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Abstract. Reduced-order modeling has a long tradition in computational fluid dynamics. The ever-increasing
significance of data for the synthesis of low-order models is well reflected in the recent successes of data-driven
approaches such as Dynamic Mode Decomposition and Operator Inference. With this work, we discuss an approach
to learning structured low-order models for incompressible flow from data that can be used for engineering studies
such as control, optimization, and simulation. To that end, we utilize the intrinsic structure of the Navier-Stokes
equations for incompressible flows and show that learning dynamics of the velocity and pressure can be decoupled,
thus, leading to an efficient operator inference approach for learning the underlying dynamics of incompressible
flows. Furthermore, we demonstrate the performance of the operator inference in learning low-order models using
two benchmark problems and compare with an intrusive method, namely proper orthogonal decomposition, and other
data-driven approaches.
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1. Introduction. The numerical solution of the incompressible Navier-Stokes equation is
a demanding task in terms of computational effort and memory requirements. Reduced-order
models can significantly decrease demands while maintaining a certain accuracy. One may
well say that flow simulations have been a success story for the application of model reduction
schemes as well as a driving force for the development of new approaches. For example, the
popular methods of Proper Orthogonal Decomposition and Dynamic Mode Decomposition
seem to have originated in flow computations, see [43, 45]. On the other hand, the distinguished
nonlinear and differential-algebraic structure of the semi-discrete incompressible Navier-
Stokes has been attractive for the testing of extensions of standard system-theoretic approaches
like balanced truncation (BT), LQG-BT, moment-matching, or polynomial expansions of
the HJB equations; see [1, 8, 10, 12, 22]. Over the years, many applications and variants of
POD for incompressible flows have been proposed. We only mention particular works that
include finite volume schemes, the use of supremizers, and pressure reconstruction [46, 47]
that adaptively improve the bases for the use in optimal control [42], or works that address the
algebraic constraint in different spatial discretizations [19] and refer to the numerous references
therein. For an application of the Proper Generalized Decomposition (PGD), see [15].

Albeit the success of the projection-based methods such as POD, one of the significant
drawbacks of these methods is that they require a discretized full-order model. It may be
unavailable or a cumbersome task to obtain it. One may think of a scenario when a process
is simulated using a black-box commercial solver. Hence, data-driven modeling has gained
interest, aiming to determine reduced-order models directly using data that may be either
obtained using a solver or in an experimental set-up. There exist vast literature on learning
dynamical systems from data, and we review the most relevant literature to this work in
what follows. Often referred to as system identification, the inference of models for linear
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time-invariant (LTI) systems has a long history with applications in control theory. One of
the most relevant classical approaches is the eigenvalue realization algorithm, which was first
proposed in [23] in the minimal realization set-up and then in [25] for system identification.
This algorithm is based on the Hankel matrix using data from the system’s impulse response.
For frequency domain data, several approaches were designed allowing rational interpolation
of LTI transfer functions through, e.g., vector-fitting [20], Loewner approach [29, 34], and the
so-called AAA algorithm [32].

Contrary, nonlinear system identification requires an assumption on the structure of the
non-linearity. Towards this, the Loewner framework has been extended to classes of nonlinear
systems, especially bilinear and quadratic-bilinear systems in [3] and [17], respectively. Other
identification methods are based on block-oriented nonlinear modeling, which defines systems
as interconnections of an LTI block and static nonlinear blocks [16]. An example of these block-
oriented modeling is the Wiener-Hammerstein systems, and many works have been dedicated
to the identification of such systems; see, e.g., [11, 44, 51]. Lately, sparse identification has
also emerged as a powerful technique [13]. The approach’s principle is to pick up a few
nonlinear terms from a vast library of candidate nonlinear functions representing the dynamics
of the system. However, it relies on the nonlinear terms important to the representation of the
dynamics being presented in the library. Another attractive data-driven method for nonlinear
systems is based on the interpretation of dynamical systems via the Koopman operator,
which readily applies to nonlinear systems. The identification is done by the so-called
Dynamic Mode Decomposition (DMD). Curiously, DMD has initially been developed for low
dimensional approximations of fluid dynamics [43]. Since then, it has seen various extensions
such as extended DMD [49], kernel DMD [50], higher-order DMD [27]. Furthermore, it is
intrinsically related to the Koopman operator analysis, see [31]. Moreover, DMD can be used to
simultaneously identify an input operator [36, 37], and an output operator [2, 9]. Additionally
in [18], the authors propose the DMD with control incorporation of quadratic-bilinear terms.
We refer readers to [26] for a comprehensive monograph on this topic.

One often comes across scenarios where prior knowledge, such as governing equations
of the process, is known. In these set-ups, however, the system parameters and discretization
scheme are not known, only the underlying partial differential equations that govern the
dynamics are known. Under these assumptions, the operator inference approach has emerged
as a powerful tool to learn reduced-order models operators. It was first studied in [35], aiming
at identifying nonlinear polynomial systems, which was later extended to general nonlinear
systems [7, 38]. Moreover, recently, physics-informed neural network-based approaches
have received a lot of attention, where one aims to utilize the known knowledge such as
partial differential equations to build a model to solve nonlinear multi-physics problems;
see, e.g., [39, 40, 41].

In this work, we focus on constructing models for incompressible flows. The dynamics
of such a flow is, typically, given by the Navier-Stokes equations that comprise a differential
equation and an algebraic equation. The algebraic equation enforces the incompressibility
condition. Even though one may write down the equations, the discretization scheme and
parameters such as the Reynolds number may be unknown. If the Reynolds number is known,
then physics-informed neural networks for incompressible flow can be utilized that explicitly
make use of the known Navier-Stokes equations for incompressible flows, see [24]. However,
the approach requires system parameters such as Reynolds numbers to be known, which may
not be available, and the proposed methodology to be valid for uncontrollable flows. Moreover,
the proposed neural network has high-dimensional outputs—the velocity and pressure in a
given domain. Hence, the network can be computationally expensive for large-scale flows. But
we know that the dynamics of large-scale dynamical systems typically lie in a low-dimensional
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subspace. With that aim, we propose a scheme to identify reduced-order models for flows using
data that incorporates the knowledge of Navier-Stokes equations for incompressible flows to
learn reduced-order models from data; particularly, we discuss how to employ the operator
inference approach proposed in [35] to incompressible flows governed by Navier-Stokes
equations.

