
ETNA
Kent State University and

Johann Radon Institute (RICAM)

Electronic Transactions on Numerical Analysis.
Volume 58, pp. 402–431, 2023.
Copyright © 2023, Kent State University.
ISSN 1068–9613.
DOI: 10.1553/etna_vol58s402

FAST COMPUTATION OF SEPλ VIA INTERPOLATION-BASED
GLOBALITY CERTIFICATES∗

TIM MITCHELL†

Abstract. Given two square matrices A and B, we propose a new approach for computing the smallest value
ε ≥ 0 such that A+E and A+F share an eigenvalue, where ‖E‖ = ‖F‖ = ε. In 2006, Gu and Overton proposed
the first algorithm for computing this quantity, called sepλ(A,B) (“sep-lambda”), using ideas inspired from an
earlier algorithm of Gu for computing the distance to uncontrollability. However, the algorithm of Gu and Overton is
extremely expensive, which limits it to the tiniest of problems, and until now, no other algorithms have been known.
Our new algorithm can be orders of magnitude faster and can solve problems where A and B are of moderate size.
Moreover, our method consists of many “embarrassingly parallel” computations, and so it can be further accelerated
on multi-core hardware. Finally, we also propose the first algorithm to compute an earlier version of sep-lambda
where ‖E‖+ ‖F‖ = ε.
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Notation. ‖ · ‖ denotes the spectral norm, σmin(·) the smallest singular value, Λ(·) the
spectrum, κ(·) the condition number of a matrix with respect to the spectral norm, J =

[
0 I
−I 0

]
;

a matrix A ∈ C2n×2n is Hamiltonian if (JA)∗ = JA, µ(·) denotes the Lebesgue measure
on R, and bdA, intA, and clA, respectively, the boundary, interior, and closure of a set A.

1. Introduction. The quantity sepλ(A,B) measures how close two square matrices
A ∈ Cm×m and B ∈ Cn×n are to sharing a common eigenvalue in the sense of how much
A and B must be perturbed in order to make this so. Varah first introduced sepλ(A,B) in
1979 in [46], and it was subsequently studied by Demmel in [17, 18, 19], although Demmel
used a slightly modified version, partly “because it lets us state slightly sharper results later
on” [17, p. 24]. The two definitions are:

sepV
λ (A,B) := min

E∈Cm×m

F∈Cn×n

{
ε : Λ(A+ E) ∩ Λ(B + F ) 6= ∅, ‖E‖+ ‖F‖ ≤ ε

}
,

sepD
λ (A,B) := min

E∈Cm×m

F∈Cn×n

{
ε : Λ(A+ E) ∩ Λ(B + F ) 6= ∅,max(‖E‖, ‖F‖) ≤ ε

}
,

with sepV
λ (A,B) denoting Varah’s definition and sepD

λ (A,B) denoting Demmel’s. Obviously,
they are both zero if A and B share an eigenvalue and are both positive otherwise. When it is
not necessary to distinguish between the two variants, we drop the superscript and just write
sepλ(A,B). For convenience, we also assume that m ≤ n throughout the paper.

The two sepλ(A,B)-quantities can also be equivalently defined in terms of singular values
as well as pseudospectra [24, pp. 348–349], where for some ε ≥ 0, the ε-pseudospectrum of a
matrix A is defined

Λε(A) := {z ∈ C : z ∈ Λ(A+ ∆), ‖∆‖ ≤ ε},(1.1a)
= {z ∈ C : σmin(A− zI) ≤ ε}.(1.1b)
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The first definition of pseudospectra dates to at least 1967 in Varah’s Ph.D. thesis [45] with his
introduction of an r-approximate eigenvalue, while in his 1979 paper on sepV

λ (A,B), Varah
used the term ε-spectrum for Λε(A). The current definitive reference on pseudospectra and
their applications is certainly Trefethen and Embree’s well-known book on the topic [44]. The
term “pseudospectrum” was actually coined by Trefethen in 1990 [44, Ch. 6], 23 years after
Varah’s thesis, although it now considered the standard name.

The singular-value-based definitions of sepλ(A,B) are

sepV
λ (A,B) = min

z∈C
{σmin(A− zI) + σmin(B − zI)} =: min

z∈C
fV(z),(1.2a)

sepD
λ (A,B) = min

z∈C
max

{
σmin(A− zI), σmin(B − zI)

}
=: min

z∈C
fD(z).(1.2b)

For equivalent pseudospectral-based definitions of sepλ(A,B), we have

sepV
λ (A,B) = min

ε1,ε2≥0
{ε1 + ε2 : Λε1(A) ∩ Λε2(B) 6= ∅} ,(1.3a)

sepD
λ (A,B) = min

ε≥0
{ε : Λε(A) ∩ Λε(B) 6= ∅} .(1.3b)

If ε ≥ sepD
λ (A,B) holds, then int Λε(A) ∩ int Λε(B) = ∅ is a sufficient condition for

ε = sepD
λ (A,B). In contrast, while int Λε1(A) ∩ int Λε2(B) = ∅ is a necessary condition

for ε1 + ε2 = sepV
λ (A,B) to hold, it is not a sufficient condition. This is because one

can continuously adjust ε1 and ε2 such that the two pseudospectra always touch but never
have interior points in common. For example, suppose that sepV

λ (A,B) > 0, and let ε̂1

be such that Λε̂1(A) and Λ0(B) only touch, i.e., an eigenvalue of B is in bd Λε̂1(A) but
int Λε̂1(A) ∩ Λ0(B) = ∅. In the same fashion, let ε̂2 be such that Λ0(A) and Λε̂2(B) only
touch. Then by continuity of pseudospectra, it is clear that the 2D point (ε1, ε2) can be continu-
ously adjusted between point (ε̂1, 0) and point (0, ε̂2) such that bd Λε1(A)∩ bd Λε2(B) 6= ∅
and int Λε1(A) ∩ int Λε2(B) = ∅ both always hold.

Varah called sepV
λ (A,B) the spectrum separation in [46, Definition 3.2] due to its pseu-

dospectral underpinnings; in fact, in his definition, he used the form given in (1.3a), not
the other two alternatives. His motivation in defining sepV

λ (A,B) was its connection to the
sensitivity of solving the Sylvester equation:

(1.4) AX −XB = C,

where X,C ∈ Cm×n and (1.4) has a unique solution if and only if A and B have no common
eigenvalue. As Varah noted [46, p. 216], the sensitivity of a solution to (1.4) is inversely
proportional to the separation of A and B:

sep(A,B) := min
‖X‖F=1

‖AX −XB‖F = σmin(In ⊗A−BT ⊗ Im),

a quantity which Stewart had earlier introduced for studying invariant subspaces [42, Defi-
nition 4.5]. It holds that 0 ≤ sep(A,B) ≤ minλ∈Λ(A),µ∈Λ(B) |λ− µ|, and clearly, the lower
bound is attained if and only if A and B have an eigenvalue in common, while the upper bound
is attained if A and B are both normal. However, Varah stressed that if A or B is nonnormal,
then sep(A,B) can be very close to zero, e.g., to machine precision, even if the eigenvalues
of A and B are well separated, and that sep(A,B) is often orders of magnitude smaller
than sepV

λ (A,B). In 1993, Higham’s thorough error analysis for solving (1.4) numerically
showed that bounding the error of a computed solution in terms of sep(A,B)−1 can sometimes
“severely overestimate the effect of a perturbation on the data when onlyA andB are perturbed,
because it does not take account of the special structure of the problem” [26, p. 133], while
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simultaneously presenting an alternative error bound that remedies this deficiency. A few
years later, Simoncini used sepV

λ (A,B) and pseudospectra in her analysis of solving (1.4) via
a Galerkin method [41].

Meanwhile, Demmel’s initial interest in (his version of) sepλ(A,B) was for problem of
computing stable eigendecompositions [17, 18], but in an entirely different context [19], he
subsequently used sepD

λ (A,B) to disprove two conjectures respectively made by himself and
Van Loan related to the (then unsolved) problem of computing the distance to instability of a
stable matrix. Following in the spirit of using sepλ(A,B) in the analysis of the stability of
invariant subspaces of matrices [17, 18, 46], Karow and Kressner used sepD

λ (A,B) in 2014 as
a tool in deriving improved perturbation bounds [27]. Most recently in 2021, Roy et al. [40]
used sepV

λ (A,B) in connection with approximating pseudospectra of block triangular ma-
trices; in this case, the value of sepV

λ (A,B) can be used to construct several different outer
approximations to pseudospectra of these structured matrices.

In terms of computing sepλ(A,B), to the best of our knowledge, only a single algorithm
has been given so far for sepD

λ (A,B), due to Gu and Overton in 2006 [24], while no algorithms
have appeared to date for sepV

λ (A,B). Nevertheless, computing sepD
λ (A,B) can at least

approximate sepV
λ (A,B) to within a factor of two since

1

2
sepV

λ (A,B) ≤ sepD
λ (A,B) ≤ sepV

λ (A,B),

which is simply a special case of the relation 1
n‖x‖1 ≤ ‖x‖∞ ≤ ‖x‖1 for x ∈ Cn obtained

by respectively identifying sepV
λ (A,B) and sepD

λ (A,B) with the 1-norm and ∞-norm of
(‖E‖, ‖F‖)T ∈ R2.

It is easy to obtain upper bounds for sepλ(A,B) by simply evaluating fV and/or fD de-
fined in (1.2) at any points z ∈ C, or better, by applying (nonsmooth) optimization techniques
to find local minimizers of them. Due to the max function in fD, it is typically nonsmooth at
minimizers, while fV will be nonsmooth at a minimizer if that minimizer happens to coincide
with an eigenvalue of A or B, which as Gu and Overton mentioned, is often the case for
sepV

λ (A,B). Despite the potential nonsmoothness, fV and fD are rather straightforward
functions in just two real variables (via z = x+ iy), whose function values and gradients (as-
suming z is a point where they are differentiable) can be obtained via computing σmin(A−zI)
and σmin(B − zI) and their corresponding left and right singular vectors. When A and B are
large and sparse, it is often still possible to efficiently compute fV and fD and their gradients
via sparse methods. Nevertheless, finding local minimizers of (1.2) provides no guarantees
for computing sepλ(A,B), particularly since these problems may have many different local
minima and the locally optimal function values associated with these minima may be very
different. Moreover, in applications that use distances measures such as sepλ(A,B), obtaining
an upper bound via local optimization is generally much less useful than either computing the
actual measure or a lower bound for it. Indeed, in motivating their algorithm for sepD

λ (A,B),
Gu and Overton aptly remarked [24, p. 350]: “the inability to verify global optimality [of
minimizers of fD] remains a stumbling block preventing the computation of sepλ(A,B), or
even the assessment of the quality of upper bounds, via optimization” and “in applications,
lower bounds for such distance functions are more important than upper bounds, as they
provide ‘safety margins’.”

In this paper, we propose a new and much faster method to compute sepD
λ (A,B) to

arbitrary accuracy, using properties of pseudospectra, local optimization techniques, and
a new methodology that we recently introduced in [36] for finding global optimizers of
singular value functions in two real variables. This new approach, called interpolation-based
globality certificates, can be orders of magnitude faster than existing techniques and also
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avoids numerical difficulties inherent in older approaches. A modified version of our new
sepD

λ (A,B) algorithm also produces estimates of sepV
λ (A,B) with stronger guarantees than

those obtained by optimization; specifically, this modified method produces locally optimal
upper bounds ε̃ = ε1 + ε2 ≥ sepV

λ (A,B) such that int Λε1(A) ∩ int Λε2(B) = ∅, which
is a necessary condition for ε̃ = sepV

λ (A,B) to hold but which optimization alone does
not guarantee. Finally, we also propose a separate algorithm that is the first to compute
sepV

λ (A,B).
The paper is organized as follows. In Section 2, we give a brief overview of Gu and Over-

ton’s method for sepD
λ (A,B) [24] and explain its shortcomings. Then, in Section 3, we give a

high-level description of our new optimization-with-restarts method and an introduction to the
ideas underlying interpolation-based globality certificates. As our new globality certificate for
sepD

λ (A,B) is quite different and significantly more complicated than those we devised for
computing Kreiss constants and the distance to uncontrollability in [36], we develop the neces-
sary theoretical statements and components over three separate stages in Section 4, Section 5,
and Section 6. In Section 7, we describe how to implement our completed algorithm and give
its overall work complexity. We then turn to Varah’s sep-lambda in Section 8. Numerical
experiments are presented in Section 9, with concluding remarks given in Section 10.

