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A DEEP LEARNING BASED NONLINEAR UPSCALING METHOD FOR
TRANSPORT EQUATIONS∗

TAK SHING AU YEUNG†, ERIC T. CHUNG‡, AND SIMON SEE§

Abstract. We will develop a nonlinear upscaling method for nonlinear transport equations. The proposed scheme
gives a coarse scale equation for the cell average of the solution. In order to compute the parameters in the coarse
scale equation, a local downscaling operator is constructed. This downscaling operation recovers fine scale properties
using cell averages. This is achieved by solving the equation on an oversampling region with the given cell average
as constraint. Due to the nonlinearity, one needs to compute these downscaling operations on the fly and cannot
pre-compute these quantities. In order to give an efficient downscaling operation, we apply a deep learning approach.
We will use a deep neural network to approximate the downscaling operation. Our numerical results show that the
proposed scheme can achieve good accuracy and efficiency.
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1. Introduction. Multiscale methods or numerical upscaling for linear problems have
been widely developed and are very useful for multiscale problems. Nevertheless, many
realistic problems are of nonlinear and multiscale nature. For example, the dynamics of
multi-phase flow and transport in heterogeneous media varies over multiple space and time
scales. In order to accurately capture the coarse scale dynamics, some types of nonlinear
upscaling are necessary. There are many linear and nonlinear upscaling techniques in the
literature, some of these include [1, 2, 3, 4, 7, 10, 11, 12, 15, 19, 20, 21, 22, 23, 26, 27, 32,
33, 35, 37, 40, 41, 42, 45, 50]. Nonlinear upscaling methods, such as the pseudo-relative
permeability approach [6, 8, 38], compute nonlinear relative permeability functions based on
single cell two-phase flow computations. It is known that these nonlinear approaches lack
robustness and that they are processes dependent [24, 25]. To overcome these difficulties, one
needs to find better nonlinear upscaling techniques, and it is the goal of this paper to do this.

Some nonlinear upscaling approaches are available in the literature. One example is the
nonlinear homogenization [29, 44], for which local nonlinear problems are solved on each
coarse grid block and are used in the construction of global coarse grid formulation. Nonlinear
homogenization is applied to many problems including the p-Laplace equations, pseudo-
elliptic equations, and parabolic equations [28, 29, 30]. These methods typically require
the assumption of scale separation, and may give limited accuracy for applications that do
not admit such assumption. Another nonlinear upscaling approach popular in computational
mechanics is the computational continua framework [34]. These methods, for example
[31, 34], use nonlocal quadrature to couple the coarse scale system stated on a union of some
disjoint computational unit cells with the aim of solving problems with non-scale-separation
heterogeneous media.

The nonlinear upscaling method developed in this paper is motivated by the general
framework, called Nonlinear Nonlocal Multicontinua Upscaling (NLNLMC), of nonlinear
upscaling presented in [18]. This framework originates from the Constraint Energy Minimizing
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Generalized Multiscale Finite Element Method (CEM-GMsFEM) [13, 14, 16]. The CEM-
GMsFEM gives multiscale basis functions that are localizable even for the case of highly
heterogeneous and high contrast media. The idea there is the use of local spectral problems
and an energy minimization principle. The basis functions are constructed by solving problems
on some oversampling regions. In addition, a rigorous convergence analysis is presented
showing that the convergence depends only on the coarse grid size and is independent of the
media. However, the degrees of freedom in CEM-GMsFEM do not have physical meaning. In
upscaling, one desires unknown variables that have physical meanings such as cell averages.
With this goal in mind, the Nonlocal Multicontinua Upscaling (NLMC) is introduced [17].
The key idea follows CEM-GMsFEM except that the multiscale basis functions are modified
so that the degrees of freedom represent the average of the solutions. Therefore, the resulting
coarse scale equation gives a relation between the cell averages of the solutions on the coarse
grid, and a convergence analysis is given in [52]. We remark that both CEM-GMsFEM and
NLMC methods are suitable for linear multiscale problems.

The framework of NLNLMC extends the concept of the NLMC method with the aim
of finding nonlinear upscaling for nonlinear problems [18]. In this case, one needs to avoid
the concept of basis functions, as they are only applicable to linear problems. In general,
the NLNLMC framework has three important methodological ingredients. First, we identify
macroscopic variables for each coarse grid block, similar to multicontinua variables [5, 39,
43, 49]. Secondly, we will construct local downscaling functions. In particular, given the
macroscopic variables, we will solve local problems on some oversampling regions to recover
fine scale properties. It is important that these local problems are solved on oversampling
regions, since this allows connectivity of neighboring macroscopic variables. Finally, a global
coarse scale equation is obtained by combining all local downscaling functions and using a
suitable coarse scale solver. The resulting scheme is a coarse scale equation that relates all
macroscopic variables. Moreover, the connectivity is nonlocal as the oversampling regions
can be several coarse grid layers wide.

