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Abstract. The recent research of the author and his collaborators on multiscale computational methods is
reported, emphasizing main ideas and inter-relations between various fields, and listing the relevant bibliography.
The reported areas include: top-efficiency multigrid methods in fluid dynamics; atmospheric data assimilation; PDE
solvers on unbounded domains; wave/ray methods for highly indefinite equations; many-eigenfunction problems and
ab-initio quantum chemistry; fast evaluation of integral transforms on adaptive grids; multigrid Dirac solvers; fast
inverse-matrix and determinant updates; multiscale Monte-Carlo methods in statistical physics; molecular mechanics
(including fast force summation, fast macromolecular energy minimization, Monte-Carlo methods at equilibrium
and the combination of small-scale equilibrium with large-scale dynamics); image processing (edge detection and
segmentation); and tomography.
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1. Introduction. The Carl F. Gauss Center for Scientific Computation was established
in 1993 jointly by the Minerva Stiftung Gesellschaft f¨ur die Forschung m.b.H., Germany,
and by the Weizmann Institute of Science, Rehovot, Israel. Its mission is to develop new
fundamental computational approaches in physics, chemistry, applied mathematics and en-
gineering, focusing in particular on advancedmultiscale(“multi-resolution”, “multilevel”,
“multigrid”, etc.) methods.

1.1. Multiscale computation. It is well known that some of the major bottlenecks in
science and engineering are computational in nature. The detailed understanding and design
of large molecules, condensed matter and chemical processes, for example, could in principle
be achieved just by computation, since the underlying equations are fully known; except that
our computing capabilities are inadequate for such tasks. The same is true for the calculation
of elementary particle properties from first principles, or for the design of fusion reactors or
airplane maneuvers, and for many other engineering and scientific endeavors. All would be
greatly facilitated if unlimited computing power were available—or if much better algorithms
could be devised.

Indeed, just building ever faster machines will not do. With current computational meth-
ods the needed amount of computer processing often increases too steeply with the rise in
problem size, so that no conceivable computer will be adequate. Completely new mathemat-
ical approaches are needed.

Most computational super-problems in science and engineering share some common fea-
tures. For example, all of them involve a multitude of variables located in a low dimensional
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space (e.g., the four dimensional physical space-time). Closer examination reveals that the
computational complexity of these problems results directly from this spatial nature, in sev-
eral general ways that come up again and again, in different disciplines and in all kinds of
guises. Past studies have demonstrated that such complexities can be effectively overcome,
or drastically reduced, by multiscale algorithms.

Indeed, any many-variable problem defined in physical space can have an approximate
description at any given length scale of that space: a continuum problem can be discretized at
any given resolution; collective motions of a many-body system can be organized at any given
characteristic length; etc. The multiscale algorithm recursively constructs asequenceof such
descriptions at increasingly larger (coarser) scales, and combines local processing (relaxation
of equations, simulation of statistical relations, etc.) at each scale with various inter-scale
interactions. Typically, the evolving solution (or the simulated equilibrium) on each scale
recursively dictates theequations(or the Hamiltonian) on coarser scales while modifying the
solution (or configuration) on finer scales. In this way large-scale changes are effectively
performed on coarse grids, based on information previously gathered from finer grids.

As a result of such multilevel interactions, the fine scales of the problem can be employed
very sparingly, and sometimes only at special and/or representative small regions. Moreover,
the inter-scale interactions can eliminate various kinds of difficulties, such as: slow con-
vergence (in minimization processes, PDE solvers, etc.); critical slowing down (in statistical
physics); ill-posedness (e.g., of inverse problems); large-scale attraction basin traps (in global
optimization and statistical simulations); conflicts between small-scale and large-scale repre-
sentations (e.g., in wave problems); numerousness of interactions (in many body problems or
integral equations); the need to produce many fine-level solutions (e.g., in optimal control)
or very many fine-level independent samples (in statistical physics); etc. Also, the multiscale
interactions tend to bring out the large-scale dynamics, or the macroscopic equations, of the
physical system, which is often the very objective of the entire calculation.

Since the local processing (relaxation, etc.) in each scale can be done in parallel at all
parts of the domain (e.g., at all cells of a given lattice), the multiscale algorithms, based on
such processing, are ideal for implementation on massively parallel computers. Indeed, many
problems cannot be efficiently solved by such computers without employing a multiscale
procedure.

1.2. Current research directions at the Gauss Center.Over the last three years, the
research at the Gauss Center has involved the following directions.

1. New multigrid methods for steady-state fluid dynamics at all Mach and Reynolds
numbers, and other non-elliptic stationary PDE systems (see Sec. 2 below).

2. Multilevel approaches to time-dependent partial-differential equations, emphasizing
applications to oceanic and atmospheric flows (see Sec. 2.4).

3. Direct multigrid solvers for inverse problems, including system identification (e.g.,
impedance tomography; see in Sec. 13) and data assimilation (in atmospheric simu-
lations — Sec. 4).

4. Optimal control: Feedback control via very fast updating of open-loop solutions,
based on their multiscale representations.

5. Optimal location of singularities of PDE systems (e.g., location of the nucleons in
electronic structure calculations), integrated into the multigrid PDE solver (Sec. 6.1).

6. New multilevel algorithms for highly indefinite (e.g., standing wave) problems (Sec.
5).

7. Multigrid solvers for the Dirac equations arising in quantum field theory (Sec. 8).
8. Compact multiresolution representation of the inverse matrix of a discretized dif-
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ferential operator; fast updating of the inverse matrix and of the value of the deter-
minant upon changing an arbitrary term in the matrix itself; with application to the
QCD fermionic interaction (Sec. 9).

9. Collective multiscale representation and fast calculation of many eigenfunctions of a
differential operator, e.g., the Schr¨odinger operator in condensed-matter electronic-
structures calculations (Sec. 6).

10. Multiscale Monte-Carlo algorithms for eliminating both the critical slowing down
and the volume factor in increasingly advanced models of statistical physics (Sec.
10).

11. Multigrid Monte-Carlo approaches for solving the high-dimensional (several-particle)
Schrödinger equation by real-time path integrals.

12. Introducing multiscale computations to many-particle calculations, including fast
evaluation of forces, fast convergence to local and global ground states, fast equili-
bration, and large time steps, with application to molecular mechanics (Sec. 11); a
new approach to molecular dynamics, based on stochastic implicit time steps (Sec.
11.6).

13. Multiscale approaches to molecular docking.
14. Multigrid methods for integro-differential equations, on adaptable grids, with appli-

cations to tribology (Sec. 7).
15. Multiscale methods for the fast evaluation and inversion of the Radon transform

(Sec. 13); applications to X-ray tomography and airplane and satellite radar recon-
struction.

16. Multiscale algorithms for early vision tasks such as surface reconstruction, edge and
fiber detection, segmentation, and meaningful picture coarsening (Sec. 12).

17. Rigorous quantitative theory for predicting the performance of multigrid solvers (see
[20]).

A survey of main ideas, current developments and future perspectives in these various
directions is given in the following sections. The work in directions #4 and #13, which is in
a preliminary stage, isnot reported below.)

2. Computational Fluid Dynamics. (with Dr. John Ruge (supported by NASA) and
with Ph.D. student Boris Diskin)

2.1. Background and objectives.An efficient multigrid algorithm for steady-state in-
compressible viscous flows in two dimensions appeared already in 1972 [7], a relatively ef-
ficient multigrid solver for a compressible inviscid transonic flow was already demonstrated
in 1975 [80], and a fully efficient solver for asystemof severalcoupled differential equa-
tions, characteristic to CFD, was presented already in 1978 [23]. However, in the decades
that followed, the development in this area has not been really satisfactory. In particular, the
efficiency of solvers for non-elliptic steady-state systems (such as Euler and high-Reynolds
Navier-Stokes equations) has lagged several orders of magnitude behind the ideal efficiency
that had been attained for general elliptic systems. Although the main reasons for this inef-
ficiency have also been understood for a long time (see for example [11]), the recommended
cures seemed complicated, and code developers opted for partial efficiency. The leading
method has been based on multi-stage pseudo-time-stepping relaxation schemes [59], [60].
Although such schemes can be optimized to damp high-frequency errors [85], the result-
ing algorithms are still relatively slow, because someintermediate(neither high-frequency
nor very smooth) “characteristic components” cannot adequately be reduced by coarse grids
(cf. [11], [43]). Other multigrid solvers were based on incomplete LU decomposition (ILU)
and related relaxation schemes [87], [83], [79]. While such schemes give excellent results
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in some cases, they cannot cure the aforementioned trouble of characteristic components in
general transonic flows, especially in three dimensions. (Also, much of the efficiency of ILU
schemes depends on their sequential marching, hence the performance on massively parallel
machines will drastically diminish.) The same is true for other methods (e.g., based on defect
corrections) which seem not even to identify that basic trouble.

More generally, all these attempted solution methods have failed to decompose the so-
lution process into separate treatments of each factor of the PDE principal determinant, and
therefore did not identify, let alone treat, the separate difficulties associated with each such
factor. In fact, in CFD, each of these factors may have different ellipticity measures (some are
uniformly elliptic, others are non-elliptic at some or all of the relevant scales) and/or different
set of characteristic surfaces, requiring different relaxation/coarsening procedures.

The objective of our recent work has been to develop and demonstrate methods that solve
non-ellipticsteady-stateproblems in general, and high-Reynolds stationary flow problems in
particular, at the same “textbook multigrid efficiency” typically attained for uniformly elliptic
systems. The methods, again as in the elliptic case, will allow local refinements and high
degree of parallel processing.

Solvers fortime-dependentflow problems are in principle simpler to develop than their
steady-state counterparts. Using semi-implicit or fully implicit discretizations, large and
adaptable time steps can be used, and parallel processing across spaceand timeis feasible
[10], [16]. The resulting system of equations (i.e., the system to be solved at each time step)
is much easier than the steady-state system because it has better ellipticity measures (due to
the time term), it does not involve the difficulties associated with recirculation, and it comes
with a good first approximation (from the previous time step). A simple multigrid “F cycle”
at each time step should solve the equations much below theincrementaldiscretization errors
(the errors added in the current time step) [31]. It is thus believed that fully efficient multigrid
methods for the steady-state equations will also easily yield fully efficient and parallelizable
methods for time-accurate integrations.

2.2. Solution methods and current development.As shown in the past (see [13], [19]
and [43]), to obtain the “textbook” multigrid efficiency for any discretized partial differen-
tial system of equations (PDE), it is necessary and usually (with proper boundary treatment)
also sufficient to attain that efficiency for each factor of the PDE principal determinant. Each
such factor is a scalar differential operator of first or second order, so its efficient solution is
a vastly simplified task. The way for separating the factors is by adistributed(and possibly
alsoweighted) relaxation scheme in which to each factor there corresponds a “ghost” discrete
function. The latter can be directly relaxed for its corresponding factor, dictating a resulting
pattern of changes to be distributed to theactual discrete functions (see details in Sec. 3.7
of [13] and also in [91]). To obtain the top efficiency, the relaxation of each ghost function
should incorporate an essential part of an efficient multigrid solver for its corresponding op-
erator: sometimes this is just the relaxation part of that solver, sometimes this may even be
the entire solver (applied at some proper subdomain).

For theincompressibleEuler and Navier-Stokes equations, the relevant factors are the
Laplace and the convection (or convection-diffusion)operators. The former’s multigrid solver
is classical; the latter’s can be based on downstream relaxation [43], with additional special
procedures for recirculation flows [44], [92]. Indeed, we have shown that incorporating such
procedures into the relaxation schemes for the appropriate ghost functions yields very effi-
cient solvers for incompressible flows even at high Reynolds numbers and at second-order
accuracy [43]. The same procedures will also yield efficient solvers for compressible flows
at low Mach numbers, where the relevant factors are similar.

The only remaining factor of flow systems for which no general adequate multigrid solver
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has previously been developed is the “full potential” operator

(u∂x + v∂y + w∂z)2 − a2∆ ,(2.1)

where(u, v, w) is the flow velocity vector anda is the speed of sound. This operator appears
as a factor in the principal determinant of the 3-DcompressibleEuler equations. ItsMach
numberis the ratioM = (u2 + v2 + w2)1/2/a.

In the deepsubsoniccase (M ≤ .7, say) the operator (2.1) is uniformly elliptic, hence
a usual multigridV -cycle, employing red/black Gauss-Seidel relaxation at all levels, yields
top-efficiency solvers. WhenM approaches 1, however, the operator becomes increasingly
anisotropic, and classical multigrid algorithms severely degrade, due to the above-mentioned
difficulty with characteristic components. (An exception is the case where the anisotropy
directions are aligned with grid directions. For example, ifu2 + v2 � w2, full efficiency can
still be obtained by employingz-plane block relaxation).

