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NONEQUISPACED FAST FOURIER TRANSFORM BOOST
FOR THE SINKHORN ALGORITHM∗

RAJMADAN LAKSHMANAN†, ALOIS PICHLER†‡§, AND DANIEL POTTS†‡¶

Abstract. This contribution features an accelerated computation of Sinkhorn’s algorithm, which approximates
the Wasserstein transportation distance, by employing nonequispaced fast Fourier transforms (NFFT). The proposed
algorithm allows approximations of the Wasserstein distance by involving not more thanO(n logn) operations for
probability measures supported by n points. Furthermore, the proposed method avoids expensive allocations of the
characterizing matrices. With this numerical acceleration, the transportation distance is accessible to probability
measures out of reach so far. Numerical experiments using synthetic and real data affirm the computational advantage
and superiority.
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1. Introduction. In optimal transport theory, the Wasserstein distance—often referred
to as the Monge–Kantorovich distance—is used to define and quantify optimal transitions
between probability measures. The lowest (or cheapest) average costs to fully transfer one
probability measure into another characterizes the distance. In most applications, the costs cor-
respond to the distance between locations. For a comprehensive discussion of the Wasserstein
distance from a mathematical perspective, we may refer to [40].

The concept of entropy regularization of the Wasserstein distance, proposed by [9], is
an important touchstone, which improves the computational process of traditional methods.
This entropy-regularized Wasserstein problem is efficiently solved using Sinkhorn’s algorithm
(cf. [36]). In today’s data-driven world, the powerful and growing relationship between opti-
mization and data science utilizes the Wasserstein distance, e.g., for text classification [19],
clustering [7], image classification [38], or domain adaptation [8]. Notably, most of the applica-
tions rely on discrete measures. However, some significant contributions are also presented in
the literature to support the arguments of semi-discrete and/or continuous measures (cf. [22]).
The constructive line of research on the entropy-regularization method to approximate the
Wasserstein distance proposes many significant algorithms to increase the computational
efficiency as well as to stabilize the approximation accuracy (cf. [10, 20, 34]). However, this
article addresses the efficient computation of the standard Sinkhorn’s algorithm in terms of
time and memory allocation to approximate the Wasserstein distance on a simple personal
computer, especially in case of large data volume.

Related works. In the past decade, based on the well-known standard (equispaced) fast
Fourier transform (FFT) method, many approaches have been proposed to find efficient data
representations for various problems. The family of standard FFT algorithms has been applied
in many areas such as face recognition [15], autonomous vehicles [5], voice assistance [30],
etc., and they have achieved notable performance. The standard FFT algorithm improves the
computational operations from O(n2) to O(n log n), where n denotes the number of data
points; this process involves equispaced sampling. However, in some cases, the equispaced
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sampling is one of the root causes of failure to achieve high accuracy (cf. [27], [28, Chapter 7]).
We recognize that the optimal transport (OT) communities use the idea of standard FFT to speed
up Sinkhorn’s iterations in some places [25]. The standard FFT methods utilize equispaced
convolution, which is a drawback when we consider the stability of the computation and
approximation accuracy (cf. [26, Remark 4.18]). To overcome this challenge we present a non-
equispaced convolution below, and it is also achievable in O(n log n) arithmetic operations.
Furthermore, for faster computation, low-rank factorization techniques are considered a
popular issue among OT communities (cf. [1, 3, 32]). As a consequence of the line of research
on low-rank factorization, the authors in [33] have developed an algorithm to efficiently solve
the regularized OT problem, which depends on low-rank couplings. This method can also be
employed to accelerate problems involving multi-marginals; cf. [4].

Contribution. We improve the computational time and memory allocation of the standard
entropy-regularization approach to approximate the Wasserstein distance with negligible or no
compromise of accuracy. The technique we present here is a fast summation method, and it is
based on the nonequispaced fast Fourier transform (NFFT); see [28, Chapter 7]. Using NFFT,
we boost the performance of the standard entropy regularization of the Wasserstein distance
with stable computation and high (machine) accuracy. Additionally, we explicitly provide
bounds for the approximation of the Wasserstein distance. We experimentally substantiate
the computational efficiency of our proposed algorithm, and we validate the accuracy via
numerical results.

Outline of the paper. This paper is organized as follows. Initially, in Section 2, we discuss
the necessary notation and definitions of the Wasserstein distance. Section 3 introduces the
entropy-regularization approach to approximate the Wasserstein distance (primal problem)
and its dual formulation. Additionally, we show the convergence properties of Sinkhorn’s
iteration and recall the Sinkhorn divergence. A fast summation technique based on NFFT,
which is utilized in this paper, is introduced in Section 4. In Section 4.2, we propose the
NFFT-accelerated Sinkhorn’s algorithm and schematically explain the operations. Section 5
contains a demonstration of the performance of our proposed algorithm on synthetic as well as
real data sets. Finally, Section 6 summarizes and concludes the paper.

2. Preliminaries. In this section, we provide a short review of the Monge–Kantorovich
or Wasserstein distance.

On a space of probability measures, Wasserstein distances offer a natural metric. Intu-
itively, the Wasserstein distance measures the minimum average amount of the transporting
cost required to transform one distribution into another.

DEFINITION 2.1 (Wasserstein distance). Let (X , d) be a Polish space and P and
P̃ ∈ P(X ) be two probability measures on the Borel sets of X . The Wasserstein distance
of order r ≥ 1 of the probability measures P and P̃ for a given cost or distance function
d : X × X → R is

Wr(P, P̃ ) := wr(P, P̃ )
1/r,

where

wr(P, P̃ ) := inf
π∈Π(P,P̃ )

∫∫
X×X

d(x, x̃)r π(dx, dx̃).(2.1)

Here, Π(P, P̃ ) ⊂ P(X 2) is the set of bivariate probability measures on X × X with
marginals P and P̃ , respectively; that is, π(A × X ) = P (A) and π(X × B) = P̃ (B)
for all measurable sets A and B ⊂ X .
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Wasserstein distances metricize the weak* topology on measures with finite rth moment.
In the discrete setting considered below and all regular situations, the infimum in (2.1) is
attained (cf. [39, Theorem 7.12]).

Discrete framework. Concrete implementations of the Wasserstein problem rely on
discrete measures of the form1

P (·) =

n∑
i=1

pi δxi
(·),

with pi ≥ 0 and
∑n
i=1 pi = 1. These measures are dense in P(X ) with respect to the weak*

topology; see [6].
For two discrete probability measures

P =

n∑
i=1

piδxi
and P̃ =

ñ∑
j=1

p̃j δx̃j
,

the bivariate measure π =
∑n
i=1

∑ñ
j=1 πijδ(xi,x̃j) ∈ P(X 2) solves the Wasserstein prob-

lem (2.1) provided that the matrix π = (πij) ∈ Rn×ñ is the solution of the optimization
problem

wr(P, P̃ ) = min

n∑
i=1

ñ∑
j=1

πij d
r
ij , where(2.2a)

ñ∑
j=1

πij = pi for i = 1, . . . , n,(2.2b)

n∑
i=1

πij = p̃j for j = 1, . . . , ñ and(2.2c)

πij ≥ 0 for all i = 1, . . . , n and j = 1, . . . , ñ(2.2d)

and dij = d(xi, xj) is the distance matrix. The problem (2.2a)–(2.2d) is a linear optimization
problem, occasionally referred to as the Kantorovich problem. In what follows, the optimal
matrix is denoted by πw.

Complexity. For n ≈ ñ, the linear optimization problem (2.2a)–(2.2d) can be solved by
straightforward computation involving O(n3) multiplications.

In the following Section 3, we recall the popular approach based on entropy regularization
to reduce the computational burden of the optimization problem (2.2a)–(2.2d). This approach
is efficiently tackled by an iteration process, which is popularly known as Sinkhorn’s algorithm.
This algorithm is also known as matrix-scaling-type algorithm (cf. [31]).

