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ROBUST BDDC ALGORITHMS FOR FINITE VOLUME ELEMENT METHODS∗

YANRU SU†, XUEMIN TU†, AND YINGXIANG XU‡

Abstract. The balancing domain decomposition by constraints (BDDC) method is applied to the linear system
arising from the finite volume element method (FVEM) discretization of a scalar elliptic equation. The FVEMs
share nice features of both finite element and finite volume methods and are flexible for complicated geometries with
good conservation properties. However, the resulting linear system usually is asymmetric. The generalized minimal
residual (GMRES) method is used to accelerate convergence. The proposed BDDC methods allow for jumps of
the coefficient across subdomain interfaces. When jumps of the coefficient appear inside subdomains, the BDDC
algorithms adaptively choose the primal variables deriving from the eigenvectors of some local generalized eigenvalue
problems. The adaptive BDDC algorithms with advanced deluxe scaling can ensure good performance with highly
discontinuous coefficients. A convergence analysis of the BDDC method with a preconditioned GMRES iteration is
provided, and several numerical experiments confirm the theoretical estimate.
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1. Introduction. Finite volume methods are widely used in different areas of science
and engineering where local conservation is an important property to be ensured for the
discretizations. One special class of finite volume methods is called finite volume element
methods (FVEMs for short); see for example [3, 9, 10, 32]. The FVEMs use two types of
meshes. The approximation space of the exact solution is constructed based on a primal mesh.
A dual mesh is used to construct the test function space. The FVEMs share nice features of both
finite element and finite volume methods and are flexible for complicated geometries with good
conservation properties. Recently, there appeared many works on stability, superconvergence,
and high-order methods for FVEMs; see [11, 12, 13, 49, 50, 51, 56] and the references therein.

However, there are only a few works on fast solvers for the linear systems resulting from
the FVEMs. This might be partially due to the fact that the resulting linear systems are usually
asymmetric. In [48] the convergence rate of the generalized minimal residual (GMRES)
method for solving linear systems from FVEMs was analyzed, where simple diagonal scaling
is used to improve the convergence rate. Some wavelet and multilevel preconditioners are
studied and analyzed in [31]. One family of widely used preconditioner techniques are the
domain decomposition methods [39], which have provided efficient preconditioners for large
linear systems arising from finite element discretizations (FEMs) for many partial differential
equations (PDEs). Both overlapping and nonoverlapping domain decomposition methods
have been applied to solve asymmetric linear systems from finite element and discontinuous
Garlekin discretizations [1, 2, 6, 7, 8, 15, 38, 43, 47]. In these works, the asymmetry is due to
the original PDEs, and usually they require the subdomain size to be small enough to ensure
the convergence rate of the preconditioned GMRES method being independent of the number
of subdomains. There are also some domain decomposition methods proposed for solving the
linear systems of FVEMs. Overlapping domain decompositions are studied in [14, 55], and
the convergence rate of the preconditioned GMRES method is proved to be independent of the
number of subdomains under the assumption that the mesh size is small enough. Using the
same assumption, iterative substructuring (nonoverlapping) domain decomposition methods
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are studied in [34] using an additive Schwarz framework, wherein the convergence is proved to
be independent of the number of subdomains, depends poly-logarithmically on the subdomain
problem sizes, and is robust with respect to jumps in the coefficient across the subdomain
interface as well.

One of the most popular nonoverlapping domain decomposition methods is the balancing
domain decomposition by constraints (BDDC) method, which was introduced in [16] for
symmetric positive definite problems and has been used for solving linear systems from
different applications [28, 29, 40, 41, 42, 43, 44, 45, 45, 46]. See [53] for a recent review.
Several methods, for example in [28, 43, 47], are designed and analyzed for asymmetric or
indefinite problems, where the convergence is independent of the number of subdomains
under the assumption that the subdomain size is as small as that for the overlapping domain
decomposition methods. In this paper, we propose and analyze BDDC algorithms for the
linear system from FVEMs. Different from previous works on BDDC methods for asymmetric
linear systems, the elliptic PDE considered here is self-adjoint. The asymmetry of the linear
system is due to the FVEM discretizations. Therefore, in our analysis we only require that the
mesh size is small enough to ensure convergence independent of the number of subdomains.
Different from the additive Schwarz approach used in [34], we will combine the estimate of an
average operator [43, 47] and the connection between the linear systems from the FEMs and
FVEMs for our analysis. In this paper, in addition to jumps of the coefficient across subdomain
interfaces as in [34], we will also consider jumps of the coefficient inside subdomains. For the
latter, we will use the deluxe scaling [20], and the primal variables in the BDDC algorithms
are derived from the eigenvectors of some carefully chosen local generalized eigenvalue
problems [24, 35, 36, 54]. To the best of our knowledge, this is the first adaptive BDDC
algorithm applied to asymmetric problems.

The rest of the paper is organized as follows. We first describe the finite volume element
discretization in Section 2. In Section 3, our domain decomposition and the BDDC precon-
ditioner are introduced. In Section 4, different choices of the scaling and primal constraints
are discussed. We provide an analysis of the convergence rate of our BDDC algorithms in
Section 5. Finally, some computational results are presented in Section 6 to illustrate our
theoretical results.

2. Problem setting and a finite volume element discretization. We consider the fol-
lowing second-order scalar elliptic problem in a bounded polyhedral domain Ω ∈ R2,

(2.1)
{
−∇ · (G∇u) = f, in Ω,

u = 0, on ∂Ω,

where G = (gij) ∈ (L∞(Ω))
2×2 is the diffusion coefficient matrix and f ∈ L2(Ω). We

assume that G is a real symmetric positive definite matrix satisfying

∃ αu, αl > 0 such that αuξ
T ξ ≥ ξTG(x)ξ ≥ αlξT ξ, ∀x ∈ Ω and ∀ξ ∈ R2.

