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Abstract. The simulation of partial differential equations is a central subject of numerical analysis and an
indispensable tool in science, engineering, and related fields. Existing approaches, such as finite elements, provide
(highly) efficient tools but deep neural network-based techniques emerged in the last few years as an alternative with
very promising results. We investigate the combination of both approaches for the approximation of the Navier-Stokes
equations and to what extent structural properties such as divergence freedom can and should be respected. Our
work is based on DNN-MG, a deep neural network multigrid technique, that we introduced recently and which
uses a neural network to represent fine grid fluctuations not resolved by a geometric multigrid finite element solver.
Although DNN-MG provides solutions with very good accuracy and is computationally highly efficient, we noticed
that the neural network-based corrections substantially violate the divergence freedom of the velocity vector field. In
this contribution, we discuss these findings and analyze three approaches to address the problem: a penalty term to
encourage divergence freedom of the network output; a penalty term for the corrected velocity field; and a network
that learns the stream function and which hence yields divergence-free corrections by construction. Our experimental
results show that the third approach based on the stream function outperforms the other two and not only improves the
divergence freedom but also the overall fidelity of the simulation.

Key words. multigrid methods, incompressible Navier-Stokes equations, machine learning, artificial neural
networks
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1. Introduction. The tremendous progress on deep learning in the last decade for appli-
cations such as image recognition and machine translation [28] has motivated their use also
for the simulation of physical systems. Despite these promising results that have already been
obtained, many fundamental questions remain open. One of them is how physical constraints,
such as energy and momentum conservation or divergence restriction, can be integrated into
a neural network-based simulation—and if an explicit consideration of this is necessary or
meaningful.

In the literature, two principle approaches to enforce physical constraints have been pro-
posed. In the first one, they are imposed by construction, e.g., through an appropriate network
design or by representing the physical quantities so that their properties and relationship have
to be satisfied. Examples are symplectic neural network [12, 38] that impose symplecticity
by construction or the representation of fluid velocity fields in a divergence-free basis with
learning being performed on the basis function coefficients [49, 54]. The second and more
common approach to physical constraints in neural networks is to encourage that these hold
but not strictly enforce them. Such a “soft” formulation is typically accomplished using a
penalty term in the loss function but can also be realized, e.g., with a Bayesian formulation
with the physical constraints (including an entire partial differential equation) as priors. The
latter approach also naturally accommodates real-world data where properties such as energy
conservation almost never hold perfectly; e.g., because a system is not closed. With a penalty
term it is, however, difficult to control to what extent a constraint is satisfied after training and
its addition to the loss function increases the training complexity and can hinder convergence.
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In this work, we explore how divergence restrictions of the fluid velocity vector field can
be ensured when a neural network is used in the simulation of the incompressible Navier-
Stokes equations. In particular, we build on the recently introduced Deep Neural Network
Multigrid Solver (DNN-MG) [36] that tightly integrates a neural network into a multigrid
finite element solver to replace the computations on one or multiple finest mesh levels by a
neural network-based prediction. In [36], the efficiency of DNN-MG for the simulation of
the incompressible, instationary Navier-Stokes equations was demonstrated. However, the
predicted velocity vector field is not divergence free. We hence study in this paper three
different approaches to encourage or enforce divergence freedom within the DNN-multigrid
formulation. First, we modify the network’s loss function and include a penalty term to limit
the divergence of the predicted velocity field. Second, we penalize the divergence of the
corrected velocity field, which has the potential to also reduce the divergence residual of the
finite element velocity field. And third, we design a neural network that learns the stream
function, i.e., the potential associated with the velocity vector field, and hence provides by
construction divergence-free corrections.

Our results demonstrate that encouraging or enforcing divergence freedom improves the
overall quality of the simulations, measured, e.g., by the drag and lift functionals. The three
approaches we developed lead, however, only to rather modest reductions in the divergence.
For the two approaches based on a penalty term, this results from a delicate balance between
prediction accuracy and divergence freedom that needs to be attained but that it is difficult to
satisfy in practice. The approach based on the stream function provides overall the best results
and achieves lift and drag functionals close to a fine reference solution. At the same time, the
corresponding network is more efficient to train.

The remainder of the paper is structured as follows. After discussing related work, we
recall the DNN-MG solver in Section 3. In Section 4 we describe our approaches to ensure
divergence freedom within DNN-MG and present and discuss our numerical results. We
conclude in Section 5 where we also provide an outlook for possible directions for future
work.

2. Related work. Recently, there has been an increasing interest to employ (deep) neural
networks for the simulation of physical systems. In the following, we will discuss existing
approaches with an emphasis on those that consider partial differential equations and that are
most pertinent to our own work.

