relax-
ation methods are fully parallelizable. The part of the direct solver will take only a fraction
of the computing time, if efficient implementations are used or the direct solver is replaced
by an iterative solver. Further improvements of the solver will therefore include advanced
relaxation technology and the use of iterative (multigrid) solvers also for the linear problem.
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TABLE 6.1
Elapsed times on a IBM SP-2 thin2 node (512 Mbytes of memory).

test case solver elapsed times (sec)
total preparation iteration

TETRA-5000-4-P p-solver 68 49 18
MSC direct 216

MSC PBDJ (iterative) 75
KNUCK-MOD-P p-solver 46 13 34

MSC direct 13
MSC PBCJ (iterative) 75
MSC PBDJ (iterative) 93
MSC PBDC (iterative) 69

FIG. 6.1.Geometry of the KNUCK-MOD-P test case.