In the deepsupersoniccase (e.g.,M ≥ 1.3) the full potential operator is uniformly
hyperbolic (with the stream direction serving as the time-like direction), and an efficient
solver can be obtained using downstream relaxation, marching in the time-like direction. If
the equations are of higher-order and/or not strictly upstream, apredictor-correctormarching
can provide the same approximation order, hence fast convergence of smooth components;
we have shown this by detailed experiments and mode analyses [51]. This procedure no
longer works asM drops toward 1, since the Courant number associated with this time-like
marching approaches infinity.

Thus, the most difficult situation for solving the full potential operator is thenear sonic
regime (.7 ≤ M ≤ 1.3, say), especially in the (usual) case ofnon-alignment(e.g., when the
grid is Cartesian and no velocity component is consistently much larger than the others). No
previous multigrid approach would attain good efficiency in this case.

We have developed a new approach for this case, based on a piecewise semi-coarsening
and some rules for adding artificial dissipation at the coarser levels. To understand this, note
first that in the general scheme for solving, e.g., the Euler equations, the solution of (2.1)
is only a relaxationstep, and it is enough to confine this step to one subdomain at a time
(whose size, however, is notO(h) but O(1)). Without loss of generality we can therefore
limit the discussion to the case that throughout this subdomain the velocity is, e.g.,vertically-
inclined (i.e., w2 ≥ .3(u2 + v2), say). In this case, the multigrid solver of (2.1) will use
horizontal semi-coarsening(coarsening only in thex andy direction), possibly together with
vertical line relaxation. (Thisz-line relaxation is actually not needed on the finest levels,
but may be required after several levels of semi-coarsening.) With this semi coarsening, the
inherent cross-characteristic numerical dissipation at the coarse level issmaller than at the
fine one (opposite to their relation uponfull coarsening); we can therefore stably add artificial
dissipation terms at the coarse level so that its total cross-characteristic dissipation matches
the local fine-level average.

The resulting algorithm can fully exploit massively parallel processing. It can be ex-
tended to other non-elliptic operators, including the convection operator. (The aforemen-
tioned approach for the convection operator, based on downstream relaxation, is not fully
efficient on massively parallel machines.)

Extensive numerical tests have been performed with the linear full-potential equation:
first in 2D, then in 3D, starting with constant-coefficients, then variable. Simple boundary
conditions were chosen in a box: Dirichlet conditions on two opposite faces and periodic on
the others. In 2D we have also carried out comprehensive half-space FMG mode analyses (cf.
Sec. 7.5 in [13]). All the results (e.g., those already reported in [24], and in [51]) show that
at any Mach number the algorithm always attains the “textbook” efficiency. (See additional
details and related developments elsewhere in this volume [50].)
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2.2.1. Comment on semi-coarsening schemes.Instead of thepiecewise semi-coarsening
described above, another alternative is to use just oneglobal semi-coarsening, but of one of
the following two types (preferably the second).

A. Total semi-coarsening.By this we mean (e.g., in 2D) that each coarser grid is formed
by omitting every other line from the next finer grid (every other vertical lineas well asevery
other horizontal line), but on the remaining lines (the coarse-grid lines) leaveall the fine-grid
points (not just the intersections of the coarse-grid lines).

B. Variable-direction semi-coarsening.Here the coarser grid for each level is asubset
of the total-semi-coarsening grid for that level. Simply omit from the latter all unnecessary
points in regions where semi-coarsening at only one particular direction is needed (as in
various anisotropic and non-elliptic cases, like those discussed above).

2.3. Future plans: The road map. The first task ahead is to extend the solver from
these linear model cases to a general solver for the nonlinear full-potential operator in the
entire transonic regime. The second—to incorporate the latter multigrid solver as one of the
relaxationsteps (relaxing the ghost function corresponding to the full potential factor) in an
outermultigrid solver for the entire Euler system. Then the next task would be to generalize
to the Navier-Stokes equations.

This is an ambitious and expensive program, but we are not alone in it. A group at
NASA/Langley last year has launched a multi-year program aimed at achieving “textbook”
multigrid efficiency for flows at all Mach and Reynolds numbers, using the general approach
described above, in cooperation with us and others. As a road map we are developing a
detailed table called “Barriers to Achieving Textbook Multigrid Efficiency in CFD”. It lists
every foreseen kind of computational difficulty for achieving that goal, together with the
possible ways for resolving the difficulty, their current state of development, and references.
A first draft is available [22].

Included in the table are staggered and nonstaggered, conservative and nonconserva-
tive discretizations of viscous and inviscid, incompressible and compressible flows at various
Mach numbers, as well as a simple (algebraic) turbulence model and comments on chemi-
cally reacting flows. The listing of associated computational barriers involves: non-alignment
of streamlines or sonic characteristics with the grids; recirculating flows; stagnation points;
discretization and relaxation on and near shocks and boundaries; far-field artificial boundary
conditions; small-scale singularities (meaning important features, such as the complete air-
plane, which are not visible on some of the coarse grids); large grid aspect ratios; boundary
layer resolution; and grid adaption.

2.4. Atmospheric time-dependent flows.In collaboration with Drs. J.R. Bates and
L. Yong from NASA/Goddard we have finished developing multigrid solvers for the sys-
tem of equations arising at each time step of shallow-water models of atmospheric flows on
the entire globe [3], [72]. These solvers allow implicit discretization of nonlinear terms as
well as linear, resulting in much more stable simulations. We are now working on solvers for
the full three-dimensional flow on the sphere.

3. Atmospheric Data Assimilation. (with post-doc fellow Leonid Zaslavsky)

3.1. Background and objectives.A major difficulty in weather prediction is the need
to assimilate into the solution of the atmospheric flow equations a continuously incoming
stream of data from measurements carried out around the globe by a variety of devices, with
highly varying accuracy, frequency, and resolution. Current assimilation methods require
much more computer resources than the direct solution of the atmospheric equations. The
reason is the full 4-D coupling: Any measurement, at any place and time, should in principle
affect the solution at any other place and time, thus creating a denseNsNt × NsNt matrix
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of influence, whereNs is the huge number of gridpoints representing the 3-D atmosphere
andNt is the large number of time steps spanning the full period over which large-scale
atmospheric patterns are correlated. As a result, not only are current assimilation methods
very slow, but they are also based on highly questionable compromises, such as: ignoring
the all-important spatially or temporallyremotecorrelations oflarge-scaleaverages; limiting
control to only the initial value of the flow at some arbitrarily chosen initial time, instead of
controlling the numerical equations at all times; and assimilating only the data from one time
interval at a time, without fully correlating with other intervals.

Our objective is to develop multiscale methods that can avoid all of these compromises,
and can assimilate the data into the multigrid solver of the direct flow equations at small extra
cost, i.e., using extra computer time smaller than that required by the direct solver by itself.

We consider this to be possible because: (1) Large scale averages can inexpensively
be assimilated on the correspondingly coarse levels of the multigrid solver (coarse in both
space and time). (2) Deviations from any large-scale average must be assimilated on some
finer scale, but their correlation on that scale is local. (3) The measurements (with their
representativeness errors) are generally less accurate and in most regions less resolved than
the numerical flow itself, hence their assimilation should not be done at the finest numerical
level.

Multiscale methods can contribute to data assimilation processes in a variety of other
ways, a survey of which is reported in Sec. 3.4 below.

3.2. Preliminary work: fast Kalman filtering. We have collaborated with a group
headed by Dr. Steve Cohn of the Data Assimilation Office, NASA/Goddard Space Flight
Center, in a preliminary work for demonstrating the potential of multiscale atmospheric data
assimilation. The main result has been a fast multi-resolution algorithm to solve the dense-
matrix equations arising at each time step in a Kalman filtering formulation of the assimilation
problem [47], [45], [46]. The methods used are related to those in [17] and [33], but with
an innovation demonstrating that such methods can deal withscattered data, having highly
variable resolution.

3.3. Future plans: Multiscale 4D assimilation. The development will not be limited
to the Kalman filtering formulation. We mainly intend to advance the multiscale capabilities
with respect to the direct 4-D (space and time) best fitting of the scattered data. This problem
involves full 4D couplings, both forward and backward in time. It is thus proposed to use
one full-multigrid (FMG) algorithm for the entire 4D problem (but possibly with the storage-
saving windowing described below). This algorithm would be like a usual FMG solver for
the direct 4D atmospheric equations, except that at each stage, on each level excluding the
finest ones, the relaxation of the solution variable will be accompanied by relaxation of the
control variablesσ(x) at that level (see the nature ofσ(x) below). Thus, in essence, large-
scale averages of the solution will be assimilated on correspondingly coarse grids (coarse in
both space and time).

The levels at whichσ(x) will be adjusted will depend on the local density of the mea-
surements, their accuracy and their distance from regions where details of the solution are of
interest.

Windowing. Should the 4D solution require too much storage, it is possible to reor-
ganize it in multiscale windows, marching in time, without much loss of efficiency. That is,
only a certain window (time slice) of the finest grid need be kept in memory at a time. Having
relaxed over it, residuals are then transferred from this window to the coarser grids. On re-
turning from the coarser grids more relaxation is made on the finest grid, now in a somewhat
advanced window (shifted forward in time, but partly overlapping its predecessor) and so on.
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On increasingly coarser grids, increasingly wider (in real time, but poorer in gridpoints) win-
dows are kept and advanced in a similar manner. The domain covered by each coarse-grid
window always strictly contains all the finer ones. The coarsest windows extend very far in
time, especially into the past; as far indeed as there exist data whose large-scale averages are
still correlated to the solution at the time of the current finest window. At times where a coarse
window exists while the next finer one has already been removed, the coarse-level equations
can still retain the FAS-multigrid fine-to-coarse (τ ) corrections (static or modified), thus still
maintaining the fine-level accuracy of coarse-level features (cf. the “frozenτ ” technique in
[12, §15]).

Some of the finest windows may be local not only in time but also in space, effectinglocal
refinementsat regions of greater human interest and/or regions requiring higher resolution for
physical reasons (sea straits, islands, mountains, etc.).

3.4. Multiple benefits of multiscale techniques.Multiscale computational methods
can contribute to data assimilation problems inseveraldifferent ways, listed below.

1. Implicit time steps. At the level of the underlyingdirect CFD equations, fast multi-
grid solvers make it possible to use implicit-time-step discretizations at full efficiency (see
the general approach to time dependent problems in [31], and methods for the shallow water
equations in [5], [4], [3] and [72]). This entails not only unconditional linear stability, but also
avoidance of bad effects associated withlinearizedtime steps (in which one would use fully
implicit equations, but based on linearization around the previous-time-step solution) [3]. The
unconditional stability is important for the multiscale data assimilation processes, enabling
work on various temporal and spatial scales, unconstrained by various Courant numbers.

2. Local refinementsare well known to be greatly facilitated by the multigrid algorithm,
as also hinted in the algorithm description above. The multiscale environment simultaneously
provides convenient flexible structures, refinement criteria and one-shot self-adaptive solvers;
see [12,§9] and [2].

3. Space+ time parallel processing. Still at the level of the direct CFD equations
(but similarly also at the level of the inverse (data assimilation) problem), multiscaling is a
necessary vehicle to obtain parallel processing not only across space at each time step, but
also across time. In other words, unnatural though it may seem, sequential marching in time
can be avoided by using multiscale procedures. (This was first pointed out in [10,§3.10], and
more appears in [16,§11] and [84].) This of course makes it possible to use efficiently (at a
given arithmetic to communication ratio) a larger number of parallel processors.

4. One-shot solution of inverse problems. Normally, inverse problems are solved by
a sequenceof direct solutions (e.g., direct multigrid solutions), through which an iterative
adjustment is made to the control parameters (the inverse-problem unknowns). For example,
in theadjoint methodfor atmospheric data assimilation, a direct solver of the flow equations
(marching forward in time) is followed by an adjoint solution (backward in time) that gauges
the first derivatives of the data-fitness functional with respect to the initial values (the flow
variables at the initial time). These derivatives then drive some adjustments of the initial
values, from which another direct flow solution is next calculated, and so on.Manyiterations
are needed for this process to converge. In multigrid solvers, by contrast, one can integrate the
adjustment of the inverse parameters into the appropriate stages of onlyonedirect-problem
solver (see Sec. 3.3 above. This general approach has been described in [24,§13], with more
details in [16,§8.2] and full development in [82]).