By the assumptions above, there exists a solution u ∈ H1
0 (Ω) of (2.1) such that

(2.2) aE(u, v) :=

∫
Ω

(G∇u) · ∇vdx =

∫
Ω

fvdx, ∀v ∈ H1
0 (Ω).

Let Ŵ ⊂ H1
0 (Ω) be the standard continuous, piecewise linear finite element function

space on a shape-regular triangulation Th of Ω. We denote the set of nodes in Th by N and
an element of the triangulation by K. hK is the diameter of K. We set h = maxK hK .
Similar to [14], we assume that no interior angle of any triangle in Th is larger than π

2 to avoid
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FIG. 2.1. The primal and dual mesh of a linear FVEM on element K and Vertex P3.

unnecessary complexity. In order to describe the finite volume element methods, we call Th
a primal mesh and introduce a dual partition of Th. For each vertex P ∈ N , we construct a
(barycenter/Donald) dual element K∗P as follows: for each K ∈ Th sharing P , we choose
a barycenter of K and connect it with the midpoints of the edges of K. In Figure 2.1, P1,
P2, and P3 are three vertices of the element K. The barycenter of K is denoted as cK . m12,
m23, and m31 are the midpoints of the edges P1P2, P2P3, and P3P1, respectively. The dual
element K∗P3

is the polygon with the dash-dotted line. The dual elements form a dual mesh T ∗h
of Ω. Let Ŵ ∗ be the space of piecewise constant functions (a constant on each dual element
K∗P ) over the dual mesh T ∗h . For any P ∈ ∂Ω, the dual basis function is zero.

The finite element discretization problem is to find uh ∈ Ŵ such that

(2.3) aE(uh, vh) =

∫
Ω

fvhdx, ∀vh ∈ Ŵ ,

where the bilinear form aE is defined in (2.2). Similarly, the finite volume element discretiza-
tion problem is to find uh ∈ Ŵ such that

(2.4) −
∑

K∗
P∈T ∗

h

∫
∂K∗

P

(G∇uh) · nvh ds =
∑

K∗
P∈T ∗

h

∫
K∗

P

fvh dx, ∀vh ∈ Ŵ ∗.

The convergence of this finite volume element method is of first order in the H1-norm and of
second order in the L2-norm; see [3, 9, 10]. A review of the finite volume element method is
given in [32].

We introduce a mapping Πh from Ŵ → Ŵ ∗ as in [14, 48]. Given v ∈ Ŵ . Let Πhv ∈ Ŵ ∗
be defined as follows: for each vertex P ∈ N ,

Πhv(x) = v(P ), ∀x ∈ K∗P .

Using this mapping Πh, we can reformulate (2.4) as

(2.5) ah(uh, vh) =
∑

K∗
P∈T ∗

h

∫
K∗

P

fΠhvh dx, ∀vh ∈ Ŵ ,
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where

ah(uh, vh) = −
∑

K∗
P∈T ∗

h

∫
∂K∗

P

(G∇uh) ·nvh(P ) ds = −
∑

K∗
P∈T ∗

h

∫
∂K∗

P

(G∇uh) ·nΠhvh ds.

The system of linear equations corresponding to the finite element and finite volume
element problems (2.3) and (2.5) are denoted by

(2.6) AEuE = fE

and

(2.7) Au = f,

respectively. Here the coefficient matrix AE is symmetric positive definite, but A is usually
asymmetric even though the original problem (2.1) is symmetric. In the next section, we will
introduce a BDDC algorithm to solve the system (2.7). For the BDDC algorithms with simple
scaling, we do not need to form the system (2.6), which is only used for our analysis of the
BDDC algorithm. However, for the deluxe scaling and the adaptive BDDC algorithms, we do
need to form the system (2.6). The details are provided in Section 4.

3. Domain decomposition and a BDDC preconditioner. We decompose the original
computational domain Ω into N nonoverlapping polyhedral subdomains Ωi based on the
primal mesh. We assume that each subdomain is a union of shape-regular elements. Let H be
the typical diameter of the subdomains and Γ = (∪∂Ωi)\∂Ω the subdomain interface shared
by neighboring subdomains. We define Γi = ∂Ωi ∩ Γ, the interface of the subdomain Ωi.
We note that our algorithm is also defined for the subdomain partition obtained from mesh
partitioners, where less regular subdomains will be obtained. For the analysis with irregular
subdomains in domain decomposition methods; see [17, 18, 19, 25, 52].

We first reduce the global system (2.7) to a subdomain interface problem on Γ. In order
to do that, we decompose the space Ŵ as follows:

Ŵ = WI ⊕ ŴΓ =
(

ΠN
i=1W

(i)
I

)
⊕ ŴΓ,

where W (i)
I are the spaces of the subdomain interior variables, while ŴΓ is the subspace

corresponding to the variables on the interface. We can rewrite the original problem (2.7) in
the following way: find uI ∈WI and uΓ ∈ ŴΓ, such that

(3.1)
[
AII AIΓ
AΓI AΓΓ

] [
uI
uΓ

]
=

[
fI
fΓ

]
.