We discuss an application of the operator inference approach, proposed in [35] to build
low-order models for incompressible flows. For this, we use the intrinsic structure of the
semi-discrete Navier-Stokes equations and show that the learning dynamics of the velocity
and pressure can be decoupled. As the main result, we present an efficient learning algorithm
for modeling incompressible flows via a low-dimensional ordinary differential equation
(ODE). In practice, it is a nontrivial task to extract such an underlying ODE from the model
equations. As we will discuss, standard projection based approaches like POD may require
corrections of the model and the projection basis and still suffer from systematic model errors
caused by numerical inaccuracies. On the other hand, the tailored operator inference method
for incompressible flows directly identifies an underlying ODE without being subjected to
these theoretical and practical issues. Moreover, we show that in theory and under certain
assumptions, the intrusive POD model converges to the learned model using the proposed
non-intrusive method.

The rest of the manuscript is structured as follows. In Section 2, we introduce the spatially
discretized incompressible Navier-Stokes equations in the velocity-pressure formulation and
recall how to write the underlying ordinary differential equation for the velocity alone by
eliminating the coupling with the pressure. In Section 3, we discuss an intrusive method (POD)
to determine reduced-order models. In Section 4, we recap the operator inference approach,
proposed in [35]. In Section 5, we tailor the operator inference approach for incompressible
flows and show that intrusive and non-intrusive models converge under certain conditions.
In Section 6, we discuss the case of inhomogeneity in the incompressibility constraints and
its implications for the model reduction schemes. Finally, we present illustrative numerical
studies in Section 7, and in the subsequent section, we conclude the paper with summarizing
remarks and an outlook on future related research.

2. Navier-Stokes and its equivalent transformation as ODE. In this paper, we focus
on the Navier-Stokes equations given in the partial differential form as follows:

(2.1)

∂v

∂t
= −v∇v +

1

Re
∆v−∇p + f on Ω,

div v = g on Ω,

∂v

∂t
= 0 on ∂Ω,

v = v0 for t = 0,

where v and p are the velocity and pressure, respectively, and Ω denotes the domain, ∂Ω the
boundary of the domain, and Re the Reynolds number. We begin by presenting the differential
algebraic equations (DAE), arising from the semi-discretization of the Navier-Stokes equation
(2.1); that is,

E11v̇(t) = A11v(t) + A12p(t) + H (v ⊗ v) + f(t),(2.2a)

0 = A>12v(t) + g(t), v(0) = v0,(2.2b)

where v(t) ∈ Rnv , p(t) ∈ Rnp are, respectively, the velocity and the pressure with nv > np,
and E11,A11 ∈ Rnv×nv , A12 ∈ Rnv×np , f(t) ∈ Rnv×1, g(t) ∈ Rnp×1; the initial condition
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for the velocity is denoted by v0. Furthermore, we assume that E11 and A>12E
−1
11 A12 are

nonsingular matrices; hence, the system (2.2) is an index-2 linear system when H ≡ 0.
Additionally, we suppose that the forcing terms are giving by

f(t) = B1u(t) and g(t) ≡ 0,

where u(t) ∈ Rm is an input vector and B1 ∈ Rnv×m; we show how to handle the case when
g(t) 6= 0 in Section 6.

Next, we aim at transforming the DAE system (2.2) into an equivalent ODE system,
which will be crucial in the analysis done in the rest of the paper.

Transformation of Navier-Stokes DAEs. Taking the time derivative of the algebraic
conditions A>12v(t) = g(t) = 0, ∀t ≥ 0, implies that A>12v̇(t) = 0, ∀t ≥ 0. Then, we
premultiply (2.2a) by A>12E

−1
11 from the left-hand side, yielding:

0 = A>12E
−1
11 A11v(t) + A>12E

−1
11 A12p(t) + A>12E

−1
11 H(v(t)⊗ v(t)) + A>12E

−1
11 f(t).

With S := A>12E
−1
11 A12 being invertible, the pressure p can be expressed in terms of v and f

as follows:

(2.3) p(t) = −S−1A>12E
−1
11 (A11v(t) + H(v(t)⊗ v(t)) + f(t)).

Substituting p(t) in (2.2a) from the above equation, we obtain the following ODE for the
velocity:

(2.4) E11v̇(t) = Π>A11v(t) + Π>H(v(t)⊗ v(t)) + Π>f(t),

where

(2.5) Π> = I−A12SA
>
12E

−1
11 .

This leads to the important observation that although both the velocity and pressure are evolved
and are coupled through the DAE (2.2), the DAE can be decoupled into an algebraic and differ-
ential part. Precisely, the evolution of the velocity over time can be given by the quadratic ODE
(2.4), and there exists an algebraic equation linking the pressure and velocity given by (2.3).

REMARK 2.1. Equation (2.3) is often referred to as pressure Poisson equation, and the
projector defined in (2.5) is called the discrete Leray projector.

3. Projection-based reduced-order modeling for Navier-Stokes equations. In this
section, we discuss the construction of reduced-order models as surrogates for the large-scale
DAEs in (2.2). To preserve the DAE structure, we consider block Galerkin projections. To
that end, we aim at finding projection matrices Vv ∈ Rnv×rv and Vp ∈ Rnp×rp such that

v(t) ≈ Vvṽ(t) and p ≈ Vpp̃(t).

This leads to a reduced-order model that preserves the DAE structure:

Ẽ11
˙̃v(t) = Ã11ṽ(t) + Ã12p̃(t) + H̃ (ṽ ⊗ ṽ) + B̃1u(t),(3.1a)

0 = Ã>12ṽ(t),(3.1b)

where

Ẽ11 = V>v E11Vv, Ã11 = V>v A11Vv, Ã12 = V>v A12Vp,(3.2)

H̃ = V>v H (Vv ⊗Vv) , and B̃1 = V>v B1.(3.3)

The above reduced-order system can be obtained in a Galerkin projection framework using a
holistic projection matrix as follows:

V =

[
Vv

Vp

]
.
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POD projection bases. There exist several approaches to determine the projection ma-
trices; see, e.g., [1, 8, 12, 22]. Here, we consider the case when the bases are determined using
POD. In its basic form, an rv-dimensional projection matrix Vv is determined using the rv
principal singular vectors of the snapshot matrix:

V =
[
v(t0),v(t1), . . . ,v(tN )

]
.