5. One-shot continuation. The assimilation problem is highly nonlinear, hence a good
starting guess for the solution is important. A general way to obtain such an initial guess is by
continuation (embedding), in which the problem is embedded in a sequence of problems, each
requiring another application of the solver. In multigrid solvers, however, the continuation can
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often be integrated into just one FMG solver. For example, at the coarser stages of the FMG
algorithm more artificial viscosity (and/or more regularization, and/or a smaller coefficient
of Dt in the continuity equation) can be used, then gradually be taken out as the algorithm
proceeds to finer levels. This makes the solution much easier in the first stages, from which it
is then continuously dragged into the desired neighborhood. Such FMG continuation devices
are often natural. For example, larger artificial viscosity would quite naturally be introduced
on coarse grids, even without aiming at continuation. A natural continuation is also supplied
by the inverse covariance matrixS (see below), which would be smaller on coarser FMG
levels due to larger discretization-error estimates.

6. Full flow control. In most data assimilation approaches (such as the adjoint method
described above), the control parameters (the parameters that can be changed to obtain fitness
of solution to observations) are only the initial values of the solution. This makes it impossible
to benefit from the details (the oscillating components) of the observations at time far removed
from the initial time, because those details at those times are ill-determined by the initial
values. Instead of controlling just initial values, one should really control the entire numerical
solution. Namely, the control parametersσ(x) is a vector-valued grid function that at each
point x gives the deviations in satisfying the set of flow equations. The objective function
(the error functional that should be minimized) has the general form

E = σTSσ + dTWd,

whereσ = (σ(x)) is the vector of all control parameters,d = (d(y)) is the vector of devi-
ations of the solutionu from the observationu0 (i.e.,d(y) = (P 0u)(y) − u0(y), whereP 0

is a projection from the solution space(x) to the observation space(y)), andS andW are
(positive-definite) weight matrices. In a crude approximation, one can take these matrices to
be diagonal, where the diagonal inverseS(x, x)−1 is (a very rough estimate of) the expected
square error in the equation atx, which is the sum of the local discretization error (conve-
niently estimated by the “τ correction” of the FAS multigrid solver; see [13,§8.4]) and the
local modeling errors (errors in the physical assumptions embodied in the equations). The
diagonal inverseW (y, y)−1 is (a very rough estimate of) the expected square error in the
measurementu0(y), including in particular the “representativeness error” (accidental devia-
tion at the point of measurement from the relevant local average). More precisely,S andW
should be correspondinggeneral(not necessarily diagonal) inverse covariance matrices (in
which case the discussion at Item 8 below is relevant).

So extensive control parameters can only be handled by a multiscale treatment. More-
over, using the methods described above the solution is expected not to be expensive, espe-
cially since the control parametersσ(x) need not be controlled at the finest computational
levels; on such levelsσ(x) can simply be interpolated from the coarser levels and kept un-
changed during the relaxation.

7. Unlimited correlation range. In conventional assimilation methods, each control
value interacts with a limited range of measurements: measurements at a restricted (e.g.,
6 hours) time interval and sometimes only at confined distances. However, it is clear that
large-scale averages of the dynamic variables interact at much larger ranges. Multiscale data
assimilation makes it possible to correlate solution and measurements at any desired distance
in space and time, since correlations at increasingly larger distances are calculated on increas-
ingly coarser grids.

8. Efficient representation of direct and inverse covariance. There are a number of
ways to derive or estimate covariance matrices and various simplification assumptions are
made. However, the real covariance matrices (especially the model error covariance) are
actually dense (not sparse), and thus involve huge (8 dimensional, in principle) amounts of
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information. Even when the matrix is sparse, its inverse, used in the formulation of the objec-
tive function, is certainly dense. The only efficient way ofrepresenting, let alone computing,
such huge dense matrices and their inverses is a multiscale representation, based on their
asymptotic smoothness. This would be similar to the methods introduced in [12,§8.6], [15,
App. A], [33], [17], [86], [41] and [42] for calculating integral transforms, many-body in-
teractions and solutions to integro-differential equations, all involvingn× n dense matrices
whose complexity (the amount of computer operations required to perform a multiplication
by either the matrixor its inverse) is reduced toO(n) by multiscale techniques.

To achieve such a low complexity it is of course necessary to assume the covariance
matrices to beasymptotically smooth. Namely, if the errors at two points,x andy, remote
from each other, are correlated at all, their correlation is assumed to vary “smoothly” as
function of x (similarly y). Smoothness here means thatp-order derivatives are not larger
thanO(|x − y|−p+q), q being a fixed small integer. (In fact, it may be enough to assume
at each pointx smoothness for variations in only some directions, although the complexity
may then rise toO(n log n). The processing in such cases would be akin to those in [25] and
[35].) Such assumptions seem very reasonable in practice, and are certainly more accurate
than neglecting distant error correlation altogether. They can also be weakened in various
ways and still benefit from multiscale processing.

9. Improved regularization. First, the multiscale solver described above is likely to
require much less regularization than conventional solvers since the main ill-posedness in
the problem is the long term and long range influence of fine-scale oscillations, while the
multiscale large-scale interactions are mediated by coarse grids, omitting these oscillations.
Secondly, attractive regularization devices are offered by the multiscale processing. For ex-
ample, statistical theories of the atmospheric equations yield the relative expected energy at
different scales. In a multiscale processing this can be used to properly penalize any exces-
sive local energy at every scale, yielding an excellent regularization scheme (which could not
even be formulated in uni-scale processing).

10. Fast assimilation of new data. Normally, new observation data keep arriving and
need to be assimilated into an already partly existing approximate solution; i.e., the new
data should usually both modify the previous solution and extend it into a new time interval.
The multiscale solver is particularly suitable for the task: The new data normally does not
affect the details of the solution in much older times; also, these details are normally no
longer of interest. Hence, increasingly older times can participate in the new processing
on increasingly coarser levels (still maintaining the fine-to-coarseτ corrections previously
computed for them). This exactly fits into the windowing algorithm above (Sec. 3.3). The
resulting ease of assimilating new pieces of data may well facilitate acontinuous assimilation
policy, with new data being assimilated much more often than today.

11. Multiscale organization of observation data. Either for the purposes of the multi-
scale assimilation procedure, or for a variety of other procedures, it is very useful to organize
the observation data in a multiscale structure. This may simply mean pointers from a mul-
tiscale hierarchy of uniform grids into the set of data, with finer uniform levels introduced
only where there are still more than a couple of observations per grid cell. Such data struc-
tures are commonly used to facilitate regional computations of all kinds. Beyond this, it is
possible to replace many observations by their average at some larger scale, serving as a kind
of macro-observation, its associated error estimate being of course reduced by standard rules
of statistics. This can be repeated, to obtain still-larger-scale representations. Such struc-
tures may save much storage, and provide directly the needs of the multiscale assimilation
algorithms.

4. PDE Solvers on Unbounded Domains.(with post-doc fellow Jeffrey S. Danowitz)
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As pointed out already in [8,§7.1], problems in unbounded domains can be solved by a multi-
grid structure employing increasingly coarser grids on increasingly larger domains, using an
FAS multigrid solver. We have embarked on a detailed study of how this should be done: At
what rate should the domains increase with increased meshsize? What is the largest needed
domain? What interpolation is needed at interior boundaries (boundaries of a gridh embed-
ded in a larger domain covered by grid2h)? What multigrid algorithm should be applied?

For the Poisson equation∆u = F we have developed theoretical answers to these ques-
tions, then tested them numerically. Using general grid optimization equations (see [8,§8.1]
or [12, §9.5] or [13,§9.5]) one can find for example that if the domain of interest (outside
which F = 0) has diameterd0 and if the desired accuracy inside that domain would be
obtained (had its boundary values been given) by a second-order discretization and a grid
with meshsizeh0, then the diameter of each coarser gridh (h = 2h0, 4h0, . . .) should sat-
isfy d(h) ≥ d0(h/h0)2/3 andd(h) ≥ d(h/2) + Ch log h0. Without significantly departing
from the desired accuracy one can in this manner cover a domain (the coarsest-grid domain)
with diameterR, spending onlyO(log R) gridpoints, soR can easily be taken so large as to
admit small enough boundary-condition errors. Employing a suitable version of theλ-FMG
algorithm [13,§9.6], it has been shown that the accuracy-to-work relation typical to multi-
grid solvers of thebounded-domain problem can in this way be obtained for theunbounded
domain, where accuracy is in terms of approaching thedifferentialsolution. The same can be
obtained for higher-order discretizations (with another exponent in the firstd(h) inequality).

The next planwould be to extend this study to non-elliptic equations, including high-
Reynolds flows, in unbounded domains.

5. Wave/Ray Multigrid Methods. (with post-doctoral fellow Ira Livshits)The aim is
to develop advanced and general numerical tools for computing wave propagation on scales
much larger than the wavelength, when there may also exist interactions with special smaller-
scale inhomogeneities where ray representations (geometrical optics) would break down.
Such tools can revolutionize important computations, such as: radar cross sections; wave
propagation through dispersive media; seismic wave characteristics resulting from various
types of explosion zones; generation and control of acoustic noise; electronic waves in con-
densed matter; etc.

We have developed two basic approaches relevant to the problem. One is a general
multiscale solver forintegralequations with oscillatory kernels [17], which is a very efficient
way to solve wave propagation inhomogeneous(and somepiecewisehomogeneous) media
(e.g., by replacing the differential equations withboundaryintegral equations). Multiscale
ray representations first appeared in this work.

The other approach is a fast multigrid solver for the highly indefinitedifferentialequa-
tions of stationary waves in a domain containing many wavelengths, with radiation boundary
conditions. The basic idea of this work had been stated long ago (see, e.g., [9,§3.2], and
more details in [93]),but important algorithmic aspects had still to be clarified or invented.

The model equation we used is the Helmholtz equation

∆u(x) + k2u(x) = f(x).(5.1)

Traditional multigrid solvers are not effective for this problem, because some “characteristic”
components (i.e., those with wavelength close to2π/k) are non-local (their size is determined
by conditions many meshsizes away) exactly on all those grids fine enough to approximate
such components.

On each of its levels, the new solver represents the solution as

u(x) =
∑
j

Aj(x) exp(iϕj(x)).(5.2)
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At the highest (finest) level this sum includes just one term andϕj(x) ≡ 0, so the represen-
tation includes just one function—the desired solution—and the equation for it is the usual
five-point finite-difference discretization of (5.1). Increasingly lower levels of the solver em-
ploy on the one hand increasinglycoarsergrids ofx to discretize each amplitudeAj(x) and
each eikonalϕj(x), and, on the other hand, correspondinglyfiner sets of “momenta” (i.e.,
more termsj in the above sum). The interaction between these levels has been shown to
yield a solver (for the discrete equations given at the highest level) which is as efficient as
the best traditional multigrid solvers for definite elliptic systems. The radiation boundary
conditions are naturally enforced at the lowest level, where the representation essentially co-
incides with geometrical optics (ray representation, appropriate for scales much larger than
the wavelength).

Details of the one-dimensional solver and a preliminary version of the two-dimensional
solver were given in [67]. The current version of the two-dimensional solver, together with
numerical results, is described in detail elsewhere in this volume [32].

An important feature of the solver is the alignment of the grid on whichAj(x) is dis-
cretized with the propagation direction of the corresponding eikonal, (the direction of∇ϕj(x)),
its meshsize growing faster in that direction than in the perpendicular directions. Specifically,
if J is the number of terms taken by the summation (5.2) at a given multigrid level, then the
propagation-direction meshsize for that level isO(J2k−1), while the perpendicular-direction
one isO(Jk−1). Incidentally, such oriented grids should have also been employed in [17],
reducing the order of complexity stated there to the same one as in the non-oscillatory case
(with an additionalO(log n) factor in the case of integral transforms or integral equations
defined on a curved manifold of codimension 1, e.g., a boundary).

A finite-element representation akin to (5.2) appears in [94]–[95], but only on one level,
and without the above-mentioned grid alignment. That representation thus cannot be used
to bridge the gap between the wave discretization needed at small subdomains and the ray
discretization needed at the large outer regions, nor can it serve as a fast solver.

5.1. Variable coefficients, local refinements and diffraction.The plan for the next
yearsis to develop the solver for the variable-coefficient casek = k(x), and to advance a new
setting where only geometrical optics is used in most of the domain, while the wave equations,
as well as intermediate levels with representations of the type (5.2), are just introduced at
special restricted subdomains where geometrical optics breaks down.

Geometrical optics can certainly be used throughout large regions wherek(x) is either a
constant or has a small relative change per wavelength. Although in the latter case the rays
are curved, they can still be followed by Snell’s law, or more generally by marching solutions
of the eikonal equation (see, e.g., [88]). Discontinuities ink(x) can also be accommodated
by geometrical optics, employing the usual rules of reflection and refraction, as long as the
surfaces of discontinuity have curvature radii large compared with the wavelength (assuming
the number of repeated reflections is not too large).