The goal of this paper is to construct a nonlinear upscaling approach for nonlinear
transport equations. We will apply the general concept of NLNLMC together with deep
learning techniques. For the macroscopic variable, we will use cell average on coarse elements,
and for the global coarse scale solver, we will use an upwind finite volume scheme. The main
component of the proposed scheme is the local downscaling function as these will provide the
parameters required in the final coarse grid equation. Given a set of macroscopic values, we
will solve a local problem on an oversampling region to construct a fine scale downscaling
function, whose mean values on coarse elements match the given macroscopic values. In
general, this is an expensive task as these local problems are solved on-the-fly when the
solution averages are given since one cannot easily pre-compute these problems. This fact
motivates the use of deep learning. There are in the literature some works on using deep
neural networks to learn macroscopic parameters in coarse scale or reduced order models;
see for example [9, 46, 47, 48, 51]. The main idea is to consider the macroscopic variables
as input and the downscaling functions or their average values as output. Then suitable deep
neural networks are trained and used to approximate this expensive procedure. The resulting
approach allows the use of deep neural network to learn the parameters required in the coarse
scale equations. This can give a significant improvement in the computational times, as we
will see in our numerical simulations. We remark that using deep neural network for reduced
models allows a robust learning process as there are fewer parameters to be learned.

The paper is organized as follows. In Section 2, we will present the problem formulations
and some basic notations. In Section 3, the key elements of the proposed method will be
discussed in detail. This includes the construction of the method and the deep neural network,
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as well as some implementation details. Computational results will be presented in Section 4
to validate our scheme. We will show the performance of our method, and compare our method
with a standard scheme without using nonlinear upscaling. We will also compare the accuracy
and efficiency with and without the use of deep neural networks. Finally, a conclusion is given
in Section 5.

2. Preliminaries.

2.1. Basic setup. Let Ω ⊂ R2 be a computational domain in two space dimensions and
let T > 0 be a fixed time. Our goal is to design a nonlinear upscaling method for the following
transport equation:

∂S

∂t
+ div (vλ(S)) = f, in (0, T )× Ω,

S = g, on (0, T )× Γ,

S(0, x) = S0(x), in Ω,

where Γ = {x ∈ ∂Ω : v · n < 0} is the inflow boundary of Ω, n is the outward unit normal
vector of ∂Ω and f , g, and S0 are given functions. Motivated by applications, we assume that
the velocity v is divergence free, that is, div(v) = 0. Moreover, the function λ : R → R is
a nonlinear function. This problem is motivated by two phase flow and transport problems,
in which the velocity v is given by Darcy’s law [36]. In general, the transport equation and
Darcy’s law are coupled. In this paper, we focus only on solving the nonlinear transport
equations. The development of upscaling methods for the coupled problem will be considered
in a forthcoming paper.

Next, we introduce the notions of coarse grids. Let TH be a conforming partition of Ω
into finite elements, where H is the coarse mesh size. This partition is called coarse grid. Let
NK be the number of elements in the coarse mesh. Then we assume that each coarse element
is partitioned into a connected union of fine-grid blocks and this partition is called Th. Note
that Th is a conforming refinement of the coarse grid TH with the mesh size h. That is, for
any τ ∈ Th, there exist K ∈ TH such that τ ⊂ K; see Figure 2.1 for an illustration. In our
method, we will develop a nonlinear upscaling technique that gives the coarse grid mean value
of the solution S as a function of time. At the same time, we will use the fine grid and local
problems to construct the parameters in the proposed upscaling model.

2.2. Oversampling domains. The use of oversampling domains plays a crucial role in
our nonlinear upscaling technique. Two types of oversampling domains will be used. The
first type of oversampling domains, simply called oversampling domain, will be used for local
problems. These local problems will be solved on oversampling regions, and the parameters
in the nonlinear upscaled model will be determined based on the these local solutions. For
the transport type problems considered in this paper, the size of the oversampling domains is
determined by a suitable coarse time scale and the speed of propagation. The second type of
oversampling domains, called double oversampling domain, will be used for the purpose of
imposing boundary conditions for local problems. This kind of domains allows an artificial
layer so that artificial boundary condition imposed on them will not affect the solution in the
interior. In the next paragraph, definitions of the oversampling domains are given.

Let K be a coarse element in TH . We will construct an oversampling domain K+ and a
double oversampling domain K++. The oversampling domain K+ is obtained by enlarging
K by several coarse grid layers, while the double oversampling domain K++ is obtained
by enlarging K+ by several coarse grid layers. An illustration of the fine grid, coarse grid,
and oversampling domain are depicted in Figure 2.1. In this example, the oversampling
domain K+ is obtained by enlarging K by one coarse grid layer, and the double oversampling
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domainK++ is obtained by enlargingK+ by one coarse grid layer. The oversampling domain
K+ contains a total of nine coarse rectangles and the double oversampling domain K++

contains twenty-five coarse rectangles if the coarse rectangle is not near the boundary. These
oversampling domains are used for the computations regarding the local problem.