Neural network-based techniques for partial differential equations can, broadly speaking,
be classified into three categories. The first one, e.g., the DeepRitz method by E and Yu [16] or
the physics-informed neural networks by Raissi, Karniadakis, and collaborators [34, 43], use
neural networks in place of a basis or frame to represent solutions. Training then amounts to
fitting the network representation to the initial or boundary value problem. This has hence to
be repeated for each problem instance, but the approach yields typically a mesh-free solution
that scales well to high dimensions [16]. The methodology also applies to a wide range
of partial differential equations. The second approach takes inspiration from classical time
stepping schemes and considers the solution of the PDE as the problem of predicting the
next state from the previous ones. The well developed network architectures for sequential
data can hence be employed for this approach, e.g., recurrent neural networks (RNN) with
Long-Short-Term-Memory units (LSTM) [24] or Gated Recurrent Units (GRUs) [13], or
temporal convolutional networks; cf. [1]. Examples of this approach are [25, 51, 55] and the
work by Han, Jentzen, and E [22], who use a formulation of semi-linear, parabolic PDEs as
backward stochastic differential equations and then realize each time step of these as a layer in
a deep neural network. Since we combine a classical finite element based simulation, which
relies on a time stepping scheme, with a neural network, our work also falls into this second
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category. The third class of neural network-based techniques for partial differential equations
uses these to represent solution operators. They hence use the initial condition as well as
parameters on which the solution depends as input to the neural network and it then maps these
to the solution. In [7], for example, the solution operator for parametric partial differential
equations is learned based on a discretization obtained via model reduction and [29, 30] learn
mappings between infinite dimensional spaces that can be solution operators. Lu, Jin, and
Karniadakis [33] learn nonlinear operators from data, based on the result that any such operator
can be approximated by a neural network [11].

For flow problems, Raissi et al. [44] demonstrated that the velocity and pressure of the
Navier-Stokes equations can be learned to good approximation only from observing passively
advected tracer particles. Nabian and Meidani [40], Yang and Perdikaris [56], and Raissi and
Karniadakis [42] exploited that not only observations are available but also a known analytic
model. These authors hence also use the error between the network prediction and the model
as an additional penalty term in the training loss. Kasim et al. [27] recently demonstrated
neural network-based simulations for a broad range of applications, including fluid dynamics,
by also optimizing the network architecture itself during training. Eichinger, Heinlein, and
Klawonn [35] use convolutional neural networks and techniques from image processing to
learn flow patterns for the Navier-Stokes flow around objects of different shape.

Next to the aforementioned direct approaches to the simulation of partial differential
equations using neural networks, there have been different attempts to integrate these into
existing numerical formulations. As in our work, the objective is then to combine the benefits
of neural networks and classical methods and obtain techniques that would be difficult or
impossible with either approach alone. For elasticity, neural network-based representations
for constitutive relations were learned in [6, 46, 52] and then used in classical simulations,
e.g., based on finite elements. Wiewel et al. [55] presented a simulation of the Navier-
Stokes equation where an LSTM-based deep neural network is used to predict the pressure
correction within a classical finite element simulation. In [32] a convolutional neural network
is interpreted as a finite difference discretization of a PDE. This was also proposed in [47].
Bar-Sinai, Hoyer, Hickeney, and Brenner [2] learn general sub-grid scale models, used,
e.g., with finite difference or finite volume discretization. In the context of large eddy-type
simulations, the learning of closure models has also been considered, e.g., in [31]. Wan,
Dodov, Lessig, Dijkstra, and Sapsis [54] combine a wavelet-based discretization and perform
learning in the coefficient space where space-frequency correlations are resolved but, so far,
without simulation. Recently, Stevens, and Colonius [51] enriched finite difference and finite
volume simulations with a deep neural network to resolve sharp discontinuities (as in Burger’s
equations) and to deal with PDEs with chaotic behavior.

To ensure that neural network-based predictions respect physical invariants, such as
energy conservation or divergence freedom, network architectures tailored towards physical
simulations have been proposed. Next to an implicit enforcement as in Physics Informed
Neural Network (PINN) [34], various authors proposed architecture where desired properties
hold by construction. Finizi, Wang, and Wilson [18] and Cranmer et al. [15] learn the dynamics
of classical mechanical systems by directly learning the Hamiltonian or Lagrangian functions.
In related work, [12, 26, 38] developed neural networks that incorporate the symplectic
structure of Hamiltonian mechanics and demonstrated that this improves generalization and
prediction accuracy. Based on the work by Bruna and Mallat [10], Bietti and Mairal [8]
proposed neural network architectures that are invariant under group transformation, including
diffeomorphisms. A neural network that is directly defined on a Lie group, and hence also
enjoys group equivariance, was proposed by Bekkers [5].
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3. Deep Neural Network Multigrid Solver. In this section we summarize the Deep
Neural Network Multigrid Solver (DNN-MG) introduced in [36]. For a detailed description
the reader is referred to the original paper.