One of many equivalent characterizations is the choice that minimizes the index

(3.4) ‖V−ΠrvV‖F

over all projections Πrv of rank k with VvV
>
v being the minimizing projection.

In the context of system (2.2), arising from the FEM or FVM discretization of the Navier-
Stokes equations, the matrix E11 is a symmetric positive definite mass matrix that induces the
discrete L2 norm via

‖v(t)‖E11
:=
√

v(t)>E11v(t)

and the corresponding index (3.4) as

(3.5) ‖L>E11
(V−ΠkV)‖F ,

where LE11 is a factor of E11, that is LE11L
>
E11

= E11. Hence, the rv-dimensional POD
basis that minimizes the index (3.5) and respects the mass matrix, is given by

Vv := L>E11
Ṽrv ,

where Ṽrv contains the rv dominant left singular vectors of the matrix

L−>E11
V;

cp. [5, Lem. 2.5].
REMARK 3.1. In the true divergence-free case, i.e., if in the algebraic constraint (2.2b)

g ≡ 0, then the solution snapshots and the POD modes fulfill the constraint such that

A>12V = 0 and A>12Vv = 0.

Thus, the reduced coefficients read Ã12 = 0. Accordingly, the projected equations decouple
and reduce to (3.1a). As a consequence, the reduced-order model obtained by POD has the
following ordinary differential equation structure

(3.6) Ẽ11
˙̃v(t) = Ã11ṽ(t) + H̃ (ṽ ⊗ ṽ) + B̃1u(t),

where the algebraic conditions are automatically satisfied by the POD basis Vv.
REMARK 3.2. Automatic compliance with the algebraic constraints assumes that the

POD modes have been computed with high accuracy. Unfortunately, standard computational
approaches for an SVD focus on the decomposition aspect rather than on correctness of
the singular vectors. In the numerical examples later in the paper, we illustrate how the
POD modes deviate from the actual subspace and how this limits the accuracy of POD for
incompressible Navier-Stokes equations. A remedy for this could be the use of highly-accurate
SVD computations [14] as it is available in LAPACK.
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4. Operator inference approach. In the previous section, we discussed the projection-
based model reduction based on POD. This approach requires the knowledge of the (semi-
discretized in space) system matrices in (2.2), the so-called system realization. The reduced
basis is obtained by compressing the time-domain snapshots of the system. Hence, the reduced-
order model is typically constructed in the framework of Galerkin projection. Although this
approach is effective in many set-ups, the assumption of having the full order model realization
available might lead to some practical limitations. In various instances, the dynamical system
or a partial differential equation solver work as a black-box software, and the user has no access
to the system realization. Hence, the authors in [35] have proposed an operator inference
framework that aims at constructing reduced-order models directly using data without having
access to the realization explicitly. In the following, we first give a brief overview of the
operator inference approach [35] for ODEs. Let us consider a system of the form

ẋ(t) = Ax(t) + H (x(t)⊗ x(t)) + Bu(t), x(0) = x0,

where x(t) ∈ Rn, u(t) ∈ Rm, and all the other system matrices are of appropriate size. We
are interested in constructing a reduced-order model of the form

(4.1) ˙̂x(t) = Âx̂(t) + Ĥ (x̂(t)⊗ x̂(t)) + B̂u(t), x̂(0) = x̂0,

where x̂(t) ∈ Rr such that x(t) ≈ Vx̂(t), where V is a projection matrix, and all the other
system matrices are of appropriate size. We aim at constructing the reduced-order model (4.1)
using the snapshots of x(t) at time steps t0, t1, . . . , tN and input snapshots at the same time
steps, i.e., u(t0), . . . ,u(tN ). Now, we first collect these snapshots in matrices as follows:

X =
[
x0, . . . ,xN

]
, U =

[
u0, . . . ,uN

]
,

where xi := x(ti) and ui := u(ti). Next, we determine dominant POD bases using the SVD
of the matrix X and construct the projection matrix, denoted by V ∈ Rn×r using the r
dominant basis vectors. This allows us to compute the reduced state trajectory X̂ = V>X,
where

X̂ :=
[
x̂(t0), . . . , x̂(tN )

]
with x̂(ti) = V>xi.

Furthermore, we denote the derivative of x̂(t) at the time steps t1 . . . , tN by ˙̂x(t0), . . . , ˙̂x(tN ),
which can be approximated using the reduced trajectory x̂(t); see, e.g., [28, 33]. Next, we
collect the time-derivative approximation of x̂(t) in a matrix as:

(4.2) ˙̂
X =

[
˙̂x(t0), . . . , ˙̂x(tN )

]
.

We would like to point out that there exist several commercial software that make ẋ(t) available
as well. In such a case, an alternative way to compute the time-derivative of x̂(t) is by
projecting ẋ(t) using the projection matrix V, i.e., ˙̂x(t) = V>ẋ(t). However, in this paper,
we consider the case where we do not have access to ẋ(t) and estimate it using the data of x̂(t).

Having the projected data, we solve the following least-squares optimization problem to
determine the operators of the reduced-order model (4.1):

min
Â,Ĥ,B̂

∥∥∥ ˙̂
X−

[
Â, Ĥ, B̂

]
D
∥∥∥ , where D =

 X̂

X̂ ⊗̃ X̂
U

 ,
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and the product ⊗̃ is defined as

G ⊗̃G =
[
g1 ⊗ g1, . . . , gN ⊗ gN

]
with gi being i-th column of the matrix G ∈ Rn×N . In many cases, we may find the matrix
D to be ill-conditioned. There exist various possible ways to circumvent this issue; see,
e.g., [30, 52]. In this paper, we use an SVD based approach; a similar approach is used in
the context of DMD as well, e.g., in [4]. For this, we consider first the SVD of the matrix D,
denoted as

D = UΣV>.

Next, we neglect the singular values of the matrix D smaller than a given tolerance; hence, we
can write

D ≈ ŨΣ̃Ṽ>,

where Ũ ∈ Rn+n2+m×r, Σ̃ ∈ Rr×r and Ṽ ∈ RN×r and the number of singular values, larger
than the tolerance, is r. As a result, we determine the matrices Â, Ĥ, B̂ by[

Â, Ĥ, B̂
]

=
˙̂
XṼΣ̃−1Ũ>.

Alternatively to the SVD based approach, one can use Tikhonov regularization. In the
considered numerical examples, we observed no major differences between both approaches.
But this could be different in other examples. We summarize all the necessary steps to obtain
reduced-order models using the operator inference approach in Algorithm 1 with a slight
modification, which is a regularization step.

