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ASYMPTOTIC STABILITY OF A 9-POINT MULTIGRID ALGORITHM FOR
CONVECTION-DIFFUSION EQUATIONS ∗

JULES KOUATCHOU†

Abstract. We consider the solution of the convection-diffusion equation in two dimensions by a compact high-
order 9-point discretization formula combined with multigrid algorithm. We prove theε-asymptotic stability of the
coarse-grid operators. Two strategies are examined. A method to compute the asymptotic convergence is described
and applied to the multigrid algorithm.
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1. Introduction. Consider the convection-diffusion equation

Lεu ≡ −ε4u+ p(x, y)ux + q(x, y)uy = f(x, y), (x, y) ∈ Ω,(1.1)

wherep(x, y) andq(x, y) are functions ofx andy andε > 0, andΩ is a convex domain.

We are mainly interested in the caseε � 1. In applications, many different multigrid
methods for solving convection-dominated problems are used. In general, the “standard”
multigrid approach used for a diffusion problem deteriorates when applied to convection-
dominated problems. For these types of problems, artificial viscosity are in general intro-
duced to obtain convergence.

de Zeeuw and van Asselt [8] introduced some strategies for choosing the artificial vis-
cosity on the coarse grids in the multigrid algorithm (MGA). They show analytically and
through numerical experiments that, for a proper choice of the artificial viscosity term, the
convergence of MGA is obtained.

Gupta, Manohar and Stephenson [1] proposed a4th order compact 9-point finite differ-
ence scheme (NPF). Gupta et al. [2], Zhang [10] and Kouatchou [6] used NPF combined
with MGA ( NPF-MGA) to solve (1.1). Their numerical experiments show that the method
converges for any values of the cell Reynolds numbers.

The focus of this article is to present a proof of the stability of NPF-MGA. The analysis
is based on the constant coefficient case. This paper is organized as follows. In Section 2 we
present NPF and prove theε-asymptotic stability of NPF-MGA for two coarse grid strategies.
A method to approximate the asymptotic convergence rate is described in Section 3 and in
Section 4 we briefly show how to implement the coarse grid strategies introduced. In Section
5 numerical experiments are presented. Finally, some conclusions are formulated in Section
6.

2. Stability Analysis. In this section we derive theoretical results for the constant co-
efficient case by local mode analysis neglecting the boundaries. We first present the 9-point
discretization scheme for (1.1) with constant functionsp andq.
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2.1. The Finite Difference Scheme.We consider the following 9-point compact sten-
cil: [

α6 α2 α5
α3 α0 α1
α7 α4 α8

]
= 1
h2

[
−ε− h

2 (p − q) + h2
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2 −ε + h
2 (p − q) + h2

4ε pq

]
,

(2.1)

whereh is the uniform meshwidth in thex andy directions. This fourth-order scheme was
introduced by Gupta et al. [1]. The scheme was shown in [2, 6, 10] to be stable and to give
accurate solutions.

2.2. Some Definitions.We consider the MGA withl + 1 levels,0, · · · , l, and uniform
square meshes on each level with meshwidthsh0 andhk = hk−1/2 for k = 1, · · · , l. Let
{Lk,lε }k=0,···,l be a sequence of discretizations ofLε. For the constant-coefficient equation
we let L̂ε(ω), ω ∈ R2, be the symbol (or the characteristic form) of the continuous operator
Lε. Let L̂k,lε (ω), ω ∈ Tk ≡ [− π

hk
, πhk ] × [− π

hk
, πhk ], be the symbol of the discrete operator

Lk,lε .
When a symbol is small, the corresponding operator is unstable in the sense that small

changes in the right hand side cause great changes in the solution. Depending on the boundary
conditions the continuous problem can be well posed. Therefore we allow the symbol of
the discrete operator to be small only for those frequencies for which the symbol of the
continuous operator is small. This idea is formalized in the following definitions.

DEFINITION 2.2.1. The ε-asymptotic stability degree ofLε with respect to the mode
eiωx is the quantitylimε→0 |L̂ε|.

DEFINITION 2.2.2.Theδ-domain ofLε is the set of allω ∈ R2 for whichlimε→0 |L̂ε| >
δ > 0.

DEFINITION 2.2.3. Theε-asymptotic stability degree ofLk,lε with respect to the mode
eiωx is the quantitylimε→0 |L̂k,lε |.

DEFINITION 2.2.4.Theδ-domain ofLk,lε is the set of allω ∈ Tk for whichlimε→0 |L̂k,lε | >
δ > 0.