Notation. Throughout this article, ‖ ·‖ stands for the Euclidean norm or 2-norm, and ‖ ·‖1
stands for the 1-norm. The vectors of all ones and zeros are denoted as 1n := (1, . . . , 1)> ∈ Rn
and 0n := (0, . . . , 0)> ∈ Rn, respectively. For any probability vectors a and b, the Kullback-
Leibler divergence is

DKL(a | b) :=

n∑
i=1

ai log
(ai
bi

)
.

1The Dirac measure located at x ∈ X is defined by δx(A) := 1A(x) = 1 if x ∈ A and 0 else.
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3. Entropy regularization and Sinkhorn divergences. This section considers the
entropy regularization of the Wasserstein problem and characterizes its duality. Furthermore,
we recall Sinkhorn’s algorithm which permits a considerably faster implementation.

3.1. Entropy regularization of the Wasserstein problem. The entropy-regularized
Wasserstein (ERW) problem involves the entropic regularization term

H(π) := −
∑
i,j

πij log πij

added to the linear optimization problem (2.2a)–(2.2d).
DEFINITION 3.1 (ERW distance). The ERW distance with regularization parameter

λ > 0 is the minimal value of the optimization problem

sr;λ(P, P̃ ) := min

n∑
i=1

ñ∑
j=1

πij d
r
ij −

1

λ
H(π), where(3.1a)

ñ∑
j=1

πij = pi for i = 1, . . . , n,(3.1b)

n∑
i=1

πij = p̃j for j = 1, . . . , ñ and(3.1c)

πij > 0 for all i = 1, . . . , n and j = 1, . . . , ñ.(3.1d)

The matrix minimizing (3.1a) subject to the constraints (3.1b)–(3.1d) is denoted as πs ∈ Rn×ñ.
Further, we set

(3.2) s̃r;λ := sr;λ +
1

λ
H(πs) =

n∑
i=1

ñ∑
j=1

πsij d
r
ij .

The non-negativity constraint (2.2d) is notably not active in the constraints (3.1b)–(3.1d), as
the function ϕ(x) := x log x is strictly convex in [0, 1] with ϕ′(0) = −∞, and the optimal
solution consequently satisfies πij > 0. The regularizing term 1

λH(·) is strictly convex so that
the solution of the problem (3.1a)–(3.1d) exists and is unique.

REMARK 3.2 (Regularizing term). To circumvent the difficulty of the numerical computa-
tion of the linear optimization problem (2.2a)–(2.2d), the entropy regularization approach was
originally proposed in [9]. We also refer to [12], which comprises the argument of efficient
numerical methods for entropy linear programming problems.

Choice of the regularization parameter λ. In general, the selection of the regularization
parameter λ plays a crucial role to obtain a good approximation of the Wasserstein distance.
From (3.1a) and the arguments below, we infer that for λ → ∞, we obtain the standard
Wasserstein distance in the limit. We refer to [24], where the regularization parameter is studied.
The constructive line of research by [11] affirms that when the regularization parameter λ is
not sufficiently large, the transportation plan and the regularized Wasserstein distance may
be incompatible. However, from the literature, we infer that the choice λ ≥ 20 is a good
compromise between accuracy and computational speed (cf. [13, Figure 1.2, Figures 3.1–3.3],
[33, Figure 2], [24, Section 7])2. To acquire a better approximation accuracy, we can increase
the regularization parameter λ > 20 with the cost of more arithmetic operations.

2cf. https://marcocuturi.net/SI.html
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In some applications it is crucial to estimate the Wasserstein distance with given accuracy.
This can be accomplished by choosing the regularization parameter λ large enough. The
following Lemma 3.3 describes how to choose λ to obtain a prescribed accuracy.

LEMMA 3.3 (Quality of the Sinkhorn Approximation). For ε > 0 it holds that

(3.3) sr;λ(P, P̃ ) ≤ wr(P, P̃ )r ≤ s̃r;λ(P, P̃ ) ≤ sr;λ(P, P̃ ) + ε,

provided that

λ ≥ H(P ) +H(P̃ )

ε
.

Here, H(P ) = −
∑n
i=1 pi log pi and H(P̃ ) = −

∑ñ
j=1 p̃j log p̃j are the entropies of the

measure P and P̃ , respectively. Further, they are bounded by H(P ) +H(P̃ ) ≤ log n+ log ñ.

Proof. The first inequality in (3.3) follows by substituting the matrix πw into (3.1a), as
H(πw) > 0. Further, with the matrix πs, it holds that wr;λ(P, P̃ ) ≤ s̃r;λ(P, P̃ ), which is the
second inequality using (3.2).

Now let π be any matrix with marginals p (cf. (2.2b)) and p̃ (cf. (2.2c)). It follows from
the log-sum inequality (or Gibbs’ inequality)∑

i,j

πij log
πij
pi p̃j

≥ 0

that ∑
i,j

πij log πij ≥
∑
i,j

πij log pi +
∑
i,j

πij log p̃j =
∑
i

pi log pi +
∑
j

p̃j log p̃j

=
∑
i,j

pip̃j log pi +
∑
i,j

pip̃j log p̃j =
∑
i,j

pip̃j log(pip̃j)

=
∑
i

pi log pi +
∑
j

p̃j log p̃j ,

that is, H(π) ≤ H(P ) + H(P̃ ), and thus 1
λH(π) ≤ H(P )+H(P̃ )

λ ≤ ε for the parameter λ
large enough as in the assumption.

The remaining inequality follows from

s̃r;λ(P, P̃ ) = sr;λ(P, P̃ ) +
1

λ
H(πs) ≤ sr;λ(P, P̃ ) + ε.

The inequality H(P ) ≤ log n follows by applying Gibb’s inequality to the measures with
weights p (resp. p̃) and the constant weights (1/n, . . . , 1/n) (resp. (1/ñ, . . . , 1/ñ)).

REMARK 3.4. Note, that the choice λ ≥ logn+log ñ
ε is independent of the probability

measure but only depends on their granularity or dimension n (resp. ñ). We may also refer
to [21, Proposition 1] and the references therein for further, related, inequalities for continuous
measures.

3.1.1. Dual representation of the entropy-regularized Wasserstein distance. We
restate the optimization problem of the ERW distance in the following dual formulation.
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PROPOSITION 3.5 (cf. [26, Remark 4.28]). For λ > 0, the ERW problem (3.1a)–(3.1c)
admits the following dual representation

d(α, α̃) := max
α∈Rn, α̃∈Rñ

1

λ
+

1

λ

n∑
i=1

pi logαi

+
1

λ

ñ∑
j=1

p̃j log α̃j −
1

λ

n∑
i=1

ñ∑
j=1

αi e−λ d
r
ij α̃j ,

(3.4)

which is a strictly concave dual function.
Proof. The Lagrangian of the ERW problem (3.1a) with dual parameters β (for the

constraint (2.2b)) and γ (for (2.2c)) is

L(π;β, γ) =

n∑
i=1

ñ∑
j=1

drij πij +
1

λ

n∑
i=1

ñ∑
j=1

πij log πij

+

n∑
i=1

βi

(
pi −

ñ∑
j=1

πij

)
+

ñ∑
j=1

γj

(
p̃j −

n∑
i=1

πij

)
.

The optimal measure π∗ satisfying the first-order constraint

0 =
∂L

∂πij
= drij +

1

λ
(log πij + 1)− βi − γj

is

(3.5) π∗ij = exp
(
− λ(drij − βi − γj)− 1

)
.

The measure π∗ minimizes the Lagrangian L for β and γ fixed and reveals the dual function

d(β, γ) = inf
π
L(π;β, γ) = L(π∗;β, γ)

=

n∑
i=1

ñ∑
j=1

drij π
∗
ij +

1

λ

n∑
i=1

ñ∑
j=1

π∗ij
(
− λ(drij − βi − γj)− 1

)
+

n∑
i=1

βi

(
pi −

ñ∑
j=1

π∗ij

)
+

ñ∑
j=1

γj

(
p̃j −

n∑
i=1

π∗ij

)

= − 1

λ

n∑
i=1

ñ∑
j=1

π∗ij +
n∑
i=1

βi pi +
ñ∑
j=1

γj p̃j

=

n∑
i=1

pi βi +

ñ∑
j=1

p̃j γj −
1

λ

n∑
i=1

ñ∑
j=1

e−λ(drij−βi−γj)−1

explicitly. Now substitute αi = eλβi−1/2 and α̃j = eλ γj−1/2. Then the dual function is

(3.6) d(α, α̃) =
1

λ

n∑
i=1

pi

(1

2
+logαi

)
+

1

λ

ñ∑
j=1

p̃j

(1

2
+log α̃j

)
− 1

λ

n∑
i=1

ñ∑
j=1

αi e−λ d
r
ij α̃j .

