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ASYMPTOTIC STABILITY OF A 9-POINT MULTIGRID ALGORITHM FOR
CONVECTION-DIFFUSION EQUATIONS *

JULES KOUATCHOU

Abstract. We consider the solution of the convection-diffusion equation in two dimensions by a compact high-
order 9-point discretization formula combined with multigrid algorithm. We prove:thgymptotic stability of the
coarse-grid operators. Two strategies are examined. A method to compute the asymptotic convergence is described
and applied to the multigrid algorithm.
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1. Introduction. Consider the convection-diffusion equation

(1.1) Leu=—eAu+p(x,y)ue +qlz,y)uy, = f(z,y), (z,y) €,

wherep(z,y) andg(x, y) are functions ofr andy ande > 0, ands2 is a convex domain.

We are mainly interested in the case« 1. In applications, many different multigrid
methods for solving convection-dominated problems are used. In general, the “standard
multigrid approach used for a diffusion problem deteriorates when applied to convection-
dominated problems. For these types of problems, artificial viscosity are in general intro-
duced to obtain convergence.

de Zeeuw and van Asselt [8] introduced some strategies for choosing the artificial vis-
cosity on the coarse grids in the multigrid algorithm (MGA). They show analytically and
through numerical experiments that, for a proper choice of the artificial viscosity term, the
convergence of MGA is obtained.

Gupta, Manohar and Stephenson [1] proposétt arder compact 9-point finite differ-
ence scheme (NPF). Gupta et al. [2], Zhang [10] and Kouatchou [6] used NPF combined
with MGA ( NPF-MGA) to solve (1.1). Their numerical experiments show that the method
converges for any values of the cell Reynolds numbers.

The focus of this article is to present a proof of the stability of NPF-MGA. The analysis
is based on the constant coefficient case. This paper is organized as follows. In Section 2 we
present NPF and prove theasymptotic stability of NPF-MGA for two coarse grid strategies.
A method to approximate the asymptotic convergence rate is described in Section 3 and in
Section 4 we briefly show how to implement the coarse grid strategies introduced. In Section
5 numerical experiments are presented. Finally, some conclusions are formulated in Section
6.

2. Stability Analysis. In this section we derive theoretical results for the constant co-
efficient case by local mode analysis neglecting the boundaries. We first present the 9-point
discretization scheme for (1.1) with constant functiprasdg.
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2.1. The Finite Difference SchemeWe consider the following 9-point compact sten-

cil:
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whereh is the uniform meshwidth in the andy directions. This fourth-order scheme was
introduced by Gupta et al. [1]. The scheme was shown in [2, 6, 10] to be stable and to give
accurate solutions.

2.2. Some Definitions.We consider the MGA withi + 1 levels,0, - - -, I, and uniform
square meshes on each level with meshwidihandhy, = hy_1/2 fork = 1,---,1. Let
{L’;J}k:O,...,l be a sequence of discretizationslof. For the constant-coefficient equation
we Ietlie(w), w € R?, be the symbol (or the characteristic form) of the continuous operator
L. Let LF (W), w € Ty = | x [=7=, 1], be the symbol of the discrete operator
L,

When a symbol is small, the corresponding operator is unstable in the sense that small
changes in the right hand side cause great changes in the solution. Depending on the boundary
conditions the continuous problem can be well posed. Therefore we allow the symbol of
the discrete operator to be small only for those frequencies for which the symbol of the
continuous operator is small. This idea is formalized in the following definitions.

~ DEFINITION 2.2.1. The e-asymptotic stability degree df. with respect to the mode
el is the quantityim, ¢ | Le|.

DEFINITION 2.2.2.Thed-domain ofL. is the set of all, € R for whichlim, ¢ |L| >
4> 0.

~ DEFINITION 2.2.3. Thee-asymptotic stability degree df®! with respect to the mode
elv is the quantityim, o |L*|.

DEFINITION 2.2.4.Thes-domain ofZ.*! is the set of allo € T}, for whichlim, o |L*!| >
0> 0.