HereAII is block diagonal with one block corresponding to one subdomain. AΓΓ is assembled
from subdomain matrices across the subdomain interfaces. Due to the structure of AII , we
can eliminate the subdomain interior variables uI in each subdomain independently from (3.1)
and reduce (2.7) to a subdomain interface problem

(3.2) SΓuΓ = gΓ,

where SΓ = AΓΓ − AΓIA
−1
II AIΓ and gΓ = fΓ − AΓIA

−1
II fI . After solving (3.2), we can

solve for uI in each subdomain independently given the value uΓ.
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Let W (i)
Γ be the subdomain interface space. The global Schur complement SΓ can be

assembled from the subdomain Schur complement S(i)
Γ defined as follows: given u(i)

Γ ∈W
(i)
Γ ,

S
(i)
Γ u

(i)
Γ is defined as

(3.3)

[
A

(i)
II A

(i)
IΓ

A
(i)
ΓI A

(i)
ΓΓ

][
u

(i)
I

u
(i)
Γ

]
=

[
0

S
(i)
Γ u

(i)
Γ

]
.

We then introduce a BDDC preconditioner to solve (3.2). We further decompose ŴΓ

into the primal interface variables and the remaining (dual) variables. We denote the primal
variable space as ŴΠ and the dual variable space W∆. We relax the continuity for the dual
variables and introduce a partially assembled interface space as

W̃Γ = ŴΠ ⊕W∆ = ŴΠ ⊕
(

ΠN
i=1W

(i)
∆

)
.

Here the degrees of freedom in W∆ may be discontinuous across the subdomain interface. The
subspace ŴΠ contains the coarse level with continuous primal interface degrees of freedom.
Correspondingly, we define a partially sub-assembled problem matrix Ã as the two by two
block form

Ã =

[
AII ÃIΓ
ÃΓI ÃΓΓ

]
,

where

ÃIΓ =
[
AI∆ AIΠ

]
, ÃΓI =

[
A∆I

AΠI

]
, ÃΓΓ =

[
A∆∆ A∆Π

AΠ∆ AΠΠ

]
.

We note that ÃΓΓ is assembled only for the coarse-level primal degrees of freedom across the
interface. We define the partially sub-assembled Schur complement operator S̃Γ as

S̃Γ = ÃΓΓ − ÃΓIA
−1
II ÃIΓ.

We can obtain S̃Γ by partially assembling the subdomain local Schur complements S(i)
Γ defined

in (3.3) with respect to the primal interface variables. We define the injection operator R̃Γ that
maps the element in ŴΓ to W̃Γ. By the definition of SΓ and S̃Γ, we can obtain SΓ from S̃Γ by
further assembling with respect to the dual interface variables, i.e.,

SΓ = R̃TΓ S̃ΓR̃Γ.

We define R̃D,Γ = DR̃Γ, where D is a scaling matrix. Different choices of the scaling matrix
D can be found in [53, 54], and it should provide a partition of unity:

(3.4) R̃TD,ΓR̃Γ = R̃TΓ R̃D,Γ = I.

We will discuss our choices of the primal variables uΠ and D in Section 4 in detail.
The BDDC preconditioned interface problem is given as

(3.5) R̃TD,ΓS̃
−1
Γ R̃D,ΓSΓuΓ = R̃TD,ΓS̃

−1
Γ R̃D,ΓgΓ.

Since the matrix A from the FVEMs in (2.7) is asymmetric, SΓ is asymmetric as well. We
need to use the GMRES method to solve (3.5). In each iteration, to multiply SΓ by a vector, we
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need to solve subdomain Dirichlet boundary problems, while subdomain Neumann boundary
value problems and a coarse-level problem need to be solved for multiplying S̃−1

Γ by a vector;
see [30] for more details. We will analyze the convergence of the BDDC preconditioned
GMRES algorithm in Section 5.

We introduce similar Schur complement matrices for the finite element matrix AE . We
rewrite the system (2.6) as[

AE,II AE,IΓ
AE,ΓI AE,ΓΓ

] [
uE,I
uE,Γ

]
=

[
fE,I
fE,Γ

]
.

We define the subdomain local Schur complement S(i)
E,Γ as S(i)

Γ given in (3.3) for AE ,

(3.6) S
(i)
E,Γ = A

(i)
E,ΓΓ −A

(i)
E,ΓIA

(i)−1

E,II A
(i)
E,IΓ.

The global subdomain interface Schur complement SE,Γ and the partial assembled Schur
complement S̃E,Γ for the finite element discretization are defined as

SE,Γ = AE,ΓΓ −AE,ΓIA−1
E,IIAE,IΓ,

S̃E,Γ = ÃE,ΓΓ − ÃE,ΓIA−1
E,IIÃE,IΓ.

Thus it holds

SE,Γ = R̃TΓ S̃E,ΓR̃Γ.

4. Different choices of the scaling matrices and primal subspaces. The choices of
the scaling matrix D and the primal variables uπ play crucial roles for the performance of the
BDDC algorithms. Detailed discussions about the different choices for the symmetric positive
definite problems are given in [53, Sections 4 and 5].

4.1. The scaling matrix D. For our asymmetric system (3.5), we define two choices of
the scaling matrix D.

One choice of D is called ρ-scaling [39, equation (6.1)], which can be applied when the
diffusion coefficient matrix has the form G = ρG0, where G0 is a well-conditioned matrix
(constant or changing very mildly) and ρ is assumed to be a constant in each subdomain,
denoted by ρi for the subdomain Ωi. Here we allow ρ having large jumps across subdomain
interfaces. We define a positive scaling factor δ†i (x) as follows: for γ ∈ [1/2,∞),

δ†i (x) =
ργi (x)∑

j∈Nx
ργj (x)

, x ∈ ∂Ωi,h ∩ Γh,

where Nx is the set of indices j of the subdomains such that x ∈ ∂Ωj . Since we assume
that ρi(x) is constant in each subdomain, δ†i (x) is constant on each edge/face. The ρ-scaling
matrix D is a diagonal matrix defined as

(4.1) D = diag
(
δ†i (x)

)
.