FIG. 2.1. An illustration of the coarse grid, fine grid and oversampling domains.

3. Method description.

3.1. Algorithm. In this section, we are going to present the construction of our proposed
method. The main idea is based on the nonlinear NLMC framework proposed in [18]. We
will apply the general concept from [18] but with some new concepts specific for the transport
problem considered in this paper. We consider the following nonlinear transport problem,
in which we assume the sources f = 0 and g = 0 to simplify the notations. The proposed
method can be easily extended to the case of nonzero sources. We consider

∂S

∂t
+ div (vλ(S)) = 0, in (0, T )× Ω,

S = 0, on (0, T )× Γ,

S(0, x) = S0(x), in Ω.

Our goal is to design a nonlinear upscaling method that can provide the cell averages of
the solution S(t, x) on the coarse grid TH .

For the time discretization, we will apply the backward Euler scheme. Let ∆t > 0 be the
time step size and let tn = n∆t. The backward Euler scheme reads

(3.1) γSn+1 + div
(
vλ(Sn+1)

)
= γSn

where γ = 1
∆t and Sn = S(tn, x). Our proposed nonlinear upscaling method is designed to

solve (3.1). That is, given the mean values of the solution at time tn, we will find the mean
values of the solution at tn+1. We use the notation S̄nα to denote the average of Sn on the
coarse cell Kα ∈ TH . Our proposed scheme will compute {S̄n+1

α } by using {S̄nα}.
Assume that {S̄nα} are known. Following the general framework proposed in [17, 18, 52],

we will solve a local problem to find a downscaling function. To construct this downscaling
function, we consider a set of values {S̄β}, where each S̄β represents the average value of a
certain function on the coarse cell Kβ . We remark that these values S̄β will be the required

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

NONLINEAR UPSCALING FOR TRANSPORT EQUATIONS 191

values {S̄n+1
β } after solving our upscaled model. To get the required downscaling function,

we will solve a local problem to find a local downscaling function ψ̃ such that the mean values
of ψ̃ on the coarse cells are given by the values {S̄β}. Specifically, let K++

α be a double
oversampling domain of the coarse cell Kα ∈ TH . We consider the local problem:

γψ̃ + div
(
vλ(ψ̃)

)
= γS̄n, in K++

α ,(3.2)

ψ̃ = 0, on ∂−K++
α ,(3.3)

1

|Kβ |

∫
Kβ

ψ̃ = S̄β , Kβ ⊂ K+
α and Kβ ∈ TH(3.4)

where ∂−K++
α is the inflow boundary of K++

α . The above problem is solved numerically on
the fine grid Th. The solution ψ̃ will give the required local downscaling function. Next, we
restrict the solution ψ̃ on K+

α and denote it as ψα, which is the required local downscaling
function whose support is K+

α . We remark that a suitable Lagrange multiplier is needed to
solve (3.2)–(3.4).

Using these local solutions ψα, we define a global downscaling function ψ =
∑
χαψα,

where {χα} is a set of partition of unity functions corresponding to the overlapping partition
{K+

α } of the domain. We remark that this global function ψ depends on the mean values {S̄β}.
Now we solve (3.1) using this global downscaling function. We will integrate the equation
(3.1) on each coarse element Ki and replace the true solution Sn+1 by ψ. In particular, we
have

(3.5) γ

∫
Ki

ψ +

∫
∂Ki

λ(ψ)v · n = γ|Ki|S̄ni .

Here, we use the notation S̄n to denote the values (S̄n1 , . . . , S̄
n
NK

). We will solve this nonlinear
equation and obtain the unknowns {S̄β}. These values will be the required solution at the time
step tn+1. That is, we set S̄n+1

β to be the solution obtained by solving (3.5).
The numerically solution of (3.5) is computed by applying a fixed point type iteration. Let

S̄(m) = (S̄
(m)
1 , . . . , S̄

(m)
NK

) be them-th iterate. We can then use the values S̄(m)
i to construct the

global downscaling function ψ(S̄
(m)
1 , . . . , S̄

(m)
NK

). Finally we perform the following updating
procedure to find the mean values S̄(m+1)

i :{
F

(m)
i (S

(m)
) = γ

∫
Ki
ψ(S

(m)
)− γ|Ki|S̄ni +

∫
∂Ki

λ(ψ(S
(m)

)v · n
S̄(m+1) = S̄(m) − F (m)

(3.6)

with a given initial guess S̄(0). Assume that the above iteration converges at the M -th iteration.
We will set S̄n+1 = S̄(M). We remark that each iteration of the above updates requires
the construction of the global downscaling function ψ(S̄

(m)
1 , . . . , S̄

(m)
NK

), which requires the
solution of many local nonlinear problems (3.2)–(3.4). With the use of the proposal deep
learning approach, which will be presented in Section 3.3, this step becomes much more
efficient.