DEFINITION 2.2.5. A strategy for coarse-grid operators is a set{L0
ε , L

1
ε , · · · , Llε, · · ·}

withLlε ≡ {L0,l
ε , · · · , Ll,lε }

DEFINITION 2.2.6.Let S be a strategy for coarse-grid operators, then S isε-asymptotically
stable with respect toLε if for everyδ0 > 0, there exists aδ1 > 0 such that for all0 ≤ k ≤ l,
we have theδ1-domain ofLk,lε ⊃ δ0-domain ofLε ∩ Tk.

REMARK 2.2.1. To define a strategy (as in Definition 2.2.5) is equivalent to determine
in the multigrid algorithm the coarse grid operators on all the grid levels.

In order to avoid residual transfers in the MGA that are useless due to oscillating solu-
tions, we require that a strategy isε-asymptotically stable with respect toLε. We need also
a relaxation method for which the smoothing factors on all grids are less than1. We then
expect rapid convergence of the MGA.

If the smoother is not very good (smoothing number closed to1 for example), the restric-
tion operator may transfer on the coarse grid bad “components” of the residual (components
related to high frequency modes that are supposed to be removed on the fine grid). These
components will appear in the right hand side of the coarse grid equation. If we do not
have theε-asymptotic stability property the coarse grid equation may transfer to the fine grid
erroneous solution that will badly affect the convergence of MGA.

Another approach would be to admit anε-asymptotically unstable strategy and require
that the relaxation method is such that bad components in the residuals are sufficiently smoothed.
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This poses very strong demand upon the relaxation method. But no smoother can be made
good enough to compensate for the poor coarse grid correction if the strategy is notε-
asymptotically stable and the number of grid levels is increasing. If the coarse-grid operators
are notε-asymptotically stable then, at a (very) coarse grid, a small perturbation of the right-
hand side of the linear system to be solved may produce a huge perturbation of the solution,
an effect that is not present for the fine grid problem (nor for the continuous problem). In the
limit-case, roughly speaking, the kernel of the matrix-operator is not empty, in contrast with
the empty kernel of the matrix-operator at the finest grid.

2.3. Stability of NPF-MGA. In this section, we introduce two coarse grid strategies for
NPF-MGA and prove that they areε-asymptotically stable with respect toLε. We start with
some definitions.

DEFINITION 2.3.1.LetLε,k,l be the NPF discretization ofLε with meshwidthhk. Define
the following strategies:
StrategyS1 :

Lk,lε = Lε,k,l, k = 0, · · · , l.(2.2)

StrategyS2 :

Ll,lε = Lε,l,l, L
k,l
ε ≡ Rk,k+1L

k+1,l
ε Pk+1,k, k = l− 1, · · · , 0,(2.3)

whereRk,k+1 andPk+1,k are the restriction and the prolongation operators, repsectively.
StrategyS1 falls into the category of multigrid algorithms called discretization coarse

grid approximation (DCA) whereas strategyS2 falls into the Galerkin coarse grid approxi-
mation (GCA). In [7, p. 82] a comparison of DCA and GCA is presented.

WhenRk,k+1 andPk+1,k are fixed (independent of the discretization) and are transposes
of each other,S2 is the standard Galerkin coarse grid approximation. When they are matrix-
dependent and transposes of each other,S2 corresponds to the matrix-dependent prolongation
and restriction method [9]. This method performs better than the standard Galerkin coarse
grid approximation.

In S1, many choices are possible for the grid transfer operators. Gupta et al. [2] found
that the choice of full-weighting (as restriction) and bilinear prolongation operator may lead
to divergence of the NPF-MGA whenε vanishes. They propose instead the scaled injection
operator (as restriction) and bilinear prolongation. Their numerical experiments suggest that
we regain convergence with this approach. In [4], we compare the performances ofS1 (with
scaled injection) andS2 (with matrix-dependent prolongation and restriction) using NPF-
MGA. We found that both methods converge for anyε and give comparable results. Since
numerical experiments suggest thatS2 converges wheneverS1 does, we state without proof
the following conjecture:

CONJECTURE2.3.1. If S1 is ε-asymptotically stable thenS2 is alsoε-asymptotically
stable.
We will now focus our attention onS1 only.