The second choice is called BDDC deluxe scaling, which was first introduced in [20] for
the H(curl) problem and has been proved to be very robust for different problems that can be
formulated as positive definite problems such as in [4, 5, 21, 35, 54]. The deluxe scaling is a
block diagonal matrix with each block corresponding to an edge [53]. For a subdomain edge
Eij , which is shared by two subdomains Ωi and Ωj , we define two Schur complements,

S
(k)
Eij := A

(k)
EijEij −A

(k)
EijIA

(k)−1

II A
(k)
IEij , k = i, j,
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and the deluxe scaling D is defined as

(4.2) DE(k)
ij

= S
(k)
Eij

(
S

(i)
Eij + S

(j)
Eij

)−1

, k = i, j.

We note that the Schur complements S(i)
Eij can be obtained by restricting the subdomain Schur

complement S(i)
Γ , defined in (3.3), to the edge Eij . Some economic variants can be found

in [24] and the references therein.

4.2. The choices of the primal variables. It is well-known that for (2.1) with the finite
element discretization, if the diffusion coefficient matrix is constant in each subdomain, the
vertex primal variable will be enough to ensure a good performance for two-dimensional
problems. We will show in the next section that the BDDC preconditioned GMRES algorithm
will perform well for our asymmetric system from the finite volume element discretization as
well. Additional edge average constraints can enhance the convergence [30, 39]. However,
when the diffusion coefficient matrix has a large variation inside subdomains, the BDDC
algorithms with these standard primal variables can suffer considerably.

The adaptive choice of the primal spaces for the BDDC algorithm applied to symmetric
positive definite problems has been a very active research area [53]. However, our system (3.5)
is asymmetric, and we cannot apply the adaptive primal variable choices directly to our system.
Here we use the finite element system AE defined in (2.6) to help us to choose the adaptive
primal variables since AE is symmetric positive definite.

For a subdomain edge Eij , which is shared by two subdomains Ωi and Ωj , we have
defined S(k)

Eij for k = i, j. Similarly, we define the same Schur complements for AE as S(k)
E,Eij ,

for k = i, j. In addition, we need to define another matrix. In order to do that, we let Ecij to be
the complement of Eij in the set Γi, the subdomain interface of Ωi. We write the subdomain
Schur complement S(i)

E,Γ, defined in (3.6), as

S
(i)
E,Γ =

[
S

(i)
E,EijEij S

(i)
E,EijEcij

S
(i)
E,EcijEij

S
(i)
E,EcijEcij

]
.

We define S(i)
E,Ecij

:= S
(i)
E,EijEij − S

(i)
E,EijEcij

S
(i)−1

E,EcijEcij
S

(i)
E,EcijEij

.
The adaptive primal variables are obtained by solving the generalized eigenvalue problem

(4.3)
(
S

(i)
E,Ecij

: S
(j)
E,Ecij

)
xm = µm

(
S

(i)
E,Eij : S

(j)
E,Eij

)
xm,

where the parallel sum of two matrices is A : B = A(A+ B)+B and (A+ B)+ denotes a
pseudoinverse with

(A+B)(A+B)+(A+B) = A+B and

(A+B)+(A+B)(A+B)+ = (A+B)+.

The additional primal variables are defined as
(
S

(i)
E,Eij : S

(j)
E,Eij

)
Λ, where Λ is the matrix

with the eigenvectors associated with eigenvalues smaller than a given tolerance 1
ν for the

columns.
For the adaptive primal subspaces, the deluxe scaling is crucial. The analysis for the

BDDC algorithm arising from the finite element discretization with the adaptive primal
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subspace and deluxe scaling is provided in [24, 53, 54]. The implementation of the adaptive
primal variables can be found in [5, 23].

We use the finite element matrix AE to construct the deluxe scaling D as in (4.2) by
replacing the corresponding matrices fromA by those fromAE . The adaptive primal subspaces
are obtained using

(
S

(i)
E,Eij : S

(j)
E,Eij

)
Λ. In the next section, we will prove the convergence of

the BDDC preconditioned GMRES algorithms for (3.5) with the adaptive primal subspace
and the deluxe scaling.

We note that for the ρ-scaling defined in (4.1), we do not need to form the finite element
matrix AE . However, for the deluxe scaling defined in (4.2), especially with the adaptive
primal variables, we need to form AE for each subdomain to construct the deluxe scaling
matrix D and the adaptive primal variables uΠ. This will require additional memory and
computation. However, due to the asymmetry of A, the spectral properties of A and the
generalized eigenvalue problem (4.3) can be complicated. Therefore, we use AE in the
construction of our BDDC preconditioner. These subdomain AE can be deleted as soon as the
neighboring subdomain construction is completed.

5. Convergence rate of the GMRES iteration. In this section the convergence of the
BDDC preconditioned GMRES for solving the interface problem (3.5) is analyzed.

We first define some useful norms. The partial sub-assembled finite element space W̃ is
defined as

W̃ = WI ⊕ W̃Γ.

We have Ŵ ⊂ W̃ , and we denote the injection operator from Ŵ to W̃ by R̃.
We define the bilinear forms on W̃ as: for all u, v ∈ W̃ ,

ãh(u, v) =

N∑
i=1

a
(i)
h (u(i), v(i)), ãE(u, v) =

N∑
i=1

a
(i)
E (u(i), v(i)),

where a(i)
h and a(i)

E are the subdomain restrictions of ah and aE to the subdomain Ωi, respec-
tively. u(i) and v(i) represent restrictions of u and v to the subdomain Ωi.