3.2. Computation of local problems. We will use Newton’s method to solve the local
problem (3.2)–(3.4). We recall that the value S̄n is fixed. For a given {S̄β}, the problem
(3.2)–(3.4) defines a function ψ̃ on K++

α . We note that the value {S̄β} can be considered as
a piecewise constant function, denoted as S̄, defined on the coarse grid supported in K++

α .
Thus, the system (3.2)–(3.4) defines a map which takes a piecewise constant function {S̄β}
as input and returns a fine scale function ψ̃. In our numerical simulations, we take ψ̃ to be
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piecewise constant function on the fine grid. In order to ensure the constraint (3.4) is satisfied,
we will introduce an additional variable µ. This variable µ is a piecewise constant function on
the coarse grid whose support is K++

α . In addition, the system (3.2)–(3.4) will be solved on
the fine grid by using the upwind finite volume scheme. In the following, we will present the
mathematical details.

The equation (3.2) will be discretized by the upwind finite volume scheme. Accordingly,
for each fine grid element τj ∈ Th, we will apply the upwind finite volume scheme to (3.2).
This motivates us to define the following two operators:{

Feqn,j(ψ̃, µ) = γ|τj |ψ̃j +
∫
∂τj

λ(ψ̃up)v · n−
∫
τj
S̄n −

∫
τj
µ, ∀τj ⊂ K++

α ,

Fmean,β(ψ̃, µ) = −|τj |
∑
τj⊂Kβ ψ̃j + |Kβ |S̄(m)

β , ∀Kβ ⊂ K+
α ,

where ψ̃up denotes the upwind flux. We use the notation Feqn to denote the vector whose j-th
component is Feqn,j , and use the notation Fmean to denote the vector whose β-th component is
Fmean,β . We remark that Feqn,j gives the discretization of (3.2) on the fine grid cell τj ∈ Th,
and Fmean,β corresponds to (3.4) on the coarse element Kβ . Next, we define

F (ψ̃, µ) =

{
Feqn(ψ̃, µ)

Fmean(ψ̃, µ).

The goal is to apply Newton’s method to solve F (ψ̃, µ) = 0, which gives (3.2) and (3.4). The
boundary condition (3.3) is imposed by the numerical flux ψ̃up.

In order to apply Newton’s method, we need the Jacobian matrix J of F , which is given
by

J(ψ̃, µ) =

[
∂Feqn

∂ψ̃

∂Feqn

∂µ
∂Fmean

∂ψ̃

∂Fmean
∂µ

]
=

[
∂Feqn

∂ψ̃
B

BT 0

]
,

where

∂Feqn,j

∂ψ̃i
= γ|τj |δi,j +

∫
∂τj

λ′(ψ̃up) v · n δi,j and Bβ,j = −|τj |δKβ,j .

where δi,j is the delta function and

δKβ,j =

{
1 if τj ⊂ Kβ ,

0 otherwise.

Newton’s method is then given by(
ψ̃(n+1)

µ(n+1)

)
=

(
ψ̃(n)

µ(n)

)
− J(ψ̃(n), µ(n))−1F (ψ̃(n), µ(n))(3.7)

with a suitable initial guess (ψ̃(0), µ(0)). We will stop the iteration if the value F (ψ̃(n), µ(n))
is sufficiently small. This procedure yields the solution of (3.2)–(3.4).

3.3. Deep neural network model for local downscaling functions. We let the func-
tion N be a network of L layers, x be the input and y be the corresponding output. We
write

N (x; θ) = σ (WLσ (· · ·σ (W2σ (W1x+ b1) + b2) · · · ) + bL)
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where θ := (W1, . . . ,WL, b1, . . . , bL), Wi are the weight matrices, bi are the bias vectors, and
σ is the activation function. A neural network describes the connection of a collection of nodes
(neurons) sitting in successive layers. The output neurons in each layer are simultaneously
the input neurons of the next layer. The data propagate from the input layer to the output
layer through hidden layers. The neurons can be switched on or off as the input is propagated
forward through the network.

Suppose we are given a collection of data samples {(xj , yj)}. The goal is then to find θ∗

by solving an optimization problem

θ∗ = argmin
θ

1

Ns

Ns∑
j=1

∥∥∥yj −N (xj ; θ)
∥∥∥2

2

where Ns is the number of the samples. The function 1
Ns

∑Ns
j=1 ‖yj −N (xj ; θ)‖22 is known

as the loss function. One needs to select suitable numbers of layers and neurons in each layer,
the activation function, the loss function, and the optimizers for the network.