The pure geometrical optics approach will typically break down in smaller regions (e.g.,
neighborhood of fast changes ink(x) or large-curvature surfaces of discontinuity). It is pro-
posed to introduce in such regions nested local refinements, structured in the usual FAS-
multigrid manner (where the coarser grids cover also the local-refinement subdomains, still
playing the role of accelerating convergence in the finer grids, which are over-set in the de-
sired subdomains; see [8,§7] or [12, §9] or [13, §9] or [2]). The finer levels will generally
use representations of the type (5.2), the finer the level the smaller the number of terms in
the summation, eventually yielding a direct discretization of (5.1) on sufficiently fine grids in
small subdomains; see some more details in [32,§10].

Effectively this will produce ray dynamics in the large, with relations between rays mod-
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ified by the finer grids in the small special regions (around an aperture, corners, edges, a radar
target, etc.), yielding a general numerical tool for computing diffraction (the rays produced
by small-scale disturbances; c.f. [80]).

6. Many Eigenfunction Problems: Ab-Initio Quantum Chemistry. (with Ph.D. stu-
dent Oren Livne and former Ph.D. student Ron Kaminsky)Some important scientific prob-
lems involve the computation of a large number of eigenfunctions of a partial differential
operator. Inab-initio condensed-matter calculations, for example, a large number of eigen-
functions of the Schr¨odinger operator−∆+V should be calculated to determine the electron
density functionρ. Moreover, this particular problem is in factnonlinear, since the “self-
consistent” potential functionV depends onρ, and is alsonon-local, sinceV in fact depends
on integralsinvolving ρ.

Fast multigrid eigenproblem solvers have been developed long ago [37], but the ab-initio
problem includes new traits and difficulties that call for new multiscale techniques, such as in
the following list.

(1) Singularities. The nuclear potential energy harbors a singularity at each atomic nu-
cleus (if pseudo-potential is not used). The multigrid solver (unlike Fourier methods) allows
local refinements that would remove the global inaccuracies associated with such singularities
[8], [24], [13], [2]. Because of the neighborhood of the singularity,conservative discretiza-
tion is needed [2], which is especially tricky forhigh-orderdiscretization at gridinterfaces
(the boundaries of any level of local refinement); see [6], where the FAS conservative dis-
cretization of [2] is extended to high-order schemes in three dimensions, and applications to
quantum chemistry are discussed.

(2)Unbounded or very-large-scale domainscan efficiently be treated by multigrid solvers
which employ increasingly coarser grids at increasingly larger distances from the region(s)
of interest (cf. Sec. 4 above).

(3) Self-consistency. The dependence of the potential functionV on the total electronic
charge distributionρ introduces a nonlinearity into the problems, which usually requires
many iterative applications of a linear solver. Multigrid procedures can directly solve non-
linear problems, as efficiently as solving their linear counterparts [13]. The development of
such one-shot solvers for the Schr¨odinger operator depends on the ability to update the self-
consistent potential as the solution changes on the coarse grids. This is also related to the
following issue.

(4) Multi-integrationsare required in calculating the potential (e.g., the Hartree poten-
tial). This can be performed fast by solving auxiliary Poisson equations. Solving them by
multigrid would facilitate the needed interaction between the coarse-level moves of this Pois-
son solver and the coarse-grid updates to the self-consistent potential in the eigenproblem
solver (see #3 above). Also, multigrid solvers (unlike the currently-used FFT solvers) will
accommodate local grid refinements (see #1 above).

(5) External optimization. Whereas in solving the electronic problem the nuclei are
assumed fixed (the Born-Oppenheimer approximation), one actually needs to find the nuclei
positions for which the electronic-solution energy together with the inter-nucleus potential
yield the minimal total energy. This external optimization would normally be done iteratively,
requiring solving the electronic eigenproblem many times. Again, a one-shot multigrid solver
+ optimizer can and should be developed, incorporating suitable nucleus moves into each of
the levels of the multigrid electronic solver. A model study reported below (Sec. 6.1) has
shown the feasibility of this approach and the exact multigrid techniques required for its full
efficiency.

(6) Multitude of eigenfunctions.Even with a multigrid solver, the cost of calculating a
large numberN of eigenfunctions (N being the number of electrons in the system) may grow
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proportionally toN3 (employing discretizations withN1 = O(N) degrees of freedom), since
each eigenfunction is represented separately and may need to be orthogonalized with respect
to all others to ensure their distinction. A theoretical study of a model problem indicates that
it may be possible to reduce the complexity toO(N1 log N log 1

ε ), by employing a multiscale
collective representation of the eigenmodes. Hereε is the desired accuracy andN1 is just the
number of grid points required for adequately resolving the various features of the potential
functionV (x).

(7) Multiscale representations may also offer improved representations for theexchange
correlationpotential.

Of all the scaling difficulties listed above, several (those numbered 1,2,3,4, and partly
also #5) have been dealt with in other contexts (similar difficulties in other fields). So, once
multigrid solvers are introduced, the technique for treating these difficulties will already be
at hand.

We therefore focus our current research mainly on #6: developing a new multiscale
collective representation and collective calculation of many eigenfunctions. We have started
with the easier, one-dimensional case with a linear and periodic potential functionV without
singularities. The eigenfunctions between two energies are represented by expressions similar
to (5.2) above, with increasing separation between eigenfunctions described on increasingly
coarser grids.

In the coming yearswe plan: (1) to complete the 1D multi-eigenfunction solver described
above; (2) to move to the much more difficult two-dimensional case (similarly to the manner
in which the work on standing waves (Sec. 5 above) has proceeded); (3) to extend the work on
external optimization to multi-nucleus multi-eigenfunction cases (if suitable collaboration, a
student or a researcher, join this effort); (4) to explore the possibilities offered by the multi-
scale representation of the eigenspace for efficient discretization of the exchange correlation
potential (#7 above); (5) join forces with others to demonstrate the capability of multiscale
techniques to overcome other obstacles (e.g., #1,2,3 and 4 above).

6.1. Model problem for the external optimization. A simplified model problem for
the external optimization is the minimization of the two-dimensional two-atom total energy

min
z=(z1,z2)∈D

[E(z) + λ(z)],(6.1)

whereE(z) models the (“external”) repulsive energy between ions at(0, 0) and at(z1, z2),
andλ(z) is the corresponding electronic energy, modeled by the eigenvalue of the equation

(−∆ + V (x, z))ψ(x) = λψ(x), x = (x1, x2) ∈ D.(6.2)

We choseV (x, z) that models the Coloumbic potential atx of the two-ion system,D =
[0, 1] × [0, 1], andψ was required to satisfy periodic boundary conditions onD (having
chosenV andE also with this periodicity).

The Euler equations for minimizing (6.1) under the constraint (6.2) can be simplified
(since the Lagrange multiplier coincides withψ) to the system of equations (6.2)–6.4, where

〈ψ,ψ〉 = 1,(6.3)

∂E

∂zi
+ 〈ψ,

∂V

∂zi
ψ〉 = 0, (i = 1, 2).(6.4)

The eigenproblem (6.2)–(6.3) was solved by a classical FAS multigrid eigen-solver [37].
The main point of the research was to find out how to include Eq. (6.4) and where to adjust
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z in the course of this solver. Since (6.4) is a global equation andz is a “global” unknown
(unlike ψ(x) it cannot besmoothed, for example), it is enough to treat both of them at the
coarsest level, where all the discrete equations can simply be solved simultaneously for all
the unknowns, since their number is small. This would be fully efficient, provided a suitable
“fine-to-coarse correction” for Eq. (6.4) is recursively calculated at each coarsening step, see
[13,§5.6] or [12,§5.6], except that in the FAS scheme the residual transfer is replaced by the
τ2h
h fine-to-coarse correction; see [13,§8.2] or [24,§8.2]. Namely, the discretization of (6.4)

on any gridh has the form

∂E

∂zi
+ 〈ψh, ∂V h

∂zi
ψh〉h = τhi , (i = 1, 2),(6.5)

where〈 , 〉h is the discretization on gridh of the continuumL2 inner product〈 , 〉, and
τh1 = τh2 = 0 on the finest grids.

Usually in FAS schemes, the FAS fine-to-coarse corrections(τ) are fixed (i.e., they de-
pend on the current fine-grid solution, but they do not change on the coarse level). The main
finding of this research was, however, that in the above situation (and for similarly “local-
ized” global unknowns, whose movements may not be resolved on some of the coarse grids),
a linear dependence on the global unknowns should be introduced. Thus, on each coarser
grid we introduce, fori = 1, 2,

τ2h
i = τhi +

〈
ψ

2h
, ∂V (x,z̃)

∂zi
ψ

2h
〉

2h

−
〈

ψ̃h, ∂V (x,z̃)
∂zi

ψ̃h
〉
h

+
∑2
j=1(zj − z̃j)

[〈
ψ

2h
, ∂

2V (x,z̃)
∂zi∂zj

ψ
2h
〉

2h

−
〈

ψ̃h, ∂
2V (x,z̃)
∂zi∂zj

ψ̃h
〉
h

]
,

(6.6)

whereψ̃h andz̃ are the values ofψh andzh at coarsening (i.e., when the grid-2h equations

are derived), andψ
2h

= Î2h
h ψ̃h is the FAS fine-to-coarse transferred solution. (This means

that the coarse-to-fine correction will beψ2h − ψ
2h

, whereψ2h is the solution of Eq. (6.5)
with 2h replacingh; see [13,§8.1] or [12,§8.1].)

The linear (inz− z̃) terms in (6.6) are important in the cases where the functions∂V/∂zi
are not resolved well enough on the coarse level to yield there the correct dependence of
〈ψ, (∂V/∂zi)ψ〉 on variations inz. This generally happens whenV has a singularity (or
a particularly large local variation on the scale of the gridh) which moves withz. Note
however that, quite fortunately, exactly in such cases, it is enough to calculate the bracketed
inner products in (6.6) over just a small neighborhood of the singularity.

With this simple change, the one-shot solver for the external optimization problem (6.2)–
(6.4) attains essentially the same convergence factors as in solving Poisson equation, costing
only a fraction more.

7. Fast Evaluation of Integral Transforms on Adaptive Grids. (with post-doctoral
fellow Kees Venner)Multilevel algorithms previously developed for the fast evaluation of
integral transforms, such as

Gu(x) =
∫

Ω

G(x, y)u(y)dy

(and for the solution of corresponding integral and integro-differential equations; see e.g.
[33], [17], [86]) rely for their efficiency on the (asymptotic) smoothness of thediscreteker-
nel (the matrix) and thereby ongrid uniformity. However, in actual applications, e.g., in
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contact mechanics [86], in many cases large solution gradients as well as singularities occur
only locally, and consequently a substantial increase of efficiency can be obtained by using
nonuniformgrids.

A new discretization and evaluation algorithm has been developed which relies on the
(asymptotic) smoothness of thecontinuumkernel only, independent of the grid configuration.
(Asymptotic smoothness roughly means thatG(x, y) is smooth except possibly nearx = y;
cf. [17].) This will facilitate the introduction of local refinements, wherever needed. Also,
the new algorithm is faster: for ad-dimensional problem onlyO(sd+1) operations per grid-
point are needed, wheres is the order of discretization andd is the dimension. (Multigrid
algorithms with onlyO(ds) operations per gridpoint are available forpotential-typekernels,
yielding faster evaluations at higherd ands; see§8 in [41].)

The algorithm has been tested using a one dimensional model problem with logarithmic
kernel. For testing purposes, and to compare with results obtained with the “old” algorithms,
uniform grids covering the entire domain were considered first, see [41]. Next the algorithm
was implemented for the actual case of local grid refinements [42]. Numerical results were
obtained for a model problem in whichu has a singularity where its derivative is unbounded.
First it is shown that on auniformgrid this singularity “pollutes” the entire approximation,
dictating a much deteriorated relation between work and accuracy in comparison with the
regular case (where accuracy is measured in terms of approximating thecontinuumtransform,
of course). Next we have demonstrated that with the new fast evaluation algorithm on a
non-uniformgrid one can restore the regular work to accuracy relation, i.e., obtain the same
efficiency as for the case without a singularity.

In the next couple of yearsthe plan is to develop a multigridsolverfor integro-differential
equationsdiscretized on adaptive grid, based on the new discretization and evaluation algo-
rithm. As explained in [33], it will again be attempted to show that the cost of the solver
need not be more than a fraction above the cost of our fast evaluator of the involved integral
transform. As previously developed for PDE systems [8], [2], [13], self-adaptation criteria
based on the local fine-to-course defect corrections (τ ) are planned, as well as full integration
of the grid adaptation process into the solver (like theλ-FMG algorithm in [13]).