REMARK 4.1. The tolerance, as an input to Algorithm 1, is a hyper-parameter. A larger
tolerance yields a larger mismatch of the data fidelity term, whereas, for a smaller tolerance,
the problem will become ill-conditioned. Therefore, one can employ the idea of an L-curve,
discussed in [21] in the context of computed tomography. The L-curve analysis allows us to
determine a good tolerance compromising between the matching of the data-fidelity term and
making the problem well-conditioned.

5. Operator inference for Navier-Stokes equations. This section tailors the operator
inference framework presented in the previous section to flow problems. We assume that the
flow is incompressible, and the Navier-Stokes equations govern the underlying dynamics (2.2).
With this assumption, consider the snapshots of the velocity and pressure vectors at the time
steps t0, t1, . . . , tN and associate snapshot matrices as follows:

(5.1) V =
[
v(t0),v(t1), . . . ,v(tN )

]
and P =

[
p(t0),p(t1), . . . ,p(tN )

]
with the corresponding input matrix

U =
[
u(t0),u(t1), . . . ,u(tN )

]
.

Our goal is to construct reduced-order models that can predict the evolution of the velocity
and pressure over time. We focus on constructing such models using only the velocity and
pressure snapshot matrices V and P defined in (5.1) without having access to the discretized
system (2.2) and its matrix realization. With this aim, let Vv and Vp be the dominant POD
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Algorithm 1 Operator inference approach to learn low-dimensional models using data [35].
Input: Snapshots x(t) and u(t) at time steps t0, t1, . . . , tN , tol.

1: Determine projection matrix V ∈ Rn×r, containing the dominant POD modes (or domi-
nant singular vectors) of the matrix X =

[
x(t0), . . . ,x(tN )

]
.

2: Compute the reduced trajectories x̂(t) at the same time steps:

X̂ :=
[
x̂(t0), . . . , x̂(tN )

]
,

where x̂(ti) = V>x(ti), i ∈ {0, . . . , N}.
3: Approximate the time-derivative of x̂(t) using the reduced trajectory and collect them in

a matrix as follows:

˙̂
X :=

[
˙̂x(t0), . . . , ˙̂x(tN )

]
.

4: Compute the SVD of the matrix

D =

 X̂

X̂ ⊗̃ X̂
U

 =: UΣVT ,

where Σ contains the singular values of the matrix D in the descending order.
5: Consider the singular values of the matrix D larger than tol. Let the number of singular

values larger than tol be r̃.
6: Compute the operators of the reduced-order model (4.1) as follows:[

Â, Ĥ, B̂
]

=
˙̂
XṼT Σ̃−1ŨT ,

where Ũ and Ṽ are the first r̃ columns of U and V , respectively, and Σ̃ is the principal
r̃ × r̃ block of the matrix Σ.
Output: Operators: Â, Ĥ, B̂ of a reduced-order model, having the structure as (4.1).

basis vectors of the velocity and pressure snapshot matrices V and P, respectively. As a
consequence, we can define the projected reduced velocity and pressure trajectories as follows:

V̂ =
[
v̂(t0) v̂(t1), . . . , v̂(tN )

]
= V>v V, and(5.2)

P̂ =
[
p̂(t0) p̂(t1), . . . , p̂(tN )

]
= V>pP.(5.3)

Moreover, let ˙̂v(ti) denote the derivative of the reduced velocity v̂(t) at time ti. It can
be approximated using the reduced velocity trajectory v̂ as given in (5.2). We collect the
derivative information of v(t) in a matrix:

˙̂
V =

[
˙̂v(t0), . . . , ˙̂v(tN )

]
.

Since the original system, arising from the Navier-Stokes discretization, has a quadratic
DAE structure as (2.2), one could blindly consider a least-squares problem that yields a
reduced DAE model (3.1), having the same structure as in (2.2). The matrices involved in
defining (3.1) are the solution of the following optimization problem:

min
Â11,Â12,Ĥ,B̂1

∥∥∥∥∥
[
Â11 Â12 Ĥ B̂1

Â>12 0 0 0

]
X̂− D̂

∥∥∥∥∥
2

F

,
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where

X̂ =


V̂

P̂

V̂⊗̃V̂
U

 and D̂ =

[
˙̂
V
0

]
.

Note, so far we have not used any additional information on the Navier-Stokes equations. One
of the important observations we make is that the dynamics of the velocity in the Navier-Stokes
equations is given independently of the pressure. Precisely, there is an underlying ODE for
the velocity that completely describes its dynamics, see (2.4). This can also be seen when a
reduced-order model is constructed using POD as described in Section 3 as long as the choice
of the POD basis is divergence-free, i.e., A>12Vv = 0. Moreover, the pressure and velocity
are connected via an algebraic equation as shown in (2.3). Hence, it is conceivable to find an
ODE for the reduced velocity v̂(t) as follows:

(5.4) ˙̂v(t) = Âvv(t) + Ĥv (v(t)⊗ v(t)) + B̂vu(t),

and determine the algebraic equation relating pressure and velocity in a reduced space of the
form

p̂(t) = Âpv(t) + Ĥp (v(t)⊗ v(t)) + B̂pu(t).(5.5)

To that end, we can determine the involved operator to define (5.4) by the classical operator
inference described in Section 4. For this, we aim at solving the following optimization
problem:

(5.6) min
Âv,Ĥv,B̂v

∥∥∥ ˙̂
V −

[
Âv, Ĥv, B̂v

]
D
∥∥∥
F
, where D =

 V̂

V̂ ⊗̃ V̂
U

 .
Similarly, we can solve the following optimization problem to find the operators of (5.5):

(5.7) min
Âp,Ĥp,B̂p

∥∥∥P̂− [Âp, Ĥp, B̂p

]
D
∥∥∥
F
.

As discussed in Section 4, the optimization problems (5.6) and (5.7) can be ill-conditioned;
thus, we employ the similar remedy based on the SVD as discussed therein.

Next, we analyze the non-intrusive reduced model (5.4) with respect to the one obtained
using an intrusive model. For this, we extend the result from [35, Sec 3.2] and show that the
non-intrusive model (5.4) converges to the intrusive one. For this, we first make the following
four assumptions:

ASSUMPTION 1. The time-stepping scheme for the discretized model (2.2) is convergent
in the L2 norm for v, i.e.,

max
i∈{1,...,T/∆t}

‖vi − v(ti)‖2 → 0 as ∆t→ 0.