Denote the partially sub-assembled matrices corresponding to the bilinear forms ã(·, ·)
and ãE(·, ·) by Ã and ÃE , respectively. We have

A = R̃T ÃR̃ and AE = R̃T ÃER̃.

Since the subdomain bilinear forms a(i)
E (·, ·), i = 1, 2, . . . , N , are symmetric positive

semi-definite on W (i), we define

‖u(i)‖2
A

(i)
E

= a
(i)
E (u(i), u(i)) for any u(i) ∈W (i),

‖u‖2AE
=

N∑
i=1

‖u(i)‖2
A

(i)
E

, for any u ∈ Ŵ , and

‖w‖2
ÃE

=

N∑
i=1

‖w(i)‖2
A

(i)
E

, for any w ∈ W̃ .

In order to define the norms for uΓ ∈ W̃Γ, we provide two extensions for uΓ to the
interior of the subdomains. The first extension is the standard discrete harmonic extension
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uH,Γ ∈ W̃ [39, Section 4.4], defined as

(5.1) uH,Γ =

[
−A−1

E,IIÃE,IΓuΓ

uΓ

]
∈ W̃ .

Given uΓ, we obtain the discrete harmonic extension uH,Γ by solving subdomain Dirichlet
problems corresponding to the finite element discretization, and uH,Γ has minimum energy
norm under all finite element functions which have the trace uΓ on the interface.

The second discrete extension of uΓ ∈ W̃Γ to the interior of the subdomains is defined by

(5.2) uV,Γ =

[
−A−1

II ÃIΓuΓ

uΓ

]
∈ W̃ .

Given uΓ, we obtain uV,Γ by solving subdomain Dirichlet problems corresponding to the finite
volume element discretization as shown in (5.2). However, uV,Γ does not have the energy
minimization property.

We note that for any uΓ ∈ ŴΓ, both uH,Γ and uV,Γ are also well defined. We have
uH,Γ ∈ Ŵ and uV,Γ ∈ Ŵ .

We use the notation 〈p, q〉M to represent the product qTMp for any given matrix M and
vectors p and q. With the extensions defined in (5.1) and (5.2), we have the following lemma.

LEMMA 5.1. For any v ∈ W̃ , denote its restriction to Γ by vΓ ∈ W̃Γ. Then, for uΓ ∈ W̃Γ

and any v ∈ W̃ with vΓ on Γ, we have

〈uΓ, vΓ〉S̃Γ
= 〈uV,Γ, v〉Ã and 〈uΓ, vΓ〉S̃E,Γ

= 〈uH,Γ, v〉ÃE
.

The same results also hold for functions and the corresponding bilinear forms in the space
ŴΓ.

Using Lemma 5.1, we can define ‖uΓ‖2SE,Γ
= 〈uΓ, uΓ〉SE,Γ

, for any uΓ ∈ ŴΓ, and

‖wΓ‖2S̃E,Γ
= 〈wΓ, wΓ〉S̃E,Γ

, for any wΓ ∈ W̃Γ. Let T = R̃TD,ΓS̃
−1
Γ R̃D,ΓSΓ be the precondi-

tioned operator in (3.5). We will use the SE,Γ-norm to estimate the convergence rate of the
GMRES iteration by employing the following result due to Eisenstat, Elman, and Schultz [22].

THEOREM 5.2. Let c0 and C0 be two positive constants, independent of H , h, and G
in (2.1), such that

c0 〈u, u〉SE,Γ
≤ 〈u, Tu〉SE,Γ

, 〈Tu, Tu〉SE,Γ
≤ C2

0 〈u, u〉SE,Γ
.

Then,

‖rm‖SE,Γ

‖r0‖SE,Γ

≤
(

1− c20
C2

0

)m/2
,

where rm is the residual of the m-th iteration of GMRES.
In the rest of this section, we will estimate the lower bound c0 and the upper bound C2

0 in
Theorem 5.2. We use c and C to denote constants that are independent of H , h, and G in (2.1).

We first need to establish some useful connections between the systems from the finite
element and the finite volume element discretizations. Using [14, Lemma 3.1], we have the
following lemma.

LEMMA 5.3.∣∣〈u, v〉AE
− 〈u, v〉A

∣∣ ≤ Ch‖u‖AE
‖v‖AE

, ∀u, v ∈ Ŵ ,
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and ∣∣∣〈u, v〉ÃE
− 〈u, v〉Ã

∣∣∣ ≤ Ch‖u‖ÃE
‖v‖ÃE

, ∀u, v ∈ W̃ .

The result holds for the corresponding subdomain versions as well.
Using Lemma 5.3, we obtain the following two lemmas.
LEMMA 5.4. There exists a positive constant h1 > 0 such that for h < h1,

c 〈u, u〉A ≤ ‖u‖
2
AE
≤ C 〈u, u〉A , ∀u ∈ Ŵ ,

and

c 〈u, u〉Ã ≤ ‖u‖
2
ÃE
≤ C 〈u, u〉Ã , ∀u ∈ W̃ .

The result holds for the corresponding subdomain versions as well.
Proof. By Lemma 5.3, we have

‖u‖2AE
≤ 〈u, u〉A + Ch‖u‖2AE

and hence (1− Ch) ‖u‖2AE
≤ 〈u, u〉A .