DEFINITION 2.2.5. A strategy for coarse-grid operators is a sgt?, L, -, L, .-}
with Lt = {LO} ... b}

DEFINITION 2.2.6.Let S be a strategy for coarse-grid operators, thenesdsymptotically
stable with respect td.. if for everyd, > 0, there exists @; > 0 such thatforalld < k </,
we have thé;-domain ofL’§=l D dg-domain ofL, N 7.

REMARK 2.2.1.To define a strategy (as in Definition 2.2.5) is equivalent to determine
in the multigrid algorithm the coarse grid operators on all the grid levels.

In order to avoid residual transfers in the MGA that are useless due to oscillating solu-
tions, we require that a strategydasasymptotically stable with respect fo. We need also
a relaxation method for which the smoothing factors on all grids are lesslthave then
expect rapid convergence of the MGA.

If the smoother is not very good (smoothing number closedftw example), the restric-
tion operator may transfer on the coarse grid bad “components” of the residual (components
related to high frequency modes that are supposed to be removed on the fine grid). These
components will appear in the right hand side of the coarse grid equation. If we do not
have thes-asymptotic stability property the coarse grid equation may transfer to the fine grid
erroneous solution that will badly affect the convergence of MGA.

Another approach would be to admit aasymptotically unstable strategy and require
that the relaxation method is such that bad components in the residuals are sufficiently smoothed.

s s
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This poses very strong demand upon the relaxation method. But no smoother can be made
good enough to compensate for the poor coarse grid correction if the strategy ds not
asymptotically stable and the number of grid levels is increasing. If the coarse-grid operators
are note-asymptotically stable then, at a (very) coarse grid, a small perturbation of the right-
hand side of the linear system to be solved may produce a huge perturbation of the solution,
an effect that is not present for the fine grid problem (nor for the continuous problem). In the
limit-case, roughly speaking, the kernel of the matrix-operator is not empty, in contrast with
the empty kernel of the matrix-operator at the finest grid.

2.3. Stability of NPF-MGA. In this section, we introduce two coarse grid strategies for
NPF-MGA and prove that they areasymptotically stable with respect fo. We start with
some definitions.

DEFINITION 2.3.1.Let L, 1, ; be the NPF discretization df. with meshwidtth,. Define
the following strategies:

StrategyS; :

(2.2) LA = Legy, k=0,---,1.

StrategysS: :

(2.3) LM =Leyy, LM = Ry ot LEP Y Py g, k=1—1,---,0,

whereRy, ,+1 and Py 1, are the restriction and the prolongation operators, repsectively.

StrategysS; falls into the category of multigrid algorithms called discretization coarse
grid approximation (DCA) whereas strate@y falls into the Galerkin coarse grid approxi-
mation (GCA). In [7, p. 82] a comparison of DCA and GCA is presented.

WhenRy, +1 andPy11 i, are fixed (independent of the discretization) and are transposes
of each others; is the standard Galerkin coarse grid approximation. When they are matrix-
dependent and transposes of each otfiecprresponds to the matrix-dependent prolongation
and restriction method [9]. This method performs better than the standard Galerkin coarse
grid approximation.

In 81, many choices are possible for the grid transfer operators. Gupta et al. [2] found
that the choice of full-weighting (as restriction) and bilinear prolongation operator may lead
to divergence of the NPF-MGA whenvanishes. They propose instead the scaled injection
operator (as restriction) and bilinear prolongation. Their numerical experiments suggest that
we regain convergence with this approach. In [4], we compare the performanggeévith
scaled injection) and, (with matrix-dependent prolongation and restriction) using NPF-
MGA. We found that both methods converge for angnd give comparable results. Since
numerical experiments suggest tiatconverges wheneveh; does, we state without proof
the following conjecture:

CONJECTUREZ2.3.1. If & is e-asymptotically stable thef is alsoe-asymptotically
stable.

We will now focus our attention o&; only.
DEFINITION 2.3.2.The characteristic form of*! is given by

f/’:=l(w) = ap+ (a1 + ag) coswrhy + (a2 + aq) coswahi+
(a5 + ar) cos (w1 + wa)hi + (a6 + asg) cos (w1 — wa)hy,
(2.4) ) ) .
i[(an — ag) sinwihg + (a2 — ag) sinwahy+
(a5 — a7)sin (w1 + wa)hy + (g — ag) sin (w2 — wi)hg]

_|_
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and the characteristic form df, reads

(2.5) Le(w) = e(w] +w}) +i(pwr + qws).