The assertion of the proposition thus follows as
∑n
i=1 pi = 1 and

∑ñ
j=1 p̃j = 1 and as the

duality gap vanishes for the strictly convex objective function (3.1a).
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Scaling variables and kernel matrix. First of all, we notice that the optimal measure (3.5)
can be obtained in terms of the scaling variables αi and α̃j by

(3.7) π∗ = diag(α) e−λ d
r

diag(α̃).

The aforementioned dual problem (3.4) can be solved by a matrix-scaling algorithm, which
is popularly known as Sinkhorn’s algorithm. Further, the derivative of (3.4) with respect to
αi (resp. α̃i) gives first-order conditions, which are the basis for Sinkhorn’s iteration and are
expressed as

(3.8) αi :=
pi∑ñ

j=1 e−λ d
r
ij α̃j

and α̃j :=
pj∑n

i=1 e−λ d
r
ij αi

.

The main computational bottleneck of Sinkhorn’s iterations is the matrix-vector multiplica-
tion in (3.8), which requires O(n · ñ) arithmetic operations. In our study, we reduce the
computational burden by taking advantage of the special structure of the matrix

kij := e−λ d
r
ij ∈ Rn×ñ,

which is called Gibbs kernel or kernel matrix. The following discussion explicitly details
Sinkhorn’s algorithm and its properties.

3.2. Sinkhorn’s algorithm. In this section, we illustrate the iteration process and stop-
ping criteria of Sinkhorn’s Algorithm 1 to compute the ERW distance.

The iteration counts of Algorithm 1 are denoted by ∆ ∈ N and the final iteration count
by ∆∗. Algorithm 1 alternately determines α∆ and α̃∆ with{

α̃∆ = α̃∆−1 if ∆ is odd,

α∆ = α∆−1 if ∆ is even.

Sinkhorn’s theorem (cf. [36, 37] and Section 3.2.1 below) for the matrix scaling ensures that
the iterations (3.8) converge and that the vectors α∆ and α̃∆ are unique up to a scalar. From
Algorithm 1, the resultant matrix π∆∗

= diag(α∆∗
) k diag(α̃∆∗

) can be computed, which is
an aproximate solution of the ERW problem (3.1a), (3.1b)–(3.1c).

Stopping criteria. The iteration process gives the matrices
(
π∆
)

∆∈N, which are defined
as

π∆ := diag(α∆) k diag(α̃∆), ∆ ∈ N.

The norm of the residuals E∆, which measure the error of the iterates, is

‖E∆‖ := ‖π∆1ñ − p‖+ ‖(π∆)>1n − p̃‖,

where 1n := (1, . . . , 1)> ∈ Rn and 1ñ := (1, . . . , 1)> ∈ Rñ. If ∆ is odd, then it holds that
‖(π∆)>1n − p̃‖ = 0, and if ∆ is even, then ‖π∆1ñ − p‖ = 0. The stopping criterion for
Algorithm 1, i.e., ‖E∆∗‖ ≤ ε, implies that

‖π∆∗
1ñ − p‖+ ‖(π∆∗

)>1n − p̃‖ ≤ ε.

Algorithm 1 describes the individual steps.
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Algorithm 1: Sinkhorn’s algorithm.

Input: Distance dij given in (4.1), probability vectors p ∈ Rn≥0, p̃ ∈ Rñ≥0,
regularization parameter λ > 0, r ≥ 1, threshold ε, and a starting value
α̃ = (α̃1, . . . , α̃ñ).

Set

kij = exp
(
− λ drij

)
, α(0) := 1n, and α̃(0) := 1ñ.

while ‖E∆‖ > ε do
if ∆ is odd then

(3.9)
α∆
i ←

pi∑ñ
j=1 kij α̃

∆−1
j

, i = 1, . . . , n;

α̃∆
j ← α̃∆−1

j , j = 1, . . . , ñ;

else

(3.10)
α̃∆
j ←

p̃j∑n
i=1 kij α

∆−1
i

, j = 1, . . . , ñ;

α∆
i ← α∆−1

i , i = 1, . . . , n;

increment ∆← ∆ + 1.
Result:

sr;λ(P, P̃ ) =
1

λ
+

1

λ

n∑
i=1

pi logα∆∗

i +
1

λ

ñ∑
j=1

p̃j log α̃∆∗

j

− 1

λ

n∑
i=1

ñ∑
j=1

α∆∗

i e−λ d
r
ij α̃∆∗

j .

The matrix π∆∗
= diag(α∆∗

) k diag(α̃∆∗
) can also be computed, which is

an aproximate solution of the ERW problem (3.1a)–(3.1c).

Stabilized Sinkhorn’s algorithm. The standard Sinkhorn’s algorithm (Algorithm 1) sig-
nificantly reduces the complexity of the traditional methods. However, the need of larger λ
values in few applications raises the problem of numerical instability. More precisely, for
larger λ, the elementwise exponential matrix k = e−λ d

r

suffers numerical underflow. This
has made the OT community to opt for a slower algorithm, which is known as the log-domain
stabilized Sinkhorn’s algorithm.

The log-domain stabilized Sinkhorn’s Algorithm 2 scales the dual variables (β, γ) instead
of the exponentiated scaling variables (α, α̃), and it utilizes the famous trick among the
machine learning community called log-sum-exp trick. This log-domain computation and the
log-sum-exp trick tackle numerical underflow. Algorithm 2 encapsulates the individual steps.

3.2.1. Convergence properties of Sinkhorn’s iteration. The aim of this section is
to demonstrate the convergence properties of Sinkhorn’s iteration. The following proofs,
which summarize the convergence of Sinkhorn’s iteration, are applied in many contexts
(cf. [2, 10, 18]). We consider the following auxiliary lemmas to substantiate the objective of
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Algorithm 2: Sinkhorn’s algorithm (log-domain stabilized).

Input: Distance dij given in (4.1), probability vectors p ∈ Rn≥0, p̃ ∈ Rñ≥0,
regularization parameter λ > 0, r ≥ 1, threshold ε, and a starting value
γ = (γ1, . . . , γñ).

Set

kij = exp
(
− λ drij

)
, β(0) := 0n, and γ(0) := 0ñ.

while ‖E∆‖ > ε do
if ∆ is odd then

β∆
i ←

1

λ

(
log pi − log

( ñ∑
j=1

kij eλ γ
∆−1
j −1/2

))
, i = 1, . . . , n;

γ∆
j ← γ∆−1

j , j = 1, . . . , ñ;

else

γ∆
j ←

1

λ

(
log p̃j − log

( n∑
i=1

kij eλβ
∆−1
i −1/2

))
, j = 1, . . . , ñ;

β∆
i ← β∆−1

i , i = 1, . . . , n;

increment ∆← ∆ + 1.
Result:

sr;λ(P, P̃ ) =

n∑
i=1

pi βi +

ñ∑
j=1

p̃j γj −
1

λ

n∑
i=1

ñ∑
j=1

e−λ(drij−βi−γj)−1

The matrix π∆∗
= diag(eλβ

∆∗
−1/2) k diag(eλ γ

∆∗
−1/2) can be computed,

which is an aproximate solution of the ERW problem (3.1a)–(3.1c).

Algorithm 1 (i.e., the approximation of the Wasserstein distance) from a theoretical standpoint.
The dual formulation of the ERW problem relates the function d(α, α̃) (cf. (3.6)) and

(3.11) f(α, α̃) =

n∑
i=1

ñ∑
j=1

αi k̃ij α̃j −
n∑
i=1

pi logαi −
ñ∑
j=1

p̃j log α̃j ,

where k̃ := k
‖k‖1 , k = exp

(
− λ dr

)
, and p ∈ Rn≥0, p̃ ∈ Rñ≥0 are the probability vectors,

which satisfy

p>1n = p̃>1ñ = 1.