DEFINITION 2.3.2.The characteristic form ofLk,lε is given by

L̂k,lε (ω) = α0 + (α1 + α3) cosω1hk + (α2 + α4) cosω2hk+
(α5 + α7) cos (ω1 + ω2)hk + (α6 + α8) cos (ω1 − ω2)hk

+ i[(α1 − α3) sinω1hk + (α2 − α4) sinω2hk+
(α5 − α7) sin (ω1 + ω2)hk + (α6 − α8) sin (ω2 − ω1)hk]

(2.4)
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and the characteristic form ofLε reads

L̂ε(ω) = ε(ω2
1 + ω2

2) + i(pω1 + qω2).(2.5)

Before giving a proof of the asymptotic stability, we show the following result:
LEMMA 2.1. Let θ1 andθ2 be any real numbers in[−π, π] and leta, b be any numbers

such thata2 + b2 = 1. Assume thatθ1, θ2, a, b satisfy the relation

|aθ1 + bθ2| > 0.

Then we have

Ga,b(θ1, θ2) = 1 + ab sin θ1 sin θ2 − a2 cos θ1 − b2 cos θ2 > 0.

Proof. Assumeb = 0. Thena = 1 andG1,0(θ1, θ2) = 1 − cos θ1. But |aθ1 + bθ2| =
|θ1| > 0, and thereforeG1,0(θ1, θ2) > 0. The proof fora = 0 andb = 1 is similar/.

We now consider the case where botha 6= 0 andb 6= 0. Let us find the maximum or
minimum ofGa,b(θ1, θ2).

∂Ga,b
∂θ1

= ab cos θ1 sin θ2 + a2 sin θ1 = 0,
∂Ga,b
∂θ2

= ab cos θ2 sin θ1 + b2 sin θ2 = 0.

After simplifications we get

b cos θ1 sin θ2 + a sin θ1 = 0,
(1− cos θ1 cos θ2) sin θ2 = 0.

The above equalities are true if and only ifθ1 = 0, ±π andθ2 = 0, ±π. It is easy to check
that the minimum ofGa,b is at (0, 0) (Ga,b(0, 0) = 0). But (0, 0) can not be considered for
|aθ1 + bθ2| > 0. ThereforeGa,b(θ1, θ2) > 0.

THEOREM 2.2. The strategyS1 is ε-asymptotically stable.
Proof. We have to prove that for allδ0 > 0, there existsδ1 > 0 such thatk, l, 0 ≤ k ≤ l

δ0 − domain of Lε ∩ Tk ⊂ δ1 − domain of Lk,lε . In fact we will show that, given an
arbitraryδ0, δ1 can be any positive number. Without loss of generality we can introduce the
normalizationp2 + q2 = 1.

For anyδ0 > 0, ω = (ω1, ω2) ∈ δ0− domain ofLε ∩Tk implies (by Def. 2.2.2 and Eq.
(2.5))

0 < δ0hk < |pω1hk + qω2hk|.

It follows from ω ∈ Tk ≡ [− π
hk
, πhk ] × [− π

hk
, πhk ] thenhkω1, hkω2 are in[−π, π]. Using

(2.4) we have

lim
ε→0
|L̂k,lε (ω)| > lim

ε→0
|<{L̂k,lε (ω)}|

= lim
ε→0

∣∣∣∣ α0 + (α1 + α3) cosω1hk + (α2 + α4) cosω2hk
+(α5 + α7) cos (ω1 + ω2)hk + (α6 + α8) cos (ω1 − ω2)hk

∣∣∣∣
=

1
h2
k

lim
ε→0

∣∣∣∣∣ −(20ε+ p2h2
k

ε + q2h2
k

ε ) + 4(2ε+ p2h2
k

4ε ) cosω1hk + 4(2ε+ q2h2
k

4ε ) cosω2hk

+2(ε+ pqh2
k

4ε ) cos (ω1 + ω2)hk + 2(ε− pqh2
k

4ε ) cos (ω1 − ω2)hk

∣∣∣∣∣
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= lim
ε→0

1
ε

∣∣∣∣ −p2 − q2 + p2 cosω1hk + q2 cosω2hk
+pq

2 cos (ω1 + ω2)hk − pq
2 cos (ω1 − ω2)hk

∣∣∣∣
= lim

ε→0

1
ε
|1− p2 cosω1hk − q2 cosω2hk + pq sinω1hk sinω2hk|

= lim
ε→0

1
ε
Gp,q(ω1hk, ω2hk) (Gp,q > 0 by the Lemma)

= ∞

This shows that, for anyω ∈ δ0 − domain of Lε ∩ Tk, limε→0 |L̂k,lε (ω)| = ∞ > δ1 (for
anyδ1 > 0) for all k such that0 ≤ k ≤ l. Thereforeω ∈ δ0 − domain of Lk,lε .

Using Conjecture 2.3.1, we can state the Corollary:
COROLLARY 2.3. The strategyS2 is ε-asymptotically stable.