3.1. Finite element discretization of the incompressible Navier-Stokes equations.
We want to solve the incompressible, instationary Navier-Stokes equations given by

(3.1)
∂tv + (v · ∇)v − 1

Re
∆v +∇p = f on [0, T ]× Ω

∇ · v = 0 on [0, T ]× Ω,

where v : [0, T ] × Ω → R2 is the velocity, p : [0, T ] × Ω → R the pressure, Re > 0 the
Reynolds number, and f an external force. The initial and boundary conditions are given by

(3.2)

v(0, ·) = v0(·) on Ω

v = vD on [0, T ]× ΓD

1
Re (~n · ∇)v − p~n = 0 in [0, T ]× ΓN ,

where ~n denotes the outward facing unit normal on the boundary ∂Ω of the domain. On
the outflow boundary ΓN we consider the do-nothing outflow condition [23], which is well
established to model artificial boundaries; see the discussion in [9] on possible shortcomings
and a variation that is able to guarantee uniqueness of a solution.

We discretize (3.1) using a weak finite element formulation with vh, φh ∈ Vh = [W
(2)
h ]d

and ph, ξh ∈ Lh = W
(2)
h , where φh and ξh are test functions and W (r)

h is the space of
continuous functions that are polynomials of degree r on each mesh element T ∈ Ωh in the
mesh domain Ωh. The resulting equal order finite element pair Vh × Lh does not fulfill the
inf-sup condition. We hence use stabilization terms of local projection type [3] with parameter
αT = α0 · Re · h2

T and projection πh : W
(2)
h →W

(1)
h into the space of linear polynomials.

With the second order Crank-Nicolson method for time discretization, the solution of (3.1)
subject to (3.2) determines at each time step n the state xn = (v1

n, . . . , v
d
n, pn) such that

(3.3) An(xn) = fn,

where

(3.4)
[An(xn)]i := (∇ · vn, ξih) +

∑
T∈Ωh

αT (∇(pn − πhpn),∇(ξih − πhξih)),

[fn]i := 0

for all pressure unknowns i = 1, . . . , Np and

[An(xn)]i+Np := 1
k (vn, φ

i
h) + 1

2 (vn · ∇vn, φih) + 1
2Re (∇vn, ∇φih)− (pn, ∇ · φih)

[fn]i+Np := 1
k (vn−1, φ

i
h) + 1

2 (fn, φ
i
h) + 1

2 (fn−1, φ
i
h)

− 1
2 (vn−1 · ∇vn−1, φ

i
h)− 1

2Re (∇vn−1, ∇φih),

for all velocity unknowns i = 1, . . . , Nv with corresponding test functions φih and ξih. By
k > 0 we denote the time step size. Equation (3.3) is a large nonlinear system of algebraic
equations that is solved by Newton’s method based on the initial guess x(0)

n = (vn−1, pn−1)
and using the iteration

(3.5) A′n(x(l−1)
n )w(l) = fn −An(x(l−1)

n ), x(l)
n = x(l−1)

n + w(l)

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

90 N. MARGENBERG, C. LESSIG, AND T. RICHTER

Algorithm 1 DNN-MG for the solution of the Navier-Stokes equations. Lines 6-9 (blue)
provide the modifications of the DNN-MG method compared to a classical Newton-Krylov
simulation with geometric multigrid preconditioning.

1: for all time steps n do
2: while not converged do . Newton’s method in (3.5)
3: δxi ← MULTIGRID(L, AnL, b

n
L, δxi) . Geometric multigrid with x = (pLn , v

L
n )

4: xi+1 ← xi + ε δxi

5: end while
6: (p̃L+1

n , ṽL+1
n )← P(pLn, x

L
n) . Prolongation on level L+ 1

7: rL+1
n ← fL+1

n −An(p̃L+1
n , ṽL+1

n ) . Computation of the residual
8: dL+1

n ← N (r̃L+1
n , ṽL+1

n , ΩL, ΩL+1) . Prediction of velocity correction
9: bL+1

n+1 ← Rhs(ṽL+1
n + dL+1

n , fn, fn+1) . Set up rhs of (3.3) for next time step
10: bLn+1 ← R(bL+1

n+1) . Restriction of rhs to level L
11: end for

for l = 1, 2, . . . . Here we denote by A′(x(l−1)) the Jacobian of A at x(l−1), which for the
problem at hand can be computed analytically; cf. [45, Section 4.4.2].

Each Newton step requires the solution of the linear system in (3.5), where the system
matrixA′(x(l−1)) is sparse but non-symmetric and not definite due to the saddle point structure
of the underlying Navier-Stokes equations. To approximate the solution to (3.5) with optimal
robustness, we employ the generalized minimal residual method (GMRES) introduced by
Saad [48]. The convergence is accelerated through a preconditioner that is realized by a single
sweep of a geometric multigrid solver.