REMARK 3.6 (Normalization of the kernel matrix k). In the literature, the approach
of normalization of the kernel matrix k is widely used (cf. [2, 16, 18]) for theoretical and
numerical analysis. Without loss of generality, we utilize this approach only to substantiate
the convergence properties. For numerical experiments, we consider the standard matrix k.
The following Lemma 3.7 describes the evolution of the objective function (3.11) to the target
marginals (p, p̃) of Sinkhorn’s iteration.
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LEMMA 3.7 (cf. [16, Lemma 3.1]). The iterates α∆ and α̃∆ of Algorithm 1 satisfy

f(α∆, α̃∆)− f(α∆+1, α̃∆+1) = DKL
(
p | π∆1ñ

)
+DKL

(
p̃ | (π∆)>1n

)
.

Proof. First, we assume that ∆ ≥ 1 is even. By equation (3.11), it follows that

f(α∆, α̃∆)− f(α∆+1, α̃∆+1) =
∑
ij

(α∆
i k̃ij α̃

∆
j − α∆+1

i k̃ij α̃
∆+1
j )(3.12)

+
∑
i

pi
(

log(α∆+1
i )− log(α∆

i )
)

+
∑
j

p̃j
(

log(α̃∆+1
j )− log(α̃∆

j )
)
.

The first component on the right-hand side of (3.12) turns into∑
ij

(α∆
i k̃ij α̃

∆
j − α∆+1

i k̃ij α̃
∆+1
j ) = 0

since

(α∆)> k̃ α̃∆ = 1>n π
∆ 1ñ = p̃> 1ñ = 1

and similarly

(α∆+1)> k̃ α̃∆+1 = 1>n π
∆+1 1ñ = 1>n p = 1;

see (3.9)–(3.10). For this reason, the right-hand side of (3.12) becomes

(3.13)
∑
i

pi
(

log(α∆+1
i )− log(α∆

i )
)

+
∑
j

pj
(

log(α̃∆+1
j )− log(α̃∆

j )
)
.

By (3.9) and (3.10), the above expression (3.13) becomes

DKL(p|π∆1ñ) +DKL(p̃|(π∆)>1n),

and DKL(p̃|(π∆)>1n) = 0 since p̃ = (π∆)>1n. This completes the proof of the lemma for
the case of even ∆. A similar argument applies to the case of odd ∆.

In the following Lemma 3.8, we consider the gap between f(1n,1ñ) and f(α∆∗
, α̃∆∗

).
We know that

f(1n,1ñ) := f(α(0), α̃(0))

since α(0) = 1n and α̃(0) = 1ñ, which is a starting value for Algorithm 1.
LEMMA 3.8 (cf. [16, Lemma 4.1, Lemma 4.2]). It holds that

f(1n,1ñ)− f(α∆∗
, α̃∆∗

) ≤ log
(
κ


)
,

where κ is the sum of the entries of the matrix π∆∗
and  := minij k̃ij .

Proof. Let (α∆∗
, α̃∆∗

) be the minimizer of the objective function (3.11), and we set

κ := (α∆∗
)> k̃ α̃∆∗

.
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Equation (3.11) rewrites as

f(α∆∗
, α̃∆∗

) = κ−
n∑
i=1

pi logα∆∗

i −
ñ∑
j=1

p̃j log α̃∆∗

j ,

and

f(1n,1ñ) =

n∑
i=1

ñ∑
j=1

k̃ij = κ.

Now we have

(3.14) f(1n,1ñ)− f(α∆∗
, α̃∆∗

) =

n∑
i=1

pi logα∆∗

i +

ñ∑
j=1

p̃j log α̃∆∗

j .

Without loss of generality we assume that each entry of k̃ is at least  > 0. Then one has

(3.15) 
( n∑
i=1

α∆∗

i

)( ñ∑
j=1

α̃∆∗

j

)
≤ (α∆∗

)> k̃ α̃∆∗
= κ.

Taking the log of both sides of equation (3.15) produces

(3.16) log
( n∑
i=1

α∆∗

i

)
+ log

( ñ∑
j=1

α̃∆∗

j

)
≤ log

(
κ


)
.

To complete the proof, we consider equations (3.14), (3.16), and the log-sum inequality. Now
we have

f(1n,1ñ)− f(α∆∗
, α̃∆∗

) =

n∑
i=1

pi logα∆∗

i +

ñ∑
j=1

p̃j log α̃∆∗

j

≤
n∑
i=1

pi log
( n∑
l=1

α∆∗

l

)
+

ñ∑
j=1

p̃j log
( ñ∑
m=1

α̃∆∗

m

)

= log
( n∑
l=1

α∆∗

l

)
+ log

( ñ∑
m=1

α̃∆∗

m

)
≤ log

(
κ


)
.

This completes the proof of the lemma.
REMARK 3.9 (Complexity of Sinkhorn’s iteration). The complexity of Sinkhorn’s

iteration is a well-studied aspect of regularized Wasserstein problems (cf. [2, 10, 18]). Approx-
imately, Sinkhorn’s iteration requires O(log n+ ‖dr‖∞ λ) arithmetic operations to converge
(cf. [10]). This means that when λ→∞ for fixed ‖dr‖∞ and n, the number of iteration will
be increased.

Complexity of the ERW problem. For n ≈ ñ, using Algorithm 1, the ERW problem (3.1a),
(3.1b)–(3.1c) can be solved by involving O(n2 log n+ ‖dr‖∞ λ) arithmetic operations (note
that n2 operations are needed to perform the matrix-vector multiplication).
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REMARK 3.10 (Entropy bias and Sinkhorn divergence). Regardless of the computational
advancement of the ERW problem, it is biased. That is,

sr;λ(P, P ) 6= 0.

The quantity sr;λ is not a distance, more specifically, it violates the axiom of definiteness of the
distance function. To overcome this difficulty, in [29], the Sinkhorn divergence is introduced
as

sdr;λ(P, P̃ ) := sr;λ(P, P̃ )− 1

2
sr;λ(P, P )− 1

2
sr;λ(P̃ , P̃ ),

which is a natural normalization (or debias) of the quantity. The key properties of the Sinkhorn
divergence include:

(i) non-negativity,
(ii) limλ→∞ sdr;λ(P, P̃ ) = wr(P, P̃ ), and

(iii) sdr;λ(P, P ) = 0 for all λ > 0.

4. Nonequispaced Fast Fourier Transform (NFFT). Generally, for a faster computation
of the matrix-vector multiplication with the distance matrix dr, equispaced convolution is used.
The most common algorithm to compute equispaced convolution is the standard FFT algorithm.
Our research, in contrast, promotes nonequispaced convolution, which is approximated by the
nonequispaced fast Fourier transform (NFFT) to accelerate the computation of Sinkhorn’s
Algorithm 1. More precisely, the matrix-vector multiplications of Sinkhorn’s iteration (3.8),
which is the main computational bottleneck, are tackled by fast summation based on NFFT in
O
(
n log n

)
arithmetic operations. Moreover, this fast summation technique has better stability

and is accomplished with machine precision.

4.1. NFFT-based fast summation. This section succinctly describes fast summation
based on NFFT.

The fast summation method based on NFFT takes advantage of the special structure of
the Euclidean distance matrix. The distance matrix d ∈ Rn×ñ in (2.2a) has entries

(4.1) d(xi, x̃j) := ‖xi − x̃j‖,

which are the distances of all combinations of states, and we recall that ‖ · ‖ denotes the
Euclidean norm or 2-norm.