We will use a deep neural network N to model the process of constructing downscaling
functions. Recall that the local downscaling function is defined by (3.2)–(3.4). We note that
there are two sources of inputs. The first input contains the values {S̄ni } from the time step n.
The second input contains the values {S̄(m)

β } in the fixed point iteration (3.6). Moreover, we
observe that the required outputs are the values of the global downscaling function ψ restricted
to the coarse grid edges, since only these values are used in the numerical scheme (3.5).

Therefore, we use the following choices in our deep neural network:
• Input: x = {S̄(m), S̄n}.
• Output: y = ψ|∪jEj , where Ej is the j-th coarse edge. This is the restriction of ψ on

all coarse edges.
• Data: Ns = 5000, that is 5000 training data samples are used.
• Standard loss function: 1

Ns

∑Ns
j=1 ‖yj −N (xj ; θ)‖22.

• Activation function: The popular ReLU function (the rectified linear unit activation
function) is a common choice for activation function in training deep neural network
architectures.

As for the input of the network, we use x = {S̄(m), S̄n}, which are the vectors containing
the approximate mean value S̄(m) from the current iteration in (3.6) and the mean value S̄n at
the n-th time step of the scheme (3.5). The input x is a random vector such that each entry is
ranged from 0 to 1. The range is based on the range of the initial condition. Since the range of
the initial condition will affect the range of the mean value of the next time step, we choose
the range of random input vector x to be [0, 1].

The corresponding output data are y = ψ|∪jEj , which contains the values of the global
downscaling function on each coarse edge. In order to obtain the data y, we use randomly
generated input x and solve the local system (3.2)–(3.4) together with ψ =

∑
χαψα to obtain

the global downscaling function ψ, which will give the output data y.
In between the input and output layer, we test on 2 hidden layers with the number of

neurons ranging from 4NK to 8NK in each hidden layer, where NK is the number of the
coarse elements. We note that the size of input vector x is 2NK and the size of output vector y
is nENE , where NE is the number of coarse grid edges and nE is the number of fine grid cells
on the coarse edge E. In the training, there are Ns = 5000 data samples of (xj ,yj) collected.

In between layers, we need the activation function. The ReLU function (rectified linear
unit activation function) is a popular choice for activation function in training deep neural
network architectures. We will use the standard loss function: 1

Ns

∑Ns
j=1 ‖yj −N (xj ; θ)‖22.

As for the training optimizer, we use AdaMax, which is a stochastic gradient descent (SGD)
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type algorithm well-suited for high-dimensional parameter space, in minimizing the loss
function. We remark that the network is a fully-connected network. In particular, all the
inputs x and outputs y are connected. Also, a more systematic strategy to select the hyper
parameters will be investigated in the future.

3.4. Stacked local neural network model. As mentioned in the above section, the
neural network N is fully connected. For small numbers of input and output, this fully
connected network works well, as it can be seen in the first three examples in our numerical
tests. For larger scale problems, training a fully connected network is challenging due to the
large number of parameters θ. Because of this, we design a local neural network model, which
is illustrated in Figure 3.1. Some numerical performances will be shown in Section 4.4.

Our local upscaling model is the key to the design of the stacked local neural network
architecture. The input of the network is the set of all cell averages over the whole computa-
tional domain as before. In the first layer of the local network model, we will form subsets of
these input cell averages. In particular, each subset contains cell averages for an oversampling
region K++. Each set of these cell averages will be the input of a local fully connected neural
network, as shown in the middle part of Figure 3.1. The action of the local neural network is
to provide an approximate solution of (3.2)–(3.4). Accordingly, the output of the local neural
network is the local downscaling function restricted to the coarse grid edges. In the last layer
of the stacked local neural network model, the outputs of the local networks are combined
using partition of unity functions. The output is the global downscaling function restricted
to the coarse grid edges. We remark that, due to the local connectivity, there are much fewer
network parameters to be trained, and we observe much better performance compared with a
global fully connected network. We also remark that weights of the first and the last layers of
the networks are fixed. We will give a quantitative discussion in Section 4.4.

4. Numerical examples. In this section, we will present some numerical examples to
demonstrate the performance of our proposed deep learning based nonlinear upscaling method.
In our simulations, we will take λ(S) = S2 for the first three examples and λ(S) = S2

S2+(1−S)2

for the last one. Moreover, the oversampling region K+ is chosen by enlarging the coarse cell
K by one coarse grid layer, and the double oversampling region K++ is chosen by enlarging
K+ by one more coarse grid layer. This choice of oversampling regions is motivated by
the coarse time step size and the velocity of propagation. We will show the performance
by using our upscaling method without using deep learning in the construction of the local
downscaling functions. In this case, the error will only come from the approximation of the
upscaling method. In addition, we will present the performance of our method with the use
of deep neural network to approximate the local downscaling functions. In this case, the
error in this deep neural network approximation will be added to the solutions. However, the
computational efficiency improves significantly. In both cases, we observe that our proposed
upscaling method is able to provide accurate numerical approximations. In our simulations,
reference solutions are obtained by the standard upwind finite volume scheme on the fine grid
and the use of Newton’s method as nonlinear solver. All the experiments are preformed on
a server with the Ubuntu 18.04 system with a 32-core 2.2 GHz Xeon CPU, 200 GB RAM,
and 4 NVIDIA Tesla V100 GPUs with 32 GB each. The neural network model is build up by
Python Deep Learning Library TensorFlow and other part of algorithm is speed up by using
open-source array library Cupy accelerated with NVIDIA CUDA.