The geometric multigrid method is based on a hierarchical approximation of a linear
system on a sequence of finite element spaces V0 ⊂ V1 ⊂ · · · ⊂ VL defined over a hierarchy
of meshes Ω0, . . . , ΩL = Ωh. Instead of treating the linear system on its domain, given by
the finest mesh level L (as one would do in a traditional solver) the high frequencies there
are smoothed and the remaining errors are treated on lower levels. This is accomplished by
computing the residual on level L and restricting it to the next coarse level L− 1. There, the
process is repeated and this is performed recursively until the coarsest level has been reached
where a direct solver is employed. The updates from the coarser levels are then prolongated
back to level L and the coarse-to-fine and fine-to-coarse iteration is repeated until a prescribed
error tolerance has been met. The mesh transfer from fine to coarse is accomplished with
L2-projections, known as restrictions, and from coarse to fine with interpolations, known
as prolongations. The smoothing that preceded the restrictions is realized with a simple
smoothing operator S(Al, bl, xl) that yields an approximate solution of the linear system
Al xl = bl, i.e., S(Al, bl, xk) ≈ A−1

l bl and that aims to quickly reduce all high frequency
components of the residual bl − Alxl. In our implementation we use a simple iteration of
Vanka-type [53], which allows for easy parallelization and gives very good performance with
less than 5 pre- and post-smoothing steps [17].

3.2. Deep Neural Network Multigrid Solver. The solution of the Newton iteration
in (3.5) using GMRES and the geometric multi-grid method is highly efficient. However,
since one has multiple GMRES steps for every step of the Newton method and for each one
also one up- and down-sweep of the multigrid method, there is still a substantial amount
of computations. The majority is thereby required for the finest mesh level (typically about
three quarters of the computations for the multigrid method) so that a refinement of the mesh,
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or, equivalently, the use of an additional mesh level L + 1, incurs a substantial increase in
computational costs. The Deep Neural Network Multigrid Solver (DNN-MG) addresses this
bottleneck and replaces computations on one or multiple finest mesh levels with a neural
network-based prediction. An overview of DNN-MG is provided in Algorithm 1.

To ensure that the DNN-MG solver is efficient and flexible, its neural network is build
around three design principles:

1. The neural network operates patch-wise, i.e., locally on small neighborhoods of the
mesh domain ΩL+k. This ensures the generalizability of DNN-MG to different flow
regimes and meshes.

2. The neural network has memory. This ensures that complex flow behavior can be
predicted and that corrections are coherent in time.

3. The neural network uses the residual of the nonlinear problem in (3.3) on level L+ k
as input. This provides rich information about the required correction.

Together, these design principles allows us to use to a surprisingly compact neural network
architecture that at the same time generalizes well to different flow regimes and domains. In
particular, the implementation in [36] has just 8634 trainable parameters with an architecture
based on Gated Recurrent Units. It can hence be trained in a few hours with a small number of
example flows as training set.

As shown in Algorithm 1, the neural network-based correction of DNN-MG is ap-
plied at the end of every time step after the Newton solver has computed an updated velocity
vLn on level L; cf. (3.5). To obtain the correction, vLn is first prolongated to level L+1, yielding
ṽL+1
n = P(vLn ). The neural network is then employed individually for each patch Pi (a mesh

element on level L in the most simple case as in [36]) and predicts a velocity correction
dL+1
n,i . The inputs to the neural network are thereby also entirely local and include the residual

of (3.3) on level L+1, the prolongated velocity ṽL+1
n , geometric properties such as the patch’s

aspect ratio, and possibly other quantities such as the Péclet number over the patch. With the
correction dL+1

n , a provisional right hand side bL+1

n+1 = Rhs(ṽL+1
n + dL+1

n , fn, fn+1) of (3.5)
is formed on level L + 1 and then restricted to level L, i.e., we compute bLn+1 = R(bL+1

n+1).
Restricting the right hand side instead of the corrected velocity ṽL+1

n + dL+1
n is thereby

essential to propagate information back to level L since, ideally, R(P(vLn ) + dL+1
n ) = vLn .

The corrected bLn+1 is then used in the next time step in the Newton solve, which is again
improved by a neural network-based correction at the end of the time step. Note that DNN-MG
only corrects the velocity but not the pressure. The latter enters only indirectly through the
network input in form of the fine mesh residual that is computed in step 7 of the algorithm.
In Section 4.2.2 we will discuss a modification of DNN-MG that will learn velocity updates
in a stream function formulation. These corrections are strictly divergence free and hence
implicitly also respect the pressure space.

The neural network of DNN-MG is trained using a high fidelity finite element solution
obtained on the fine mesh level L+ 1 and with the loss function

(3.6) L(vL, vL+1; dL+1) :=

N∑
n=1

∑
Pi∈ΩL+1

∥∥vL+1
n+1 − (vLn + dL+1

n )
∥∥2

l2(Pi)
.