There exists a positive constant h1 > 0 such that 1−Ch > 1/2 for all h < h1. Therefore, we
have ‖u‖2AE

≤ C 〈u, u〉A.
On the other hand, by Lemma 5.3, we have

〈u, u〉A ≤ 〈u, u〉AE
+ Ch‖u‖2AE

≤ (1 + Ch)‖u‖2AE
≤ 2‖u‖2AE

if h < h1.
Similarly, using Lemma 5.3 and the Cauchy-Schwarz inequality, we can prove the follow-

ing lemma.
LEMMA 5.5. For h < h1,

〈u, v〉A ≤ C‖u‖AE
‖v‖AE

, ∀u, v ∈ Ŵ ,

and

〈u, v〉Ã ≤ C‖u‖ÃE
‖v‖ÃE

, ∀u, v ∈ W̃ .

The result holds for the corresponding subdomain versions as well.
LEMMA 5.6. For h < h1,∣∣∣〈uΓ, vΓ〉SΓ

− 〈uΓ, vΓ〉SE,Γ

∣∣∣ ≤ Ch‖uΓ‖SE,Γ
‖vΓ‖SE,Γ

, ∀uΓ, vΓ ∈ ŴΓ,

and ∣∣∣〈uΓ, vΓ〉S̃Γ
− 〈uΓ, vΓ〉S̃E,Γ

∣∣∣ ≤ Ch‖uΓ‖S̃E,Γ
‖vΓ‖S̃E,Γ

, ∀uΓ, vΓ ∈ W̃Γ.

Proof. Given any uΓ, vΓ ∈ ŴΓ. Then, by Lemma 5.1,∣∣∣〈uΓ, vΓ〉SΓ
− 〈uΓ, vΓ〉SE,Γ

∣∣∣ =
∣∣∣〈uV,Γ, vH,Γ〉A − 〈vH,Γ, uV,Γ〉AE

∣∣∣
=
∣∣∣〈uV,Γ, vH,Γ〉A − 〈uV,Γ, vH,Γ〉AE

∣∣∣ ≤ Ch‖uV,Γ‖AE
‖vH,Γ‖AE

,(5.3)
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where Lemma 5.3 is used in the last step. Using Lemmas 5.4, 5.1, and 5.5, we have

‖uV,Γ‖2AE
≤ C 〈uV,Γ, uV,Γ〉A = C 〈uΓ, uΓ〉SΓ

= 〈uV,Γ, uH,Γ〉A ≤ C‖uV,Γ‖AE
‖uH,Γ‖AE

.

Dividing on both sides by ‖uV,Γ‖AE
we obtain

(5.4) ‖uV,Γ‖AE
≤ C‖uH,Γ‖AE

.

Plugging (5.4) into (5.3) and using Lemma 5.1 yields∣∣∣〈uΓ, vΓ〉SΓ
− 〈uΓ, vΓ〉SE,Γ

∣∣∣ ≤ Ch‖uΓ‖SE,Γ
‖vΓ‖SE,Γ

.

Similarly, we can prove the result for any uΓ, vΓ ∈ W̃Γ.
Using Lemma 5.6, we obtain the following lemma.
LEMMA 5.7. There exists a positive constant h0 < h1, c, and C such that if h < h0, then

〈uΓ, vΓ〉SΓ
≤ C‖uΓ‖SE,Γ

‖vΓ‖SE,Γ
,

c 〈uΓ, uΓ〉SΓ
≤ ‖uΓ‖2SE,Γ

≤ C 〈uΓ, uΓ〉SΓ
,

∀uΓ, vΓ ∈ ŴΓ,

and

〈uΓ, vΓ〉S̃Γ
≤ C‖uΓ‖S̃E,Γ

‖vΓ‖S̃E,Γ
,

c 〈uΓ, uΓ〉S̃Γ
≤ ‖uΓ‖2S̃E,Γ

≤ C 〈uΓ, uΓ〉S̃Γ
,

∀uΓ, vΓ ∈ W̃Γ.

For any wΓ ∈ W̃Γ, we define ED,ΓwΓ = R̃ΓR̃
T
D,ΓwΓ, which computes an average of

wΓ across Γ. The estimate of ED,Γ plays an important role in the analysis of the BDDC
algorithms [26, 27, 29, 43, 47]. We make the following assumption.

ASSUMPTION 5.8. We assume that the coarse-level primal subspace ŴΠ and the
scaling D can ensure that there exists a positive constant C, which is independent of the
diffusion coefficient matrix G, H and h, such that it holds for all wΓ ∈ W̃Γ,

‖ED,ΓwΓ‖2S̃E,Γ
≤ CΦ2(H,h)‖wΓ‖2S̃E,Γ

.

THEOREM 5.9 (Minimal coarse space). The coarse-level primal subspace ŴΠ in-
cludes all subdomain vertices. The BDDC algorithm with the deluxe scaling D gives
Φ2(H,h) = C max1≤i≤N κi (1 + log(H/h))

2 in Assumption 5.8, where κi = maxx∈Ωi

αu(x)
αl(x)

and αl and αu are the minimum and maximum eigenvalues of G(i) in the subdomain Ωi, re-
spectively. When the diffusion coefficient matrix is constant in each subdomain, the BDDC
algorithm with the ρ-scaling gives Φ2(H,h) = C (1 + log(H/h))

2 in Assumption 5.8.
Proof. For the BDDC algorithms with the ρ-scaling defined in (4.1), the proof follows the

analysis of the BDDC algorithms for two dimensions in [33].
For the BDDC algorithms with the deluxe scaling defined in (4.2) using the finite element

matrix AE , the proof follows the analysis in [53, Section 4.2].
The following theorem is well established for the finite element discretization [24, 53].
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THEOREM 5.10 (Adaptive coarse space with deluxe scaling). The coarse-level primal
subspace ŴΠ includes all the eigenvectors of the generalized eigenvalue problems (4.3) with
corresponding eigenvalues smaller than 1

ν for each edge on the subdomain interface. Moreover,
if the deluxe scaling D is calculated by the finite element matrix AE , then Φ2(H,h) = ν in
Assumption 5.8.