Future applicationswith our collaboration are expected in tribology and in ab-initio
electronic structure calculations (where, however, another approach will be to use multigrid
solvers; cf. #(4) in Sec. 6 above).

8. Dirac Solvers. (with Ph.D. student Michael Rozantsev)A major part of lattice quan-
tum field calculations is invested in the inversion of the discretized Dirac operatorMh ap-
pearing in the fermionic action. Solutions of systems of the form

Mhφh = fh(8.1)

are many times called for, either for calculating propagators or for the fast update ofdet Mh

(see Sec. 9).
We used the Euclidean staggered lattice formulation [17], in which

(Mhφ)(z) =
1
h

d∑
µ=1

ηµ(z)[U(z +
1
2
eµ)φ(z + eµ)− U†(z − 1

2
eµ)φ(z − eµ)] + mqφ(z),

whereh is the meshsize of the grid,φ = φh, d is the number of dimensions,mq — the
(given) quark mass, andeµ — a vector of lengthh pointing in theµ-th coordinate direction.
ηµ are complex numbers of modulus 1, and may be chosen asη1(z) = 1, η2(z) = (−1)n1 ,
η3(z) = (−1)n1+n2 andη4(z) = (−1)n1+n2+n3 for the gridpointz = h(n1, . . . , nd), nν
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being integers.U(z + 1
2eµ) is the gauge field value defined on the directed link(z, z + eµ).

The inversely directed link(z, z − eµ) carries the gauge fieldU†(z − 1
2eµ), where† denotes

the Hermitian conjugate of the matrix. EachU(z + 1
2eµ) is an element of the model’s unitary

gauge group.
We have investigated two such models:U(1) andSU(2). In theU(1) model, the gauge

group elements are complex numbers of modulus 1, andφh(z) andfh(z) are complex num-
bers. (In the case of a trivial gauge field(U ≡ 1) in 2D, theU(1) operatorMh reduces to the
well known Cauchy-Riemann system.) In theSU(Nc) model the gauge group elements are
unitary complexNc×Nc matrices whose determinant is 1, andφh(z) andfh(z) are complex
Nc-vectors. See more about these models in [90], [64], [65], [66], [81], and about a multigrid
approach to related, simplified models in [61] and [62].

These systems, despite their linearity and good ellipticity measures, are very challenging,
due to their topology-induced singular (or nearly singular) eigenmodes and their disordered
and non-commutative coefficients (the gauge field). The disorder results from the probabilis-
tic physical rules by which the gauge field is determined, and from the “gauge freedom”,
i.e., the fact that those rules determine the field only up to arbitrary “gauge transformations”.
The latter are arbitrary multiplication of eachφh(z) by an element of the gauge group and
corresponding changes of the gauge fieldU so that (8.1) is still satisfied. Such changes do
not change the physical content of the field.

Our approach, based on pre-coarsening gauge smoothing and on multiscale iterate re-
combination, had previously been applied to the two-dimensional(d = 2) U(1) model (see
general description in [18], and full account in [70]). More recently we have been working
on the U(1) and SU(2) gauge models in 4D [71].

For the 4D-U(1) gauge model, general conditions have been formulated under which
the gauge field can be smoothedglobally by gauge transformations, hence a fully efficient
multigrid solver can, and has been, constructed. These conditions arenot satisfied, however,
in two kinds of topological situations. In the first kind, the total topological charge over
the domain does not vanish. In this case the field can be smoothed everywhere except for
a certain local neighborhood which can easily be shifted away to any other place by gauge
transformations, so that good intergrid transfers can be formulatedlocally. This is enough for
obtaining nearly top multigrid efficiency.

The second topological case is more severe. It features gauge-field discontinuity along
some non-local path (called “string”) in the domain. This string can be shifted by gauge trans-
formations, except for its ends. So we have at least two local discontinuities which cannot be
shifted away. If not treated they lead to critical slowing down (CSD) of the solver (i.e., the
larger the grid the more computational work per unknown is required). The number of slowly
converging components introduced by the string is small, however, so they can be eliminated
by recombining iterates (taking linear combinations of results of the latest multigrid cycles
so as to minimize the residualL2 norm; which can also be done on coarser levels of the
multigrid hierarchy; see [70], [39]) together with local relaxation passes added around the
local discontinuities. With these devices the convergence is still slower than in the absence
of a string, but it seems free of CSD. We suspect that with wider regions of local relaxation
the better efficiency may be restored; unfortunately, our domains were not wide enough for
testing this.

Indeed, a severe problem in our entire work on these 4D models is the huge amount of
computer time needed to produce reasonably sized, well equilibrated gauge fields on which to
test our solvers: the Monte Carlo processes for producing these fields are far too slow. (This
problem will presumably be alleviated when the work of the kind reported in Sec. 10 below
is sufficiently advanced.)
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In the case of the 4D-SU(2) model, it is not yet clear what the best gauge-smoothing
gauge fixing is. We have found a fast multigrid algorithm for the so called “Landau fixing”,
but the resulting gauge field is not always smooth. Although the topological nature of the
remaining discontinuities is not yet clear, it seems that the above techniques (iterate recombi-
nation and local relaxation passes) eliminate CSD here, too. The current state of development
is summarized in [71].

CSD or not, the current solvers are too slow, (compared, e.g., to our solvers for trivial
gauge fields, which are as efficient as 4D Poisson multigrid solvers). Our recent study indi-
cates that this can be cured by addingsimultaneous-relaxation steps on every level, relaxing
simultaneously small local sets of strongly-coupled variables, which are randomly created by
the random topological charges of the gauge field.

The plan is to continue working on the above models and to investigate also the 4D-SU(3)
model.

9. Fast Inverse-Matrix and Determinant Updates. (with programmer Ruth Golubev
and Ph.D. student Michael Rozantsev)In parallel to the development of the multigrid fast
Dirac solvers (Sec. 8), work has been progressed on methods for using multigrid solvers for
constructing an inexpensive structure of theinverseDirac matrix, allowing fast self-updating
upon each change in the matrix itself (each gauge update). This will allow fast updating of
the fermion propagators and the associated determinant (repeatedly needed for calculating the
action of the unquenched Monte Carlo simulations). The general approach was first described
in Sec. 12 of [15].

For a large lattice withN sites and meshsizeh, the storage of the Dirac inverse ma-
trix (Mh)−1 would requireO(N2) memory andO(N2) calculations, even for fully effi-
cient multigrid solvers. Using the following multigrid structure, both can be reduced to
O((l + ε−1/l)dN), whereε is the relative error allowed in the calculations andl is the inter-
polation order below. More important, the structure will allow very fast self-updating.

Denoting the propagator from gridpointx to gridpointy by ((Mh)−1)x,y, for sufficiently
smoothMh the l-th “derivatives” (difference quotients) of this propagator, with respect to
eitherx or y, decay asO(|x − y|−1−l). Therefore, anl-order interpolation of the propagator
from grid 2h to grid h will have at mostO(hl(|x − y| − lh/2)−l) relative error, i.e.,O(hl)
times the relative magnitudes of the maximall-th order derivative of the interpolated function
(over thelh neighborhood spanned by the interpolation stencil) and the interpolated function
itself. This relative error will be smaller thanε in the region

|x− y|/h ≥ K ≡ Cε−1/l + l/2,

whereC is a (small) constant. Hence, propagators with|x− y| ≥ Kh need be stored on grid
2h only, except that, for a similar reason, those of them with|x− y| ≥ 2Kh need actually be
stored only on grid4h; and so on.

This structure can be immediately updated upon changes in the gauge field. Indeed, each
local change in the gauge field, if done in a properly distributive manner (i.e., so that some
moments of the fields are kept unchanged) has only local effect on the propagators. Since the
calculation of the latter can be regarded as solving by multigrid the system (8.1) withfh =
δx,y, the effect of each local change can be calculated just by local relaxation sweeps around
the change on some of the finest levels. More global changes can similarly be introduced (in
a similar, distributive manner) at coarser levels. Changes in propagators described on grid
2h (associated with relaxing thesmoothchanges in the gauge field) affect those described on
gridh through an FAS-like interpolation (it means correctingφh by Ih2h(φ2h−I2h

h φh), where
IHh denote interpolation from gridh to gridH; except that here one interpolates both inx and
in y). The cost per update isO(1), i.e., independent of lattice size.
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With (Mh)−1 thus monitored, one can inexpensively calculate changes inlog det Mh.
For asmallchangeδMh in the gauge field

δ log det Mh = Tr((Mh)−1δMh),(9.1)

which can be computed locally, based on((Mh)−1)(x, y) for neighboring(x, y). For larger
changes one can locally integrate (9.1), since the local processing also gives the dependence
of (Mh)−1 on δMh. Again, the amount of calculations per update does not depend on the
lattice size.

Simplified model. The approach described above was first developed for model matrices
with a simplified structure: matricesMh arising from discretizing on a lattice with meshsize
h the random diffusion equationsLu = f , where

Lu(x, y) =
∂

∂x
[a(x, y)

∂

∂x
u(x, y)] +

∂

∂y
[b(x, y)

∂

∂y
u(x, y)]

and the discrete analogs of the diffusion coefficientsa(x, y) andb(x, y) have random values,
uniformly distributed in(0, 1).

In the methods developed, “central” terms of the inverse matrix(Mh)−1, together with
similar central terms of(M2h)−1, (M4h)−1, . . . are calculated and stored; where acentral
termof the matrix(MH)−1 is a term

(
(MH)−1

)
i,j

for which i andj are neighboring sites
on latticeH. It has been shown that this structure can update itself, upon changing one of the
terms ofMh, in justO(1) operations, i.e., amount of work independent of the lattice size.

The exact number of operations depends on the number of central terms (i.e., number
of neighbors for each given site) kept in the system, which in turn depends on theaccuracy
at which one needs the most central (nearest neighbor) terms. Actually, for the purpose of
fast determinant updates, important is the accuracy at which certaindifferencesof the most
central terms are calculated. The relation between this accuracy and the number of terms to
be kept in the system is being thoroughly studied by us.

Having clarified these issues for the model problems, we are in the process of studying
them for the 2D–U(1) Dirac equations.

10. Monte Carlo Methods in Statistical Physics.(with Ph.D. students Meirav Galun
and Sergei Shmulyian and with part-time researcher Dr. Dorit Ron)The general goal is the
systematic development of advanced multigrid Monte-Carlo (MC) methods in statistical me-
chanics, quantum mechanics and quantum field theory. An initial stage research was done in
collaboration with groups headed by Prof. Gerhard Mack (Hamburg University), Prof. Sorin
Solomon (Hebrew University), Dr. Klaus Pinn (M¨unster University) and Dr. Martin Hasen-
busch (CERN, Geneva). Our main objective is to overcome, for increasingly more inter-
esting models, the basic complexity factors plaguing these fields: the critical slowing down
(CSD) and the volume factor (as well as the factors arising from propagator calculations and
fermionic interactions, a separate research for which is described in Secs. 8–9 above).

The leading idea is to use multigrid cycles in which coarser grids perform three different
tasks:

(i) Acceleration of the Monte Carlo simulations on the finer levels (to eliminate the CSD).
This is in general similar to the multigridconvergenceacceleration in PDE solvers.

(ii) Gathering statistics: large-scale fluctuations can be cheaply averaged out through
coarse-level MC, by cycling enough between these levels (much more than usual in multigrid
PDE solvers) before returning to finer levels. Indeed, averaging outfine-scalefluctuations
does not requiremanyreturns to the fine levels, since such fluctuations are largely averaged
out in anyonefine-level configuration.
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(iii) Increasingly larger computational domains (decreasingly suffering from finite-size
errors) can be simulated cheaply by using increasingly coarser levels: The finest grid covers
only a relatively small domain, with periodic boundary conditions; a coarse level created from
it can then switch to a larger periodicity (e.g., by doubling the period size); etc.

To enable the coarse levels to fulfill these tasks, we methodically learn how to construct
coarse-to-fine interpolations and coarse-level Hamiltonians, with bounded complexity per
coarse-level degree of freedom and such that allow the full physical mobility at the corre-
sponding scales. If fully successful in eliminating the CSDand the volume factors, such
Hamiltonians will also directly yield the macroscopic dynamics of the system.

The elimination of both the volume factor and the CSD factor means that a thermody-
namic limit can be calculated to an accuracyε in only

O(σ2ε−2)

computer operations (whereσ is the standard deviation of the observable in question), in-
dependently of the lattice size (“the volume”) required to obtain theε accuracy. Such a
performance we call “statistically optimal”, or “ ideal MC performance”, since this is just the
same order of complexity as needed to calculate, by statistical trials, any simple “pointwise”
average, such as the frequency of “heads” in coin tossing.