Here, N is the number of time-steps that make up the training data and, since DNN-MG
operates strictly local over patches, for each one the loss accumulates the local residuals in the
second sum. Due to this strictly local structure of DNN-MG, a very large training data set is
generated by a single resolved simulation.

In [36] it was demonstrated that the DNN-MG algorithm substantially improves lift and
drag functionals for the classical channel flow around a cylinder and generalized well to flow
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FIG. 4.1. Left: Divergence ‖∇ · v‖ for the coarse mesh (MG), the high fidelity (MG fine) and the deep neural
network multigrid solution (DNN-MG). Right: Also shown are the results for DNN-MG with the divergence of the
DNN’s output as penalty term (DNN-MG-Lp1 ), DNN-MG with the divergence of the corrected velocity field as
penalty term (DNN-MG-Lp2 ) and enforcing divergence freedom by construction (DNN-MG-Lψ) using the stream
function formulation.

regimes not seen during training, e.g., a flow without an obstacle or a flow in an L-shaped
domain.

4. Enforcing divergence freedom in DNN-MG. In our first study [36], we have shown
that DNN-MG is able to increase the approximation quality at very little extra cost. The error
in the velocity vector field but also in derived quantities such as the drag and lift functionals of
the flow around an obstacle are reduced considerably with an increase in the computation time
that is orders of magnitude below those for adding an additional mesh level. We have, however,
also observed that the network is not good at ensuring a solenoidal velocity vector field.
Although the loss-function aims at minimizing the distance to the high fidelity solution, which
weakly satisfies divergence freedom to a certain degree, the neural network minimizes (3.6)
with a vector field with a substantial divergence.

4.1. Violation of divergence freedom in existing formulation. The quadratic equal-
order finite element approach (vh, ph) ∈ Vh × Lh that provides the basis for the DNN-MG
algorithm in our current implementation is stabilized with local projections [3]; cf. (3.4). The
discrete divergence equation thus reads

(∇ · vn, ξh) +
∑
T∈Ωh

αT (∇(pn − πhpn),∇(ξh − πhξh)) = 0 ∀ξh ∈ Lh,

and since∇ · Vh 6⊂ Lh only a perturbed divergence condition is satisfied

(4.1) ‖∇ · vn‖L2(Ω) = ‖∇ · (v − vn)‖L2(Ω) ≤ c‖v − vn‖H1(Ω).

Figure 4.1, left, displays the total divergence ‖∇ · v(t)‖L2(Ω) over the simulation domain
for the coarse mesh solution (MG), the high fidelity solution (MG fine) and the DNN-MG
solver for the experiments described in Section 4.3. While the fine mesh solution reduces
the divergence at the expected rate, DNN-MG even further disturbs the divergence instead of
improving it.
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4.2. Approaches for enforcing divergence freedom. In the following we will discuss
three approaches for enforcing divergence freedom. Numerical results will be presented
afterwards in Section 4.3.

4.2.1. A penalty approach for divergence-free learning. The first approach to enforce
divergence freedom of the neural network output of the DNN-MG method is through a
modification of the loss function by a squared divergence as penalty term. One then has

(4.2) Lp1(vL, vL+1; dL+1) := L(vL, vL+1; dL+1) + γ

N∑
n=1

∑
Pi∈Ωh

∥∥∇ · dL+1
∥∥2

L2(Pi)
,

where L(vL, vL+1; dL+1) is the original loss function in (3.6) and dL+1 = N (vL, ṽL+1) is
the correction by the network based on the coarse solution vLn and its prolongation ṽL+1. The
parameter γ > 0 is used to control the weighting of the loss function. We discuss its choice in
Section 4.3. Equation (4.2) penalizes the divergence of the correction and, through this, the
neural network should at least not further distort the divergence of the velocity field.

An obvious extension of this idea is to penalize the divergence of the corrected solution
vL + dL+1. This is, in principle, advantageous since it could also correct for the divergence
residual in the finite element formulation; cf. (4.1) and Figure 4.1, left. We thus introduce the
second, modified loss function

(4.3) Lp2(vL, vL+1; dL+1) := l(vL, vL+1; dL+1) + γ

N∑
n=1

∑
Pi∈Ωh

∥∥∇ · (vL + dL+1)‖2L2(Pi)
.

4.2.2. A strictly divergence-free network architecture. Instead of including a penalty
term in the loss function to ensure divergence freedom in a weak sense, our third approach
modifies the neural network architecture so that only solenoidal vector fields are returned. We
accomplish this by learning the stream function ψ, which can be seen as a scalar potential for
the divergence-free velocity vector field [14],

v = ∇⊥ ψ =

(
−∂y
∂x

)
ψ.