3. Numerical Approximation of the Asymptotic Rate of Convergence.We describe
in this section the method used to determine the asymptotic rate of convergence of the multi-
grid algorithm (MGA). Let

Ahuh = fh.(3.1)

be a discretization of (1.1). The MG algorithm used to solve (3.1) can be described as

u0
h given start approximation,
ui+1
h = Mhu

i
h +B−1

h fh, i = 0, 1, . . .
(3.2)

with amplification matrixMh = Ih − B−1
h Ah. Ih is the identity matrix, andB−1

h is an
approximate inverse ofAh, determined by coarse-grid smoothing operators, prolongation
and restriction. We supposeAh andBh to be nonsingular. For the erroreih = uh − uih,
i = 0, 1, . . ., the following relation holds:

ei+1
h = Mhe

i
h.(3.3)

The convergence behavior of MGA is determined by the spectral radius ofMh, ρ(Mh).
DEFINITION 3.0.3.The asymptotic convergence rate of the MGA (3.2) is− log10 ρ(Mh).

An approximation ofρ(Mh) given by

ρm,k =

(
||Mm+k

h e0
h||2

||Mm
h e

0
h||2

)1/k

=

(
||em+k
h ||2
||emh ||2

)1/k

.(3.4)

for m andk large; see [[8]]. As the true solution must be known in advance to compute the
error, we will instead use the formula

ρ̃m,k =

(
||rm+k
h ||2
||rmh ||2

)1/k

(3.5)

to estimate the convergence of the MGA. Hererih is the residual. As explained in [3],ρm,k
is preferable to approximate the asymptotic convergence rate because it approaches more
smoothly thañρm,k the asymptotic rate.
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4. Implementation of the two Strategies.The proof of the asymptotic stability prop-
erty does not involve the smoother (used for relaxation), the grid transfer operators and does
not show how fast NPF-MGA converges. The asymptotic stability property is not sufficient
to guarantee the convergence of MGA, because the convergence depends also on the robust-
ness of the smoother and the appropriate choice of the restriction (R) and prolongation (P)
operators.

For strategyS1, the scaled injection as restriction operator (R) and the bi-linear inter-
polation as prolongation operator (P) is the choice that displays the best convergence rate
or even that guarantee convergence [2, 6, 10] for any value ofε and the coefficients. The
multigrid implementation ofS1 is found in [2, 5].

The scaled injection can be described as follows

R = βI,

whereβ is a positive constant andI is the injection operator. Here on all the grid levels, the
fine grid residuals are directly injected to the corresponding coarse grid points weighted by
the constantβ. One of the main challenge of this technique is to find for a particular problem
the optimalβ, i.e., the one that gives the best convergence rate.

For strategyS2, the matrix-dependent prolongation and restriction technique is the best
choice possible. de Zeeuw provides detailed informations on how to implement this startegy
for a general 9-point scheme [9]. This approach is based on an automatic adaptation of
prolongation and restriction operators to the discrete problem to be solved.

In [4] we compareS1 andS2 whenp andq are constant. The numerical experiments
show thatS1 (with the scaled injection operator forβ = 2) andS2 (with the matrix-dependent
approach) have comparable results butS2 is more robust.

In the next section, we present numerical approximations of the asymptotic rate of con-
vergence ofS1 andS2 on a constant coefficient problem. These approximations are calculated
for different values ofε and different convection directions.

5. Numerical Results. In this section we give the results of numerical expriments ap-
plied to both strategiesS1 andS2. We consider a constant coefficient problem with Dirichlet
boundary conditions.

− ε4u+ cosαux + sinαuy = f(x, y), (x, y) ∈ Ω = [−0.5, 0.5]× [−0.5, 0.5],(5.1)

where the exact solution isu(x, y) = 2x(x− 1)(cos (2πy)− 1).
For our computations, we choosem = 10 andk = 20 and consider two smoothers: red-
black Gauss-Seidel (RBGS) and a horizontal line follows by a vertical line Gauss-Seidel
(XY-LINE). In the XY-LINE smoother, we first update simultaneously the unknowns corre-
sponding to horizontal lines (x-direction) in the grid and we carry out the same process for
unknowns corresponding to vertical lines (y-direction).

First we present in Table 5.1, the smoothing number of the XY-LINE relaxation for
different values ofε, α and mesh sizeh = 1/N . We observe that the smoothing number
is always less than 1. It is important to note that it is impossible to compute the smoothing
number for RBGS (when our 9-point formula is used) since red points cannot be decoupled
from black points.

A W-cycle is applied to both strategiesS1 andS2. In S2 we employ matrix-dependent
prolongations and restrictions technique. InS1, we utilizeβ = 2 as the weight (injection
factor) in the scaled injection.