Approximation of the matrix-vector multiplication of Sinkhorn’s iteration. The fast sum-
mation technique based on NFFT takes advantage of the particular form of the sums

(4.2) ti :≈
(
k α̃
)
i

=

ñ∑
j=1

α̃j e−λ‖xi−x̃j‖r , i = 1, . . . , n,

as well as of the sums of the ‘transposed’ form,

(4.3) t̃j :≈
(
k α
)
j

=

n∑
i=1

αi e−λ‖xi−x̃j‖r , j = 1, . . . , ñ,

since these summations are the bottleneck of Sinkhorn’s iteration.
An overview of NFFT. For equispaced points xi and x̃j , the summation of (4.2) and (4.3)

corresponds to the multiplication of a Toeplitz matrix with a vector, respectively. In this case,
we immediately obtain a fast algorithm based on embedding the matrix into a circulant matrix
and then diagonalize the matrix by the Fourier matrix (see [28, Theorem 3.31]) such that we
end up with O(n log n) operations using the FFT; see [28, pp. 141–142]. A fast algorithm
with arbitrary points follows the similar ideas but is based on the NFFT; see [28, Chapter 7]
and the related software in [17] for details.
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4.1.1. The ansatz of NFFT-based fast summation. The core idea of fast summation
based on NFFT is to accurately approximate the radial kernel function

K(y) := e−λ‖y‖
r

.

In general, this approximation of the kernel function K(y) is appropriate when the entries of
the matrix k are of the form

kij = K(xi − x̃j).

In terms of fast summation, the goal of the NFFT is to accurately approximate K(y) by
an h-periodic trigonometric polynomial KRK(y),

K(y) ≈ KRK(y) :=
∑

k∈IN

bk e2πiky/h,

IN :=
{
− N

2
,−N

2
+ 1, . . . ,−1, 0, . . . ,

N

2
− 1
}d
,

(4.4)

with appropriate Fourier coefficients bk ∈ C and bandwidth N ∈ 2N. For example, when
considering the Gaussian kernel function (r = 2), we have

(4.5)
(
k α
)
j

=

n∑
i=1

αi e−λ‖xi−x̃j‖2 , j = 1, . . . , ñ.

Now we rewrite equation (4.5) by involving the kernel function K(y) = e−λ‖y‖
2

as

(4.6)
(
k α
)
j

:=

n∑
i=1

αiK(xi − x̃j), j = 1, . . . , ñ.

For the efficient computation of (4.6), the NFFT-based fast summation technique approxi-
mates K by the trigonometric polynomial KRK .

From equation (4.4), we notice that KRK(y) are h-periodic functions although the kernel
K(y) is not h-periodic. Therefore, we regularize K(y) to obtain an h-periodic smooth kernel
function K̃(y), which is (p−1) times continuously differentiable in the periodic setting, where
p ∈ N is the degree of smoothness, and the Fourier coefficients decay quickly.

Regularization of K(y). Assume that we have ‖xj‖ ≤ L
2 , i.e., ‖xi − x̃j‖ ≤ L, for some

L > 0. We define the multivariate, h-periodic regularized kernel function K̃ : [−h2 ,
h
2 ]d → R

with h ≥ 2L by

K̃(y) :=


K(‖y‖) if ‖y‖ ≤ L,
KB(‖y‖) if L < ‖y‖ ≤ h

2 ,

KB(h2 ) if y ∈ [−h2 ,
h
2 ]d and ‖y‖ > h

2 ,

where KB is an appropriately chosen univariate polynomial, which is constructed using two-
point Taylor interpolation; see Figure 4.1. For a detailed interpretation of this approach, we
refer to [28, Chapter 7.5].

Approximation of the smooth periodic function K̃. In the univariate case, we are now able
to approximate the smooth periodic function K̃ by a Fourier series to obtain

t̃j :=

n∑
i=1

αi K̃(xi − x̃j) ≈
n∑
i=1

αiKRK(xi − x̃j), j = 1, . . . , ñ.
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−h2 −L L h
2

h−L 3h
2

smooth

K(·)

KB(·)

K(‖y‖)

KB(‖y‖)

−L L−h
2

h
2

3h
2h−L

−L

L

−h2

h
2

FIG. 4.1. The regularized periodic function in dimension one (left) and dimensions two (right); see [23,
Figure 3.14].

By using (4.4) and interchanging the order of summation as well as utilizing the property

e2πi(xi−x̃j)/h = e2πixi/h e−2πix̃j/h,

we obtain

(4.7) ti ≈
∑

k∈IN

bk

 ñ∑
j=1

α̃je
−2πikx̃j/h

 e2πikxi/h, i = 1, . . . , n.

We compute the inner sum for each k ∈ IN using the NFFT in O(N logN + ñ) arithmetic
operations and the outer sum with O(N logN + n).

This simple idea works very well if the function K is smooth and can be approximated by
a short Fourier series K̃, i.e., by a polynomial of low degree N . This is especially true for the
case r = 2, where the method is also known as fast Gaussian transform.

REMARK 4.1. We note as well that large values of λ correspond to a localization of
the support points of the measure. In this setting, the set of support points can be ordered in
reduced operations (as mentioned below), so that matrix-vector operations can be carried out
in the same time as our implementation. For this reason, our algorithm is primarily adapted
for small values of λ. Nevertheless, it renders stable computation for sufficiently large values
of λ.

REMARK 4.2 (Arithmetic complexity). For λ > 0, the kernel approximation (4.4) is
independent of the n (resp. ñ) data points. Therefore we can appropriately fix the polynomial
degreeN . Thus, the approximation ends up withO(n+ñ) arithmetic operations. Furthermore,
for r = 1, we need an additional near-field regularization at the point y = 0. In this case,
we end up with an arithmetic complexity of O(n log n+ ñ log ñ); see [28, Chapter 7.5] for a
detailed interpretation.

4.2. NFFT boost for Sinkhorn’s algorithm. This section presents the NFFT-acceler-
ated standard and the log-domain Sinkhorn’s algorithm. The NFFT-accelerated Sinkhorn’s
algorithm propose a novel method using nonequispaced convolution to approximate the
Wasserstein distance. The algorithms below describe the operations of our proposed method
schematically.

The NFFT-accelerated ERW distance (lower bound) including the entropy is denoted
by sr;λ;NFFT(P, P̃ ), which can be computed using Algorithms 3 and 4. This quantity is an
approximation of sr;λ(P, P̃ ), i.e., sr;λ(P, P̃ ) :≈ sr;λ;NFFT(P, P̃ ). Furthermore, the ERW
distance (upper bound) is computed by

s̃r;λ;NFFT(P, P̃ ) = sr;λ;NFFT(P, P̃ ) +
H(P ) +H(P̃ )

λ
·
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FIG. 4.2. Wasserstein distance for r = 1 (green) and r = 2 (violet).

The NFFT-accelerated Sinkhorn divergence is computed by

sdr;λ;NFFT(P, P̃ ) := sr;λ(P, P̃ )− 1

2
sr;λ;NFFT(P, P )− 1

2
sr;λ;NFFT(P̃ , P̃ ).

Arithmetic complexity. For simplicity, we assume that n = ñ. As mentioned earlier,
the evaluation of the sums in Algorithms 3 and 4 take only O(n) arithmetic operations for
r = 2 and O(n log n) for r = 1. From Remark 3.9, we know that Sinkhorn’s iteration
process requires O(log n+ ‖dr‖∞ λ). Therefore, for r = 2, our proposed algorithms have a
complexity of only

O(n log n+ ‖dr‖∞ λ),

and for r = 1

O(n (log n)2 + ‖dr‖∞ λ).

REMARK 4.3 (Optimal transition matrix π∆∗
). The NFFT-accelerated Sinkhorn’s Algo-

rithms 3 and 4 bypass the allocations of the matrices d, k, and π∆∗
and return the objective of

the Sinkhorn’s algorithm, i.e., the ERW distance sr;λ(P, P̃ ) of the measures P and P̃ . Our
proposed algorithms provide the optimal exponentiated dual variables (α, α̃) (Algorithm 3)
and the optimal dual variables (β∆∗

, γ∆∗
) (Algorithm 4). Hence, the optimal transition ma-

trix π∆∗
can still be computed with (3.7). However, this—as mentioned—requires O(nñ)

operations, which would increase the performance time and thus is avoided.
The NFFT fast summation technique adapts well to the Sinkhorn’s algorithms. As

mentioned earlier, this technique guarantees fast and memory-efficient computation with
machine accuracy.