2. Gu and Overton’s method to compute sepD
λ (A,B) and its limitations. The

algorithm of Gu and Overton for computing sepD
λ (A,B) is particularly expensive: it requires

O((m + n)m3n3) work, e.g., O(n7) when m = n, which makes it intractable for all but
the tiniest of problems. The core of their method is a pair of related tests, each of which is
inspired by a novel but expensive 2D level-set test developed earlier by Gu for estimating the
distance to uncontrollability [22]. The cost of each test is dominated by solving an associated
generalized eigenvalue problem of order 4mn, which requires O(m3n3) work when using
standard dense eigensolvers.1 Given some ε ≥ 0, the first test ([24, Algorithm 1]) checks
whether the ε-level sets of σmin(A−zI) and σmin(B−zI) have any points in common. If this
is indeed the case, then clearly ε ≥ sepD

λ (A,B) must hold. However, if there are no level-set
points in common, one cannot conclude that ε < sepD

λ (A,B) holds. For example, having
no shared level-set points may just be a consequence of Λε(A) being a subset of int Λε(B)
or vice versa, in which case, clearly ε > sepD

λ (A,B) holds. To get around this difficulty,
Gu and Overton devised an initialization procedure ([24, Algorithm 2]), which invokes their
second test many times in order to compute an upper bound εub such that for all ε < εub, no
connected component of Λε(A) can be strictly inside a component of Λε(B) or vice versa.2

With this possibility excluded, i.e., ε < εub, the outcome of the first test then does indicate
whether or not ε < sepD

λ (A,B) holds. Gu and Overton’s overall method [24, Algorithm 3]
thus first computes εub via their initialization procedure and then uses their first test to power a
bisection iteration that converges to sepD

λ (A,B). The entire bisection phase of their algorithm
remainsO(m3n3) work, since the number of bisection steps can be taken as a constant, but the
initialization phase to compute the necessary εub involves invoking the second test for (m+n)
different parameter values, i.e., it solves (m+ n) different generalized eigenvalue problems of
order 4mn. Hence, the cost of their entire method is dominated by the initialization procedure,
and the total asymptotic work complexity is O((m+ n)m3n3).

1With respect to the usual convention of treating the computation of eigenvalues as an atomic operation with
cubic work complexity, which we use throughout this paper.

2In [24], Gu and Overton state that this “not strictly inside” property holds for ε ≤ εub, but actually this
inequality should be strict. Near the top of [24, p. 354], it is claimed that “ε = σmin(A− zI) > σmin(B − zI)”
holds, where z ∈ bd Λε(A) and z ∈ int Λε(B). However, per [1, p. 31], there can exist a finite number of points
z ∈ int Λε(B) such that σmin(B − zI) = ε, and so the “not strictly inside” claim may or may not hold when
ε = εub. Fortunately, with inexact arithmetic, there is essentially no practical consequence of this small oversight,
while the theory in [24] is corrected merely by replacing ≤ with <.
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In their concluding remarks [24, p. 358], Gu and Overton noted that the faster divide-and-
conquer technique of [23] for computing the distance to controllability could potentially be
adapted to sepD

λ (A,B), writing that “Although there are some inevitable difficulties with the
numerical stability of this approach, the complexity drops significantly.” Indeed, when m = n,
adapting this divide-and-conquer approach would bring down the O(n7) work complexity of
their algorithm for sepD

λ (A,B) to O(n5) on average and O(n6) in the worst case. However,
this has not been implemented, and in our own experience of adapting this divide-and-conquer
technique to other algorithms, we have observed that doing so can indeed come at the cost of
significantly worse reliability due to numerical issues; see [35, Section 8].

Even with dense eigensolvers, Gu and Overton’s method can be susceptible to numerical
difficulties. A primary concern is that the first test (used for bisection) actually requires being
able to assert whether or not two matrices have an eigenvalue in common. If eigenvalues can
be computed exactly (which is possible in some cases, e.g., a diagonal matrix), then testing
whether two matrices share an eigenvalue can be done without issues. However, in a practical
code, computed eigenvalues will have rounding errors, and so one must generally resort to
using a tolerance in order to carry out this test. But this also means that it is possible for the test
to incorrectly assert that two eigenvalues are the same when they should only be considered
close or vice versa. This is critical because the binary decision of bisection hinges upon the
outcome of this numerical test. Making the wrong choice about the eigenvalues can cause
bisection to erroneously update a lower or upper bound, which in turn can result in a significant
or even complete loss of accuracy in the computed estimate. The distance-to-uncontrollability
methods of [12, 22, 23] also have the same numerical pitfall. In the context of computing
Kreiss constants via 2D level-set tests [35], we recently proposed an improved procedure that
does not require checking for shared eigenvalues, and as such, it is much more reliable in
practice; see [35, Key Remark 6.3]. Our improved technique can also be used to improve
the reliability of the aforementioned distance-to-uncontrollability algorithms, but it does not
appear to be applicable for Gu and Overton’s algorithm for sepD

λ (A,B). The fundamental
difference in the sepD

λ (A,B) setting is that Gu and Overton’s first test is based upon checking
whether or not the ε-level sets of two different functions, σmin(A− zI) and σmin(B − zI),
have any points in common, whereas for the other quantities, pairs of points on a given level
set of a single function are sought.

Finally, another way to provide some speedup to Gu and Overton’s method would be
to replace the bisection phase with an optimization-with-restarts iteration. In this case, a
minimizer z̃ of fD with ε = fD(z̃) would be found using some nonsmooth optimization
solver, and then, assuming ε < εub, Gu and Overton’s first test ([24, Algorithm 1]) would be
used to assert whether or not z̃ is a global minimizer of fD. If so, then sepD

λ (A,B) = ε, and
the computation is done. Otherwise, recalling that the first test computes the points z ∈ C such
that σmin(A− zI) = σmin(B− zI) = ε, local optimization can be restarted from these points
in order to find a better (lower) minimizer. Any such optimization-with-restarts method must
monotonically converge to sepD

λ (A,B) within a finite number of restarts because fD only has
a finite number of locally minimal function values, due to fD being semialgebraic. However,
there are some issues with this modification. The main limitation is that it neither accelerates
nor removes the need for the initialization procedure for obtaining εub, which needs O(n7)
work, while the subsequent convergent phase of either bisection or optimization-with-restarts
involves O(n6) work. Consequently, any speedups will be both quite small and limited to
the smallest values of n, while being essentially nonexistent for larger n. Another problem
is that the theory for nonsmooth optimization typically requires that solvers are initialized
at points where the function is differentiable (see, e.g., [10, 16, 28]), but by its nature, the
points computed by Gu and Overton’s first test are all points where fD will almost certainly
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be nonsmooth. Hence, there may be issues in restarting optimization via these points, and
depending on the exact solver and problem, we have observed that solvers can indeed stagnate
at these initial points. It is not entirely clear how to best overcome this latter issue, but for us,
it is not a priority. Instead, the focus of this paper is to propose an entirely different approach
to computing sepD

λ (A,B) that allows us to use optimization-with-restarts without any of the
aforementioned drawbacks of extremely high costs, expensive initialization procedures, and
various numerical and technical issues.

3. A high-level overview of our new sepD
λ (A,B) algorithm. To find a global min-

imizer of fD, a global optimization problem in two real variables, we will instead develop
our optimization-with-restarts algorithm using interpolation-based globality certificates [36].
The core task in developing such a method is to devise a generally continuous function (i.e., it
may have some jumps) in one real variable that, given an estimate greater than the globally
minimal value, has an identifiable subset of its domain with positive measure that provides
a guaranteed way of locating new starting points for another round of optimization. When
an estimate is globally minimal, this function should alternatively assert this fact somehow,
e.g., by determining that the aforementioned subset is either empty or has measure zero. By
sufficiently well approximating this function globally via a piecewise polynomial interpolant
(this interpolant may also have jumps), e.g., by using Chebfun3 [20], it is then possible to
quickly check for the existence of the aforementioned positive measure subset, whose presence
indicates that the estimate is not globally optimal. In fact, Chebfun can efficiently compute
the precise set of intervals corresponding to this subset. When the estimate is too large, the
property that there exists a subset of positive measure associated with new starting points is
crucial for two reasons. First, it means that encountering this subset during the interpolation
process is not a probability zero event, and so if the function is well approximated, this
subset will be detected. Second, optimization can be immediately restarted once any points
in this subset are discovered, and so high-fidelity interpolants will often not be needed. As
a result, restarts tend to be very inexpensive, while high-fidelity approximation is generally
only needed for the final interpolant, which asserts that global convergence has indeed been
obtained. Moreover, in practice only a handful of restarts are typically needed. Besides overall
efficiency, interpolation-based globality certificates are inherently amenable to additional
acceleration via parallel processing (see [36, Section 5.2]), while also being quite numerically
robust compared to other techniques. There are several reasons for this latter property, but one
is that by the nature of interpolation, global convergence is assessed as the result over many
computations, whereas other approaches often rely upon a single computation that may result
in an erroneous conclusion due to rounding errors; for more details, see [36, Sections 1.3
and 2.3].

Given some estimate ε ≥ sepD
λ (A,B), in the next sections, we consider the problem

of what function dε : R→ R to devise for our globality certificate for either finding new
points for restarting optimization or asserting whether ε = sepD

λ (A,B) holds. The func-
tion dε should be reasonably well behaved and relatively cheap to evaluate, as otherwise
approximating it could be prohibitively expensive and/or difficult. But as mentioned above,
Chebfun can efficiently handle nonsmooth and discontinuous functions; [39, pp. 905–906]
describes the algorithm that Chebfun uses to efficiently detect discontinuities, either jumps
in the function values or derivatives, which allows Chebfun to work around these difficult
points during its approximation process. Consequently, we do not have to limit ourselves
to smooth continuous candidates for dε. The function that we will propose is based on de-
tecting whether or not int Λε(A) ∩ int Λε(B) is empty and asserts that ε > sepD

λ (A,B) if

3Available at https://www.chebfun.org.
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and only if minθ∈(−π,π] dε(θ) < 0 holds. Moreover, our certificate for detecting whether
int Λε(A) ∩ int Λε(B) = ∅ holds works for any value ε > sepD

λ (A,B). As we will explain,
our dε-based globality certificate incursO(kn3) work (recall that we assumem ≤ n), where k
is the number of function evaluations required to sufficiently approximate dε. Furthermore, our
certificate also becomes more efficient the larger ε is, i.e., relatively few function evaluations
are needed to approximate dε when ε� sepD

λ (A,B) as compared to when ε ≈ sepD
λ (A,B).

REMARK 3.1. Although the first test of Gu and Overton ([24, Algorithm 1]) also detects
if int Λε(A) ∩ int Λε(B) = ∅ holds, note that their test is both more limited in scope and
more expensive than our dε-based certificate. Gu and Overton’s first test (a) requires that
ε < εub holds in order to use it, with εub being very expensive to obtain, and (b) does the
same amount of work regardless of the value of ε; again, when m = n, computing εub is
O(n7) work, while [24, Algorithm 1] is O(n6) work.

4. Locating pseudospectral components. We now work on defining dε and establishing
its properties, which is done over three sections. This section follows similarly to [36, Sec-
tions 2–4], where we first proposed interpolation-based globality certificates to find level-set
components as tools for computing Kreiss constants and the distance to uncontrollability.
Here we adapt these ideas to locating pseudospectral components, and throughout this section,
we provide specific references to counterparts in [36]. However, as will be seen, com-
puting sepD

λ (A,B) is more complicated than computing these other quantities, and so the
additional tools that we develop in Section 5 and Section 6 will also be needed.

Given a matrix A ∈ Cm×m, ε ≥ 0, and some z0 ∈ C such that ε is not a singular value
of A− z0I , in this section we propose a way of determining which rays emanating from z0

intersect with Λε(A) and which do not. We define the ray emanating from z0 specified by the
angle θ ∈ R as

(4.1) Rθ := {z0 + reiθ ∈ C : r ∈ R, r > 0}.

As we will explain momentarily, our assumption on ε ensures that a condition needed by our
method indeed holds; relatedly, our assumption also ensures that the “search point” z0 is not on
the boundary of Λε(A). Consider the following function parameterized in polar coordinates:

fA(r, θ) = σmin(A− (z0 + reiθ)I)) = σmin(FA(r, θ)), where

FA(r, θ) = ie−iθ(A− z0I)− irI
(4.2)

and the second equality above holds since multiplication by a unitary scalar does not alter
the singular values of a matrix. Note that bd Λε(A) is contained in the ε-level set of fA. The
following pair of results give us a way to determine whether or notRθ and Λε(A) intersect,
and when they do, to also calculate all the points in Rθ ∩ bd Λε(A). The first of these two
results is yet another variation of the 1D level-set technique that Byers introduced in order to
develop the first method for computing the distance to instability in 1988 [14], a powerful tool
which we and many others have adapted, extended, or used to develop 1D and 2D methods
to compute various quantities. Applications include the H∞- and L∞-norms [3, 5, 6, 7, 9],
distance to uncontrollability [15, 21, 22, 36], numerical radius [25, 32, 37], pseudospectral
(or spectral-value set) abscissa and radius [4, 11, 32], Kreiss constants [35, 36], as well as the
optimization of passive systems [30, 31, 38].