4.1. Example 1. For the first numerical example, we use the time step ∆t = 0.1 and the
constant velocity v = (1, 1) to test our algorithm. As a result, the constant γ = 1

∆t = 10. The
coarse mesh is 20× 20 and the fine mesh is 100× 100. In this case, due to the finite speed of
propagation, the size of the oversampling region K+ is enough to capture the solution at the
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FIG. 3.1. Stacked local neural network model.

next time step from the solution at the previous time step originated in K. Also, we choose
the initial condition as S0(x, y) = (1 + sin(2πx) sin(2πy))/2. Figure 4.1 displays a plot
of S0. The initial condition is bounded between 0 and 1. For the numerical computation of
(3.5) to find the mean value S̄n+1 for the next time step, we use the fixed point type iteration
(3.6) so we need a stopping criterion to stop the iteration. The fixed point type iteration
(3.6) takes about 100 iterations to converge. In our simulations, we choose the condition
‖S̄(m+1) − S̄(m)‖ ≤ 0.0001 as the stopping criterion. Also, the Newton’s method to solve
the local problem (3.2)–(3.4) takes about 10 iterations to converge. Furthermore, each training
data needs approximately 10 s to generate, and the network needs about 15 to 30 minutes for
the training process.

In this numerical example, we test the algorithm by running five time steps. Figure 4.2
displays the solutions for the first five time steps of our proposed scheme using neural network
model. We also depict the average value of the reference solution on the coarse grid in this
figure. From these results, we observe a very good agreement between these two solutions.
We also observe that the numerical solution is bounded between 0 and 1, which holds for the
reference solution. We remark that we did not impose any bound preserving properties in the
training of our deep neural network. An improved network with this desirable property will be
developed in future research.
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FIG. 4.1. Initial condition for Example 1.

TABLE 4.1
Relative root mean square error of the mean value for Example 1.

time step relative error using relative error using the upscaled relative error using
neural network model model without neural network the finite volume method

t = 0.1 0.04379 0.03210 0.06180
t = 0.2 0.04728 0.04070 0.08007
t = 0.3 0.05264 0.04574 0.09705
t = 0.4 0.05837 0.05227 0.10891
t = 0.5 0.06569 0.05887 0.11433

For the proposed neural network model, the relative error of the mean value at the first time
step is 0.04379. The relative error of the mean value at the fifth time step is 0.06569. Table 4.1
lists the relative errors for the mean value of the solution using our neural network model.
From the results in this table, we observe that our scheme exhibits a very good performance.
We also observe that the relative error of the mean value rises slowly with increasing time. In
terms of the computational efficiency, about 45 s were used for computing one time step for our
neural network model. As a comparison, if we compute the downscaling functions without the
use of neural networks, we need about 4500 s for the computation of one time step. Thereby
most of the computational time is consumed on solving the local downscaling functions. We
conclude that the use of deep neural network model can reduce the computational time without
sacrificing the accuracy.

We also report the results using the downscaling functions without deep neural network
in the construction of the proposed upscaling model. The relative error of the mean value
at the first time step is 0.03210. The relative error of the mean value at the fifth time step is
0.05887. Table 4.1 shows the relative errors of the mean value when our method is applied
without the use of deep neural network. The performance of solving the local downscaling
functions numerically without the use of deep neural network and solving the local downscaling
functions using neural network model are similar as can be seen from Table 4.1.

We next compare our scheme with a standard coarse-grid finite volume method with
upwind flux. The relative error of the mean value at the first time step is 0.06180 and at the
fifth time step 0.11433. Table 4.1 shows the relative errors of the mean value when a standard
upwind finite volume method is applied on the coarse grid. We notice that the performance of
our method with the use of deep neural network model is better than a simple application of a
coarse-grid finite volume method.
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FIG. 4.2. Solutions at the first 5 time steps t = 0.1, 0.2, . . . , 0.5 for Example 1. Left: upscaled reference
solution. Right: numerical solution using deep learning based upscaling.
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4.2. Example 2. For the second numerical example, we also use the time step ∆t = 0.1.
We use a velocity given by

v(x, y) =
(
1 + sin2(2πx) sin(2πy), 1 + sin(4πx) cos(2πy)

)
to test our algorithm. Figure 4.3 displays the plot of v(x, y). The coarse mesh is also chosen
as 20 × 20 and the fine mesh is 100 × 100. Since the velocity is bounded between 0 and
2, the oversampling region K+ is able to keep all information originated from the coarse
element K within one coarse time step. Also, we choose the same initial condition as before,
S0(x, y) = (1 + sin(2πx) sin(2πy))/2, and the same stopping criterion as in Example 1,
‖S̄(m+1) − S̄(m)‖ ≤ 0.0001.