5. Numerical experiments. This section demonstrates the performance and accuracy
of the NFFT-accelerated Sinkhorn’s Algorithm 3 using synthetic as well as real data sets.
All runtime measurements were performed on a standard desktop computer with an Intel(R)
Core(TM) i7-7700 CPU and 15.0 GB of RAM. The source code of our implementation of
the standard Sinkhorn’s Algorithm 1, the log-domain stabilized Sinkhorn’s Algorithm 2, the
NFFT-accelerated Sinkhorn’s Algorithm 3, the NFFT-accelerated log-domain Sinkhorn’s
Algorithm 4, and the linear programming solver to compute wr(P, P̃ ), which can be used to

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

304 R. LAKSHMANAN, A. PICHLER, AND D. POTTS

Algorithm 3: NFFT-accelerated Sinkhorn’s algorithm.

Input: Support nodes xi and x̃j , probability vectors p ∈ Rn≥0, p̃ ∈ Rñ≥0,
regularization parameter λ > 0, threshold ε and starting value
α̃ = (α̃1, . . . , α̃ñ).

while ‖E∆‖ > ε do
Set

α(0) := 1n and α̃(0) := 1ñ.

if ∆ is odd then
compute

t∆−1
i ←

ñ∑
j=1

α̃∆−1
j e−λ‖xi−x̃j‖r , i = 1, . . . , n,

by employing the fast summation (4.7), and set

α∆
i ←

pi

t∆−1
i

, i = 1, . . . , n;

α̃∆
j ←α̃∆−1

j , j = 1, . . . , ñ;

else
compute

t̃∆−1
j ←

n∑
i=1

e−λ‖xi−x̃j‖r α∆−1
i , j = 1, . . . , ñ,

by employing the fast summation (4.7), and set

α̃∆
j ←

p̃j

t̃∆−1
j

, j = 1, . . . , ñ;

α∆
i ←α∆−1

i , i = 1, . . . , n;
increment ∆← ∆ + 1.

Result: The ERW distance (cf. (3.4)) approximating the Wasserstein distance
Wr(P, P̃ ) is

sr;λ;NFFT(P, P̃ ) :− 1

λ
+

1

λ

n∑
i=1

pi logα∆∗

i +
1

λ

ñ∑
j=1

p̃j log α̃∆∗

j −
1

λ

ñ∑
j=1

t̃∆
∗

j α̃∆∗

j .

reproduce the following results, are available online3. The implementation of our proposed
algorithms are based on the freely available repository ‘NFFT3.jl’4.

5.1. Synthetic data. We test for one-dimensional data (Section 5.1.1 below) and for two-
dimensional data (Section 5.1.2) to demonstrate the performance of our proposed algorithm,
which delivers results that are out of reach for traditional implementations.

3cf. https://github.com/rajmadan96/NFFT-Sinkhorn-Wasserstein_distance/
4cf. https://github.com/NFFT/NFFT3.jl
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Algorithm 4: NFFT-accelerated Sinkhorn’s algorithm (log-domain).

Input: Support nodes xi and x̃j , probability vectors p ∈ Rn≥0, p̃ ∈ Rñ≥0,
regularization parameter λ > 0, threshold ε and starting value
γ = (γ1, . . . , γñ).

while ‖E∆‖ > ε do
Set

β(0) := 0n and γ(0) := 0ñ.

if ∆ is odd then
compute

t∆−1
i ←

ñ∑
j=1

eλ γ
∆−1
j −1/2 e−λ‖xi−x̃j‖r , i = 1, . . . , n,

by employing the fast summation (4.7), and set

β∆
i ←

1

λ

(
log pi − log t∆−1

i

)
, i = 1, . . . , n;

γ∆
j ←γ∆−1

j , j = 1, . . . , ñ;

else
compute

t̃∆−1
j ←

n∑
i=1

e−λ‖xi−x̃j‖r eλβ
∆−1
i −1/2, j = 1, . . . , ñ,

by employing the fast summation (4.7), and set

γ∆
j ←

1

λ

(
log p̃j − log t̃∆−1

j

)
, j = 1, . . . , ñ;

β∆
i ←β∆−1

i , i = 1, . . . , n;

increment ∆← ∆ + 1.
Result: The ERW distance (cf. (3.4)) approximating the Wasserstein distance

Wr(P, P̃ ) is

sr;λ(P, P̃ ) ≈
n∑
i=1

pi βi +

ñ∑
j=1

p̃j γj −
1

λ

ñ∑
j=1

t̃∆
∗

j eλ γ
∆∗
j −1/2.

5.1.1. NFFT-accelerated Sinkhorn’s algorithm in one dimension. Consider a mea-
sure P on R with quantiles si, i.e.,

P
(
(−∞, si]

)
=

i

ñ+ 1
, i = 1, . . . , ñ,

and corresponding weights

pi := P

((
si−1 + si

2
,
si + si+1

2

])
, i = 1, . . . , ñ.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

306 R. LAKSHMANAN, A. PICHLER, AND D. POTTS

The measure

P̃ñ :=

ñ∑
i=1

pi δsi

is the best discrete approximation of P in the Wasserstein distance (cf. [14]).
To demonstrate the performance of Algorithm 3, we consider independent and identically

distributed observations Xi ∈ R, i = 1, . . . , n, from the measure P , and the corresponding
empirical measure

P̂n :=
1

n

n∑
i=1

δXi
.

Table 5.1 provides a comparison of the computation time of Sinkhorn’s Algorithm 1 and
the NFFT-accelerated Sinkhorn’s Algorithm 3.

TABLE 5.1
Dimension 1: comparison of computation times for r = 2 and λ = 20.

n = ñ: 1000 10 000 10 000 100 000 1 000 000 10 000 000

Sinkhorn’s
Algorithm 1 0.49 s 23.72 s 41.16 s out of memory or > 1 hour

NFFT-accelerated
Sinkhorn’s Alg. 3 0.28 s 0.39 s 2.08 s 2.31 s 9.38 s 62.4 s

The table demonstrates that the NFFT-accelerated Sinkhorn’s Algorithm 3 easily delivers
results for problem sizes that are out of reach for the traditional Sinkhorn’s Algorithm 1.

5.1.2. NFFT-accelerated Sinkhorn’s in two dimension. We next demonstrate the per-
formance of the NFFT-accelerated Sinkhorn’s Algorithm 3 by approximating the Wasserstein
distance for the empirical measures

P =
1

n

n∑
i=1

δ(U1
i ,U

2
i ) and P̃ =

1

ñ

ñ∑
j=1

δ(Ũ1
j ,Ũ

2
j )

on R× R, where U1
i , U2

i , i = 1, . . . , n, and Ũ1
j , Ũ2

j , j = 1, . . . , ñ, are independent samples
from the uniform distribution.

Table 5.2 displays the execution times for the uniform distribution on [0, 1]× [0, 1]. While
the computation time and the memory allocations are already critical for n, ñ ≈ 100 000, the
NFFT-accelerated Sinkhorn’s algorithm still performs in reasonable time.

TABLE 5.2
Two dimensions: comparison of computation times for r = 2 and λ = 20.

n = ñ: 1000 10 000 100 000 1 000 000 10 000 000

Sinkhorn’s Algorithm 1 0.39 s 22.9 s out of memory or > 1 hour
NFFT-acc. Sinkhorn’s Alg. 3 0.31 s 0.42 s 2.0 s 7.2 s 59.4 s
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5.2. Benchmark datasets. This section validates the regularization parameter λ and
demonstrates the performance and the accuracy of the NFFT-accelerated Sinkhorn’s Algo-
rithm 3 using real datasets. We use a dataset called DOTmark (see Figure 5.1); DOT stands
for discrete optimal transport. This benchmark dataset is specially designed to effectively test
and compare optimal transport methods (cf. [35]). It involves gray-level representations of
images in a resolution of 32 × 32 to 512 × 512, and it consists of 10 subsets of the dataset,
ranging from smooth to rough structures.

FIG. 5.1. Examples of the DOTmark database (from low- to high-resolution images).