LEMMA 4.1 (cf. [36, Theorems 2.1, 3.1, and 4.1]). Let A ∈ Cm×m, ε ≥ 0, z0 ∈ C,
and r, θ ∈ R. Then ε is a singular value of FA(r, θ) defined in (4.2) if and only if ir is an
eigenvalue of the Hamiltonian matrix

(4.3) Cθ :=

[
ie−iθ(A− z0I) −εI

εI ieiθ(A− z0I)∗

]
.
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Proof. Suppose that ε is a singular value of FA(r, θ) with left and right singular vectors u
and v. Then

ε

[
u
v

]
=

[
FA(r, θ) 0

0 FA(r, θ)∗

] [
v
u

]
=

[
ie−iθ(A− z0I) 0

0 −ieiθ(A− z0I)∗

] [
v
u

]
+ ir

[
−I 0
0 I

] [
v
u

]
.

Rearranging terms, using the fact that [ uv ] = [ 0 I
I 0 ][ vu ], and multiplying the bottom block row

by −1, we obtain Cθ[ vu ] = ir[ vu ].
COROLLARY 4.2. Let A ∈ Cm×m, ε ≥ 0, z0 ∈ C, r, θ ∈ R, andRθ be the ray defined

by (4.1). ThenRθ ∩ Λε(A) 6= ∅ if and only if ir is an eigenvalue of Cθ with r > 0.
Proof. Suppose thatRθ and Λε(A) intersect. As Λε(A) is bounded, there exists an r > 0

such that the point z0 + reiθ is also on the boundary of Λε(A), and so σmin(FA(r, θ)) = ε.
Thus by Lemma 4.1, ir is an eigenvalue of Cθ. Now suppose Cθ has some eigenvalue ir with
r > 0. Again by Lemma 4.1, ε must then be a singular value of FA(r, θ) but not necessarily
the smallest one. Thus, σmin(FA(r, θ)) = ε̂ ≤ ε, and so it follows that z0 + reiθ is in
Λε̂(A) ⊆ Λε(A).

For any z0 + reiθ ∈ bd Λε(A) with r > 0, clearly σmin(FA(r, θ)) = ε, and so by
Lemma 4.1, ir ∈ Λ(Cθ). Hence, via computing all of the imaginary eigenvalues of Cθ,
Lemma 4.1 provides a way to calculate all of the points in Rθ ∩ bd Λε(A). However, note
that if ir ∈ Λ(Cθ) with r > 0, then z0 + reiθ may or may not be on bd Λε(A). There are two
reasons for this. First, per the proof of Corollary 4.2, ε may not be the smallest singular value
of FA(r, θ), in which case z0 + reiθ ∈ Λε̂(A) for some ε̂ < ε. Second, there can exist a finite
number of points z ∈ Λε(A) such that z 6∈ bd Λε(A) but σmin(FA(r, θ)) = ε nevertheless
holds; see [1, p. 31].

Corollary 4.2 can be stated more strongly, i.e., in terms of a line intersecting Λε(A), since
irneg with rneg < 0 is an eigenvalue of Cθ if and only if i|rneg| is an eigenvalue of Cθ+π.
However, for developing the theoretical concepts for our algorithm, it will be more intuitive
and simpler to work with the notion of rays emanating from z0 for the time being. For a
code, it does make sense to take advantage of all the imaginary eigenvalues of Cθ, and we
describe how this is done, along with other implementation details, in Section 7. Regarding
the spectrum of Cθ, also note that since Cθ is Hamiltonian, its eigenvalues are symmetric
with respect to the imaginary axis. Eigenvalues of real Hamiltonian matrices have additional
symmetry with respect to the real axis, but this is generally not the case for the spectrum
of Cθ due to Cθ being generically complex valued (even if A is real). Structure-preserving
eigensolvers exist, e.g., [2], that preserve this eigenvalue symmetry numerically.

REMARK 4.3. While Lemma 4.1 pertains to the eigenvalues of a single Hamiltonian
matrix, the analogous [36, Theorems 2.1, 3.1, and 4.1] used for computing Kreiss constants
and the distance to uncontrollability via interpolation-based globality certificates are in terms
of the eigenvalues of certain structured matrix pencils. For the case of Kreiss constants [36,
Theorems 2.1 and 3.1], the associated matrix pencils include parametric matrices that can
be singular, and so these generalized eigenvalue problems cannot be reduced to standard
eigenvalue problems. However, the matrix pencil for the distance to uncontrollability does
permit such a reduction, i.e., [36, Theorem 4.1] can be simplified to be in terms of the
eigenvalues of the complex Hamiltonian matrix

(4.4)
[
ie−iθA B̃
γI ieiθA∗

]
,
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where in (4.4), the matrices A and B̃ and scalars γ and θ are defined in [36, Theorem 4.1].
As we will soon see, we will need to preclude the possibility of zero being an eigenvalue

of Cθ. The following straightforward result shows that our assumption on ε not being a
singular value of A− z0I accomplishes this.

LEMMA 4.4 (cf. [36, Theorems 2.4, 3.3, and 4.4] ). Let A ∈ Cm×m, ε ∈ R, z0 ∈ C,
and θ ∈ R. Then the matrix Cθ defined in (4.3) has zero as an eigenvalue if and only if the
matrix (A− z0I)(A− z0I)∗ has ε2 as an eigenvalue.

Proof. Since the blocks of Cθ are all square matrices of the same size and the lower two
blocks, εI and ieiθ(A− z0I)∗, commute, we have that

det(Cθ) = det(−(A− z0I)(A− z0I)∗ − (−εI)(εI)) = det((A− z0I)(A− z0I)∗ − ε2I),

thus proving the if-and-only-if equivalence.
We are now ready to present the first major component in our construction of dε. Given

ε ≥ 0 specifying the ε-pseudospectrum of A and z0 ∈ C such that ε is not a singular
value of A − z0I , we define the function aε : (−π, π] → [0, π2] and the associated set
(cf. [36, Equations (2.4), (3.4), and (4.4)]):

aε(θ) := min{Arg(−iλ)2 : λ ∈ Λ(Cθ),Reλ ≤ 0},(4.5a)
Aε := {θ : aε(θ) = 0, θ ∈ (−π, π]},(4.5b)

where Arg : C \ {0} → (−π, π] is the principal value argument function, the matrix Cθ is
defined in (4.3), and the term Arg(−iλ) in (4.5a) is squared in order to smooth its value out
when transitioning to/from zero. We explain this in more detail later on, but the squaring is
done in order to make aε easier to approximate globally on its domain. Note that the definition
of aε excludes eigenvalues in the open right half of the complex plane since the spectrum of
Cθ is symmetric with respect to the imaginary axis.

THEOREM 4.5 (Properties of aε; cf. [36, Theorems 2.7, 3.5, and 4.6]). Let A ∈ Cm×m,
ε ≥ 0, and z0 ∈ C be such that ε is not a singular value of A − z0I . Then, the function aε
defined in (4.5a) has the following properties:

(i) aε(θ) ≥ 0 on its entire domain, i.e., for all θ ∈ (−π, π],
(ii) aε(θ) = 0 ⇐⇒ ∃r > 0 such that ir ∈ Λ(Cθ) ⇐⇒ Rθ ∩ Λε(A) 6= ∅,

(iii) aε is continuous on its entire domain,
(iv) aε is differentiable at a point θ if the eigenvalue λ ∈ Λ(Cθ) attaining the value of aε(θ)

is unique and simple.
Furthermore, the following properties hold for the associated set Aε defined in (4.5b):

(v) ε = 0 ⇐⇒ µ(Aε) = 0,
(vi) ε1 < ε2 ⇐⇒ µ(Aε1) < µ(Aε2),

(vii) if ε > fA(0, θ) for any θ ∈ R, then µ(Aε) = 2π,
(viii) Aε can have up to m connected components.

Proof. Noting that −iλ in (4.5a) is always in the (closed) upper half of the complex plane,
statements (i) and (ii) hold by the definition of aε and Corollary 4.2. Statement (iii) follows
from the continuity of eigenvalues and our assumption that ε is not a singular value of A− z0I ,
equivalently ε2 6∈ Λ((A− z0I)(A− z0I)∗), and thus, by Lemma 4.4, 0 6∈ Λ(Cθ) is ensured
for any θ. Statement (iv) follows from standard perturbation theory for simple eigenvalues and
by the definition of aε.

Now turning toAε, either z0 ∈ int Λε(A) or z0 6∈ Λε(A) must hold since our assumption
on ε precludes z0 from being a boundary point. If ε > fA(0, θ), then z0 ∈ int Λε(A), which
in turn implies thatRθ ∩ Λε(A) 6= ∅ for all θ, thus proving (vii). Now assume z0 6∈ Λε(A).
Statement (viii) is a consequence of the well-known fact that for any matrix A ∈ Cm×m, its
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ε-pseudospectrum has at most m connected components. For any component G of Λε(A), by
connectedness and (ii), it is clear that G is associated with a single interval I ⊆ (−π, π] such
that aε(θ) = 0 if and only ifRθ ∩ Λε(A) 6= ∅. SinceAε is simply the union of those intervals
associated with the components of Λε(A), of which there can be at mostm,Aε also has at most
m components, thus proving (viii). Statement (vi) follows by noting that Λε1(A) ⊂ Λε2(A) is
equivalent toAε1 ⊂ Aε2 . SinceRθ ∩Λε1(A) 6= ∅ implies thatRθ ∩ Λε2(A) 6= ∅, it follows
that aε1(θ) = 0 implies aε2(θ) = 0, and so Aε1 ⊂ Aε2 . Now suppose that Aε1 ⊃ Aε2 ,
and let θ ∈ Aε1 \ Aε2 ; hence aε1(θ) = 0 but aε2(θ) > 0. Then Rθ intersects Λε1(A)
but not Λε2(A), and so Λε1(A) ⊂ Λε2(A) cannot hold—a contradiction. Finally, for (v),
if ε = 0, Λε(A) = Λ(A), and so Rθ ∩ Λε(A) 6= ∅ for at most m different angles. As there
can be at most m connected components of Aε, if µ(Aε) = 0 holds, then ε = 0.

Per Theorem 4.5, aε is a continuous function, and aε(θ) = 0 if and only if it holds
that Rθ ∩ Λε(A) 6= ∅. Thus, by finding roots of aε, we find rays which intersect the ε-
pseudospectrum of A, our first step toward finding regions where Λε(A) and Λε(B) overlap.
For an illustration of this correspondence, see Figure 4.1, where bε, the analogue of aε for the
matrix B, is also plotted.

The properties of aε listed in Theorem 4.5 show that it is reasonably well behaved.
Satisfying the assumption that ε is not a singular value of A − z0I can be trivially met,
e.g., just by choosing z0 with a bit of randomness. The dominant cost of evaluating aε at a
point θ is computing the spectrum of Cθ, i.e., O(m3) work. Relative to Gu and Overton’s
sepD

λ (A,B) algorithm, this is a negligible cost. To find the roots of aε, we can approximate aε
using Chebfun, which is why we defined aε using the squared term Arg(−iλ)2 instead of just
Arg(−iλ). As will be made clear in Section 6, aε transitioning to/from zero corresponds to two
(or possibly more non-generically) eigenvalues of Cθ coalescing on the positive portion of the
imaginary axis. Without this squaring, aε would generally be non-Lipschitz at such transition
points, and thus it could be difficult and/or expensive to approximate via interpolation; the
squaring smooths out this high rate of change so that aε is easier to approximate. Although
the analogues of aε and Theorem 4.5 that appeared in [36] for computing Kreiss constants
and the distance to uncontrollability were sufficient to develop interpolation-based globality
certificates for those quantities, for sepD

λ (A,B), aε and Theorem 4.5 are insufficient.

5. Locating pseudospectral overlap. As part of locating regions where it holds that
Λε(A) ∩ Λε(B) 6= ∅, we will also need to locate the components of Λε(B) with respect
to the same “search point” z0 and given value of ε. Thus, for the matrix B, let fB and FB
respectively denote the analogues of fA and FA defined in (4.2), and similarly, let bε and Bε
be the respective analogues of aε and Aε defined in (4.5). For the matrix A, we continue
to use Cθ to denote its associated Hamiltonian matrix defined in (4.3), while we use Sθ to
denote the analogue Hamiltonian matrix for B, as both matrices will be needed. Per the
assumption of Theorem 4.5, we now need to assume that ε is not a singular value of either
A−z0I or B−z0I , which again can be easily satisfied by choosing z0 with some randomness.
In establishing tools for locating pseudospectral overlap, we will make use of the following
elementary result.

LEMMA 5.1. Let A,B ⊂ R be such that A and B respectively consist of m and n
connected components. Then A ∩ B can have up to m+ n− 1 connected components.