For an easy and efficient integration into the finite element framework, we are looking for
divergence-free velocity corrections dL+1 by the neural network that are in the velocity
function space, i.e., dL+1 ∈ V L+1

h . This holds when we learn stream functions ψh ∈ LL+1
h

that are in the pressure space LL+1
h and the construction is then also again local on each patch.

For simplicity we assume that a patch Pi corresponds exactly to one element on the fine
mesh ΩL+1 and that it is a quadrilateral parallel to the axes on an integer lattice. The nine local
scalar basis functions of the second order finite elements can then be defined in the simple
monomial basis,

LL+1
h

∣∣
P

=
{
ξi=3α+β ≡ ξα,β(x, y) = xαyβ , α, β = 0, 1, 2

}
,

and a stream function ψh ∈ LL+1
h is described by the eight basis function coefficients

sPi = (s2, . . . , s9) for this basis; the stream function has no harmonic part and ξ0,0 can thus
be disregarded. Since we work with Lh = W

(2)
h , the velocity vψh associated with ψh lies in

Lh|P , as desired, and it can be represented in the eight velocity basis functions derived from
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ξα,β(x, y) = xαyβ ,

vψ2 := ∇⊥x =

(
0
1

)
, vψ3 := ∇⊥x2 =

(
0

2x

)
, vψ4 := ∇⊥y =

(
−1
0

)
vψ5 := ∇⊥xy =

(
−x
y

)
, vψ6 := ∇⊥x2y =

(
−x2

2xy

)
, vψ7 := ∇⊥y2 =

(
−2y

0

)
vψ8 := ∇⊥xy2 =

(
−2xy
y2

)
, vψ9 := ∇⊥x2y2 =

(
−2x2y
2xy2

)
By linearity we thus have

vψh
∣∣
Pi

= ∇⊥ψh =

9∑
i=2

si v
ψ
i(4.4)

and the basis function coefficients for the stream function and the derived velocity are identical.
To be able to work within the usual finite element theory, we relate the non-standard

velocity basis functions vψi to pointwise values using the Lagrange basis

(4.5) Vh
∣∣
P

= {φx1 , . . . , φx9 , φy1, . . . , φy9}

that satisfies

φxi (xj) =

(
δij
0

)
, φyi (xj) =

(
0
δij

)
, i, j = 1, . . . , 9

for the nine Lagrange points δij . Each of the derived velocity functions vψi has a unique
representation in this basis with coefficients ηxij , η

y
ij for i = 2, . . . , 9 and j = 1, . . . , 9. The

pointwise values of the velocity vector field can thus be reconstructed as

(4.6) vψh
∣∣
Pi

=

9∑
k=2

sk

9∑
l=1

ηxkl φ
x
l + ηykl φ

y
l .

Along boundaries of the domain ∂Ω where Dirichlet conditions are prescribed, the correspond-
ing coefficients ηxkl, η

y
kl are set to zero such that the resulting update vΨ

h is no longer strictly
divergence free.

With the formulation above, we can train for the eight stream function coefficients
sPi = (s2, . . . , s9) that through (4.4) and (4.6) correspond to a divergence-free velocity
correction dL+1({sL+1

i }) satisfying ‖∇ · dL+1‖L2(Ω) = 0. Similar to the DNN-MG setting,
the corrections dL+1({sL+1

i }) are averaged over all degrees of freedom shared by multiple
patches. For network training, we minimize

Lψ(vL, vL+1; sL+1) :=
∑
Pj∈Ωh

∥∥vL+1 −
(
vL + dL+1({sL+1

i })
)∥∥2

L2(Pj)
.

4.3. Numerical evaluation. To evaluate the efficacy of the three approaches developed
in Section 4.2 to improve the divergence freedom of the velocity vector field, we implemented
them using PyTorch [41] and Gascoigne 3D [4] based on the framework developed in [36].
For the penalty-based approaches with the loss functions Lp1 and Lp2 the network and other
aspects of the training process remained unchanged compared to [36], where the network had
8634 parameters. The network architecture we use for the stream function-based approach
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Γwall

Γout

Γwall

Γin Retest = 133

2.25

0.
4

0.1

0.1
(0.3, 0.15)

FIG. 4.2. Geometry of the training scenario with a parabolic inflow profile Γin, do-nothing boundary conditions
at the outflow boundary Γout and no-slip conditions on the walls Γwall. The center of the obstacle is at (0.3, 0.15).
For the test scenario the obstacle is shifted such that the center is at (0.3, 0.25).

with Lψ is also similar to the one in [36] but the convolutional layers are replaced by fully
connected ones of size 8× 8. This results in a network with 9000 parameters.

The flow we consider in our experiments is a modification of the classical benchmark
of a flow around a cylinder [50] where the obstacle is now a square; see Figure 4.2. The
modification simplifies the implementation, since we are able to use uniform meshes, but does
not change the qualitative behavior of the quantities of interest to us and in particular one
still has a non-stationary wake behind the obstacle as in the original benchmark [50]. The
singularities at the corners of the obstacles have been excluded in the evaluation below.