Ideal performance was first demonstrated forGaussian models with constant coefficients
[53], [30]. It was shown there, for the one-dimensional Gaussian model, that the suscepti-
bility thermodynamic limit can be calculated to accuracyε in about4σ2ε−2 random number
generations, while the average energy per degree of freedom requires3σ2ε−2 such genera-
tions for a similar accuracy. It was also found that the algorithmic flow (as determined by
the multigridcycle index) should generally depend on the observable being calculated. In
the two-dimensionalGaussian model, the susceptibility limit can be measured to accuracy
ε in about20σ2ε−2 random number generations. In the one-dimensionalmassiveGaussian
model, the susceptibility limit can be calculated in less than8σ2ε−2 random generations, es-
sentially independently of the mass size, although the algorithm flow may change with that
size [27].

Next, the multigrid algorithms were extended, using newanalysismethods, so that they
would have the ability to eliminate the volume factor in more advanced models.

For thevariable-coupling Gaussian models, we have shown that in order to reach ideal
performance, the algorithm should employ during the multigrid cycleweightedinterpolation
andvariablesampling (the Monte Carlo process should sample more frequently regions with
smaller coupling values). Such algorithms have been implemented forstronglydiscontinuous
cases in one and two dimensions. (“Strongly” means that the couplings may change by orders
of magnitude between adjacent regions.) For the one dimensional variable-coupling Gaussian
model, the susceptibility limit is calculated to accuracyε in less than8σ2ε−2 random number
generations. In the two-dimensional variable-coupling Gaussian model, that limit can be
measured in less than20σ2ε−2 random generations [28]. These results are independent of
the maximal ratio between strong and weak couplings, unlike the severe extra slowness that
large such ratios can inflict on pointwise Monte Carlo.

The development of an optimal algorithm for the variable-coupling Gaussian model pro-
vides an important tool for general non-linear models, where non-constant couplings stochas-
tically emerge at coarser levels of the multigrid Monte Carlo processing.

Doubts have however been raised whether ideal MC performance can really be obtained
for non-linear models, where large-scale fluctuations are highly correlated with small-scale
fluctuations. By applying the new analysis methods to the nonlinearanharmonic crystal
modelwe have shown, and confirmed by actual simulations, that, down to a certain (small)
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ε, performance similar to that of the Gaussian models can still be obtained, although it re-
quires careful choice of the multigrid cycling parameters [54], [29]. Such a performance is
realizable because the large-scale fluctuations depend only on someaveragesof the small-
scale fluctuations, and these averages are approximated well enough at anysinglefine-level
configuration used at coarsening.

For a sufficiently smallε, however, and for models sufficiently dominated by the anhar-
monic term, both the analysis and the numerical tests show that ideal performance can no
longer be obtained by a multigrid process which employs our weighted linear interpolation.
In fact, the analysis shows that no interpolation in the form of a linear operator can obtain
ideal performance for allε. We have therefore introduced another type of interpolation, the
minimization interpolation.

This interpolation is best defined in terms of the Full Approximation Scheme (FAS; cf.
Sec. 7.1 in [40]), where the coarse-grid variables represent thefull current configuration (i.e.,
the sum of a coarsened representation of the current fine-grid configuration and the cur-
rent coarse-grid correction) instead of just the current coarse-grid correction. To define a
valueu0 at a fine-grid point based on coarse-grid values (u1, u2, . . .), the minimization in-
terpolation method is first to calculateU0(u1, u2, . . .), defined as the value ofu0 that would
be obtained by some, exact or approximate, local Hamiltonian minimization with the val-
ues of (u1, u2, . . .) being held fixed. Then, to retain statistical detailed balance, the FAS
minimization-interpolation value is defined by

u0 = U0(u1, u2, . . .) + ũ0 − U0(ũ1, ũ2, . . .).(10.1)

where thẽui are the values of the variablesat coarsening, i.e., at the last transition from the
fine level to the current coarse one.

Two-level unigrid experiments with the anharmonic crystal model have shown that the
volume factor, along with the CSD, can be completely eliminated with anexactminimization
interpolation. However, this interpolation creates a complicated coarse-level Hamiltonian,
so we next designed simpleapproximateminimization interpolations, employing polynomial
best fit. This yields simple (fourth-order polynomial) coarse level, allowing the recursive
construction of still coarser levels and application of completemulti-level cycles, which do
indeed demonstrate the desired ideal MC performance [29].

The situation is less convenient in more advanced physical models, where topological
structures are present, because large-scale topologies may be correlated to specific fine-scale
features, such as vortex centers. Also, linear-like interpolation of spinors is problematic.

A partial elimination of the volume factors in measuring susceptibility forIsing models
was previously obtained by the three-spin coarsening technique [18], [30], as well as full
elimination of that factor (namely, ideal MC performance) in determining that model’s critical
temperature [30].

Various types of attempts to attain ideal performance for two-dimensional non-linearσ
models(several of which are described in [77]) have failed. Nevertheless, we have developed
a variety of newstochasticcoarsening procedures by which at leastpartial elimination of
the volume factor can be achieved. These procedures include: a detailed-balance way to
associate the introduction of linear (or linear-like) interpolation with a certain probability
for reducing adjacent coupling strength; smart choice of the interpolation in a neighborhood
depending on local features at coarsening; stochastic simplification of the derived coarse-grid
Hamiltonian in ways which do not destroy the statistical detailed balance; and introduction of
less restrictive stochastic interpolations [77]. Most of the developed schemes are applicable
to specific cases ofXY and Manton’s models, while some are universal for anyO(N) model.

Specially devised two-grid numerical experiments have demonstrated that the designed



ETNA
Kent State University 
etna@mcs.kent.edu

22 Gauss center research in multiscale scientific computation

techniques are capable of eliminating the volume factor almostcompletelyat low tempera-
tures of theXY and Manton’s model, andpartially in theO(4) model as well as in the critical
region of theXY model. The non-optimality of the latter results have been attributed to the
insufficient accuracy in representing and sampling some of the statistically important features
by means of currently employed interpolation and stochastic coarsening procedures.

This led us to an attempt to introduce the FAS minimization interpolation (10.1) also to
the XY model. It yielded an improved, but not yet statistically optimal, performance. The
reason for non-optimality has been shown to be the bias introduced by the FAS correction
ũ0 − U0(ũ1, ũ2, . . .). For example, if the coarse configuration at coarsening(ũ1, ũ2, . . .)
happens to be locallynon-smooth, then the corresponding FAS correction is likely to be
large, preventing the coarse-level system from efficiently samplingsmoothconfigurations. A
way around this difficulty is to replace (10.1) by

u0 = U0(u1, u2, . . .) +
Q0(u1, u2, . . .)
Q0(ũ1, ũ2, . . .)

[ũ0 − U0(ũ1, ũ2, . . .)],(10.2)

whereQo(u1, u2, . . .) is a characteristic size of the likely fluctuations inu0 given(u1, u2, . . .).
More precisely, the interpolation (10.2), like (10.1), is suitable in caseui are real variables; it
has modified forms to suit other types of variables, such as XY.

In the next yearswe will not abandon our drive to attain ideal performance for advanced
nonlinear models, since this seems to be a promising way to attainmacroscopic equations,
or more generallymacroscopic processing, for real physical models. We will pursue various
lessons learned from our past failures, including in particular the need to introduce new types
of coarse-level variables and to have the coarse-grid Hamiltonian depending not only on the
current fine-grid configuration, but also on certain statistics accumulated over all previous
cycles. In particular, a new combination of group-renormalization and multigrid techniques
is under development.

11. Molecular Mechanics. (with Dr. Dov Bai, partly supported by the US Air Force)

11.1. Background and objectives.Molecular mechanics (or dynamics) is becoming a
major tool of theoretical chemistry, with immense practical potential in medicine, material de-
sign and biotechnology. The Born-Oppenheimer approximation to the potential energyE(r)
as function of then atomic positionsr = (r1, r2, . . . , rn) can be imagined as the objective
functional of these calculations, the electrons being implicit. Explicit approximations toE(r)
as a sum of various few-atom interactions are derived by accumulated computational experi-
ence, compared with finer-scale calculations (e.g., “ab-initio” quantum chemistry) and with
molecular measurement data (crystal structure geometries, vibrational spectroscopy, heats of
formation, etc.). The most common few-atom interactions are of the following two kinds:
(1) The bond interactions between chemically-bonded atoms, including three types: length
(distance) interaction between 2 atoms, angle interaction between 3 atoms and torsion inter-
action between 4 atoms. The first is much stronger than the second, which in turn is much
stronger than the third. (2) Non-bond interactions, including the short-range Lennard-Jones
and hydrogen-bond terms and the long-range Coulombic potential.

The aim of the calculations is usually eitherstatics(finding the configurationr which
minimizesE), ordynamics(calculating trajectoriesr(t) which satisfy Newton’s law−∇E(r) =
Mr̈, whereM is the diagonal matrix of masses), orequilibrium statistics(average properties
under the probability distributionP (r) ∼ exp(−E(r)/kBT )), wherekB is the Boltzmann
constant andT is the absolute temperature).

The computing cost of current molecular dynamics algorithms rises very steeply with
problem size, restricting the modeling efforts to relatively small molecular ensembles and to
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time intervals many orders of magnitude smaller than needed. Preliminary model studies con-
ducted by us have indicated that this steep rise in cost can be radically reduced by combining
several types of multiscale approaches. Our research objective is to develop these approaches
and demonstrate their ability to perform the above computational tasks in computing times
that rise onlylinearly with the numbern of atoms in the system. Moreover, the long term
aim is to blend statistical approaches in the small (for the high-frequency molecular oscilla-
tions) with deterministic dynamics or statics in the large (see Sec. 11.6 below), and to derive
macroscopic equations at increasingly larger scales, leading eventually to continuum-level
processing.

11.2. Research steps.The computational-complexity factors arising in molecular me-
chanics, and the multiscale approach for dealing with each of them, were already specified
in [21] (and partly mentioned also in [69] and [74]). The outlined multiscale techniques
included: fast (O(n)) summation of all electrostatic interactions; increasingly coarser molec-
ular motions (corresponding to collective atomic motions at increasingly larger scales), either
for energy minimization or in Monte-Carlo simulations; multiscale annealing (similar to that
developed in [40] for spin glasses); and multiscale eigen-bases for normal-mode analyses.

To investigate in detail each of these techniques, a systematic study of model problems
has been undertaken. Unlike the common methodology of starting a research on molecular
algorithms with small molecules and advancing to increasingly larger ones, the development
of multiscale techniques necessarily employs at each stage molecules ofvariablesizen, start-
ing with very simple potential functionals and advancing to increasingly more complicated
ones, progressing also from simple geometries (e.g., stretched homogeneous chains, then
simple helics) to increasingly more realistic ones. At each stage just one new type of diffi-
culty should be added, and the study objective is to still obtain the linear (O(n)) complexity.
This research strategy is necessary since linear complexity and large-scale processing are in-
deed our ultimate aims, and since at small molecular systems the advantages of multiscaling
cannot be observed.

11.3. Fast summation of forces.Direct summation of all the electrostatic interactions
betweenn particles costsCn2 computer operations, whereC is around 10. Instead, several
methods exist to sum the forces in justC1n operations (see, e.g., survey [55]), although
note that in three dimensionsC1 > 104, so these methods become advantageous only for
n > 103. A multiscale method for fast summation, suggested in [17] (based on an idea
described earlier in [12,§8.6], [15, App. A] and [33], and related to the methods discussed in
Sec. 7 above), is being used by us. It is based on a decomposition of the two-particle potential
into a local part and a smooth part, the latter being evaluated at larger scales (interpolated
from coarser grids), where a similar decomposition is being recursively used. An important
advantage of this approach is that it gives the kind of multiscale description of the force fields
which is needed for the efficient multiscaling of atomicmotions— in statics, dynamics and
equilibrium calculations (see for example the description of the coarse-level energy functional
in Sec. 11.4 below).

Numerical experience with applying this approach to particle problems has been gathered
by our Ph.D. student G. Hochman a couple of years ago, but to date, unfortunately, it has not
been properly summarized. (Hochman left before finishing writing his thesis.)