Before giving a proof of the asymptotic stability, we show the following result:
LEMMA 2.1. Let#; andd, be any real numbers if-7, 7| and leta, b be any numbers
such that? + b? = 1. Assume thafl;, 65, a, b satisfy the relation

|a91 + b92| > 0.
Then we have
Gap(61,02) =1+ absinb; sinfy — a® cosf; — b2 cosfy > 0.
Proof. Assumeb = 0. Thena = 1 andG; ¢(61,602) = 1 — cosf;. But |af; + bbs| =
|61| > 0, and therefor&s, o(61, 62) > 0. The proof fora = 0 andb = 1 is similar/.

We now consider the case where beth4 0 andb # 0. Let us find the maximum or
minimum of Gy (61, 62).

agg“l’b = abcosfsinfy +a®sinf; = 0,
dgg;*b = abcosfysinfy + b?sinf, = 0.
After simplifications we get
bcosf;sinfy +asinf; = 0,

(1 — cos By cosby) sin b 0.

The above equalities are true if and onlyif= 0, +x andf, = 0, +x. Itis easy to check
that the minimum of5, ; is at(0,0) (G,,5(0,0) = 0). But (0,0) can not be considered for
|afy + 62| > 0. ThereforeG, (61, 02) > 0.0

THEOREM 2.2. The strategys; is e-asymptotically stable.

Proof. We have to prove that for afly > 0, there exist$; > 0 such that,[,0 < k <1
0o — domain of LeNTy C 6 — domain of Lfvl. In fact we will show that, given an
arbitrarydp, 6; can be any positive number. Without loss of generality we can introduce the
normalizatiorp? + ¢> = 1.

For anydy > 0, w = (w1,ws2) € do — domain of L. N T}, implies (by Def. 2.2.2 and Eq.
(2.5))

0 < phy < |pw1hk + qWQhk»|.

It follows fromw € Tj, = [, 7] x [-7-, 7] thenhgwy, hyw, are in[—m, x]. Using
(2.4) we have - -

lim [L5(@)] > T [R{EE @)}

ap + (a1 + asg) coswihy, + (g + aq) coswahy

P— 1.
b +(a5 + ar) cos (w1 + wa)hy + (s + as) cos (w1 — wa)hy
2h2 2h2 2h2 2h2
1 lim —(20€ + 225 4+ 225) 4 4(2e 4+ B25) coswihy + 4(2€ + L5 cos wahy,
— T o 2 2
h% =0 +2(e + pi}é’“ ) cos (w1 + wa)hy + 2(e — pi}é’“ ) cos (w1 — wa)hy
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~ lim 1 —p? — ¢ + p? coswi by, + ¢ coswahy,
 e=0e | +E cos(wi +wa)hy — Bl cos (wy — wa)hy

1
— hH(l) -1 — p? coswi hy, — ¢° coswahy, + pgsinwi hy, sin wahg|
e—0 €

1
lirr(l)—Gnq(wlhk,wghk) (Gpg >0 by the Lemma)

e—0 €
= o0

This shows that, forany € &, — domain of L. 0 Ty, lim_q |[LF(w)| = 0o > 6, (for
anys; > 0) for all k such thab < k < I. Thereforev € &y — domain of L*!. 0

Using Conjecture 2.3.1, we can state the Corollary:

COROLLARY 2.3. The strategys, is e-asymptotically stable.

3. Numerical Approximation of the Asymptotic Rate of Convergence.We describe
in this section the method used to determine the asymptotic rate of convergence of the multi-
grid algorithm (MGA). Let

(3.1) Apup = fn-
be a discretization of (1.1). The MG algorithm used to solve (3.1) can be described as

u% given start approximation,

(3.2) u™ = Myul, + By M, i=0,1,...

with amplification matrixAl, = I, — B, ' As. I is the identity matrix, and3; ' is an
approximate inverse ofl;,, determined by coarse-grid smoothing operators, prolongation
and restriction. We suppos#;, and B;, to be nonsingular. For the errej; = up — u},

i1 =0,1,...,the following relation holds:

(3.3) et = Myej,.