Divergence freedom. We first compare the divergence ‖∇ · v(t)‖L2(ΩL) obtained with
the three approaches (DNN-MG-Li) as well as a coarse multigrid solution (MG), the original
DNN-MG method proposed in [36] (DNN-MG), and, as reference, a fine multigrid solution on
level L+ 1 (MG-fine). The results are presented in Figure 4.1. They show that the approaches
from Section 4.2 are not able to significantly reduce the divergence. While DNN-MG-Lψ based
on the strictly divergence-free output performs best, the reduction is still modest. Ultimately,
however, this is not surprising since

‖ div dL+1‖ = 0 ⇒ ‖div (vL + dL+1)‖ = ‖ div vL‖,
and the perfectly divergence-free correction does not address the divergence residual in vL,
which is substantial. The second approach, using Lp2 , is designed to address this but no
reduction can be observed in practice.

We investigated the disappointing performance of the modified loss functions Lp1 and
Lp2 that include a penalty term and found that it stems from an unstable balance between the
minimization of the divergence and the fulfillment of the finite element Galerkin equation: If
the weighting factor γ for the divergence is chosen close to zero then the network behaves
like the classical DNN-MG approach. If we choose larger values for γ > 0, however,
then the network is not able to sufficiently minimize the discrepancy to the high fidelity
Galerkin solution and overall the approximation quality suffers. We tested γ in the range
10−1, · · · , 10−10 but did not find a value where the two error terms in the loss functions Lp1
and Lp2 are well balanced. For γ > 10−7 we, in fact, observed that the penalty term causes
the output to converge towards zero, which is a divergence-free velocity vector field but not
the desired correction. The effect is most pronounced for DNN-MG-Lp2 .

Drag and Lift functionals. Figure 4.3 displays the drag and lift functionals of the obstacle
for the different approaches. In Table 4.1 we also show the corresponding minimum and
maximum values, the mean values, and the amplitudes of the oscillation as well as the
frequencies of the periodic flow pattern. In the lower table of Table 4.1 we report the relative
errors with respect to the high fidelity solution MG (fine).

The results show that the non-smooth corners of the square obstacle have a negative
effect on the performance of the original DNN-MG approach since it no longer provides the
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FIG. 4.3. Comparison of drag and lift functionals for the coarse mesh (MG), the high fidelity (MG fine) and
the deep neural network multigrid solution (DNN-MG). Three results of the attempts to enforce divergence freedom
are shown: DNN-MG with the divergence of the DNN’s output as penalty term (DNN-MG-Lp1 ), DNN-MG with
the divergence of the corrected velocity field as penalty term (DNN-MG-Lp2 ) and enforcing divergence freedom by
construction (DNN-MG-Lψ).

improvement in the functional values observed in [36] for a smooth obstacle. Among the
approaches proposed in the present work, DNN-MG-Lψ based on learning the stream function
provides the most promising results. It is able to reduce the relative error in all functional
outputs and almost matches the values of MG (fine) in Figure 4.3. Furthermore, the training
time for the neural network is in this case only ≈ 75% in comparison to the other DNN-MG
approaches.

For DNN-MG-Lψ we observe a deviation of the oscillation frequency that is larger than
for the other approaches. We believe that this defect stems from a complicated interplay of
temporal dissipation and spatial discretization. For a discussion we refer to [36] and also
to [37] where the same effect is observed for a parallel time stepping scheme. In the context
of the deep neural network multigrid approach it must be investigated if this problem can be
resolved by training with high fidelity solutions that come from discretizations that are finer in
space and in time, i.e., by working with a finer time step.

Velocity vector field. Figure 4.4 visualizes the error |v(x)−vfine(x)| in the velocity vector
field for MG, DNN-MG, DNN-MG-Lp1 , DNN-MG-Lp2 , and DNN-MG-Lψ with respect to
the fine reference solution MG (fine). In Figure 4.5 we see a comparison of velocity errors
measured in the Euclidean norm of the discrete solution. To obtain meaningful comparisons,
the outputs are synchronized such that we consider snapshots starting from a maximum of the
drag functional; cf. Figure 4.3. The results in Figure 4.5 verify that all approaches proposed
in Section 4.2 are able to reduce the error in the velocity field compared to MG and DNN-
MG. The results differ, however, from those for the divergence freedom in Figure 4.1 in that
DNN-MG-Lp1 and DNN-MG-Lp2 provide better results for the velocity vector field than the
stream function formulation DNN-MG-Lψ . We attribute this to the larger prediction space of
DNN-MG-Lp1 and DNN-MG-Lp2 compared to the reduced divergence-free space that is used
in DNN-MG-Lψ .