ASSUMPTION 2. The derivative approximation from the projected state converges to
d
dt v̂(tN ) as ∆t→ 0.

ASSUMPTION 3. The matrix data D =

 V̂

V̂ ⊗̃ V̂
U

 has full column rank.

ASSUMPTION 4. Vv ∈ Rn×r is a divergence-free projected basis, i.e., A>12Vv = 0.
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THEOREM 5.1. Let Assumptions 1, 2, 3, and 4 hold. Let Ẽ11, Ã11, H̃ and B̃1 be the
reduced order ODE obtained by Galerkin projection as in (3.6) using the basis Vv. Then, for
every ε > 0, there exist an r < nv and a ∆t > 0, such that

(5.8) ‖Ẽ−1
11 Ã11 − Â‖F < ε, ‖Ẽ−1

11 H̃− Ĥ‖F < ε, and ‖Ẽ−1
11 B̃1 − B̂1‖F < ε.

Proof. The proof follows the same lines as the one for [35, Theorem 1]. From Assump-
tion 4, we know that the projected reduced model is of the quadratic ODE form (3.6), or
equivalently,

(5.9) ˙̃v(t) = Ẽ−1
11 Ã11ṽ(t) + Ẽ−1

11 H̃ (ṽ ⊗ ṽ) + Ẽ−1
11 B̃1u(t).

Let us denote D̃ =

 Ṽ

Ṽ ⊗̃ V̂
U

, where Ṽ =
[
ṽ1, ṽ2, . . . , ṽN

]
denotes the data matrix assem-

bling N snapshots of the projected reduced model (5.9) and

˙̃
V =

[
d
dt ṽ(t1), d

dt ṽ(t2), . . . , d
dt ṽ(tN )

]
is its right-hand side matrix. Hence, the reduced operators Ẽ−1

11 Ã11, Ẽ−1
11 H̃ and Ẽ−1

11 B̃1

represent one solution of the least-squares problem (5.6) for the data matrix D̃ and right-hand

side matrix ˙̃
V. Moreover, they represent the unique solution if the matrix D̃ has full rank.

Next, due to Assumption 1, notice that the projected velocities V̂ are perturbations of the
reduced velocities Ṽ, i.e., V̂ = Ṽ + δV. Therefore for ∆t→ 0 and dimension r increasing,
we have ‖δV‖F → 0, because the reduced model (5.9) is equivalent to the full-order ODE
(2.4) in the POD basis of order nv. Also, Assumption 2 together with the limiting case r = nv
leads to d

dt v̂(tk)→ d
dt ṽ(tk) as r → nv, for k = 1, . . . , N . As a consequence, the data matrix

D and the approximated derivative information ˙̂
V both can be interpreted as perturbation of D̃

and ˙̃
V respectively, i.e., D = D̃+ δD and ˙̂

V =
˙̃
V + δV̇, with ‖δD‖F → 0 and ‖δV̇‖F → 0

whenever ∆t → 0 and r → nv. Hence, as presented in [7], this leads to the following
asymptotic result for the least-squares problem:

min
Âv,Ĥv,B̂v

 lim
∆t→0
r→nv

∥∥∥ ˙̂
V −

[
Âv, Ĥv, B̂v

]
D
∥∥∥
F

 = min
Âv,Ĥv,B̂v

∥∥∥ ˙̃
V −

[
Âv, Ĥv, B̂v

]
D̃
∥∥∥
F
.

As a consequence, the pre-asymptotic case combined with Assumption 3 leads to the proof of
the theorem.

Theorem 5.1 shows that the identified operators converge to the POD projected operators
as r → nv. One particular limitation of this theorem is Assumption 4. Indeed, as mentioned
in Remark 3.2, the SVD of the velocity snapshot matrix might generate POD modes that will
not satisfy the algebraic constraints. This would result in intrusive velocity reduced-order
models that are not fully independent of the pressure. On the other hand, the operator inferred
model will still be a good approximation of the ODE velocity model (2.4). Another limitation
of this theorem is that the least-squares problem in (5.6) can be ill-conditioned. The numerical
remedy for that is the regularizer procedure from Remark 4.1. Although, Theorem 5.1 does
not hold in this case, it will be shown in Section 7 that the operator inference can still identify
reduced-order models with very accurate state errors.
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REMARK 5.2. If our goal is to learn a linear system

˙̂v(t) = Âvv(t) + B̂vu(t),

that captures the dynamics of the nonlinear Navier-Stokes equations as close as possible, in
the above described operator inference approach, we set Ĥ ≡ 0. Such a linear model can be
learned by solving the above least-squares problem

min
Âv,B̂v

∥∥∥ ˙̂
V −

[
Âv, B̂v

]
D
∥∥∥
F
, where D =

[
V̂
U

]
.

6. Inhomogeneities in the continuity equation. In case A>12v(t)−g(t) = 0 and g 6≡ 0,
we decompose the state v as v(t) = v>(t) + v⊥(t), where v>(t) ∈ kerA>12 that can be
defined as a solution to an ODE, and v⊥(t) is an element of the complement of kerA>12. This
is typically done in the literature to compute projection-based reduced-order models in such
cases, see, e.g., [1, 22]. An advantage of this decomposition is that we can employ model
reduction schemes developed for the homogeneous case, i.e., A>12v(t) = 0. With the discrete
Leray projection as in (2.5), one has

(6.1) v(t) = Πv(t) + (I−Π)v(t) =: v>(t) + v⊥(t)

with the remainder part given as

v⊥(t) = −E−1
11 A12(A>12E

−1
11 A12)−1g(t).

Assume that g(t) = B⊥u⊥(t) with u⊥(t) ∈ R; thus, we can write v⊥(t) = S⊥u⊥(t). In
this case, the pressure p is defined via

p(t) = −S−1(A>12E
−1
11 A11v(t) + A>12E

−1
11 H(v(t)⊗ v(t)) + A>12E

−1
11 f(t)−B⊥u̇⊥(t))

and the ODE (2.4) can be formulated for v> via

(6.2)
E11v̇>(t) = A11v>(t) + H(v>(t)⊗ v>(t)) + Nv>(t)u⊥(t)

+ H (S⊥ ⊗ S⊥)u2
⊥(t) + A12p(t) + f(t),

where N = H (I⊗ S⊥ + S⊥ ⊗ I).
REMARK 6.1. Because Πv̇⊥(t) ≡ 0, one can show that v̇⊥ does not occur in (6.2); cp.