 

                                             

(

 
 

0.337253 0.420302 0.281111 0.891161 0.774212
0.961207 0.113829 0.481493 0.667772 0.959842
0.728275 0.98161 0.506611 0.771531 0.19684
0.453014 0.491663 0.78637 0.33134 0.252963
0.225774 0.198765 0.194802 0.342536 0.690244)

 
 

 
 
White- 1

Black- 0

FIG. 5.2. A gray-scale image (5× 5) is represented as a matrix.

Transformation of images to probability vectors. A gray-scale digital image can be
represented as a matrix, where each entry represents a pixel in the image and the value of the
pixel is the image’s gray-scale level in the range [0, 1] (see Figure 5.2). In order to convert the
gray-scale image matrices into probability vectors, we vectorize and normalize the matrices.
Furthermore, the intensities of background pixels are the `1-distance between the pixels i
and j of the respective grids (32× 32, . . . , 512× 512).

5.2.1. Validation of the regularization parameter λ. In this section we capture the
behaviors of the lower and upper bounds (cf. Lemma 3.3) and the Sinkhorn divergence, i.e.,
sr;λ(P, P̃ ), s̃r;λ(P, P̃ ), sdr;λ(P, P̃ ), and sr;λ;NFFT(P, P̃ ), s̃r;λ;NFFT(P, P̃ ), sdr;λ;NFFT(P, P̃ )
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FIG. 5.3. Histogram of the measures P and P̃ of the dataset GRFrough; n (resp. ñ) = 1024.

for different values of the entropy-regularization parameter λ ∈ {10, 20, 50, . . . , 200}.
We use the ‘GRFrough’ dataset, which is a subset of images from the DOTmark dataset.

Notably, it has a rough structure relative to the other subset of images (see Figure 5.3). In
Figure 5.4 below we investigate these quantities with respect to increasing λ.

We infer that sr;λ(P, P̃ ), sr;λ;NFFT(P, P̃ ) converge slowly to wr(P, P̃ ) for increasing λ.
However, s̃r;λ(P, P̃ ) and s̃r;λ;NFFT(P, P̃ ) converge quickly to wr(P, P̃ ), and the Sinkhorn
divergence

(
sdr;λ(P, P̃ ), sdr;λ;NFFT(P, P̃ )

)
also converge quicker compared to sr;λ(P, P̃ ),

sr;λ;NFFT(P, P̃ ). The argument behind these behaviors is that, for larger λ, the weight of
the entropy in the objective function (3.1a) decreases, and the matrices πs and πw are close.
Furthermore, the NFFT approximation is stable for different values of the regularization
parameter λ.

5.2.2. Performance analysis. This section extensively substantiates the performance of
the NFFT-accelerated Sinkhorn’s Algorithm 3 in terms of time and memory allocation. For
the experiments we use the DOTmark dataset, ranging from 32 × 32 to 512 × 512 pixels in
size, and we consider transports between two different images of equal size.

Tables 5.3 and 5.4 provide a comparison of the time and memory allocation of Sinkhorn’s
Algorithm 1 and the NFFT-accelerated Sinkhorn’s Algorithm 3. Among all the tests, the
computational time and memory allocation of our proposed algorithm is significantly better.

From the performance analysis, we infer that the NFFT-accelerated Sinkhorn’s Algo-
rithm 3 utilizes less time and memory in spite of the large number of points n (resp. ñ) for
the computations, and our device runs out of memory for Sinkhorn’s Algorithm 1 when the
problems are of sizes larger than 16384 n (resp. ñ).

5.2.3. Accuracy analysis. We validate the computational accuracy of the NFFT-acceler-
ated Sinkhorn’s Algorithm 3. Throughout this analysis, we use s̃r;λ(P, P̃ ) and s̃r;λ;NFFT(P, P̃ )
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(a) Numerical results of Algorithm 1.
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(b) Numerical results of Algorithm 3.

FIG. 5.4. Approximation of the Wasserstein distance using sr;λ(P, P̃ ), s̃r;λ(P, P̃ ), sdr;λ(P, P̃ ), and
sr;λ;NFFT(P, P̃ ), s̃r;λ;NFFT(P, P̃ ), sdr;λ;NFFT(P, P̃ ). The parameters are λ ∈ {10, 20, 50, . . . , 200} and r = 2.

since these are more accurate approximations of the Wasserstein distance (see Section 5.2.1).
Initially, we perform the accuracy analysis using the low-resolution images from the DOTmark
dataset. From Table 5.5, we notice that the NFFT-accelerated Sinkhorn’s Algorithm 3 has
achieved stable approximations without a compromise in accuracy.

Now, we move on to high-resolution images of the ‘GRFrough’ dataset. Table 5.6
comprises the list of values that enables us to understand the approximation accuracy, as we
move from low- to high-resolution images. We compare the results of Sinkhorn’s Algorithm 1
with the NFFT-accelerated Sinkhorn’s Algorithm 3 for the problems sized up to 16 384 n
(resp. ñ), and we infer that there is no compromise in accuracy. We recognize that advancing to
high-resolution images does not affect the stability of approximation. Due to the breakdown of
Sinkhorn’s Algorithm 1, it cannot be used as comparison factor when the size of the problem
is beyond 16 384 n (resp. ñ). However, our proposed algorithm computes the largest problem
available in the DOTmark dataset, which is of size 262 144 n (resp. ñ).
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TABLE 5.3
Comparison of computational time allocation of Sinkhorn’s Algorithm 1 and the NFFT-accelerated Sinkhorn’s

Algorithm 3; λ = 20 and r = 2.

n = ñ 1024 4096 16 384 65 536 262 144

Dataset: DOTmark Alg. 1 Alg. 3 Alg. 1 Alg. 3 Alg. 1 Alg. 3 Alg. 1 Alg. 3 Alg. 1 Alg. 3

CauchyDensity 0.79 s 0.32 s 3.91 s 0.34 s 75.0 s 1.08 s - 1.11 s - 3.70 s
ClassicImages 0.75 s 0.29 s 3.53 s 0.36 s 69.0 s 1.11 s - 1.34 s - 3.69 s
GRFmoderate 1.51 s 0.41 s 4.15 s 0.53 s 93.16 s 1.26 s - 1.11 s - 3.36 s
GRFrough 0.89 s 0.39 s 3.72 s 0.46 s 79.0 s 1.31 s - 1.64 s - 3.81 s
GRFsmooth 1.92 s 0.43 s 5.15 s 0.61 s 102.13 s 1.46 s - 1.81 s - 3.52 s
LogGRF 2.19 s 0.52 s 5.31 s 0.69 s 105.10 s 1.78 s - 2.11 s - 4.71 s
LogitGRF 2.01 s 0.49 s 5.22 s 0.63 s 104.20 s 1.58 s - 2.01 s - 4.62 s
MicroscopyImages 0.53 s 0.21 s 3.34 s 0.23 s 67.9 s 0.72 s - 0.91 s - 1.86 s
Shapes 0.61 s 0.26 s 3.64 s 0.29 s 72.4 s 0.92 s - 1.01 s - 2.56 s
WhiteNoise 0.63 s 0.29 s 3.82 s 0.31 s 73.0 s 1.02 s - 1.07 s - 2.70 s

TABLE 5.4
Comparison of computational memory allocation of Sinkhorn’s Algorithm 1 and the NFFT-accelerated

Sinkhorn’s Algorithm 3; λ = 20 and r = 2.

n = ñ 1024 4096 16 384 65 536 262 144

Dataset Alg. 1 Alg. 3 Alg. 1 Alg. 3 Alg. 1 Alg. 3 Alg. 1 Alg. 3 Alg. 1 Alg. 3

DOTmark (MB) (MB) (MB) (MB) (MB)