Proof. Let A = A1 ∪ · · · ∪ Am, where each Aj is a connected component of A and
Aj ∩Ak = ∅ for all j 6= k, and in an analogous fashion, let B = B1 ∪ · · · ∪ Bn. Without loss
of generality, assume that m ≤ n. If m = 1, suppose that the claim is not true, i.e., that A∩B
has more than n components. Then there exists at least one pair of numbers x and y that are
in different components of A ∩ B but must be in the same component Bj of B. However, by
connectedness of the components of A and B, we have that [x, y] ⊂ A1 = A and [x, y] ⊂ Bj .
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(a) Λε(A) and Λε(B) (b) aε(θ), bε(θ), and `ε(θ)

FIG. 4.1. For two randomly generated matrices A,B ∈ C14×14, the left pane shows their eigenvalues (respec-
tively x’s and dots) and Λε(A) and Λε(B) (respectively solid and dotted contours) for ε = 0.3 > sepD

λ (A,B). The
search point z0 is the origin; rays emanating from it are depicted by dashed lines. The right pane shows corresponding
plots of aε, bε (respectively solid and dotted curves) and `ε (dashed), where aε is defined in (4.5a), bε is its analogue
for the matrix B, and `ε is defined in (5.1a). On the left, rays in the lower left quadrant only intersect Λε(A) or
neither ε-pseudospectrum, while rays in the lower right quadrant only intersect Λε(B) or neither ε-pseudospectrum.
Correspondingly, for (−π,− 1

2
π] on the right, we see that aε has zeros but bε is always positive and vice versa

for (− 1
2
π, 0]. Meanwhile, there exist rays in the upper right quadrant that pass through both Λε(A) and Λε(B),

but Λε(A) and Λε(B) do not overlap in this region; thus, on the right for (0, 1
2
π], we see that aε and bε do have

zeros in common, but `ε is equal to zero on this interval. Finally, in the upper left quadrant, int Λε(A) and int Λε(B)
do in fact overlap, and so on the right, we see that aε and bε have zeros in common and `ε is indeed negative on a
subset of ( 1

2
π, π] with positive measure.

Therefore [x, y] ⊂ A ∩ B, contradicting that x and y are in different components of A ∩ B.
For the inductive step, now assume that the claim holds when A consists of j components, for
j = 1, . . . ,m− 1 and j < n, and suppose that A has m components. Let s = 1

2 (aL + aR),
where aL = supa∈Am−1

a and aR = infa∈Am
a, and define BL := {b ∈ B : b < s} and

BR := {b ∈ B : b > s}. Clearly BL and BR are disjoint, and BL ∪ BR = B \ {s}. Letting
nL and nR denote the respective number of connected components of BL and BR, it follows
that nL + nR = n if s 6∈ intB and nL + nR = n + 1 otherwise. Applying the inductive
hypothesis, {A1 ∪ · · · ∪ Am−1} ∩ BL has at most (m− 1) + nL − 1 connected components,
whileAm ∩BR has at most nR connected components. Noting that {A1 ∪ · · · ∪Am−1} ∩BL

andAm ∩BR are also disjoint and their union isA∩B, since s 6∈ A∩B, it follows thatA∩B
has at most (m− 1) + nL − 1 + nR ≤ m+ n− 1 connected components. The bound is tight,
as one can construct A such that Aj intersects both Bj and Bj+1 for j = 1, . . . ,m− 1, while
Am intersects Bj for j = m− 1, . . . , n.

THEOREM 5.2 (Properties of aε + bε and a necessary condition for overlap). Let
A ∈ Cm×m, B ∈ Cn×n, ε ≥ 0, and z0 ∈ C be such that ε is not a singular value
of either A− z0I or B − z0I , and let Rθ be the ray defined in (4.1). Furthermore, let
Zε := {θ ∈ (−π, π] : aε(θ) + bε(θ) = 0}, where aε is defined in (4.5a) for A and bε is its
analogue for B. Then the following statements hold:

(i) ifRθ ∩ Λε(A) ∩ Λε(B) 6= ∅, then aε(θ) + bε(θ) = 0,
(ii) if aε(θ) + bε(θ) = 0, thenRθ ∩ Λε(A) 6= ∅ andRθ ∩ Λε(B) 6= ∅,

(iii) aε + bε is continuous on its entire domain (−π, π],
(iv) aε + bε is differentiable at a point θ if aε and bε are differentiable at θ,
(v) Zε can have up to m+ n− 1 connected components.
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Proof. The assumption in (i) implies that Rθ ∩ Λε(A) 6= ∅ and Rθ ∩ Λε(B) 6= ∅
hold, and so aε(θ) = 0 and bε(θ) = 0 by Theorem 4.5 (ii). Statements (ii)–(iv) are direct
consequences of Theorem 4.5 (ii)–(iv). For (v), note that Zε = Aε ∩ Bε, where Aε is defined
in (4.5b) for A and Bε is its analogue for B. As Aε and Bε respectively have up to m and n
connected components by Theorem 4.5, statement (v) follows from Lemma 5.1.

Given an angle θ, Theorem 5.2 states that aε(θ) + bε(θ) = 0 is a necessary condition for
the pseudospectra Λε(A) and Λε(B) to overlap somewhere along the rayRθ, but it is easy to
see that this is not a sufficient condition for such overlap. To obtain such a sufficient condition,
we now define the function `ε : (−π, π]→ (−∞, 0] and an associated set:

`ε(θ) := −µ (Rθ ∩ Λε(A) ∩ Λε(B)) ,(5.1a)
Lε := {θ ∈ (−π, π] : `ε(θ) < 0}.(5.1b)

As Lε is open, it is measurable, and via Lemma 4.1, we know that the rayRθ can intersect at
most 2m and 2n boundary points, respectively, of Λε(A) and Λε(B). Thus, the number of
connected components of Rθ ∩ Λε(A) is finite, as is the number of connected components
of Rθ ∩ Λε(B); hence, the intersection in the definition of `ε is measurable. Moreover,
Lemma 4.1 allows us to determine these intervals (or isolated points), and so the value of `ε(θ)
can be computed simply by calculating how much the intervals ofRθ ∩ Λε(A) overlap those
ofRθ ∩Λε(B); we explain exactly how this is done in Section 7. In addition to aε and bε, the
function `ε is also plotted in Figure 4.1.

THEOREM 5.3 (Properties of `ε and a sufficient condition for overlap). Let A ∈ Cm×m,
B ∈ Cn×n, ε ≥ 0, z0 ∈ C, θ ∈ R, andRθ be the ray defined in (4.1). Then for the function
`ε defined in (5.1a), the following statements hold:

(i) `ε(θ) < 0 ⇐⇒ Rθ ∩ int Λε(A) ∩ int Λε(B) 6= ∅,
(ii) if aε(θ) + bε(θ) > 0, then `ε(θ) = 0,

(iii) `ε is continuous on its entire domain (−π, π],
(iv) `ε is differentiable at a point θ if for all r > 0 such that z0 + reiθ ∈ bd Λε(A), ir is

a simple eigenvalue of Cθ, and for all r > 0 such that z0 + reiθ ∈ bd Λε(B), ir is a
simple eigenvalue of Sθ.

Furthermore, the following statements hold for the associated set Lε defined in (5.1b):
(v) ε ≤ sepD

λ (A,B) ⇐⇒ µ(Lε) = 0,
(vi) sepD

λ (A,B) < ε1 < ε2 ⇐⇒ 0 < µ(Lε1) < µ(Lε2),
(vii) minθ∈(−π,π] `ε(θ) < 0 ⇐⇒ 0 < µ(Lε) ⇐⇒ sepD

λ (A,B) < ε.
Proof. Statement (i) simply follows from the definition of `ε given in (5.1a) and noting

that the intersectionRθ ∩ int Λε(A)∩ int Λε(B) is either empty or consists of a finite number
of open intervals in R. For (ii), if aε(θ) + bε(θ) > 0, then either Rθ ∩ Λε(A) = ∅ or
Rθ ∩ Λε(B) = ∅ holds by Theorem 4.5 (ii), and so `ε(θ) = 0. Statement (iii) follows from
the fact that the boundaries of ε-pseudospectra vary continuously with respect to ε, which is
clear from (1.1) and, via Lemma 4.1, do not contain any straight line segments. Under the
assumptions in (iv), standard perturbation theory for simple eigenvalues applies.

For Lε, (v) is a direct consequence of (i) and the definition of sepD
λ (A,B) given in (1.3b),

as int Λε(A) ∩ int Λε(B) = ∅ if and only if ε ≤ sepD
λ (A,B). Statement (vi) follows by a sim-

ilar argument to the proof of Theorem 4.5 (vi), with µ(Lε1) > 0 if and only if ε1 > sepD
λ (A,B)

following from (i). Statement (vii) is simply a combination of (i) and (vi).
From Theorem 5.3 (vii), it is clear that if `ε can be sufficiently well approximated, then

one can determine whether or not ε > sepD
λ (A,B) holds. Moreover, as we fully explain in

Section 7, via Lemma 4.1, knowledge of such angles can be used to compute points on the
ε-level set of fD, points which can be used to restart optimization to find a better (lower)
estimate for sepD

λ (A,B). Thus, one may wonder what the point was of considering aε + bε
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and deriving its associated necessary condition given in Theorem 5.2. There is in fact a very
important reason for this.

As `ε is constant (zero) whenever it is not negative, it can, ironically, be a difficult function
to approximate. The pitfall here is that regions where a function appears to be constant may
be undersampled by interpolation software, precisely because the computed estimate of the
error on such regions will generally be exactly zero, e.g., because the software initially builds
a constant interpolant for the region in question. Thus, there is a concern that approximating
`ε via interpolation may miss regions where `ε(θ) < 0 holds, particularly if these regions are
small compared to the regions where `ε(θ) = 0. Our solution to this difficulty is to replace `ε
by another non-constant function whenever `ε(θ) = 0 holds. We first consider the continuous
function tε : (−π, π]→ R

tε(θ) :=

{
aε(θ) + bε(θ) if aε(θ) + bε(θ) > 0,

`ε(θ) otherwise,
(5.2a)

Tε := {θ ∈ (−π, π] : tε(θ) = 0},(5.2b)

an alternative to approximating `ε; we have also defined Tε, the set of roots of tε, as this will
be used later. The key point here is that tε tells us at which angles the sufficient condition for
Λε(A) and Λε(B) to overlap is satisfied (tε(θ) < 0), where only the necessary condition for
overlap is satisfied (tε(θ) = 0), or where neither is satisfied (tε(θ) > 0). However, in light of
Theorems 5.2 and 5.3, it is clear that tε could still contain (potentially large) intervals where
it is zero, and generally, regions where tε(θ) < 0 holds will often be found in between such
regions where tε is the constant zero. Thus, there is still cause for concern that approximating
tε to find regions where it is negative may be difficult. As such, in the next section we introduce
an additional nonnegative function to replace the portions of tε where it is the constant zero.

REMARK 5.4. Recall that we added smoothing in the definitions of aε and bε by squaring
the Arg(·)-terms, as they otherwise may grow like the square root function when they increase
from zero (or vice versa), a behavior which can be difficult and expensive to resolve via
interpolation. While `ε can also exhibit similar non-Lipschitz behavior when it transitions to
being negative (and possibly elsewhere when it is already negative), we have intentionally not
smoothed this term. The reason is that once an angle θ is found such that `ε(θ) < 0, there is
no need to continue building an interpolant approximation. This angle can immediately be
used to compute new level-set points to restart optimization and improve (lower) the current
estimate to sepD

λ (A,B).

6. Locally supporting rays of pseudospectra and our certificate function dε. In this
section, we propose a new function with which we can replace the constant-zero portions of tε.
However, we begin with the following general definitions, which are variations of the concept
of a supporting hyperplane in Rn [8, Chapter 2.5.2] specialized to C, and a pair of related
theoretical results.

DEFINITION 6.1. Given a connected set A ⊂ C, a line L ⊂ C supports A at a point
z ∈ bd(A) ∩ L if A lies completely in one of the closed half-planes defined by L.

DEFINITION 6.2. Given a set B ⊂ C, a line L ⊂ C locally supports B at a point
z ∈ bd(B) ∩ L if the line L supports A ∩N at z for some neighborhood N about z, where
A is a connected component of B. A ray R locally supports B at z ∈ bd(B) ∩ intR if the
line L containingR locally supports B at z.

Note that if θ is a point where aε transitions from positive to zero (or vice versa), this
implies that the rayRθ locally supports Λε(A). Similarly, if θ is a point where bε transitions
from positive to zero (or vice versa), thenRθ locally supports Λε(B). Thus, it follows that if
θ is a point where aε + bε transitions from positive to zero (or vice versa), then Rθ locally
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supports either Λε(A) or Λε(B) or both simultaneously (though not necessarily at the same
point). Also note that if `ε transitions from zero to negative (or vice versa) at θ, thenRθ locally
supports Λε(A) ∩ Λε(B). We now derive necessary conditions based on the eigenvalues of
Cθ and Sθ for these scenarios. We first consider the case when Rθ locally supports Λε(A).
Note that [11, p. 371–373] also informally touches upon this subject and related issues for the
specific case of vertical lines.