[22, Sec. 6].
For a projection based reduction as described in Section 3, the following considerations

are relevant:
• If g ≡ 0 and the basis V is divergence-free, i.e. A>12V = 0, then Ã12 = 0 and the

projected equation (3.1a) recovers the corresponding projection of (2.4).
• If g 6= 0 and, thus, the corresponding basis V is not divergence-free when they are

computed using the original velocity snapshots, i.e.,

V =
[
v(t0),v(t1), . . . ,v(tN )

]
,

we first need to compute a divergence-free basis on the base of ΠV and v⊥(t) and
apply the projection procedure to the corrected full order model (6.2).

Note that the resulting ODE equation has some additional terms if compared (3.1a); these
are a bilinear term and square term of the input. But for a special case u⊥(t) ≡ const, the
bilinear term can be merged into the linear term, and the square input term becomes a constant.
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Furthermore, we mention that if the numerical realization of Π is impossible or too costly, one
may apply empirically divergence-free bases obtained by a projection defined by snapshots of
the discrete pressure gradient

P :=
[
A12p(t0),A12p(t1), . . . ,A12p(tN )

]
.

Let QN be an orthogonal basis of span (P). Then, for the projection Π̃ := I −QNQ>N , it
holds that Π̃P = 0. Consequently, for a basis Ṽv = Π̃Ṽv, we have Ṽ>v A12p(tk) = 0 at all
snapshot locations tk. Accordingly, for a Galerkin projection of (6.2) by Ṽv = Π̃Ṽv, one
may well assume that Ã12 = 0, since this condition holds at all data points.

When the exact projection Π is known and u⊥ ≡ const, the approximation of the full
state is defined as

v(t) ≈ Ṽ>v v̂(t) + v⊥(t) := Ṽ>v v̂(t) + (I− Π̃)v(t0) ≈ Ṽ>v v̂(t) + QNQ>Nv(t0),

where the reduced state v̂ solves the projected (and corrected) equations (6.2) with Ã12 set to
zero; cp. also (3.6).

The preceding considerations are only relevant for projection-based methods from Sec-
tion 3. These modifications are not necessary when a model is learned using data. It is based
on the fact that the dynamics of velocity can be governed by an ODE regardless of whether
the velocity satisfies divergence-free constraint or not. To elaborate more on it, we consider
the algebraic equations

A>12v(t) + B⊥u⊥(t) = 0,

implying

A>12v̇(t) + B⊥u̇⊥(t) = 0.

Next, we substitute the equation for v̇(t) from (2.2), we get

0 = A>12E
−1
11 A11v(t) + A>12E

−1
11 A12p(t) + A>12E

−1
11 H(v(t)⊗ v(t))

+A>12(E−1
11 f(t) + B2u̇⊥(t)).

With S := A>12E
−1
11 A12 being invertible, the pressure p can be expressed in terms of v and f :

p(t) = −S−1A>12E
−1
11 (A11v(t) + H(v(t)⊗ v(t)) + f(t))− S−1A>12B2u̇⊥(t).

Substituting p(t) in (2.2a) from the above equation, we obtain an ODE for the velocity:

(6.3) E11v̇(t) = Π>A11v(t) + Π>H(v(t)⊗ v(t)) + Π>f(t)−A12S
−1A>12B⊥u̇⊥(t).

This illustrates that there exists an underlying ODE for the velocity, even in the inhomogeneous
case. Hence, we can determine the underlying ODE by employing the proposed operator
inference approach, discussed in Section 5 with a slight modification. This is to include
learning the operator for the derivative of the input u⊥. This is one of the significant advantages
of the non-intrusive method over the intrusive POD method.

REMARK 6.2. One may argue that intrusive approaches can be applied to (6.3), but this
is highly undesirable since it requires the explicit computation of matrices such as Π>A11

to determine projected reduced matrices. Moreover, some matrices, e.g., Π>A11 may lose
sparsity, thus making intrusive model reduction computationally very expensive.
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7. Numerical experiments. In this section, we illustrate the efficiency of the proposed
method using numerical experiments and compare with the intrusive POD method and the
data-driven method DMD. Precisely, the following methodologies are compared:

• OpInf: the proposed operator inference from Section 5,
• OpInf_lin: its linear variant described in Remark 5.2,
• POD: intrusive model reduction based on POD, see Section 3,
• DMD: classical DMD approach, see [48, Algorithm 1],
• DMDc: DMD with control, see [36, Algorithm 3.4]), and
• DMDquad: DMD with quadratic term and control, see [18, Section 3.2].

Moreover, below, we provide some technical information that applies to the construction of
the surrogate models and the integration of the reduced systems:

• POD, OpInf and OpInf_lin surrogate models are simulated using the Python
routine odeint from scipy.integrate.

• To employ the operator inference approach, we require the time-derivative approxi-
mation of v̂(t). This is obtained using the reduced trajectory v̂(t) by employing a
fourth-order Runge-Kutta scheme.

• The DMD procedures are applied to the projected velocity trajectories (5.2) and then
lifted using the POD basis.

• We assume that the POD surrogate models are pure ODE models as (3.6), that is
Ã12 = 0 in (3.2). For that we apply the necessary corrections as indicated by the
theory laid out in Section 6. However, since this is not in the scope of the standard
POD approach, we will not take particular measures against the error introduced by
inaccuracies in the SVD (cp. Remark 3.2).

The code and the raw data is made available as mentioned in Figure 7.14.

7.1. A low-order demo example. In order to illustrate the proposed approach, we create
a low-order random demo example of the form (2.2). We have generated it using the seed
0 with nv = 3 and np = 1. We construct the data for velocity and pressure using an input
u(t) = sin(2t)e−0.05t with zero initial condition. Next, we learn surrogate models using
OpInf, DMD, DMDc, and DMDquad. We set the tolerance tol = 10−4 for the SVD in step 5
of Algorithm 1. In Figure 7.1, we compare the time-domain simulations of the original and
inferred model using OpInf. Moreover, we plot the mean-absolute error of the velocity of
the original and various inferred models in Figure 7.2. We observe that OpInf learns the best
model among the considered approaches that capture the dynamics of the given data. DMD
approaches that aim to learn a linear model fail to capture the dynamics; however, DMD with
quadratic observers improves the model as one can expect.