11.4. Fast macromolecular energy minimization.Energy minimization serves here
two somewhat different objectives: one in statics, the other in dynamics. In statics, the ob-
jective is to calculate the lowest energyE(r), yielding the most stable conformations of the
molecular structure. In dynamics, the objective is the solution of the system of equations
arising at each time step ofimplicit dynamics simulations. “Implicit” refers to the method
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which evaluates the forces−∇E(r) at each time step (partly or wholly) in terms of the par-
ticle arrival positions, i.e., positionsr at theendof the step. This method ensures stability of
very large time steps, but it does not yield the arrival positions explicitly. Instead, they should
be calculated by solving a large system of equations. (Also, this method damps molecular
vibrations at scales not resolved by the large time step; we return to this point below.) Solving
the implicit system of equations is equivalent to minimizing anaugmentedenergy functional,
identical toE(r) except for an additional quadratickinetic term(cf., e.g., [68] or the more
sophisticated functionalH in Sec. 11.6 below). For large time steps this additional term is
locally very small, but its large-scale effect is still profound.

The macro molecular energy minimization problem is somewhat similar to the minimiza-
tion problem encountered in structural mechanics, for which very efficient multigrid solvers
have been developed. Of these, the closest to the ones needed in molecular mechanics are
the algebraic multigrid(AMG) solvers [12,§13.1], [36], [38], [14], [73], which do not as-
sume that the problem arises from PDE or that the unknowns are really placed on a grid.
The methods we have developed for molecular energy minimization follow the general AMG
outline: coarser levels are constructed each by taking a suitable subset of the next-finer-level
degrees of freedoms; a coarse-to-fine interpolation of displacements is defined based on the
fine-level couplings and current configuration; the coarse-level set of equations (or rather, the
coarse-level Hamiltonian) is derived based on this interpolation and on the current residual
forces at the fine level; and the algorithm consists of relaxation (local minimization) sweeps
at all levels with fine-to-coarse transfers of residual forces and coarse-to-fine interpolation of
displacements. The molecular forces, however, are much more involved than those of struc-
tural mechanics, so very systematic development of all these algorithmic components was
required.

Our first stage of developing multiscale molecular energy minimizers has been described
in [21]. Starting with a two-dimensional model having only bond-length and bond-angle
interactions, we constructed linear-time (O(n)) minimizers, assuming a reasonably good first
approximation. We also showed that, by contrast,conventionalatom-by-atom minimizers
would instead requireO(n3ε−1) operations, whereε is the weak-to-strong ratio of the two
kinds of interactions, properly scaled. (In real 3D models, the bond-torsion interactions are
weaker by a factorε ∼ 10−3 compared with the bond-length.)

Some general rules have been learned at that stage that continue to guide our work with
more advanced models. The most important is a general approach for deriving numerically
the coarse-to-fine interpolation of displacements, based on a local set of atoms around each
neighborhood where the interpolation is being defined. The interpolation expresses approxi-
mate relations satisfied by the minimal-energy configurations of this set, written as functions
of the positions of the subset of atoms chosen to belong to the coarse level.

The model we are currently studying in detail is a three-dimensional helical chain of
atoms featuring all the three (length, angle and torsion) bond interactions. From the inten-
sive study of this particular model, several guidelines have emerged which are important for
multiscale molecular dynamics in general. The most important of these guidelines are the
following.
• Relaxation should be such that it converges fastall the stronger interactions. For

example, at thefinest level (the basic level of all atoms) all bond-length and bond-angle
interactions should exhibit fast convergence. One cantest this property by running cases
where all other interactions are set to zero.

To achievethis property, simultaneous relaxation steps of several (e.g., 3) neighboring
atoms at a time is required. Each such step can usually consist of just one simultaneous New-
ton iteration, but in some special cases may require slight employment of natural-temperature
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Monte-Carlo (see below).
• The coarse-to-fine interpolationcannot simply be based on freezing internal coordi-

nates (other than bondlengths), because of the strong nonlinearity of the interactions. Instead,
they should be based on local energy minimization, done in a specific, fast and unique, way
as follows.

The interpolationI from a given coarse-level configurationxc to create a fine level con-
figurationxf = I(xc), where bothxc andxf denote vectors of Cartesian positions of all
involved atoms (the choice of the coarse-level atoms being described below), is performed
using the following three steps.

(1) Let xc0 andxf0 denote the values ofxc andxf at the time of coarsening(the stage
at which the coarse-level Hamiltonian is defined; see its description below). Afirst approxi-
mationxf1 to xf = I(xc) is defined in terms ofinternal-localcoarse-level coordinates (e.g.,
distances to neighboring coarse-level atoms), approximating in such coordinates the value
of xf0 . In this way one can ensure that any large nearly-rigid-body motion that has been
performed (in the transition fromxc0 to xc) by the neighboring coarse-level atoms is locally
copied (in the transition fromxf0 to xf1 ) to the fine level.

(2) Keepingxc fixed and a certainlocal setof xf changing, and starting fromxf = xf1 ,
severallocal energy minimization sweeps (i.e., relaxation sweeps confined to the local set)
are performed. (The above-stated property of the (global) relaxation sweeps is required here
too. Actually, instead of these local sweeps, one simultaneous Newton step for the entire
local set may well be the best.) For a certaininterior subsetof atoms (a subset of the local
set whose all neighboring atoms still belong to the local set), the obtained positions are then
defined as their values iñI(xc), ourtentativeinterpolation. Then values of̃I(xc) are similarly
obtained for another subset, interior to another local set, etc., until the tentative interpolation
Ĩ(xc) is defined for all fine-level atoms. Note that the subsets must be disjoint while the local
sets overlap each other, and that for each new subset the local relaxation must again start from
xf1 .

(3) Thefinal interpolation is now defined by

I(xc) = Ĩ(xc) + xf0 − Ĩ(xc0).

This ensures that the interpolation is essentially done onchangesin the configuration (as in
FAS multigrid algorithms; see [12,§8] or [13,§8]).

This 3-step interpolation is fast while still facilitating large global movements without
destroying previous local convergence. These properties are essential for an efficient deter-
mination of the coarse-level Hamiltonian, described next.
• The coarse-level energy functional(or Hamiltonian) isE(I(xc)). For efficient cal-

culations on the coarse level (including recursion to still coarser levels), one needs to express
this functional directly in terms ofxc, not through repeated interpolations. For this purpose
E(I(xc)) is Taylor-expanded aroundxc0. This expansion cannot be done directly in terms of
Cartesian coordinates, because we need to get good approximations even for largexc − xc0,
e.g., for large near-rigid-body movements of local pieces of the molecule, because we want
to perform such movements on the coarse levels. So the expansion should be done inlocal
coordinates (e.g., distances between neighboring coarse-level atoms). This is true both for the
bond interactions and for thelocal part of the long-range forces (see Sec. 11.3 above). On
the other hand, thesmooth partof the long-range forces, as well as any external field, should
be computed directly in Cartesian coordinates.

We thus have developed a new method for approximatingE(I(xc)), based on:
(1) Interpolatingthe electrostatic charges from their fine-level (Cartesian) positions to

the (Cartesian) positions of the coarse-level atoms (see [17]: this effectively retains on the
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coarse level the full (non-linear!)smooth-partof the interactions between these charges, to
any desired accuracy, even after arbitrary moves of the coarse-level atoms).

(2) Taylor-expanding (usually to quadratic order) all thelocal interactions in terms of
local coordinates, approximating numerical derivatives ofE(I(xc)) by corresponding divided
differences. This is straightforward and efficient to do due to the above local method for
calculating the interpolationI.

(3) Denoting the overalltentativeapproximation toE(I(xc)) thus calculated bỹEc(xc),
thefinal approximatingEc is defined by

Ec(xc) = Ẽc(xc) + [ITRf
0 −∇xcẼc(xc0)] · xc(11.1)

whereIT is the transpose ofI, Rf
0 is the vector of current residual forces on all fine-level

atoms (in their Cartesian coordinates), and∇xc is the gradient ofẼc (also Cartesian). The
added inner product in (11.1) expresses a field-like correction (analogous to a similar term
in FAS multigrid [12, §8]) which makes the first derivatives ofEc exactly correspond at
coarsening to the current residual forces. The second derivatives in the expansion can be less
accurate and still sustain fast overall convergence. In fact, mostmixedderivatives (second
derivatives with respect to twodifferent local coordinates) are either zero (due to the local
nature of the interpolation) or can be set to zero (being small compared to the relevant non-
mixed second derivatives).

Since the local coordinates are in turn expressedalgebraically(i.e., non-polynomially) in
Cartesian coordinates (e.g., a distance or an angle between atoms is expressed algebraically in
terms of the differences of their Cartesian coordinates), the obtainedEc has the same overall
algebraic (non-polynomial) form as the fine-level energyE. This is in contrast toEc which
would result from direct Cartesian Taylor expansions.

The advantage of thisEc(xc) is that it remains a good approximation toE(I(xc)) under
large molecular movements. Only under extreme strains, and/or when new neighbor relations
are formed, one needs to updateEc by consulting the fine level, and only locally.
• Choice of coarse-level atomsis material and level dependent.
In case of our polymer model, for example, we found it efficient in the first coarsening

level to use a 2:5 coarsening ratio (i.e., a pair of 2 adjacent atoms out of 5 are taken to the
coarse level). This yields simple interpolations and uniform interactions at the coarse level,
except for the intra-pair length interaction, which can be frozen. Because of the inconvenience
of working with such a frozen length, we also use a 1:4 ratio. Any well chosen (sufficiently
small) ratio has the property that all the coarse-level interactions are of the order of the torsion
interactions (although they include also interactions associated with angular variations which
are smooth along the chain).
• Role of temperatureis critical.
Even when all except for three atoms are fixed, there may exist several local energy min-

ima. The stochasticity introduced by, e.g., room temperature, makes the transition between
these minima trivial. This is one of the main motivations for a new approach, described below
(Sec. 11.6).

11.5. Monte-Carlo methods at equilibrium. To calculate equilibrium statistics, an
atom-by-atom Monte-Carlo process is usually performed. In this process, each atom in its
turn changes position stochastically, according to the probability density distributionP (r).
Making repeated sweeps of this process, one can calculate the desired statistics on the se-
quence of produced configurations.

To calculate accurate averages of some observable, however, an extremely long sequence
of configurations is needed. There are two basic causes for this complexity: (1) Due to the lo-
cal nature of the Monte-Carlo process, only very slowly it affects large-scale conformational
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features, hence extremely many Monte-Carlo sweeps are needed to produce each new, statis-
tically independent configuration. (2) Many such independent samples are needed to average
out the deviation observed at each of them.

For some very simple model problems, multigrid Monte-Carlo algorithms were devel-
oped which overcomeboth these complexity causes (see Sec. 10 above, where these two
causes, which multiply each other, are called the CSD factor and the volume factor, respec-
tively). The algorithms are similar to the multiscale energy-minimization algorithms dis-
cussed above, with the following three modifications.

(a) The relaxation (local minimization) sweeps should be replaced by Monte-Carlo sweeps.
Namely, instead of driving toward lower energy, energy differences associated with candidate
changes are used to assign them relative probabilities, which are then applied in randomly
selecting one of the candidates. For full efficiency, as in relaxation above,simultaneous
changes of several atoms must be done in each MC step, so as to have fast equilibration of all
the stronger interactions.

(b) The fine-to-coarse approximate-minimization interpolation described above (Sec.
11.4) should be modified to obtain statistical fidelity, or “detailed balance”. (Examples for
such modification are Eqs. (10.1) and (10.2) above.) Any simplification of the resulting
coarse-level Hamiltonian should in principle also be done in a way that retains the detailed
balance (e.g., in stochastic manners; cf [18,§5.6] or [30,§4.3]). Methods to achieve this
are highly nontrivial, and may require careful research and development. However, in view
of the approximate nature of the molecular-mechanics Hamiltonian to begin with, and the
non-critical nature of the involved temperatures, exact detailed balance may not be required,
as long as statistical fidelity is retained in the limit of very smooth fluctuations. This can be
achieved more easily.

(c) The multiscale cycle should switch many times back and forth between coarse levels,
before returning to finer levels. In this way many samples of large-scale features can be
averaged over. Not so many passes are needed at the finer scales, because many fine-scale
features are already present, and hence averaged over, in any one configuration.

11.6. Small-scale statistics with large-scale dynamics.The multiscale structure al-
lows the combination of temperature-accuratestatistical simulations at small scales with time-
accurate dynamics at large scales. For this purpose the multiscale minimizer discussed above
should be modified in two ways.

First, the time-step discretization should be such that it gives accurate (non-damping, en-
ergy conserving) approximations for all scales whose time-accurate dynamics need be simu-
lated.

Secondly, at all finer scales (finer levels of the multiscale solver), the local-minimization
relaxation sweeps should be replaced with Monte-Carlo sweeps, for example in the following
manner.