LEMMA 6.3. Let A ∈ Cm×m, ε ≥ 0, z0 ∈ C, θ ∈ R, andRθ be the ray defined in (4.1).
If Rθ locally supports Λε(A), then the matrix Cθ defined in (4.3) has ir̂ with r̂ > 0 as a
repeated eigenvalue with even algebraic multiplicity.

Proof. Without loss of generality, assume that z0 = 0 and θ = 0, and suppose that
Rθ locally supports Λε(A) at r̂ > 0. Thus, r̂ ∈ bd Λε(A), and so σmin(A − r̂I) = ε
and ir̂ ∈ Λ(Cθ) by Lemma 4.1. By Definition 6.2, there exists a neighborhood N (in
the open right half-plane) about r̂ such that (Λε(A) ∩N ) \ Rθ is connected. As Rθ sepa-
rates N into N1 = {z ∈ N : Im z > 0} and N2 = {z ∈ N : Im z < 0}, either Λε(A) ∩N1

or Λε(A) ∩N2 must be empty. Without loss of generality, suppose that Λε(A)∩N1 = ∅, and
now consider how the eigenvalue ir̂ evolves as θ is varied, i.e., λ(θ) ∈ Λ(Cθ) with λ(0) = ir̂.
By continuity, the eigenvalue λ(θ) can either move up or down on the imaginary axis or it
can move off the imaginary axis as the value of θ is increased from zero. If it moves along
the imaginary axis, then locally we have that λ(θ) = ir(θ), where r : R→ R is continuous
and r(0) = r̂. Since r̂ > 0, there exists a θp > 0 such that r(θ) > 0 for all θ ∈ (0, θp). By
Lemma 4.1, it thus follows that r(θ)eiθ ∈ Λε(A) for all θ ∈ (0, θp), but this contradicts the
assumption that Λε(A) ∩ N1 is empty. Thus, λ(θ) must move off the imaginary axis as the
value of θ is increased from zero. Since the eigenvalues of the Hamiltonian matrix Cθ are
symmetric with respect to the imaginary axis, by continuity at least one pair of eigenvalues (or
possibly more pairs non-generically) must coalesce on the imaginary axis at ir̂ as θ → 0.

Now consider the case whenRθ locally supports Λε(A) ∩ Λε(B), which can happen at a
boundary point of either Λε(A) or Λε(B) or a shared boundary point of both. Building on
Lemma 6.3, we have the following result.

LEMMA 6.4. Let A ∈ Cm×m, B ∈ Cn×n, ε ≥ 0, z0 ∈ C, θ ∈ R, and Rθ be the ray
defined in (4.1). Furthermore, for the matrix A, let Cθ be the matrix defined in (4.3), and
let Sθ be its analogue for the matrix B. If Rθ locally supports Λε(A) ∩ Λε(B) at a point
z ∈ C, then at least one, and possibly all, of the following conditions must hold:

(i) Cθ and/or Sθ has ir̂ with r̂ > 0 as a repeated eigenvalue with even algebraic multiplicity,
(ii) Cθ and Sθ have an eigenvalue ir̂ with r̂ > 0 in common.

Proof. Without loss of generality, we can assume that z0 = 0 and θ = 0, and so z is on the
positive part of the real axis, i.e., z = r̂ for some r̂ > 0. IfRθ locally supports Λε(A)∩Λε(B)
at r̂, either r̂ ∈ bd Λε(A) but not bd Λε(B) (or vice versa) or r̂ is a shared boundary point
of both Λε(A) and Λε(B). If r̂ is not a shared boundary point, thenRθ must locally support
either Λε(A) or Λε(B) at r̂, and so Lemma 6.3 applies, yielding the “or” part of (i). Now
suppose r̂ is a shared boundary point, and so σmin(A− r̂I) = σmin(B − r̂I) = ε. Then by
Lemma 4.1, ir̂ is an eigenvalue of both Cθ and Sθ, yielding (ii). Furthermore,Rθ may or may
not also locally support Λε(A) and/or Λε(B) at r̂. All four scenarios are possible, with the
“and” part of (i) corresponding to when the ray simultaneously locally supports both Λε(A)
and Λε(B) at r̂.

Recall the set of roots Tε of tε, which is defined in (5.2b). If θ ∈ Tε, then the necessary
condition for overlap aε(θ) + bε(θ) = 0 is satisfied, and so Rθ intersects both Λε(A) and
Λε(B). However, as `ε(θ) = 0, the sufficient condition is not met, and via Theorem 5.3 it
follows that Λε(A) and Λε(B) either have no points in common along Rθ or at most only
boundary points in common. For a function to replace the regions of tε where tε(θ) = 0,
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i.e., Tε, we propose a function dABε : Tε → [0,∞) that is a measure of how close Λε(A) and
Λε(B) are to sharing a boundary point alongRθ. To that end, let

dABε (θ) := min{dAε (θ), dBε (θ)}, where(6.1a)

dAε (θ) := min{fA(r, θ)− ε : z0 + reiθ ∈ Rθ ∩ bd Λε(B)},(6.1b)

dBε (θ) := min{fB(r, θ)− ε : z0 + reiθ ∈ Rθ ∩ bd Λε(A)},(6.1c)

where fA is defined in (4.2) for the matrix A and fB is its analogue for the matrix B. Since
θ ∈ Tε, both Rθ ∩ bd Λε(A) and Rθ ∩ bd Λε(B) must be nonempty, and so the functions
are well defined. The purpose of dAε is to provide a nonnegative measure of how close
Λε(B) is to touching Λε(A) along the given ray Rθ and vice versa for dBε . Note that if
Rθ ∩ bd Λε(A) ∩ bd Λε(B) 6= ∅, then dAε (θ) = dBε (θ) = 0, but otherwise dAε (θ) and dBε (θ)
are typically not the same value. While technically dAε alone (or dBε ) would suffice as a
closeness measure of the two pseudospectra along a given ray, we have observed that their
pointwise minimum, i.e., dABε , is often cheaper to approximate. Important properties of dABε
are summarized in the following statement.

THEOREM 6.5 (Properties of dABε ). Let A ∈ Cm×m, B ∈ Cn×n, ε ≥ 0, and z0 ∈ C
be such that ε ≥ 0 is not a singular value of either A − z0I or B − z0I , and let Rθ be the
ray defined in (4.1). Furthermore, let dABε be as defined in (6.1) on the domain Tε defined
in (5.2b). Then for any point θ ∈ Tε, the following statements hold:

(i) dABε (θ) ≥ 0,
(ii) dABε (θ) = 0 ⇐⇒ Rθ∩Λε(A)∩Λε(B) 6= ∅ ⇐⇒ Rθ∩bd Λε(A)∩bd Λε(B) 6= ∅,

(iii) dABε is continuous at θ if every eigenvalue ir, of either Cθ or Sθ, that attains the
minimum in dABε (θ) is simple,

(iv) dABε is differentiable at θ if there are no ties for dABε (θ), i.e., it is attained via fA(r, θ)
or fB(r, θ) but not both, the corresponding minimum singular value is simple, and there
is a single eigenvalue ir, of either Cθ or Sθ as appropriate, that attains dABε (θ), where
this eigenvalue is simple.

Proof. Statements (i) and (ii) are simple but important direct consequences of the definition
of dABε and the fact that its domain is restricted to Tε, since otherwise dABε (θ) could be
negative (or undefined) for some θ and the equivalences in (ii) would not hold. For statement
(iii), consider dBε (θ) and recall that by Lemma 4.1, z0 + r̂eiθ ∈ Rθ ∩ bd Λε(A) is always
associated with an eigenvalue ir̂ of Cθ. Since eigenvalues are continuous, the eigenvalue ir̂
can either move continuously along the positive portion of the imaginary axis or leave this
region as θ is varied. Clearly, the former case cannot cause a discontinuity in dBε , so consider
the latter. By the assumption on ε, zero can never be an eigenvalue of Cθ for any θ, and
clearly the eigenvalues of a matrix are all finite. Thus, if an eigenvalue leaves the positive
portion of the imaginary axis, it cannot do by going through the origin or infinity. Since the
eigenvalues of the Hamilton matrix Cθ are symmetric with respect to the imaginary axis, a
simple eigenvalue cannot leave the imaginary axis, and a repeated eigenvalue is excluded
by assumption; hence, dBε must be continuous at θ. The same argument shows that dAε is
continuous at θ under the analogous assumptions for the eigenvalues of Sθ, and so dABε is
continuous at θ. For (iv), the assumptions mean that there are no ties for the min functions,
and standard perturbation theory for simple singular values and simple eigenvalues applies.

While Theorem 6.5 verifies that dABε is reasonably well behaved, dABε may have jump
discontinuities. However, dABε is discontinuous at a point θ ∈ int Tε only if two conditions
simultaneously hold: Rθ locally supports Λε(A) or Λε(B) at a point z0 + r̂eiθ with r̂ > 0,
and this value r̂ is the one that attains the value of dABε (θ). As a result, we expect such
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(a) Λε(A) and Λε(B) (b) dε(θ)

FIG. 6.1. For two randomly generated matrices A,B ∈ C10×10, the left pane shows their eigenvalues (re-
spectively x’s and dots) and Λε(A) and Λε(B) (respectively solid and dotted contours) for ε = 0.3 > sepD

λ (A,B).
The search point z0 is the origin; rays emanating from it are depicted by dashed lines. The right pane shows a
corresponding plot of dε, where its components are plotted as follows: aε+bε (dotted), `ε (dashed), and dABε (solid).
For θ = − 1

2
π, it can be seen in the left pane thatRθ only passes through Λε(B) and so dε(θ) = aε(θ)+bε(θ) > 0

in the right pane. Meanwhile for θ = 1
2
π,Rθ passes through int Λε(A) ∩ int Λε(B) and so dε(θ) = `ε(θ) < 0.

Finally, for θ = 0, while Rθ passes through both Λε(A) and Λε(B), it never does so simultaneously, hence
aε(θ) + bε(θ) = `ε(θ) = 0 and dε(θ) = dABε (θ) > 0.

discontinuities to be relatively few, and so this should not be a problem in practice. The
functions dAε and dBε typically do not have non-Lipschitz behavior when they transition
to/from zero, and so we have not added smoothing to them when defining dABε . When fD has
a unique minimizer, dABε only has a single root for ε = sepD

λ (A,B).
Combining our three constituent pieces, we now define dε : (−π, π]→ R, our key func-

tion for our interpolation-based globality certificate for sepD
λ (A,B):

(6.2) dε(θ) :=


aε(θ) + bε(θ) if aε(θ) + bε(θ) > 0,

`ε(θ) if `ε(θ) < 0,

dABε (θ) otherwise.

In Figure 6.1, we plot dε for a sample problem with ε > sepD
λ (A,B) in order to illustrate the

different components of dε. Recalling that aε + bε is a nonnegative function and so is dABε on
its domain, we immediately have the following global convergence conditions as a corollary
of Theorems 5.2, 5.3, and 6.5.

COROLLARY 6.6 (Global convergence for sepD
λ (A,B) via dε). Let A ∈ Cm×m,

B ∈ Cn×n, ε ≥ 0, and z0 ∈ C be such that ε is not a singular value of either A − z0I
or B − z0I , and let dε be the function defined in (6.2). Then

min
θ∈(−π,π]

dε(θ) < 0 ⇐⇒ µ({θ ∈ (−π, π] : dε(θ) < 0}) > 0 ⇐⇒ ε > sepD
λ (A,B).

In the process of devising dε, we considered many different possibilities but found that
these alternatives were significantly more expensive to use than dε, even if they had fewer
jumps or even none. For example, we considered an entirely continuous alternative to dε that
replaced its dABε -portions with a continuous measure of the distance to any of the necessary
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conditions in Lemma 6.4 holding. However, this function often had a more complicated
behavior and many more roots than dε because the necessary conditions in Lemma 6.4 hold
for any θ such thatRθ locally supports either of the two pseudospectra or their intersection
and possibly at other angles as well. Even when incorporating smoothing to address non-
Lipschitz behavior at roots, this alternative was still much more expensive to approximate
than dε. We also tried replacing dABε with min{µ(Rθ ∩ Λε(A)), µ(Rθ ∩ Λε(B))} and other
continuous alternatives, although these choices still resulted in jumps when used in conjunction
with aε + bε and `ε. But these choices were more expensive to approximate than dABε because
they generally had more complicated behaviors than dABε , e.g., more nonsmooth points, more
oscillatory behavior, etc. Finally, we considered just using the smallest pairwise distance
between points in Rθ ∩ bd Λε(A) and Rθ ∩ bd Λε(B). This is quite similar to dABε and
can have similar discontinuities, but it too ended up being more expensive to approximate
than dABε . That all said, none of the alternatives we considered were prohibitively expensive;
using any of them to compute sepD

λ (A,B) was still much faster than the method of Gu and
Overton, even though they were generally not as fast as our ultimate choice for dε.