7.2. Navier-Stokes examples. We consider two test cases modeled by incompressible
Navier-Stokes equations; namely, the lid driven cavity and cylinder wake, to illustrate the
performance and highlight certain properties of the non-intrusive schemes. Both examples
consider two-dimensional flows. For the spatial discretization, we use Taylor-Hood elements
with piece-wise quadratic ansatz functions for the velocities and piece-wise linear ansatz
functions for the pressure on a triangulation; see Figure 7.3 for an illustration of the setup.

As described, e.g., in [6], a spatial discretization of the problems leads to a system of the
form (cp. (2.2))

E11v̇(t) = A11v(t) + A12p(t) + H (v(t)⊗ v(t)) + f(t),(7.1a)

0 = A>12v(t) + g(t),(7.1b)
yv(t) = Cvv(t),(7.1c)
yp(t) = Cpp(t),(7.1d)

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

LEARNING OF LOW-DIMENSIONAL MODELS FOR INCOMPRESSIBLE FLOWS 41

0 20 40

−0.5

0

Time

V
el

oc
ity

Original

0 20 40

−0.5

0

Time

V
el

oc
ity

OpInf

FIG. 7.1. A comparison of the velocity of the original model and inferred model using OpInf. Each curve
represents a different component of the velocity vector v(t) ∈ R3.
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FIG. 7.2. A comparison of the velocity obtained from the original model and inferred models using various
approaches.

where yv and yp denotes characteristic outputs that is derived from the state v and p via a
linear map, respectively; cp. [6, Ch. 8].

The driven cavity example describes an internal flow in a cavity that is driven by a
moving lid (depicted by Γ0 in Figure 7.3) modeled by a Dirichlet boundary condition for the
tangential component of the velocity. The resulting semi-discrete system is as in (7.1) with
g(t) ≡ 0. On the other hand, the cylinder wake example models flow through a channel
with a round obstacle in between. The flow is induced by a strongly imposed parabolic flow
profile at the inlet; depicted by Γ0 in Figure 7.3. The corresponding semi-discrete model is in
the form of (7.1) with g(t) ≡ const.

7.2.1. Numerical setup and computation of the snapshots. As for the discretization
of the time dimension, we apply an implicit-explicit Euler scheme—i.e., an explicit treatment
of the nonlinear term and implicit treatment of the linear term and, in particular, the constraint
equation in (7.1)—on an equidistant grid. For the initial value, we use the solution of the
corresponding steady-state Stokes problem.
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FIG. 7.3. An illustration of the computational domains of the driven cavity flow (above) and flow around a
cylinder (below), and example discretizations of the respective domains.

TABLE 7.1
The parameters of the numerical setups.

Parameter driven cavity cylinder wake

Reynolds number 500 60
state dimensions (nv, np) (3042,441) (9356,1289)
time interval [0, 6] [0, 2]
number of timesteps 512 512
number of snapshots 513 513
order of discretized model (7.1) 3042 5812

To probe the accuracy of the discretization and, thus, the reliability of the snapshots and
the resulting reduced-order models, we compute the resulting discrete approximation of the
velocities v

∫ T

0

‖v(t)‖L2(Ω)dt,

where T is the end time (see Table 7.1) and Ω is the domain of the problems, and compare
it to the corresponding approximation based on a finer spatial grid and a high-accuracy
time integration scheme with step-size control applied to the ODE formulation (2.4). As
indicated by the numbers presented in Table 7.2, the error in the spatial discretization is
dominating, so that the linear convergence of the time integration scheme only occurs on the
finest triangulation.

REMARK 7.1. For the large-scale Navier-Stokes examples, DMDquad produced only
unstable models; therefore, the results will not be reported.
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TABLE 7.2
The difference in the numerical approximation of the norm of the computed velocity to the approximation on the

finest spatial discretization with a high-accuracy time integration scheme.

driven cavity

nv/ number of timesteps 256 512 1024

722 −0.0988 −0.0992 −0.0993
3042 −0.0292 −0.0299 −0.0303
6962 0.0015 0.0007 0.0003

cylinder wake

nv/ number of timesteps 512 1024 2048

5812 −0.0022 −0.0025 −0.0026
9356 −0.0002 −0.0005 −0.0006
19468 0.0005 0.0002 0.0001

7.2.2. Example 1: driven cavity. Here, we report the numerical experiments conducted
for the driven cavity example. We consider the full-order model (FOM) semi-discretized
in space of order nv = 3042. To infer models, 513 velocity snapshots are generated in the
interval [0, 6] equally spaced in time using the implicit-explicit Euler scheme. It is again
worth noting that, for this example, g(t) ≡ 0. As a consequence, the velocity snapshot
matrix V satisfies the algebraic constraints, i.e., A>12V = 0. The snapshot data is split into
the training and tested data sets at a ratio 80:20, i.e., the data lying in the interval [0, 4.8] is
used to construct reduced-order models, while the data in the interval [4.8, 6] is used to test
the predictive capability of the obtained models. Then, the POD basis Vv is constructed using
the SVD of the training snapshot matrix V. Figure 7.4 depicts the decay of the singular values
of the snapshot matrix and shows how much the algebraic conditions are satisfied if the POD
basis is increased, i.e.,

‖A>12Vv‖F
‖Vv‖F

,

as a function of the reduced order rv. As expected, the POD basis does not satisfy the algebraic
constraints if a larger order for the reduced model is chosen. Consequently, for high orders
of the reduced models, the POD bases are not entirely divergence-free, leading to surrogate
models that have a non-negligible influence of the pressure. Ideally, these POD bases should
be divergence-free, but in standard implementations in Python and MATLAB, singular vectors
corresponding to smaller singular values are computed with low accuracy; cp. Remark 3.2.