The convergence behavior of MGA is determined by the spectral radius, 05 (1}, ).
DEFINITION 3.0.3.The asymptotic convergence rate of the MGA (3.2)lsg; p(Mp,).

An approximation ofp(M},) given by

1/k 1/k

m+k k

(3.4) oo — (IMEZeR ) (e )
’ [ M} ey ]2 e |2

for m andk large; see [[8]]. As the true solution must be known in advance to compute the
error, we will instead use the formula

m 1/k
(3.5) P = (7”%,%”2)

(7512

to estimate the convergence of the MGA. Hejes the residual. As explained in [3},, «
is preferable to approximate the asymptotic convergence rate because it approaches more
smoothly tharp,, ; the asymptotic rate.
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4. Implementation of the two Strategies. The proof of the asymptotic stability prop-
erty does not involve the smoother (used for relaxation), the grid transfer operators and does
not show how fast NPF-MGA converges. The asymptotic stability property is not sufficient
to guarantee the convergence of MGA, because the convergence depends also on the robust-
ness of the smoother and the appropriate choice of the restri@ipar(d prolongation7)
operators.

For strategyS;, the scaled injection as restriction operat®) @nd the bi-linear inter-
polation as prolongation operatdP) is the choice that displays the best convergence rate
or even that guarantee convergence [2, 6, 10] for any valueao the coefficients. The
multigrid implementation o&; is found in [2, 5].

The scaled injection can be described as follows

R = I,

where( is a positive constant arilis the injection operator. Here on all the grid levels, the
fine grid residuals are directly injected to the corresponding coarse grid points weighted by
the constanB. One of the main challenge of this technique is to find for a particular problem
the optimalg, i.e., the one that gives the best convergence rate.

For strategyS., the matrix-dependent prolongation and restriction technique is the best
choice possible. de Zeeuw provides detailed informations on how to implement this startegy
for a general 9-point scheme [9]. This approach is based on an automatic adaptation of
prolongation and restriction operators to the discrete problem to be solved.

In [4] we compareS; andS; whenp andq are constant. The numerical experiments
show thatS; (with the scaled injection operator fr= 2) andS, (with the matrix-dependent
approach) have comparable results 8pts more robust.

In the next section, we present numerical approximations of the asymptotic rate of con-
vergence 08; andS, on a constant coefficient problem. These approximations are calculated
for different values ot and different convection directions.

5. Numerical Results. In this section we give the results of numerical expriments ap-
plied to both strategieS; andS,. We consider a constant coefficient problem with Dirichlet
boundary conditions.

(5.1) — eAu+cosauy +sinou, = f(z,y), (z,y) € Q= [-0.5,0.5] x [-0.5,0.5],

where the exact solution i§x, y) = 2z(x — 1)(cos (27y) — 1).

For our computations, we choose = 10 andk = 20 and consider two smoothers: red-
black Gauss-Seidel (RBGS) and a horizontal line follows by a vertical line Gauss-Seidel
(XY-LINE). In the XY-LINE smoother, we first update simultaneously the unknowns corre-
sponding to horizontal linesc¢direction) in the grid and we carry out the same process for
unknowns corresponding to vertical linesdirection).

First we present in Table 5.1, the smoothing number of the XY-LINE relaxation for
different values ok, o and mesh sizé = 1/N. We observe that the smoothing humber
is always less than 1. It is important to note that it is impossible to compute the smoothing
number for RBGS (when our 9-point formula is used) since red points cannot be decoupled
from black points.

A W-cycle is applied to both strategi¢s andS:. In So we employ matrix-dependent
prolongations and restrictions technique. 9n, we utilize 5 = 2 as the weight (injection
factor) in the scaled injection.

For S; andSs we calculate the asymptotic rates as functioapfthe mesh sizé when
e = 1075, The results are summarized in Table 5.2 and Table 5.3. We observe that the
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« ol 15[ Z [ FIZ]N
106 0|.46|.31]| 46|/ 0| .37] 36| .40 8
107 || 0| .46| .31| 46| 0 | .37| .36 | .40
106 0] .46].31] .46] 0] .37] .36 | .40 16
1077 || 0| .46|.31| 46| O | .37| .36 | .40
10° 0] .46].31].46] 0] .37] .36 | .40 32
107 || 0| .46| .31| 46| 0 | .37| .36 | .40
TABLE 5.1

Smoothing numbers for the horizontal line follows by the vertical line Gauss-Seidel relaxation for different
values ofe, o and mesh size = 1/N.

asymptotic rates are positive for anyandh. In additionSs seems to display the best result
in particular forh = 1/16,1/32.