FIG. 4.3. The velocity v(x, y) = (v1, v2) for Example 2. The left figure is v1 and the right figure is v2.

In this numerical example, we test the algorithm with 5 time steps. Figure 4.4 displays the
numerical solutions for the first 5 time steps computed using our proposed scheme with deep
neural network model. In the same figure, we also show the corresponding average values of
the reference solution on the coarse grid. From these figures, we observe very good agreement
between the numerical solution and the average reference solution.

TABLE 4.2
Relative root mean square error of the mean value for Example 2.

time step relative error using relative error using the upscaled relative error using
neural network model model without neural network the finite volume method

t = 0.1 0.04468 0.02904 0.06116
t = 0.2 0.04587 0.03579 0.07144
t = 0.3 0.04727 0.04223 0.08546
t = 0.4 0.04795 0.04829 0.09330
t = 0.5 0.05655 0.05499 0.09634

For our proposed scheme with the use of deep neural network model, the relative error
of the numerical solution at the first time step is 0.04468 and at the fifth time step 0.05655.
Table 4.2 shows in the second column the relative errors of the numerical solution computed
using our proposed scheme with neural network model. We observe a very good performance.
Also the computational time is about 50 s for the computation of one time step of using the
proposed neural network model. As a comparison, if we compute the downscaling functions
without neural networks, we need about 5500 s for computation of one time step.
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FIG. 4.4. Solutions at the first 5 time steps t = 0.1, 0.2, . . . , 0.5 for Example 2. Left: upscaled reference
solution. Right: numerical solution using deep learning based upscaling.
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As a comparison, we present the results for our scheme without neural network. The
relative error of the numerical solution at the first time step is 0.02904 and at the fifth 0.05499.
Table 4.2 shows in the third column the relative errors of the numerical solution computed
using our scheme without neural network. That is, we solve the local problem (3.2)–(3.4)
directly. We observe that the performance of using neural network and without the use of
neural network are similar. This shows that our proposed deep neural network can increase the
efficiency of the method without losing accuracy.

Again, we show the performance of using a standard coarse-grid finite volume method
with upwind flux. The relative error of the numerical solution at the first time step is 0.06116
and at the fifth 0.09634. Table 4.2 shows in the last column the relative errors of the numerical
solution computed using finite volume method. Comparing the results in Table 4.2, we observe
that our proposed nonlinear upscaling is able to give better numerical solutions.

4.3. Example 3. In this example, we test a more complicated initial condition,

S0(x, y) = (1 + sin(4πx) sin(8πy))/2.

Figure 4.5 displays the figure of S0(x, y). This new initial condition is also bounded between 0
and 1. For this third numerical example, we will also consider the time step as ∆t = 0.05 and
use the second example’s velocity given by

v(x, y) = (1 + sin2(2πx) sin(2πy), 1 + sin(4πx) cos(2πy))

to test our algorithm. The coarse and the fine meshes are again 20 × 20 and 160 × 160
respectively. Same as before, we choose the condition ‖S̄(m+1) − S̄(m)‖ ≤ 0.0001 as the
stopping criterion.

FIG. 4.5. Initial condition for Example 3.

Figure 4.6 displays the learning curve of neural network for Example 3. We take about
5000 training data into the neural network and about 1000 validation data to monitor the
learning process of the neural network. Thanks to enough training data, the validation loss is
only slightly higher than the loss of training data.
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FIG. 4.6. Learning curve of neural network for Example 3.

In this numerical example, we test the algorithm with 10 time steps. Figure 4.7 show the
first 10 time steps computed using our proposed scheme with deep neural network model. The
corresponding average values of the reference solution on the coarse grid are shown in the
same figure. We observe that these two solutions are in very good agreement.

TABLE 4.3
Relative root mean square error of the mean value for Example 3.

time step relative error using relative error using the upscaled relative error using
neural network model model without neural network the finite volume method

t = 0.05 0.02351 0.01689 0.09954
t = 0.10 0.02734 0.01971 0.12713
t = 0.15 0.03157 0.02378 0.13426
t = 0.20 0.03408 0.02654 0.13236
t = 0.25 0.03669 0.02903 0.12727
t = 0.30 0.03862 0.03116 0.12182
t = 0.35 0.04108 0.03304 0.11698
t = 0.40 0.04404 0.03464 0.11338
t = 0.45 0.04720 0.03602 0.11118
t = 0.50 0.05050 0.03737 0.10990

For the proposed neural network model, the relative error of the numerical solution of first
time step is 0.02351 and of the tenth time step is 0.05050. Table 4.3 shows the relative errors
of the numerical solution of using our proposed upscaling scheme with deep neural network
model. We also observe that the relative error of the numerical solution rises slowly with
increasing t. The time used here is about 70 s for computation of one time step of using neural
network model. As a comparison, if we compute the local downscaling functions without the
use of deep neural network, we need about 6000 s for computation of one time step. Since the
velocity of Examples 2 and 3 is the same, we only need to use the same neural network model
from Example 2 and apply for this new initial condition.