ForS1 andS2 we calculate the asymptotic rates as function ofα, the mesh sizeh when
ε = 10−6. The results are summarized in Table 5.2 and Table 5.3. We observe that the
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α
ε 0 π

6
π
4

π
3

π
2

5π
7

11π
9

9π
5 N

10−6 0 .46 .31 .46 0 .37 .36 .40 8
10−7 0 .46 .31 .46 0 .37 .36 .40

10−6 0 .46 .31 .46 0 .37 .36 .40 16
10−7 0 .46 .31 .46 0 .37 .36 .40

10−6 0 .46 .31 .46 0 .37 .36 .40 32
10−7 0 .46 .31 .46 0 .37 .36 .40

TABLE 5.1
Smoothing numbers for the horizontal line follows by the vertical line Gauss-Seidel relaxation for different

values ofε,α and mesh sizeh = 1/N .

asymptotic rates are positive for anyα andh. In additionS2 seems to display the best result
in particular forh = 1/16, 1/32.

α
π
6

π
4

π
3

5π
7

11π
9

9π
5 N

RBGS .48 .49 .49 .48 .49 .49 8
XY-LINE .43 .44 .36 .41 .42 .41

RBGS .30 .30 .30 .29 .30 .30 16
XY-LINE .34 .31 .37 .34 .33 .33

RBGS .19 .20 .19 .19 .19 .19 32
XY-LINE .17 .16 .18 .17 .16 .16

TABLE 5.2
StrategyS1, ε = 10−6. Approximation of the asymptotic convergence rate for different values ofα and mesh

sizeh = 1/N .

α
π
6

π
4

π
3

5π
7

11π
9

9π
5 N

RBGS .42 .53 .48 .52 .53 .53 8
XY-LINE .21 .26 .20 .28 .27 .26

RBGS .31 .32 .30 .37 .32 .33 16
XY-LINE .41 .42 .41 .41 .43 .43

RBGS .20 .19 .17 .17 .18 .19 32
XY-LINE .36 .32 .35 .31 .31 .31

TABLE 5.3
StrategyS2, ε = 10−6. Approximation of the asymptotic convergence rate for different values ofα and mesh

sizeh = 1/N .

For S1, our experiments were done forβ = 2. As stated in [6, 10],β is a function
(increasing and bounded) of the cell Reynolds number. In particular, for a givenε andh (also
thesup over the domainΩ of the coefficients in Eq. (1.1)), there exists a value ofβ that yields
the best asymptotic rate. Unfortunately the optimalβ is problem dependent and depends on
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the smoother. At least we can state that, for a given cell Reynolds number, an estimate of the
optimal injection factorβ can be seen by

• finding the bestω in the SOR method, or
• finding the appropriate artificial viscosity coefficient to be introduced in Eq. (1.1).

Given the cell Reynolds number, to obtain the optimalβ can be seen as
• finding the bestω in the SOR method,
• or finding the appropriate artificial viscosity coefficient to be introduced in Eq. (1.1)

whenε is small.
For the caseα = π

3 , h = 1
32 andε = 10−6, we plot for strategyS1 the asymptotic rate as

a function of the the injection factorβ when RBGS and XY-LINE are employed. The graph
is presented in Figure 5.1. The best rates are obtained forβ ≈ 3.0 for RBGS and forβ ≈ 6.0
for XY-LINE. These rates (found for the optimalβ) are better than the corresponding ones
obtained withS2.
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FIG. 5.1. StrategyS1 : asymptotic rate as function of the injection factorβ whenh = 1/32, α = π
3

.

REMARK 5.0.1. Whenε is small, for the constant coefficient problem presented here,
the optimalβ was found to be3.0 for RBGS and6.0 for XY − LINE. The picture looks
different for variable coefficient problems. In fact, the optimalβ is in general a value between
1 and2 for RBGS and a value between4 and5 for XY-LINE [5].

REMARK 5.0.2.The introduction of artificial viscosity affects the accuracy of the solu-
tion but this is not the case for the injection factorβ. All theβ for which the convergence of
the multigrid algorithm is obtained, give the same accuracy. In addition, the accuracy ob-
tained from the scaled injection operator is the same as that of any other restriction operator
(half-injection, full-weighting, half-weighting) [2, 6].

6. Conclusion. In order to solve the convection-diffusion equation in two dimension by
a multigrid algorithm (MGA), we propose a 9-point compact formula (NPF). Two strategies
for coarse-grid operators were considered and shown to beε-asymptotically stable. Numerical
experiments confirmed this stability property.
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