Given uΓ ∈ ŴΓ, we define

(5.5) wΓ = S̃−1
Γ R̃D,ΓSΓuΓ.

LEMMA 5.11. ‖wΓ‖2S̃E,Γ
≤ C 〈uΓ, TuΓ〉SΓ

if h < h0.

Proof. Since R̃TD,ΓwΓ = R̃TD,ΓS̃
−1
Γ R̃D,ΓSΓu = TuΓ, we have, using Lemma 5.7,

‖wΓ‖2S̃E,Γ
≤ C 〈wΓ, wΓ〉S̃Γ

= CwΓ
T S̃ΓwΓ = CwΓ

T S̃ΓS̃
−1
Γ R̃D,ΓSΓuΓ

= CwΓ
T R̃D,ΓSΓuΓ = C

〈
uΓ, R̃

T
D,ΓwΓ

〉
SΓ

= C 〈uΓ, TuΓ〉SΓ
.

LEMMA 5.12. Let Assumption 5.8 hold and h < h0. There exists a positive constant C,
independent of H and h, such that for all uΓ ∈ ŴΓ,

〈TuΓ, TuΓ〉SE,Γ
≤ CΦ4(H,h) 〈uΓ, uΓ〉SE,Γ

.

Proof. We have, from Lemma 5.7,

〈TuΓ, TuΓ〉SE,Γ
≤ C 〈TuΓ, TuΓ〉SΓ

= C
〈
R̃TD,ΓS̃

−1
Γ R̃D,ΓSΓuΓ, R̃

T
D,ΓS̃

−1
Γ R̃D,ΓSΓuΓ

〉
SΓ

= C
〈
R̃ΓR̃

T
D,ΓwΓ, R̃ΓR̃

T
D,ΓwΓ

〉
S̃Γ

= C 〈EDwΓ, EDwΓ〉S̃Γ

≤ C‖EDwΓ‖2S̃E,Γ
.

Here we recall that wΓ is defined in (5.5). Now, using Assumption 5.8 and Lemmas 5.11
and 5.7, we find

〈TuΓ, TuΓ〉SE,Γ
≤ C‖EDwΓ‖2S̃E,Γ

≤ CΦ2(H,h)‖wΓ‖2S̃E,Γ
≤ CΦ2(H,h) 〈uΓ, TuΓ〉SΓ

≤ CΦ2(H,h)‖TuΓ‖SE,Γ
‖uΓ‖SE,Γ

.

Cancelling the common factor and squaring both sides, we obtain

(5.6) 〈TuΓ, TuΓ〉SE,Γ
≤ CΦ4(H,h) 〈uΓ, uΓ〉SE,Γ

.

THEOREM 5.13. Let Assumption 5.8 hold and h < h0. The constants c0 and C0 in
Theorem 5.2 can be chosen as C2

0 = CΦ4(H,h) and c0 = 1− ChΦ2(H,h).
Proof. The upper bound C2

0 is proved in (5.6). We only need to prove the lower bound c0.
Using R̃TΓ R̃D,Γ = I in (3.4) and Lemma 5.7, we have

〈uΓ, uΓ〉SE,Γ
≤ C 〈uΓ, uΓ〉SΓ

= CuΓ
T R̃TΓ S̃ΓS̃

−1
Γ R̃D,ΓSΓuΓ = C

〈
wΓ, R̃ΓuΓ

〉
S̃Γ

≤ C‖wΓ‖S̃E,Γ
‖R̃ΓuΓ‖S̃E,Γ

≤ C 〈uΓ, TuΓ〉1/2SΓ
‖uΓ‖SE,Γ

,

where we have used Lemmas 5.7 and 5.11 for the last two inequalities. Canceling the common
term, we arrive at

‖uΓ‖2SE,Γ
≤ C 〈uΓ, TuΓ〉SΓ

.
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FIG. 6.1. An illustration of the domain decomposition and the mesh used: Ω = [0, 1]2 is decomposed into
4 × 4 subdomains, and each subdomain is triangulated with a Delaunay mesh.

Then, using Lemmas 5.7, 5.6, and 5.12, we obtain

〈uΓ, uΓ〉SE,Γ
≤ C 〈uΓ, TuΓ〉SΓ

≤ C
(
〈uΓ, TuΓ〉SE,Γ

+
(
〈uΓ, TuΓ〉SΓ

− 〈uΓ, TuΓ〉SE,Γ

))
≤ C 〈uΓ, TuΓ〉SE,Γ

+ Ch‖uΓ‖SE,Γ
‖TuΓ‖SE,Γ

≤ C 〈uΓ, TuΓ〉SE,Γ
+ Ch

(
Φ2(H,h)

)
〈uΓ, uΓ〉SE,Γ

.

Collecting the term 〈uΓ, uΓ〉SE,Γ
gives the desired estimate of c0.

REMARK 5.14. If h is sufficiently small, then c0 will be positive and bounded from
zero independently of H . Hence, from Theorem 5.2, the convergence rate of the GMRES
algorithm for solving (3.5) becomes bounded independently of the number of subdomains.