REMARK 6.7. Another approach to computing sepD
λ (A,B) is via

s(θ) := min
r∈R

sθ(r), where sθ(r) := max{σmin(FA(r, θ)), σmin(FB(r, θ))},

i.e., s(θ) is the minimal value fD takes along the line defined by θ and passing through
some z0 ∈ C. It is then immediate that

(6.3) sepD
λ (A,B) = min

θ∈[0,π)
s(θ),

as this simply rewrites (1.2b) in polar coordinates about z0. Thus, using Chebfun to approxi-
mate s and then find a global minimizer in [0, π) provides another way to obtain sepD

λ (A,B).
One drawback of this approach is that for any given θ, evaluating s(θ) is much more expen-
sive than evaluating dε(θ). As we explain in detail in the next section, evaluating dε(θ) is
essentially direct, since it only requires solving two eigenvalue problems of order 2m and
2n and this is generally the dominant cost. Meanwhile, computing s(θ) involves finding a
global minimizer of sθ, which requires iteration. Although we can use Lemma 4.1 to construct
such an iteration, similar to the level-set methods of [6, 9] for computing theH∞-norm, the
resulting algorithm to compute s(θ) would generally only be linearly convergent; the key
difference between here and theH∞-norm setting is that sθ, due to being a max of two min
functions, will generally be nonsmooth at its minimizers. Consequently, evaluating s(θ) would
require solving multiple eigenvalue problems of 2m and 2n. Another issue is that although s
is continuous, it is still nonsmooth, and it is generally more expensive for Chebfun to detect
nonsmooth points than jumps; see [39, 43]. Finally, a third downside is that using Chebfun to
precisely compute a (likely unique) global minimizer of some function, e.g., s, is a significantly
more numerically challenging task than what we ask of Chebfun inside our algorithm using
dε, i.e., to find any point where dε is negative, since as we have shown, the set of such points
has positive measure when ε > sepD

λ (A,B). Thus, when attempting to compute sepD
λ (A,B)

by applying Chebfun to (6.3), we nevertheless recommend subsequently refining its computed
result by applying local optimization to fD initialized from the point in the complex plane
found by Chebfun.

7. Implementation and the cost of our method. We now discuss how to implement
our sepD

λ (A,B)-algorithm, which we have done in MATLAB, and describe its overall work
complexity. We give detailed remarks in the following sections, while a high-level pseudocode
is given in Algorithm 7.1.
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Algorithm 7.1 Interpolation-based Globality Certificate Algorithm for sepD
λ (A,B).

Input: A ∈ Cm×m, B ∈ Cn×n, “search point” z0 ∈ C, and zinit ∈ C.
Output: ε ≈ sepD

λ (A,B).

1: while true do
2: ε← computed locally/globally minimal value of fD initialized from zinit

3: // Begin approximating dε to assert convergence or find new starting points
4: pε ← 1 // Initial guess for polynomial interpolant pε for approximating dε
5: while pε does not sufficiently approximate dε do
6: [θ1, . . . , θq]← new sample points from (−π, π]
7: // If new starting points are detected, restart optimization to lower ε:
8: if dε(θj) < 0 for some j ∈ {1, . . . , q} then
9: zinit ← a point in bd{Rθj ∩ Λε(A) ∩ Λε(B)} \ {z0}

10: goto line 2 // Restart optimization from zinit

11: end if
12: // Otherwise, no starting points detected, keep improving pε:
13: pε ← improved polynomial interpolant of dε via θ1, . . . , θq
14: end while
15: // pε approximates dε well and no new starting points were encountered
16: // However, do a final check before asserting that dε is nonnegative:
17: [θ1, . . . , θq] = arg min pε(θ)
18: if dε(θj) < 0 for some j ∈ {1, . . . , q} then
19: zinit ← a point in bd{Rθj ∩ Λε(A) ∩ Λε(B)} \ {z0}
20: goto line 2 // Restart optimization from zinit

21: else
22: return // pε ≈ dε and =⇒ ε ≈ sepD

λ (A,B)
23: end if
24: end while

NOTE: To keep the pseudocode a reasonable length, we make some simplifying assumptions: optimization con-
verges to local/global minimizers exactly, zinit computed in lines 9 and 19 for restarting optimization is never a
stationary point of fD, and the “search point” z0 is such that all encountered values of ε are not singular values of
σmin(A− z0I) and σmin(B − z0I), per the assumptions given in Section 4 and Section 5. Lines 3–15 describe the
core of the interpolation-based globality certificate, where we only give a broad outline of the interpolation process
for approximating dε; note that for numerical reasons, each certificate should actually be done with ε̃ = (1− τ)ε,
where τ ∈ (0, 1) is some relative tolerance. See Section 7.2 and Section 7.3 for more implementation details.

7.1. Choosing a search point. Regarding what search point z0 to use, we recommend
the average of all the distinct eigenvalues of A and B. This helps to ensure that the whole
domain of dε is relevant. Otherwise, if for a given value of ε, z0 is chosen far from the
pseudospectra of A and B, then aε(θ) + bε(θ) = 0 would only hold on a very small subset of
(−π, π], which in turn would likely make it harder to find the regions where dε(θ) is negative.
On every round, our code checks that the choice of z0 still satisfies our needed assumptions
and perturbs it slightly if it does not (in practice, we have not observed that this is necessary).
Finally, if the pseudospectra of A and B both have real-axis symmetry, by choosing z0 on the
real axis, it is then only necessary to approximate dε on [0, π].

7.2. Evaluating dε(θ) and its cost. Given some θ, evaluating dε(θ) proceeds as follows.
First, the eigenvalues of both Cθ and Sθ are computed. For increased reliability, it is recom-
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mended that this be done via a structure-preserving eigensolver such as [2]. From these spectra,
it is then trivial to calculate the value of aε(θ)+bε(θ) via (4.5a). If aε(θ)+bε(θ) > 0, then the
value of dε(θ) has been computed. Otherwise, evaluating dε(θ) requires the following addi-
tional computations, which begins with obtaining the value of `ε(θ). To that end, we compute
Rθ ∩Λε(A) andRθ ∩Λε(B). Considering the former, we want to determine the values r > 0
such that fA(r, θ) = ε, and via Lemma 4.1, we have the following sorted list of candidate
values 0 = r0 < r1 < . . . < rq that may satisfy this equality, where irj , for j = 1, . . . , q,
are eigenvalues of Cθ and we have added r0 = 0. Then to compute Rθ ∩ Λε(A), we must
assert which intervals onRθ, defined by [rj−1, rj ] for j = 1, . . . , q, are also in Λε(A). There
are several ways to do this, but a simple and robust way is to just evaluate fA(r̂j , θ) for
r̂j = 0.5(rj−1 + rj) over j = 1, . . . , q; since fA(r̂j , θ) 6= ε, the corresponding interval is not
in Rθ ∩ Λε(A) if and only if fA(r̂j , θ) > ε. Note that it does not matter if we have two or
more adjacent intervals in our computed version ofRθ ∩ Λε(A). An analogous computation
yields Rθ ∩ Λε(B). With these two sets computed, calculating the amount of their overlap
along the given ray, i.e., −`ε(θ), is straightforward. If `ε(θ) < 0, then the evaluation of dε(θ)
is done, and the boundary points ofRθ ∩ Λε(A) ∩ Λε(B) have also been computed, which
are used to restart optimization. However, if `ε(θ) = 0, then finally we must compute dABε (θ)
in order to complete the computation of d(θ), though this is straightforward to do from the
definition of dABε (θ) given in (6.1) and the previous computations.

Recalling our assumption that m ≤ n, evaluating dε(θ) needs O(n3) work if done in the
following manner. Computing all of the eigenvalues of Cθ and Sθ requires O(n3) work, and
that is all there is to do when aε(θ) + bε(θ) > 0. But when aε(θ) + bε(θ) = 0, computing
dε(θ) additionally requires computing the values of fA(r, θ) and fB(r, θ) for different values
of r. While the number of values of r is often only a handful, in the worst case, it can be
O(m + n). Hence, if we were to evaluate this pair of functions by computing SVDs, we
would exceed the stated O(n3) work complexity bound by a factor of n. Fortunately, there
is a more efficient option due to Lui for fast plotting of pseudospectra [29]. Since A is
square, it has a Schur decomposition A = UTU∗, where U is unitary and T is triangular, and
moreover, since unitary transformations do not alter the pseudospectrum, Λε(A) = Λε(T )
holds. The key benefit of this transformation is that at any point z0 + reiθ ∈ C, we have that
T − (z0 + reiθ)I remains in triangular form, and so inverse iteration can be done to compute
this shifted matrix’s minimum singular value using backsolves that only require quadratic
work as opposed to the usual cubic work for solving a linear system. We only need to compute
and store Schur decompositions of A and B once in an offline phase, which is cubic work, and
then we can evaluate fA(r, θ) and fB(r, θ) for any r and θ in a most O(n2) work under the
mild assumption that inverse iteration converges in relatively few steps.4 Hence, evaluating
dε(θ) can always be done within O(n3) work. In our own experience, we have seen that ten
iterations is generally more than sufficient to compute fA(r, θ) and fB(r, θ) accurately to the
full precision of the hardware, and that this technique is already faster than computing the full
SVD for matrices as small as 50× 50.

7.3. Approximating dε and restarting. To approximate dε, we use Chebfun, as it
is rather adept at approximating functions with nonsmooth points and/or discontinuities.
As Chebfun normally provides groups of points to evaluate simultaneously (line 6 of Algo-
rithm 7.1), these evaluations of dε can be done in parallel; see [36, Section 5.2] for more details.
Furthermore, if dε(θ) < 0 for any of the current group of points provided by Chebfun, then
we immediately halt Chebfun and use the detected boundary points ofRθ ∩ Λε(A) ∩ Λε(B)

4For more details on the actual inverse-iteration-based algorithm, including pseudocode and code examples,
see [29] and [44, Chapter 39], but note that the latter has the following typo: In “Core EigTool algorithm” [44, p. 375],
the second to last line should be sigmin(j,k) = 1/sqrt(sig);, not sigmin(j,k) = sqrt(sig);.
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(except for z0) to restart optimization (lines 7–11 of Algorithm 7.1). This is accomplished
by throwing an error when a point is encountered such that dε(θ) < 0 holds, which causes
Chebfun to be aborted. By subsequently catching our own thrown error, we can resume our
program to restart another round of optimization.

7.4. Finding minimizers. Like many other optimization-with-restarts algorithms, it
will be necessary to use a monotonic optimization solver, i.e., one that always decreases the
objective function in every iteration, which is the case for most unconstrained optimization
solvers. Minimizers of fD will almost always be nonsmooth, and at best, we can expect linear
convergence from a nonsmooth optimization solver. However, since there are only two real
variables, we expect the number of iterations needed to converge to be relatively small. Thus,
as evaluating fD and its gradient is significantly cheaper than evaluating dε and we expect
far fewer function evaluations for the former than the latter, the cost of Algorithm 7.1 will
generally not be dominated by the optimization phases.

To find minimizers of fD using only gradient information, we use GRANSO: GRadient-
based Algorithm for Non-Smooth Optimization [33]. GRANSO implements the BFGS-SQP
nonsmooth optimization algorithm of [16], which can handle nonsmooth constraints, but for
problems without constraints, it reduces to BFGS with the line search of [28], a combination
which Lewis and Overton have studied and advocated as a method for nonsmooth optimization.
While there are no convergence results for BFGS for general nonsmooth optimization, it
nevertheless seems to reliably and accurately converge to nonsmooth stationary values. Indeed,
in their concluding remarks [28, p. 160], Lewis and Overton wrote “In our experience with
functions with bounded sublevel sets, BFGS essentially always generates function values
converging linearly to a Clarke stationary value, with exceptions only in cases that we attribute
to the limits of machine precision. We speculate that, for some broad class of reasonably
well-behaved functions, this behavior is almost sure.” Since fD is locally Lipschitz as long as
sepD

λ (A,B) > 0 and has bounded level sets, we expect that BFGS will also be an efficient
and reliable tool in our setting. For improved theoretical guarantees, one could follow up
optimization via BFGS with a phase of the gradient sampling algorithm [13], which would
ensure convergence to nonsmooth stationary values of fD when sepD

λ (A,B) > 0. However,
for simplicity, we only use BFGS here.

When restarting optimization, our certificate may provide many new starting points.
Restarting from just one would give the smallest chance of converging to a global minimizer
on this round, while restarting from them all could be a waste of time, particularly if this ends
up just returning the same minimizer over and over again. In practice, one could prioritize
them in terms of most promising first and limit the total number used. On multi-core machines,
optimization can be run from multiple starting points in parallel.