CauchyDensity 363.63 37.11 924.74 51.94 9032.14 105.99 - 289.99 - 321.23
ClassicImages 353.14 35.31 913.16 49.14 9000.11 104.19 - 274.29 - 311.29
GRFmoderate 412.12 41.21 941.23 65.54 9420.35 135.17 - 301.15 - 333.52
GRFrough 341.34 33.11 912.13 43.12 8909.13 99.12 - 263.21 - 301.21
GRFsmooth 442.13 51.21 981.41 85.34 9740.31 149.19 - 331.19 - 373.12
LogGRF 463.63 57.11 1124.14 91.94 9831.34 155.99 - 359.19 - 391.95
LogitGRF 451.23 52.41 1023.11 89.14 9800.54 151.49 - 349.29 - 384.13
MicroscopyImages 250.11 19.41 912.17 35.17 8611.39 55.12 - 221.74 - 243.21
Shapes 311.17 29.41 922.12 41.13 8751.27 95.13 - 241.21 - 283.61
WhiteNoise 321.12 31.41 932.13 42.11 8800.12 97.11 - 253.22 - 299.31

TABLE 5.5
Comparison of accuracy to compute or approximate the Wasserstein distance in low-resolution images; λ = 20

and r = 2.

n× ñ = 1024× 1024 Wasserstein Sinkhorn 1 NFFT-accelerated Sinkhorn 3

Dataset: DOTmark wr(P, P̃ ) s̃r;λ(P, P̃ ) s̃r;λ;NFFT(P, P̃ )

CauchyDensity 0.120 498 1 0.120 499 2 0.120 499 2
ClassicImages 0.062 984 7 0.062 984 8 0.062 984 8
GRFmoderate 0.060 086 1 0.060 962 4 0.060 962 4
GRFrough 0.032 428 6 0.032 714 9 0.032 714 9
GRFsmooth 0.142 234 6 0.145 611 8 0.145 611 8
LogGRF 0.126 029 4 0.126 735 6 0.126 735 6
LogitGRF 0.107 569 8 0.107 778 4 0.107 778 4
MicroscopyImages 0.092 038 2 0.092 417 9 0.092 417 9
Shapes 0.143 584 7 0.144 727 9 0.144 727 9
WhiteNoise 0.020 609 3 0.020 690 0 0.020 690 0

5.3. Comparisons and further steps. In this section, we substantiate the historical
evolution of the prominent algorithms that approximate the Wasserstein distance. Furthermore,
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TABLE 5.6
Comparison of computation times and accuracy to compute or approximate the Wasserstein distance from low-

to high-resolution images; λ = 20 and r = 2.

Dataset: GRFrough Wasserstein Sinkhorn 1 NFFT-accelerated Sinkhorn 3

n× ñ wr(P, P̃ ) time s̃r;λ(P, P̃ ) time s̃r;λ;NFFT(P, P̃ ) time

1024× 1024 0.032 428 6 72.34 s 0.032 714 9 0.89 s 0.032 714 9 0.39 s
4096× 4096 out of memory 0.087 294 6 3.72 s 0.087 294 6 0.46 s
16384× 16384 out of memory 0.124 975 1 79.0 s 0.124 975 1 1.31 s
65536× 65536 out of memory out of memory 0.743 219 2 1.64 s
262144× 262144 out of memory out of memory 0.911 743 6 3.81 s

we discuss the advantages and the direction of further development of our proposed algorithms.
Historical remarks. The approach of entropy regularization of the Wasserstein distance

by [9] is a well-known path-breaking approach to approximate the Wasserstein distance, which
is effectively computed by Sinkhorn’s algorithm. Later on, many constructive approaches
and/or analyses were carried out to improve and/or support the entropy-regularization approach
(cf. [2, 10]). In 2019, the approach of log-domain stabilization and the truncated kernel of
Sinkhorn’s algorithm was proposed in [34]. The log-domain stabilization method satisfies
the demand for larger regularization parameters λ, and the truncated kernel reduces the
memory demand and also accelerates the iterations. In the same article, a multi-scale scheme
was proposed, which enables more efficient computations of the kernel-truncated approach.
As discussed in Remark 3.10, these approaches suffer from the entropy bias. In order to
remove/ reduce the bias, Sinkhorn divergence was proposed in [29].

These approaches affirm the progressive improvement of the algorithms that approximate
the Wasserstein distance. However, notably, these approaches still require the standard matrix-
vector operations, which is the bottleneck of the algorithms.

TABLE 5.7
List of algorithms.

Name of algorithm / method Algorithm denotation

Standard Sinkhorn ([9]) Algorithm 1 Std. Sinkhorn
Stabilized log-domain Sinkhorn ([34]) Algorithm 2 Stb. log Sinkhorn
Sinkhorn divergence ([29]) Algorithm 1 sdr;λ(P, P̃ )
Multi-scale Sinkhorn ([34]) Algorithm5 Multi Sinkhorn

NFFT-accelerated Sinkhorn Algorithm 3 NFFT Sinkhorn
NFFT-accelerated log-domain Sinkhorn Algorithm 4 NFFT log Sinkhorn
NFFT-accelerated Sinkhorn divergence Algorithm 3 sdr;λ;NFFT(P, P̃ )

Now, we compare our proposed algorithms with the algorithms that are discussed so far
(see Table 5.7). We would like to emphasize that our proposed algorithms are compatible even
with low-threshold applications; this does not require expensive hardware or having access
to supercomputers. All the algorithms involved in the comparison including our proposed
algorithms follow Central Processing Unit (CPU) implementation paradigms. We follow the
same experimentally setup utilized in the preceding Section 5.2.3, and we use the “GRFrough”
dataset. From Figure 5.5 and Table 5.8, it is evident that our proposed algorithms perform
significantly better in terms of time and memory allocations. Our device runs out of memory

5cf. https://github.com/OTGroupGoe/MultiScaleOT.jl
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FIG. 5.5. Comparison of computational time allocations of the algorithms in Table 5.7; λ = 20 and r = 2.

TABLE 5.8
Comparison of computational memory allocations of the algorithms in Table 5.7; λ = 20 and r = 2.

n = ñ 1024 4096 16 384 65 536 262 144

Algorithm (MB) (MB) (MB) (MB) (MB)

Std. Sinkhorn 27.44 381.10 6644.10 out of memory
Stb. log Sinkhorn 103.10 487.48 6943.12 out of memory
sdr;λ(P, P̃ ) 51.34 391.49 7139.12 out of memory
Multi Sinkhorn 1.9 19.49 32.13 out of memory

NFFT Sinkhorn 1.7 2.06 8.98 37.5 132.0
NFFT log Sinkhorn 1.79 2.10 9.31 43.1 142.7

sdr;λ;NFFT(P, P̃ ) 2.3 3.19 12.78 45.29 162.0

for all algorithms/ methods except for our proposed algorithms when the problems are sized
larger than 16 384 n (resp. ñ). In terms of memory allocations, the Multi Sinkhorn algorithm
shows significant performance, and the results are closer to our proposed algorithms. However,
it requires more computational time, and it breaks down due to the kernel-matrix formation
when the problem size is larger than 16 384 n (resp. ñ).

Faster computation. In general, for faster computations, Graphics Processing Unit (GPU)
implementations are used. The “GeomLoss” package is a clever GPU implementation to
approximate the Wasserstein distance or to solve the OT problem. We refer to [11] and the
corresponding GitHub repository for further information on the implementation. As mentioned
in Section 1, for a fast computation, low-rank approximation techniques are also considered.
However, the “GeomLoss” package is the prominent contribution in terms of fast computation.
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Further steps. Our proposed algorithms reduces the burden of time and memory allo-
cations, and it is also flexible to adapt to the log-domain implementation. Further research
directions will be focused on applying our algorithms to suitable applications and the incor-
poration of possible extensions. In order to reach wider audiences, the GPU implementation
of our proposed algorithms can be considered as one of the possible extensions as well. We
would like to mention that a GPU implementation of the NFFT algorithm is readily available
in the corresponding GitHub repository6.

6. Summary. The nonequispaced fast Fourier transform, as presented in this article,
allows computing a proper approximation of the Wasserstein distance inO(n log n) arithmetic
operations. The NFFT-accelerated Sinkhorn’s Algorithm 3 performs significantly better than
the standard Sinkhorn’s Algorithm 1 in terms of computational time and memory allocations.
Our numerical results demonstrate the effectiveness of the new method as well as the tightness
of our theoretical bounds. We believe that our algorithms can be widely used in data science
applications for handling large-scale datasets.
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