We infer reduced-order models of order rv = 30 using OpInf, OpInf_lin, POD,
DMD, and DMDc. As mentioned in Remark 4.1, the least-squares problem arising in OpInf can
be ill-conditioned; thus, the choice of tol in step 5 of Algorithm 1 plays a crucial role. Hence,
for different tolerances in the range of [10−11, 10−6], Figure 7.5 shows the L-curve, i.e., for
each given tol, a scatter plot between the least-squares error and the norm of the least-squares
solution. Using the L-curve criterion, we set the tolerance as tol = 10−7. Figure 7.6 depicts
the time-domain simulation of some observed trajectories for order rv = 30. It also shows
the error ‖vFOM(t) − v̂ROM(t)‖2F committed by the different surrogate models. Surprisingly,
although the FOM had an intrinsic nonlinear behavior, OpInf, OpInf_lin, and DMDc have
a similar performance on this model. These three methodologies outperform DMD and POD for
the training data. Additionally, in the test data interval, the data-driven approaches have a
similar performance as the POD model. By solving the least-squares problem (5.7), one
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FIG. 7.5. driven cavity: L-curve for rv = 30

obtains the OpInf reduced model for the pressure. The time-domain evolution of the pressure
for the FOM and OpInf models are depicted in Figure 7.7 as well as the approximation error.

Next, we compute the relative time-domain L2 errors for the order of the reduced-
order models, ranging from 6 to 30. Figure 7.8 depicts the decay of those errors for the
different methodologies. For this example, the POD and DMD models reach their performance
limitations after some given reduced order for the training data. Additionally, on the test data,
the prediction errors of OpInf, OpInf_lin, and DMDc stays below with prediction error of
PODuntil the end of the testing interval.

This shows that, for this example, the presence of a control matrix B̂ in the surrogate
model structure is crucial for learning the dynamics of the FOM, and the quadratic structure Ĥ
seems not to play an important role.
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FIG. 7.6. driven cavity: A comparison of time-domain simulations of the original and reduced-order
models for rv = 30.

7.2.3. Example 2: cylinder wake. Now, we report the numerical experiments conducted
for the cylinder wake example. We have considered the semi-discretized in space FOM of
order nv = 5812. As in the previous example, the snapshot data is split into the training and
test data sets at a ratio 80:20. For this example, we again compute 513 velocity snapshots in
the interval [0, 2] equally spaced in time generated using the implicit-explicit Euler scheme.
Note that g(t) ≡ const and, hence, the snapshot matrix V does not satisfy the algebraic
constraints. However, as explained in Section 6, we can construct the divergence-free snapshot
matrix

V0 = ΠV =
[
v>(t0),v>(t1), . . . ,v>(tN )

]
by means of the Leray projection, see (6.1), where v>(t) is the divergence-free velocity
and, hence, A>12V0 = 0 holds. The POD surrogate model will then be computed using the
velocity free-snapshots as stated in Section 6. On the other hand, data-driven methods such
as OpInf and DMD to infer reduced models do not require such a transformation, and the
original velocity snapshots can directly be used to learn models. This is due to the fact that
there is a hidden quadratic ODE for the velocity v(t). Next, two POD bases are computed
using the snapshot matrix V and another for the divergence-free velocity V0. Figure 7.9
depicts the decay of the singular values of these snapshot matrices as well as the algebraic
error committed by the divergence-free POD basis.

Next, for rv = 30, surrogate models are obtained using the different methodologies. To
compare the qualities of these models, we perform time-domain simulations and compare them
in Figure 7.10. Additionally, Figure 7.11 shows the pressure evolution obtained using OpInf.
Moreover, we compute the relative time-domain L2 errors for different orders between 8 and
32, and the results are depicted in Figure 7.12. As in the driven cavity example, OpInf,
OpInf_lin and DMDc have a similar performance for the different reduced orders. Hence,
for this example, the control term B̂ is crucial for the identification of FOM. It is worth noticing
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FIG. 7.7. driven cavity: Time-domain evolution of the observed pressure (top), the values for the inferred
model for order rv = 30 and the difference in the outputs.
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FIG. 7.8. driven cavity: L2 errors between the velocities obtained using the original and other reduced-
order models, obtained using various method and orders.

that, for low and moderate Reynolds numbers, a linear approximation may provide reasonable
results; additionally, the identification of a OpInf_lin model poses less problems for the
optimizer. This observation is well reflected in our numerical experiments, also indicating that
the OpInf_lin performed similarly well as the nonlinear OpInf. Furthermore, Figure 7.13
depicts the velocity errors in each point of the domain at the time instance t = 2 for surrogate
models of order 30 constructed via DMDc and OpInf.
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FIG. 7.9. cylinder wake: We plot the decay of singular values (left) and show how the divergence-free
POD basis satisfies the algebraic constraints (right).
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FIG. 7.10. cylinder wake: A comparison of time-domain simulation of different models.

8. Conclusions. In this paper, we have tailored the operator inference approach [35] to
learn physics-informed low-order models for incompressible flows using data. We have shown
that although the velocity and pressure are coupled in incompressible flow problems, one
can identify a differential equation using only velocity snapshots that determine the velocity
field’s evolution. Moreover, there exists an algebraic equation linking pressure and velocity.
In Koopman’s philosophy, to learn dynamical systems, one can think of the velocity being the
right observers to determine the evolution of pressure. Therefore, learning of differential and
algebraic equations can be easily separated, and we can identify the underlying differential and

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

48 P. BENNER, P. GOYAL, J. HEILAND, AND I. PONTES DUFF

0.12

0.14
y p

(t)
=

C p
p(

t)

Full Order Model

0.12

0.14

y p
(t)

=
C p

p(
t) Operator Inference

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time t

10 5
10 3

10 7

y p
(t)

y p
(t)

Approximation Error

FIG. 7.11. cylinder wake: Comparison of the pressure output for the original model and the inferred model
using OpInf.
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FIG. 7.12. cylinder wake: L2 errors between the velocities obtained using the original and other reduced-
order models, obtained using various method and orders.

algebraic equations using only data. In contrast to that, the projection-based approaches such
as POD need to respect the differential-algebraic structure of the Navier-Stokes equations, in
particular if there is inhomogeneity in the incompressibility constraint or if the basis vectors
are not divergence-free. Furthermore, an affine-linear variant of DMD that is completely data-
based too, showed very similar performance with operator inference. However, as illustrated in
a small example, we expect to see a limit of DMD when the nonlinear term plays a significant
role in defining the dynamics.
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FIG. 7.13. Errors |v(t)− v̂(t)| for rv = 30 at t = 2 for the approximation via DMDc (top) and OpInf (bottom).

Code and Data Availability
The source code of the implementations, the raw data, and the scripts for computing the
presented results are available via

doi:10.5281/zenodo.4600918
and GitHub under the MIT license.

FIG. 7.14. Link to code and data.
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