7.5. Terminating the algorithm. In addition to the convergence tests described in
Algorithm 7.1, it is also necessary to terminate the algorithm if consecutive estimates for
sepD

λ (A,B) are identical. The reason is that we cannot expect optimization solvers to find
minimizers exactly. If a global minimizer z̃ is obtained only up to some rounding error,
then sepD

λ (A,B) has essentially been computed, but our certificate may still detect that the
algorithm has not truly converged to a global minimizer, and in this case, the algorithm may
try to restart optimization (unsuccessfully). This is also part of the reason why the certificates
should actually be performed with ε̃ = (1− τ)ε, as described in the note under Algorithm 7.1.

7.6. The overall work complexity and using lines instead of rays. In the worst case,
the overall work complexity to perform the interpolation-based globality certificates isO(kn3),
where k is the total number of function evaluations (over all values of ε encountered). As
restarts tend to happen quickly, k is roughly equal to the number of evaluations needed to
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approximate dε when ε = sepD
λ (A,B), and as we will see in the numerical experiments, k can

generally be considered to be like a large constant, although it is influenced by the geometry
of the two pseudospectra.

When implementing the algorithm, the definition of dε can be modified so that it considers
lines through z0 instead of rays emanating from z0. This can be beneficial, since we always get
information for the direction θ + π when consideringRθ, and so this modified version of dε
needs only be interpolated on [0, π]. A function aε measures the minimum argument of −iλ
over each eigenvalue λ of Cθ, so when using lines instead of rays, it must also consider the
minimum angle with respect to the negative real axis. These additional angles are computed
by simply switching the sign of the imaginary part of each eigenvalue λ. The same change is
made for bε, while modifying `ε and dABε is straightforward. While using lines often results in
less overall work, this is not always the case, as it can sometimes make dε more complicated
and thus more expensive to approximate.

8. Algorithms for sepV
λ (A,B). We now briefly turn to the problem of computing

Varah’s sepλ(A,B). We first answer whether or not Algorithm 7.1 extends to sepV
λ (A,B)

and then propose a different algorithm to compute sepV
λ (A,B).

8.1. Does Algorithm 7.1 extend to sepV
λ (A,B)? In the construction of the function

dε for computing sepD
λ (A,B), nowhere have we needed that the same value of ε be used for

the pseudospectra of A and B. Thus for Varah’s version of sepλ(A,B), we can analogously
define

(8.1) dε1,ε2(θ) :=


aε1(θ) + bε2(θ) if aε1(θ) + bε2(θ) > 0,

`ε1,ε2(θ) if `ε1,ε2(θ) < 0,

dABε1,ε2(θ) otherwise,

where

`ε1,ε2(θ) := −µ (Rθ ∩ Λε1(A) ∩ Λε2(B)) ,

dABε1,ε2(θ) := min{dAε1,ε2(θ), dBε1,ε2(θ)},
dAε1,ε2(θ) := min{fA(r, θ)− ε1 : Rθ ∩ bd Λε2(B)},
dBε1,ε2(θ) := min{fB(r, θ)− ε2 : Rθ ∩ bd Λε1(A)},

and fA is defined in (4.2) for the matrixA, while fB is its analogue for the matrixB. Although
this will not allow us to compute sepV

λ (A,B) to arbitrary accuracy, we do have the following
necessary condition as another corollary of Theorem 5.3.

COROLLARY 8.1 (A necessary condition for ε1 + ε2 = sepV
λ (A,B) via dε1,ε2 ). Let

A ∈ Cm×m, B ∈ Cn×n, ε1, ε2 ≥ 0, and z0 ∈ C be such that ε1 and ε2 are, respectively, not
singular values of A− z0I and B − z0I , and let dε1,ε2 be the function defined in (8.1). Then

min
θ∈(−π,π]

dε1,ε2(θ) < 0 ⇐⇒ µ({θ ∈ (−π, π] : dε1,ε2(θ) < 0}) > 0,

and

ε1 + ε2 > sepV
λ (A,B) if min

θ∈(−π,π]
dε1,ε2(θ) < 0.

As the last statement in Corollary 8.1 is not if-and-only-if, dε1,ε2 does not allow us
compute to sepV

λ (A,B) with guaranteed accuracy. However, by modifying Algorithm 7.1 to
instead find minimizers of fV and use dε1,ε2 , we can compute locally optimal upper bounds for
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sepV
λ (A,B) that at least guarantee that the necessary condition int Λε1(A) ∩ int Λε2(B) = ∅

is satisfied, as this is equivalent to minθ∈(−π,π] dε1,ε2(θ) = 0. This is notably better than
just computing upper bounds via finding minimizers of fV, since the corresponding values
of ε1 and ε2 associated with minimizers are not guaranteed to satisfy this necessary condi-
tion. However, when either ε1 = 0 or ε2 = 0 holds at the computed minimizer, note that
int Λε1(A) = ∅ or int Λε2(B) = ∅ holds, and so satisfying the necessary condition does not
preclude the possibility that an eigenvalue of A may be in int Λε2(B) or vice versa. Thus,
when approximating sepV

λ (A,B) via this extended algorithm, one should always compute

(8.2) ε̃ = min

{
min

λ∈Λ(B)
σmin(A− λI), min

λ∈Λ(A)
σmin(B − λI)

}
,

which computes an upper bound ε̃ ≥ sepV
λ (A,B) such that no eigenvalues of A are in the

interior of int Λε̃(B) and vice versa. Nevertheless, when optimization finds minimizers where
neither ε1 nor ε2 is zero, then our certificate can be used to restart optimization if the necessary
condition does not hold and hence obtain a better estimate for sepV

λ (A,B).

8.2. A different Chebfun-based algorithm to compute sepV
λ (A,B). Given z0 ∈ C,

let the function v : [0, π)→ R be defined as

(8.3) v(θ) := min
r∈R

vθ(r), where vθ(r) := σmin(FA(r, θ)) + σmin(FB(r, θ)),

i.e., v(θ) is the minimal value fV takes along the line defined by θ and passing through z0. It
then immediately follows that

(8.4) sepV
λ (A,B) = min

θ∈[0,π)
v(θ).

Since v is a continuous function defined on a finite interval, as in the alternative sepD
λ (A,B)-

algorithm discussed in Remark 6.7, we can consider approximating v with Chebfun in order
to solve (8.4).

Unfortunately evaluating v for a given θ is quite difficult, as the level-set iteration for
finding a global minimizer of sθ described in Remark 6.7 does not extend to vθ. However, for
some ε > sepV

λ (A,B), say ε = fV(z0), we can easily calculate a finite interval [r1, r2] such
that vθ(r) > ε must hold for all r 6∈ [r1, r2]. To do this, we simple apply Lemma 4.1 to obtain
the two extremal points, say a1 and a2 with a1 ≤ a2, in the ε-level set of σmin(FA(r, θ)) with
r varying and θ fixed, and then analogously also obtain the two extremal level-set points b1
and b2 of σmin(FB(r, θ)) with b1 ≤ b2. By taking r1 = max{a1, b1} and r2 = min{a2, b2},
we have that any global minimizer of vθ must lie in [r1, r2], since by construction, vθ(r) > ε
outside this interval. Thus, to obtain the value of v(θ), we simply solve two eigenvalue
problems to obtain [r1, r2] and then apply Chebfun to approximate vθ on [r1, r2] in order to
obtain its globally minimal value.

Using Chebfun to approximate v over [0, π), where for each θ the value of v(θ) is also
computed by applying Chebfun to vθ, does lead to quite an expensive algorithm, as many
evaluations of σmin(FA(r, θ)) and σmin(FB(r, θ)) for different values of θ and r are required.
However, this nested Chebfun-based algorithm nevertheless has the virtue of being the very
first algorithm to compute sepV

λ (A,B), as opposed to just approximating it, e.g., within a
factor of two by instead computing sepD

λ (A,B).
Regarding the choice of z0, one might be tempted to use a local minimizer of fV, but

there are pros and cons to doing so. On the upside, if ε = fV(z0) is close to sepV
λ (A,B),

then v likely will be constant (with value ε) on a much of [0, π) or all of it if ε = sepV
λ (A,B),
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precisely because z0 is a minimizer. This can greatly reduce the number of function evaluations
required by Chebfun, but as discussed earlier in Section 5, functions with large constant por-
tions can actually cause Chebfun to terminate prematurely. As such, we generally recommend
that a minimizer of fV not be used for z0.

Finally, recalling our recommendation at the end of Remark 6.7, when computing
sepV

λ (A,B) via (8.4), we also similarly recommend refining Chebfun’s result via subsequently
applying local optimization. The upper bound given in (8.2) should also be computed.

9. Numerical experiments. All experiments were done in MATLAB R2021a on a com-
puter with two Intel Xeon Gold 6130 processors (16 cores each, 32 total) and 192GB of RAM
running CentOS Linux 7. We implemented our new methods using a recent build of Chebfun
(commit 119f9ad) with splitting enabled and novectorcheck, and for simplicity,
computed eigenvalues of Cθ and Sθ using eig in MATLAB; to account for rounding errors,
the real part of any computed eigenvalue λwas set to zero if |Reλ| ≤ 10−8. For Algorithm 7.1,
we used v1.6.4 of GRANSO with opt_tol=1e-14 to find local minimizers and used lines
instead of rays for our globality certificates, as we observed that this was usually a bit faster.
We forgo including any parallel processing experiments here, as we have previously validated
the large benefits of using parallelism with our interpolation-based globality certificate ap-
proach in [36, Section 5.2]. The codes used to generate the results in this paper are included in
the supplementary materials5, and we plan to add robust implementations to ROSTAPACK:
RObust STAbility PACKage [34].

9.1. An exploratory example. We first consider a simple example to explore the prop-
erties of our methods. We generated two different complex 10× 10 matrices using randn
and rescaled them so that the resulting matrices A and B both had spectral radii of 10.
Then, for s ∈ {10, 5, 0}, we considered Demmel’s and Varah’s versions of sep-lambda for
A(s) = A − sI and B(s) = B + sI . When s = 0, the spectra of A(s) and B(s) are
“centered” at the origin, but when s is increased, the centers of the two spectra, −s and s,
become more and more distant from each other; hence, on a macro level, increasing s generally
increases the value of sepD

λ (A(s), B(s)), and this is always true once s becomes sufficiently
large. Estimates of sepD

λ (A(s), B(s)) were computed using Algorithm 7.1, while estimates of
sepV

λ (A(s), B(s)) were computed using both of our algorithms from Section 8; for Varah’s
sep-lambda, the estimates for both our algorithms agreed exactly since they were obtained at
an eigenvalue of A(s). For Algorithm 7.1 and its extension to Varah’s sep-lambda, we used
10 + 10i as an initial point for optimization, which was chosen so that some restarts would
be observed. In Figure 9.1, we show the resulting pseudospectra of A(s) and B(s) at the
perturbation levels given by sepD

λ (A(s), B(s)) and sepV
λ (A(s), B(s)).

We give performance statistics of Algorithm 7.1 on our exploratory example in Table 9.1.
For s = 10, GRANSO found a global minimizer of fD from the initial point, and so only a
single certificate computation was needed in this case, while two certificates were needed for
the s = 5 and s = 0 instances. On both of these, the first round of optimization only found a
local minimizer, and so the first certificate instead returned new points to restart optimization.
But as can be seen from Table 9.1, this happened with very little effort; only 15 evaluations
of dε were needed to find new starting points. Figure 9.2 shows that the corresponding final
configurations of dε are all nonnegative, as they should be when ε = sepD

λ (A(s), B(s)),
per Corollary 6.6. Overall, we see that additional effort was needed to approximate dε as s is
decreased, which is as we would expect because the behavior of dε generally becomes more
complicated in proportion to how much the two (pseudo)spectra “intermingle”, which for our
test examples, is roughly controlled by s. Recalling that the search point z0 defining dε is near

5https://etna.ricam.oeaw.ac.at/volumes/2021-2030/vol58/addition/p402.php
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(a) Λε(A(s)) and Λε(B(s)) for ε = sepD
λ (A(s), B(s)) and s = 10 (left), s = 5 (middle), and s = 0 (right).
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(b) Λε1 (A(s)) and Λε2 (B(s)) for ε1 + ε2 = sepV
λ (A(s), B(s)) and s = 10 (left), s = 5 (middle), and

s = 0 (right).

FIG. 9.1. For the example described in Section 9.1, pseudospectra of A(s) and B(s) (respectively solid and
dotted contours) corresponding to Demmel’s and Varah’s versions of sep-lambda are shown along with the eigenvalues
of A(s) and B(s) (respectively x’s and dots) for s ∈ {10, 5, 0}. In the top right plot, Λε(A(s)) and Λε(B(s))
appear to touch at two places, but actually there is only one contact point (the one closer to the origin). In the three
lower plots, Varah’s sep-lambda is attained with ε1 = 0.

the origin for these problems, this effect can be clearly observed by looking at Figures 9.1a
and 9.2 (and is also illustrated in Figure 4.1, where each quadrant of the complex plane has a
different amount of pseudospectral “intermingling”). For s = 10, the eigenvalues of A(s) and
B(s) are separated from each other the most, which in turn leads to the final dε being rather
straightforward; see Figure 9.2a. However, the separation between the eigenvalues of A(s)
and B(s) is reduced via making s smaller, and hence we see that dε becomes increasingly
more complicated and with more discontinuities; see Figures 9.2b and 9.2c.