Discussion. The results presented in this section are surprising in that the loss functions
of Section 4.2 designed to reduce the divergence improve the overall quality of the obtained
results, e.g., in terms of the lift and drag functionals, but do not lead to significantly better
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TABLE 4.1
Maximum, minimum values, mean and amplitude of oscillation for drag and lift functionals as well as frequency

of the periodic solution. We indicate the results for the different finite element solution on coarse and fine mesh finite
element simulation and for the different hybrid finite element / deep neural network approaches. While the upper
table shows the raw results, the lower table indicates the relative error (in %) with respect to the high fidelity solution.
For each value we highlight the best result.

Drag Lift
Approach Min Max Mean Ampl. Min Max Mean Ampl. Freq.

coarse 0.3220 0.3382 0.3301 0.0162 -0.0905 0.0985 0.0040 0.1890 3.8095
fine 0.3159 0.3329 0.3244 0.0170 -0.0610 0.1144 0.0267 0.1754 3.9024

DNN-MG 0.3277 0.3425 0.3351 0.0148 -0.0753 0.0896 0.0071 0.1650 3.8298

DNN-MG-Lp1 0.3240 0.3379 0.3309 0.0139 -0.0665 0.0978 0.0156 0.1643 3.9130
DNN-MG-Lp2 0.3242 0.3384 0.3313 0.0142 -0.0657 0.0999 0.0171 0.1657 3.9130
DNN-MG-Lψ 0.3178 0.3350 0.3264 0.0172 -0.0544 0.1259 0.0357 0.1803 4.0179

Drag Lift
Approach Min Max Mean Ampl. Min Max Mean Ampl. Freq.

coarse 1.93 1.59 1.76 4.71 48.4 13.9 85.0 7.75 2.38

DNN-MG 3.74 2.88 3.30 12.9 23.4 21.7 73.4 5.93 1.86

DNN-MG-Lp1 2.56 1.50 2.00 18.2 9.02 14.5 41.6 6.33 0.27
DNN-MG-Lp2 2.63 1.65 2.13 16.5 7.70 12.7 36.0 5.53 0.27
DNN-MG-Lψ 0.60 0.63 0.62 1.18 10.8 10.1 33.7 2.79 2.96

divergence freedom. More work is hence required to obtain hybrid finite element/neural
network-based simulations that improve this important property. For the loss functions with
the penalty factor it should in particular be reconsidered how these can be formulated so that
their two constitutive terms do not compete with each other as we observed in our experiments.

The efficiency of DNN-MG-Lψ based on the stream function is not entirely surprising
to us. The network there only has to learn a scalar function instead of two components of a
vector field that, furthermore, satisfy a nontrivial constraint through the divergence freedom.
The stream function formulation also encodes the structure of the dynamics in a different
way than the usual velocity one, cf. [39], and this leads often to simulations that preserve
structural properties such as energy or vorticity. In the finite element context this was already
observed by Fix [19]. We believe that this partly also explains the reduced training time for
DNN-MG-Lψ .

5. Conclusion. We have presented three approaches to enforce divergence freedom
within the hybrid finite element / neural network DNN-MG method [36] for the simulation
of the Navier-Stokes equations. The first two of these use a penalty term that encourages
divergence freedom while the third one guarantees a divergence-free correction by learning the
stream function. The penalty term-based approaches did not provide significant improvements
compared to DNN-MG for both the divergence and the drag and lift functionals. The third
approach based on the stream function yielded significantly better overall results but also only
a rather modest improvement for the divergence.

More work is hence required in the future to obtain hybrid finite element / neural network
simulations that respect the divergence freedom of the Navier-Stokes equations. For the
penalty-based approaches it should be investigated how the two terms in the loss function can
be balanced. DNN-MG-L2 is thereby particularly interesting since it allows, in principle, to
provide an overall reduction by correcting vL towards a lower divergence. For DNN-MG-
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DNN-MG-div2

DNN-MG-div3

FIG. 4.4. Velocity error for the different approaches with respect to the high fidelity solution MG (fine).

Lψ it would be interesting to investigate the efficiency when the velocity-stream function
formulation is also used for the simulation.

In future work, we also want to investigate a hybrid finite element / neural network
simulation for the Navier-Stokes equations in 3D. This is, however, considerably more chal-
lenging. For example, the stream function / vorticity formulation, which proved particular
effective in 2D, does not exist in the same simple form there. One alternative would be to use
a structure preserving discretization of the Navier-Stokes equations, e.g., [20, 21], as a basis.
The built-in constraints, such as an inherently divergence-free velocity vector field, would
then again aid the physicality of the learned solution and simplify the learning task. How
other physical invariants, e.g., energy or Kelvin’s circulation theorem, can be incorporated
into hybrid simulations and what benefits this provides should also be investigated in more
detail. Stability, consistency, and convergence are, furthermore, pertinent open questions that
should be addressed.
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