Stochastic implicit time stepping. A first-order implicit discretization to Newtonian
dynamics, leading from old positionsr0 = r(t) and old velocitiesv0 = v(t) to new positions
r1 = r(t+ δt) and new velocitiesv1 = v(t+ δt), is given byv1 = (r1−r0)/δt andM(v1−
v0)/δt = −∇E(r1). This set of equations inr1 andv1 is equivalent to the minimization of
the functional

H(r1, v1) = E(r1) + wTMw +
1
4

(v1 − v0)TM(v1 − v0),

wherew = (v1+v0)/2−(r1−r0)/δt. In ourstochasticdynamics, instead of minimizingH at
each time step, we perform a Monte Carlo simulation with the probability density distribution

P (r1, v1) ∼ e−βH(r1,v1).
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On the finer scales of the multiscale cycle we takeβ = (kBT )−1, whereT is the real tem-
perature of the system. At increasingly coarser scalesβ increases, leading to practically
deterministic large-scale dynamics.

This approach yields two benefits in performing very large time steps: first, it allows
much easier handling of local minima; see Sec. 11.4. Secondly it avoids the killing of highly-
oscillatory modes (the unresolved vibrations), which would occur if the implicit equations of a
large time step wereimposedat all scales. Instead, these modes assume stochastic amplitudes,
nearly according to their equilibrium probability distribution. The desired temperature is
introduced very directly in this way (the fast atomic vibrations serve as a natural heat bath),
getting around the need for fabricating Langevin stochastic forces.

Tests with this scheme on model problems with quadratic potential have shown the ex-
pected behavior, except that the stochastic treatment at fine levels gradually introduces devia-
tion from deterministic evolution also at large scales. This deviation seems generally to be of
the order of the discretization error. We have nevertheless learned how to control this devia-
tion by “distributive Monte Carlo” (similar to distributive relaxation [13]), forcing fine-scale
moves to be as nearly orthogonal to large-scale moves as desired.

The testing and development of this technique has not been properly concluded, nor
summarized, due to the premature leave of Leonid Zaslavsky, a postdoctoral fellow who has
been working on this project.

12. Early-Vision Algorithms. (with former Ph.D. student Jonathan Dym, Ph.D. stu-
dent Eitan Sharon and in collaboration with Dr. Ronen Basri)

12.1. Edge (or fiber) detection.Over the past several years, fast multiscale approaches
for some early vision tasks, such as edge detection and surface reconstruction from sparse,
noisy or blurred data, have been developed at the Weizmann Institute [52]. In particular, fast
multiscale methods for enhancing and detectingstraight features(straight edges or straight
fibers) have been demonstrated [25], [26]: They detectall such features, of all widths and
lengths, in justO(N log N) operations, whereN is the number of pixels (picture elements)
in the given picture.

For detecting smoothcurved features (edges or fibers), a variety of approaches have
been proposed. One good example is thecompletion fields. In this approach, the picture is
described in terms of “edgels” (edge elements), i.e., short pieces of a straight edge (or fiber),
defined atN1 = O(N) locations in the picture, atm different orientations in each location.
Theoriginal value of edgeli is the responseui to an elementary edge detector ati; that is,u is
the result of a local integral transform which yields a higher value if the local picture elements
do indicate existence of an edge at that particular location and orientation (and at the chosen
scales of length and width, typically being, respectively, 3 and 1 times the pixel size). The
completion fieldvaluevj of edgelj can be built from the set of all elementary responsesui
in a variety of ways (see different approaches in [89] and [57]). As a representative example
for our discussion here, we can take

vj =
N1m∑
i=1

aijui, (j = 1, . . . , N1m),(12.1)

whereaij expresses the “affinity” of edgelsi andj: it is large if edgelj is a direct continuation
of edgeli, and it falls off with their distance and orientation difference. For a giveni, its
“induction field” aij is qualitatively similar to the field of a magnetic dipole. It is shown in
[89] that such completion fields are biologically plausible, and give eye-pleasing curves. They
are particularly powerful in completing curves partly occluded by large objects. The original
method however has several severe shortcomings, which can be overcome by multiscaling.
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Indeed, multiscale methods can contribute to the process in two fundamental ways. First,
the method as described in [89] would requireO(N2

1 m2) computer operations; multiscale
methods, resembling those of [17], will do the same job inO(N1m) operations, while retain-
ing the same (very high) degree of computational parallelism.

Secondly, and more important, still with this low cost, the multiscale processing can
produce much better completion fields.

Indeed, a fundamental flaw in the uni-scale completion fields is their additivity, as in
(12.1). In reality, the completion field of a long edge should be verydifferent from (farther
reaching and more orientation-specific than) the sum of the fields of the edgels composing
it. In the multiscale approach, this flaw can be avoided, since completion fields can be con-
structedseparatelyat each scale of length and width, withscale-dependentaffinity parame-
ters.

The multi-resolutioninput of straight-edge responses required for such multiscale com-
pletion fields is exactly the kind resulting from our earlier straight-feature algorithm [26],
[25]. The multi-resolution of both input (straight responses) and output (completion fields)
also involves further cost reductions. For example, forshort edgels only low orientational
resolution need be used, while for long edgels a low locational resolution is needed (in the
lengthwise direction). Thus, the value ofN1m mentioned above can itself be radically re-
duced. Moreover, the multiscaleoutputof the algorithm is a very desirable structure to inter-
act with the higher vision processes of labeling and segmentation (cf. Sec. 12.2), whether or
not the latter are themselves multiscaled.

A detailed study of multiscale completion fields, their parameterization and fast imple-
mentation is summarized in [75]. We further plan to investigate intriguing possibilities of
combining the developed algorithms in a variety of ways, such as:

(1) Iterating a multiscale algorithm, with the output of the first iteration (e.g., the set of
vj) being used in forming the input (e.g., the set ofui) for the next iteration. This can be done
in various manners: linear, nonlinear, with or without thresholding.

(2) Using the output from one scale in forming the input for the next coarser scale.
(3) Thresholding after the previous iteration, one can use in the next iteration several

different algorithms, due to the smaller set of data. Furthermore, one can afford at this stage
more specialized algorithms, such as circle and corner detection. The latter can and should
also be multiscaled.

12.2. Picture segmentation.A basic task in pattern recognition is the decomposition
of a given picture into meaningful segments. The criteria for blocking two picture elements
into the same segment include similarity in color levels, absence of separating edges, etc.
Quantitatively, these can be expressed in terms ofcouplingcoefficients between neighboring
pixels. It is not uniquely defined how to derive the segments once the coupling coefficients
are given. Multiscale approaches can play several essential roles (somewhat analogous to
their variety of roles in other areas; see for example Sec. 12.1 above).

Regarding the pixels as nodes of an electric network, and each coupling constant as the
conductance (1/resistance) of a connecting wire, the approach to the segmentation problem is
to define a picture segment as a block of nodes that will have approximately the same electric
potential under whatever input currents applied to the network. The first possible role for a
multiscale approach here is in terms of a fast solver for such networks. Since the network is
highly disordered,algebraic multigrid(AMG) solvers best fit the task (see [36], [38], [14],
[73]).

As pointed out by Sorin Solomon (in a private letter to us), there is in fact no need to solve
the electric-network problem for any particular input currents: The coarse-level nodes defined
by the AMG coarsening process can directly be identified with the desired picture segments.



ETNA
Kent State University 
etna@mcs.kent.edu

30 Gauss center research in multiscale scientific computation

More precisely, if all the couplings of a node at any coarse level are weak (compared with
its own couplings to finer-level nodes), the node can be recognized as a picture segment,
containing all the pixels (finest-level nodes) which are coupled to it (or to theextentof their
dependence on it, through the AMG recursive coarse-to-fine interpolations).

The AMG hierarchical coarsening can indeed be viewed as a process ofrecursive weighted
aggregation. In a recursive aggregation process, the elements (pixels) are blocked in small-
scale aggregates, which are then blocked in larger-scale aggregates, then still larger, etc. In
the weightedaggregation process,fractionsof the same element can be sent into different
small-scale aggregates, and similarly at all larger scales. This weighting is important in order
to express thelikelihoodof elements to belong together; these likelihoods can then accumu-
late and reinforce each other at the higher levels of the process.

This process offers much more than simple segmentation. It in fact yields ahierarchical
segmentation, where segments within segments can be recognized. It can also yieldscaled
segmentation, where the scale of the picture at which segmentation is desired can be specified
(and be enforced, e.g., by adding a suitably-scaled “grounding” coupling to each node in the
network).

More important, the multiscale weighted aggregation is free to apply new types of cou-
plings at different levels. The coupling between larger-scale blocks (blocks which have been
created by the smaller-scale aggregation, or alternatively, simplegeometricblocks ofk × k
pixels), instead of (or in combination with) being induced by the fine-scale couplings (as in
the AMG process), they can employ new criteria. Such criteria can include for example sim-
ilarity in the averagecolor level of the blocks. Or, more generally, similarity in any other
intra-block statistics, including statistics on average sizes and directions of smaller-scale sub-
blocks. This can result in segmentations according to texture, and various other properties.

Another criterion for blocking at each level can of coarse be the absence of separating
edges on the scale of that level. This will directly benefit from themultiscaleedge-detection
algorithms, described above. Alternatively, though, it may be desired to detect the large-scale
edgesfrom the large-scale blocks by applying a suitable edge detector at that level (a suitable
integral transform on a chosen block quantity, such as its average gray level or any other
statistics).

13. Tomography: Medical Imaging and Radar. (with post-doctoral fellow Jordan
Mann and M.Sc. students Matthew Brodski, Rima Gandlin and Faina Shmulyian)To develop
multiscale computational methods for tomography, we have started by working on the two
mathematically extreme cases: X-ray tomography, requiring the inversion of the sharp radon
transform, and impedance tomography, requiring inversion of a very diffusive process.

Reconstruction of a function of two or three variables from its Radon transform has
proven vital in computed tomography (CT), nuclear magnetic resonance (NMR) imaging,
astronomy, geophysics, and a number of other fields [49]. One of the best known recon-
struction algorithms is the convolution backprojection method (CB), which is widely used in
commercial medical CT devices [49] (with “rebinning” for divergent-beam projection [58]).
Recently, it has been applied to spotlight-mode synthetic aperture radar (SPSAR) image re-
construction [58]. While CB provides good reconstruction relatively efficiently, it is still too
slow for some purposes, requiring large computational resources and limiting the ability of
CT machines to produce real-time 3-D images or video. A faster technique, based on direct
Fourier method yields images of much poorer quality.

For other medical imaging and radar problems, where the Radon transform is inapplica-
ble, the performance of existing algorithms is still worse. This includes the Positron Emission
Tomography (PET), impedance tomography, ultrasound and similar medical imaging tech-
niques which suffer from high image blurring (see, e.g., [56]). The same is true for general
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types of Synthetic Aperture Radar (SAR) reconstructions.
A new multi-level approach to the inverse Radon transform (X-ray tomography) was de-

veloped by us several years ago. While the backprojection of the conventional CB raises the
computational complexity of the method toO(N3) for an N × N images, we have devel-
oped a novelO(N2 log N) backprojection algorithm, based on a multiscale approach, and an
accompanying post-processing procedure [34], [35]. Empirical results for a number of phan-
toms, and measurements of point-spread functions, show that the combined method produce
better images than those produced by classical CB, in far less time. Further improvements,
including in particular an adjustment of the post-processing part to concrete CT machines,
are planned.

On the other hand, the development of a similar fast method for general SAR recon-
structions, especially for those where the antenna motion (in airplane or satellite) cannot be
neglected (bringing Doppler shifts and nonlinearity into the problem), are far from trivial
extensions, and require a new approach, which we have started to investigate.

Less advanced is our research program in multiscale approaches to diffuse tomography.
The work, summarized in an M.Sc. thesis [76], is a first step in developing a fast multigrid
solver to theimpedance tomography problem.

This is an inverse partial differential problem, where the variable electrical conductivity
in a body is to be found from a sequence of measurements on its surface (or on some part
of it). Each measurement gives the potential over the surface generated by a given distribu-
tion of input currents. This inverse-conduction problem, first described by Calderon [48], is
notoriously ill-posed, requiring some kind of regularization [1]. In [76], the problem, its reg-
ularization and its discretization are described in detail, together with a fast multigrid solver
for the direct discrete problem and for some special cases of the inverse problem. It has been
shown for these cases that the inverse problem can be solved in the same (high, multigrid)
speed of thedirect solver.
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[94] I. BABUŠKA AND J.M. MELENK, The partition of unity method, International J. for Num. Methods in Engi-
neering 40 (1997), pp. 727–758.

[95] J.M. MELENK, On generalized finite element method, Ph.D. thesis, University of Maryland, 1995.