Performance data for our two algorithms for Varah’s sep-lambda are given in Table 9.2,
where we see a similar effect with respect to changing shift s. However, the main takeaway
here is that, as predicted, our algorithm from Section 8.2 is indeed many times slower than our
extension of Algorithm 7.1 described in Section 8.1.

9.2. Comparing Algorithm 7.1 to the method of Gu and Overton. We now do a
comparison of Algorithm 7.1 against the seplambda routine6, which is Overton’s MATLAB
implementation of his sepD

λ (A,B) algorithm with Gu [24]. To do this, we generated two more
examples in the manner as described in Section 9.1 but now form = n = 20 andm = n = 40.
For each, including our earlier m = n = 10 example, we computed sepD

λ (A(s), B(s)) for
s = 0 and s = m = n using both our new method and seplambda. In order to obtain
sepD

λ (A(s), B(s)) to high precision, we set the respective tolerances for both methods to 10−14.

6Available at https://cs.nyu.edu/faculty/overton/software/seplambda/.
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(a) s = 10: dε(θ) in linear scale (left) and in log10 scale (right).

(b) s = 5: dε(θ) in linear scale (left) and in log10 scale (right).

(c) s = 0: dε(θ) in linear scale (left) and in log10 scale (right).

FIG. 9.2. Each subfigure displays the final dε computed by Algorithm 7.1 for the example from Section 9.1
for s ∈ {10, 5, 0}. The components of dε are plotted as follows: aε + bε (dotted) and dABε (solid); `ε does not
appear as it is never negative when ε = sepD

λ (A,B). The circle denotes the angle θ (with respect to z0) associated
with the best minimizer of fD obtained and corresponds to the single place where dε(θ) = 0, which is more easily
seen in the log10 plots on the right.

For this comparison, we always initialized the first phase of optimization for our method from
the origin.

A performance overview is reported in Table 9.3. In terms of accuracy, the estimates
computed by our method for sepD

λ (A(s), B(s)) have high agreement with those computed by
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TABLE 9.1
Performance data for Algorithm 7.1 for Demmel’s version of sep-lambda on the example given in Section 9.1 for

s ∈ {10, 5, 0}: “fD evals.” is the total number of evaluations of fD during local optimization, “Certs.” is the total
number of certificates attempted, “All” and “Final” are the total number of evaluations of dε over all certificates and
just the final one, respectively, and the final column is the total running time in seconds of Algorithm 7.1.

dε evals. Time (sec.)

s fD evals. Certs. All Final Alg. 7.1

10 156 1 2154 2154 4
5 150 2 8587 8572 5
0 205 2 22838 22823 13

TABLE 9.2
Performance data for our two algorithms described in Section 8 for Varah’s version of sep-lambda on the

example given in Section 9.1 for s ∈ {10, 5, 0}. For the extension of Algorithm 7.1 described in Section 8.1,
“fV evals.” is the total number of evaluations of fV during all optimization runs, “Certs.” is the total number of
certificates attempted, and “dε1,ε2 evals.” is the total number of evaluations of dε1,ε2 over all certificates. For our
algorithm described in Section 8.2, “fV evals.” is the total number of evaluations of fV, “v evals.” is the total
number of evaluated of the function v defined in (8.3). Finally, we report the total running time in seconds for each
method respectively under the “Section 8.1” and “Section 8.1” columns.

Alg. from Section 8.1 Alg. from Section 8.2 Time (sec.)

s fV evals. Certs. dε1,ε2 evals. fV evals. v evals. Sect. 8.1 Sect. 8.2

10 188 1 4494 2512417 2044 2 139
5 142 1 4583 10161448 5900 2 548
0 150 1 6859 14736950 6502 2 777

seplambda, though our method did return slightly better (lower) values for all the problems.
On the nonshifted (s = 0) examples, our new method was 1.1 times faster than seplambda
for m = n = 10, 18.1 times faster for m = n = 20, and 566.0 times faster for m = n = 40.
Clearly, as the problems get larger, our method will be even faster relative to seplambda.
For the shifted examples (s = m = n), the performance gaps are even wider: our new method
was 6.2 times faster than seplambda for m = n = 10, 98.6 times faster for m = n = 20,
and 2495.7 times faster for m = n = 40. The “dε evals.” data for s = 0 and s = m = n
in Table 9.3 for these problems also indicate that dε is generally less complex the more
the eigenvalues of A and B are separated. Meanwhile, the running times of seplambda
were relatively unchanged by the value of s, as shifting the eigenvalues of A and B has no
direct effect on its computations. In Table 9.3, we can again infer that restarts in our method,
when needed, happened with relatively few evaluations of dε. Per [36, Section 5.2], the
main work done in interpolation-based globality certificates is “embarrassingly parallel”, and
consequently, our method can further be accelerated by about an order of magnitude using
parallel processing and substantially more if minor tweaks are made to Chebfun to make it
more amenable to parallelism.

REMARK 9.1. Recalling the end of Section 2 on possibly replacing the bisection phase
of Gu and Overton’s with optimization-with-restarts, we now empirically validate our claim
that the benefit of such a modification is indeed quite limited and diminishes as the problem
dimensions increase. Besides recording the total time to run seplambda for each problem
for Table 9.3, we also recorded the time its initialization procedure required. Then, an upper
bound for the best possible speedup is simply the total time divided by the initialization time,
where we idealistically assume that opimization-with-restarts has zero cost. For m = n
respectively equal to 10, 20, and 40, the computed ratios were approximately 3.5, 2.2, and 1.6.
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TABLE 9.3
Comparing Algorithm 7.1 and the method of Gu and Overton for Demmel’s version of sep-lambda. The columns

are the same as described in Table 9.1 except that we now additionally give the problem size under “m = n”,
the total running times in seconds of both methods, respectively “Alg. Algorithm 7.1” and “GO”, and the relative
difference between the estimates computed by both methods (Rel. Diff.), with positive indicating our method returned
a better (lower) equal estimate for sepD

λ (A(s), B(s)).

dε evals. Time (sec.)

m = n s fD evals. Certs. All Final Alg. 7.1 GO Rel. Diff.

10 10 65 1 2154 2154 3 16 3.5× 10−14

10 0 75 1 23287 23287 14 15 0
20 20 97 1 4746 4746 15 1481 1.1× 10−13

20 0 346 3 31786 31756 78 1408 1.3× 10−13

40 40 128 2 5973 5910 95 237425 3.3× 10−14

40 0 295 3 29261 29231 407 230251 2.0× 10−12

Obviously, even these idealized speedups are nowhere near sufficient to overcome the very
large performance gaps shown in Table 9.3 for m = n = 20, let alone m = n = 40, although
such a modified version of seplambda would be close in performance to our method for
the m = n = 10, s = 10 problem and likely pull ahead for the m = n = 10, s = 0 problem.
However, if we enabled parallel processing for Algorithm 7.1, then it would again be fastest
for this problem too and probably by a large margin. Finally, note that if seplambda were
further modified by also adapting the divide-and-conquer technique of [23], it still would
be significantly slower than Algorithm 7.1, except for maybe the tiniest of problems. In the
context of computing the distance to uncontrollability, we compared our interpolation-based
globality certificates methodology with the method of [23], which uses both optimization-
with-restarts and divide-and-conquer and also does not have any expensive initialization
procedure, and our approach was roughly 5 to 43 times faster depending on the dimension;
see [36, Section 5.1].

9.3. Scaling performance of Algorithm 7.1. Finally, we examine the scaling perfor-
mance of Algorithm 7.1 for some larger problems, which we constructed in the same fashion as
before except that here we generated complex matrices A and B via sprandn with a density
of 0.1; this change was done solely to be able to store the matrices explicitly while keeping the
file sizes small for up to m = n = 800. For these problem sizes, it was not feasible to attempt
running Gu and Overton’s method, and so in Table 9.4 we only give performance data for Algo-
rithm 7.1. The accuracy of each estimate ε for sepD

λ (A(s), B(s)) computed by Algorithm 7.1
was verified by creating a sufficiently high resolution plot of Λε(A(s)) and Λε(B(s)) and
inspecting it to see whether or not the interiors of the two pseudospectra overlap. This visual
check suffices to confirm the high accuracy of our new method because, per Section 7.4, local
minimizers discovered in every iteration of Algorithm 7.1 will be computed to high accuracy
and the fact that ε > sepD

λ (A(s), B(s)) if and only if int Λε(A(s)) ∩ int Λε(B(s)) 6= ∅;
hence, to assess the accuracy of a computed estimate ε, we only need to confirm whether or
not Algorithm 7.1 converged to a global minimizer of fD or only a local one, which is done
by looking for the absence or presence, respectively, of a pseudospectral overlap. For the
pair of smallest problems (m = n = 100), Algorithm 7.1 respectively took about 11 and 50
minutes, while on the other extreme, Algorithm 7.1 needed about 6 and 37 hours, respectively,
for the two m = n = 800 problem instances. Again, using parallel processing can reduce
these running times dramatically. Interestingly, for the intermediate sizes of m = n = 200
and m = n = 400, we actually see that Algorithm 7.1 was slightly more expensive on the
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TABLE 9.4
The columns are the same as described in Table 9.3 except that here we only give running times of Algorithm 7.1

and its computed estimates of sepD
λ (A(s), B(s)). The running time and accuracy comparisons with Gu and

Overton’s method are not provided since it would have taken far too long to run their method on these larger problems.

dε evals. Time (sec.)

m = n s fD evals. Certs. All Final Alg. 7.1 sepD
λ (A(s), B(s))

100 100 89 1 5425 5425 704 6.1677176880084× 100

100 0 334 4 23689 23451 3045 2.5004731832266× 10−2

200 200 210 2 23170 23155 11563 6.3206868631252× 100

200 0 319 2 20846 20831 10187 4.2654521922541× 10−2

400 400 123 2 22456 22425 40966 6.0394981396743× 100

400 0 392 5 18237 18113 33931 4.0258158186612× 10−2

800 800 153 2 3113 3098 22112 1.0584889222355× 101

800 0 383 5 21962 19436 131887 9.9483548512835× 10−3

instances with nonzero s, which suggests that the spectra of A(s) and B(s) for these particular
examples would need to be shifted even further apart in order for the complexity of dε to
decrease. Over all the problems tested, we see that Algorithm 7.1 required at most four restarts
before converging, but once again, the costs of these restarts was generally negligible with the
one exception being the m = n = 800, s = 0 problem, where we can infer that the total cost
of the four restarts was approximately 10% of the overall running time.

10. Concluding remarks. In this paper, we have introduced a new method to compute
Demmel’s version of sep-lambda that is much faster than the only previous known algorithm
(due to Gu and Overton). Under our assumption that approximation of dε by interpolation is
reliable, our method computes sepD

λ (A,B) to arbitrary accuracy and generally behaves like
a method with cubic work complexity, albeit one with a high constant factor. Nevertheless,
our new approach is so much faster that it is now possible to calculate sepD

λ (A,B) for
moderately sized problems, e.g., for m,n in the thousands, which were simply intractable
when using Gu and Overton’s algorithm. We have also extended our algorithm to tackle
Varah’s version of sep-lambda. Although in this case global optimality cannot be guaranteed,
the extension does rapidly compute locally optimal approximations which satisfy the necessary
condition for global optimality. Furthermore, we have proposed a second method to actually
compute sepV

λ (A,B), although this algorithm is significantly more expensive.

Supplementary Material. The supplementary material contains the code to generate the
results in the paper:
https://etna.ricam.oeaw.ac.at/volumes/2021-2030/vol58/addition/p402.php.

To rerun all the experiments described in this paper and reproduce all the plots and table
data, please see the instructions provided in readme.txt. Both Algorithm 7.1 for computing
Demmel’s sep-lambda and its modification described in Section 8.1 for approximating Varah’s
sep-lambda is implemented in the routine sep-lambda\prototype\getSepLam.m.
Meanwhile, the method for computing Varah’s sep-lambda described in Section 8.2 is imple-
mented in the routine sep-lambda\prototype\getSepLamV.m.

Acknowledgements. The author is grateful for the referees’ helpful suggestions, and
particularly for the first referee’s observation that the efficient pseudospectral plotting tech-
nique of [29] could be used in Algorithm 7.1 to bring down its worst-case asymptotic work
complexity to cubic in n as opposed to quartic; see Section 7.2 and Section 7.6.
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