6. Numerical experiments. We test our BDDC algorithms by solving three examples in
the square domain Ω = [0, 1]2. The domain Ω is decomposed into several square subdomains,
and each subdomain is triangulated uniformly as shown in Figure 6.1. Piecewise linear finite
elements are used in our experiments.

A GMRES iteration with the L2-norm is used without restart to solve the preconditioned
interface problem (3.5). The iteration stops if the L2-norm of the residual reaches a reduction
of 10−8. We have found consistently that the convergence rate using the SE,Γ-norm is quite
similar to that using the L2-norm.

Our first test example considers G = ρ(2 + sin(xπ) sin(yπ))

[
1 0
0 1

]
as in [34], where

ρ has checkerboard patterns as displayed in Figure 6.2. In the second example it is used

G = ρ

[
2 + x 0

0 2 + y

]
. We note that the second example is similar to that in [55] except we

add the factor ρ to consider possible jumps of the coefficient across subdomain interfaces.
Our third example considers the coefficients from the permeability tensor from the SPE10
benchmark [37] as shown in Figure 6.3.

For the first two examples, the coefficient jumps only across the subdomain interfaces. We
use the vertex constraint and the simple ρ-scaling D defined in (4.1). For this setup, we do not
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FIG. 6.2. The checkerboard pattern of ρ.

FIG. 6.3. The log10 values of the coefficient of Example III. Left and right subfigure show the coefficient in x-
and y-direction, respectively.

need to form the finite element matrix AE and related Schur complements. We have two sets
of numerical experiments for each example. We first change the number of subdomains and fix
the subdomain local problem size. The second set is to change the subdomain local problem
size with a fixed number of subdomains. In each set, we have chosen constant coefficients
and a checkerboard pattern; see Figure 6.2. In our numerical experiments, we take a = 1 or
a = 1000. The results are reported in Tables 6.1 and 6.2. We find, for both examples, that the
number of GMRES iterations is independent of the number of subdomains and grows slowly
with increasing ratio H/h. To compare, we also provide the number of GMRES iterations
without any preconditioner for Example I in Table 6.1. From the results, we can see that
the BDDC preconditioner controls the number of iterations as we have established in our
theory. For the second example, we also test our BDDC algorithms with the deluxe scaling
defined in (4.2). For this simple example, the deluxe scaling gives exactly the same numbers
of GMRES iterations as those with ρ-scaling.

For the third example, since the coefficient has large jumps inside the subdomains, we
expect the vertex constraints with a simple ρ-scaling D not to work well (here we take one
arbitrary value of G in the subdomain Ωi as ρi to define D in (4.1)). The results are reported
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TABLE 6.1
Example I: GMRES iteration counts for the BDDC algorithm with vertex constraints (numbers in parentheses

are for GMRES iterations without preconditioner and restart at 30).

Num. of sub. (Hh = 8) a=1 a = 1000 H
h (64 subs) a=1 a = 1000

4× 4 12 (49) 10 (925) 4 12 11
8× 8 15 (115) 14 (> 3000) 8 15 14

16× 16 16 (245) 15 (> 3000) 16 19 17
32× 32 16 (681) 15 (> 3000) 32 22 20

TABLE 6.2
Example II: GMRES iteration counts for the BDDC algorithm with vertex constraints and both ρ-scaling and

deluxe scaling (numbers in parentheses are for deluxe scaling).

Num. of sub. (Hh = 8) a=1 a = 1000 H
h (64 subs) a=1 a = 1000

4× 4 11 (11) 9 (9) 4 12 (12) 11 (11)
8× 8 15 (15) 14 (14) 8 15 (15) 14 (14)

16× 16 16 (16) 15 (15) 16 18 (18) 17 (17)
32× 32 17 (17) 15 (15) 32 21 (21) 20 (20)

TABLE 6.3
Example III: GMRES iteration counts for the BDDC algorithms.

ρ scaling Deluxe scaling

Num. of sub. (Hh = 8) vertex edge+vertex vertex edge+vertex
4× 4 36 32 17 12
8× 8 61 44 38 21

16× 16 135 71 72 34
32× 32 199 90 124 46

TABLE 6.4
Example III: GMRES iteration counts for the BDDC algorithm with the deluxe scaling.

vertex edge+vertex ν = 100 ν = 20 ν = 10
Num. of sub.

(Hh = 8)
Iter. nc Iter. nc Iter. nc Iter. nc Iter. nc

4× 4 17 9 12 33 11 23 9 32 8 35
8× 8 38 49 21 161 11 148 8 164 7 183

16× 16 72 225 34 705 14 701 11 757 10 830
32× 32 124 961 46 2945 17 3033 12 3275 10 3557

in Table 6.3. The number of GMRES iterations increases from 36 to 199 when increasing the
number of subdomains from 16 to 1024. Additional edge average constraints are enforced to
improve the performance. However, the number of iterations is still increasing. We repeat the
same primal constraints with the deluxe scaling matrix D defined in (4.2). We recall that we
need to form the deluxe D using the finite element matrix AE . With the deluxe scaling, the
performance of the BDDC algorithms is improved for both vertex and vertex and edge average
constraints. The number of GMRES iterations is still increasing quite a bit with an increasing
number of subdomains.

We then have applied the adaptive BDDC algorithms with deluxe scaling using different
choices of ν. The number of GMRES iterations and the number of used primal variables
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(denoted as nc) are reported in Table 6.4. With a quite large ν = 100, the number of selected
primal variables is comparable with the vertex and edge average constraints (some cases
are even smaller). However, the number of the GMRES iterations are much smaller. When
decreasing the value of ν, the number of primal variables increases, but the number of GMRES
iterations is well controlled.
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