«
T [ [ 5 Iz [ 9n

6 4 3 7 5
RBGS A48 | 49| 49| 48| .49 | .49
XY-LINE || 43| 44| .36 | 41| .42 | 41
RBGS 30| .30| .30| .29 | .30 | .30|| 16
XY-LINE 34| .31| .37 | .34 | .33 | .33
RBGS 19 .20 .19 .19 .19 | .19 32
XY-LINE A7) .16 .18 | .17 | .16 | .16
TABLE 5.2

StrategyS;, e = 10~ 6. Approximation of the asymptotic convergence rate for different valuesaoid mesh
sizeh = 1/N.

®| =

«

s ™ i St [ Iz 7 97 N
6 4 3 7 9 5

RBGS 42| 53| 48| .52 | 53| .53
XY-LINE || .21 | .26 | .20 | .28 | .27 | .26
RBGS 31 .32 .30 .37 | .32 | .33 || 16
XY-LINE || 41| .42 | 41| 41| .43 | .43
RBGS 20| .19 .17 | .17 | .18 | .19 || 32
XY-LINE || .36 | .32 .35| .31| .31 | .31

TABLE 5.3
StrategySs, e = 10~ 6. Approximation of the asymptotic convergence rate for different valuasanid mesh
sizeh = 1/N.

(o]

For &1, our experiments were done for = 2. As stated in [6, 10]5 is a function
(increasing and bounded) of the cell Reynolds number. In particular, for a gaeav: (also
thesup over the domaif of the coefficients in Eq. (1.1)), there exists a valug tiiat yields
the best asymptotic rate. Unfortunately the optirfiad problem dependent and depends on
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the smoother. At least we can state that, for a given cell Reynolds number, an estimate of the
optimal injection facto can be seen by
¢ finding the bes in the SOR method, or
¢ finding the appropriate artificial viscosity coefficient to be introduced in Eq. (1.1).
Given the cell Reynolds number, to obtain the optimahn be seen as
e finding the best in the SOR method,
o or finding the appropriate artificial viscosity coefficient to be introduced in Eq. (1.1)
whene is small.
Forthe caser = 3, h = 3% ande = 1079, we plot for strategys; the asymptotic rate as
a function of the the injection factgt when RBGS and XY-LINE are employed. The graph
is presented in Figure 5.1. The best rates are obtainegdl 408.0 for RBGS and forg =~ 6.0
for XY-LINE. These rates (found for the optimg) are better than the corresponding ones
obtained withS,.

0.5

0.45F

asymptotic convergence rate
o
N
(4]

-—RBGS
__ XY-LINE

0 1 2 3 4 5 6 7 8 9
injection factor

FIG. 5.1. StrategyS; : asymptotic rate as function of the injection factbwhenh = 1/32, o = 3

REMARK 5.0.1. Whene is small, for the constant coefficient problem presented here,
the optimalg was found to b&.0 for RBGS and.0 for XY — LINE. The picture looks
different for variable coefficient problems. In fact, the optirfiéd in general a value between
1 and2 for RBGS and a value betweérand5 for XY-LINE [5].

REMARK 5.0.2. The introduction of artificial viscosity affects the accuracy of the solu-
tion but this is not the case for the injection factér All the 3 for which the convergence of
the multigrid algorithm is obtained, give the same accuracy. In addition, the accuracy ob-
tained from the scaled injection operator is the same as that of any other restriction operator
(half-injection, full-weighting, half-weighting) [2, 6].

6. Conclusion. In order to solve the convection-diffusion equation in two dimension by
a multigrid algorithm (MGA), we propose a 9-point compact formula (NPF). Two strategies
for coarse-grid operators were considered and showndabgmptotically stable. Numerical
experiments confirmed this stability property.
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