As a comparison, we report the results using the downscaling functions without neural
network in the third column of Table 4.3. The relative error of the numerical solution at the
first time step is 0.01689 and 0.03737 at the tenth time step. The performance of solving the
local downscaling functions numerically without the use of deep neural network and solving
the local downscaling functions using neural network model are similar.
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FIG. 4.7. Solutions at the first 5 time steps(left) and last 5 time steps(right) for Example 3. First and third
columns: upscaled reference solution. Second and Forth columns: upscaling numerical solution using deep learning
based upscaling.

The final comparison is the standard coarse-grid finite volume method with upwind flux.
The relative error of the numerical solution at the first time step is 0.09954 and 0.10990 at
tenth time step. Table 4.3 shows the relative errors of the numerical solution computed using
the finite volume method in the last column. We notice that our proposed nonlinear upscaling
is able to achieve better numerical solutions.
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4.4. Example 4. In our final example, we use another initial condition

S0(x, y) =


1, if x ∈ [0.01875, 0.0625],

0.7, if x ∈ [0.0625, 0.5],

0.3, if x ∈ [0.5, 1],

0, otherwise.

Figure 4.8 displays the image of S0(x, y). This new initial condition is also bounded between
0 and 1. For this numerical example, we also consider the time step ∆t = 0.05 and use the
second example’s velocity given by

v(x, y) =
(
1 + sin2(2πx) sin(2πy), 1 + sin(4πx) cos(2πy)

)
to test our algorithm. We choose a new nonlinear function

λ(S) =
S2

S2 + (1− S)2
.

The coarse and the fine meshes are again 20 × 20 and 160 × 160 respectively. Same as
before, we choose the condition ‖S̄(m+1) − S̄(m)‖ ≤ 0.0001 as the stopping criterion. In this
example, we will use the stacked local neural network model presented in Section 3.4 to show
the performance of this model.

FIG. 4.8. Initial condition for Example 4.

Figure 4.9 displays the learning curve of fully connected and stacked local neural networks
for Example 4. We take about 5000 training data into the neural network and about 1000
validation data to monitor the learning process of the neural network. From the learning curve,
we can observe that the stacked local neural network has a more smooth and faster convergence
rate than fully connected neural network. This is because the local property reduces a lot
of irrelevant network parameters and hence enhances the convergence rate. Moreover, we
observed approximately 50% reduction in the training time.
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FIG. 4.9. Learning curve of fully connected and stacked local neural network for Example 4.

TABLE 4.4
Relative root mean square error of the mean value for Example 4.

time step stacked local fully connected upscaled model finite volume
neural network model neural network without neural network method

t = 0.05 0.03423 0.03200 0.01515 0.07567
t = 0.10 0.03325 0.04250 0.02105 0.08525
t = 0.15 0.03390 0.05174 0.02245 0.09121
t = 0.20 0.02943 0.05549 0.01983 0.09727
t = 0.25 0.02670 0.05635 0.02211 0.10220
t = 0.30 0.02592 0.05996 0.02338 0.10435
t = 0.35 0.02574 0.06624 0.02669 0.10366
t = 0.40 0.02614 0.07303 0.03097 0.10206
t = 0.45 0.02698 0.07935 0.03614 0.10124
t = 0.50 0.02812 0.08559 0.04189 0.10133

We also test the algorithm with 10 time steps in this final example. Figure 4.10 displays
the first 10 time no steps computed using our proposed scheme with deep neural network
model. The corresponding average values of the reference solution on the coarse grid are
shown in the same figure. We observe that these two solutions have very good agreement.

Table 4.4 displays the relative errors of the numerical solution of using our proposed
upscaling scheme with stacked local neural network model, using fully connected neural
network model and standard coarse-grid finite volume method with upwind flux. We can
observe that the first step and final step of relative error of using neural network model are
0.03423 and 0.02812. Also, the relative error of the numerical solution rises slowly when time
increases. The stacked local neural network and fully connected neural network model use
the same number of training data. The number of weights and bias of the stacked local neural
network is about 600,000 and that of fully connected neural network is about 30,000,000
which is 50 times of stacked local neural network. This shows that the memory usage of
stacked local neural network is much less than the original fully connected one. Also, the
number of epoch need for convergence and relative error of stacked local neural network
are smaller than fully connected one. The final comparison is the standard coarse-grid finite
volume method with upwind flux. The relative error of the numerical solution at the first
time step is 0.10133. We notice that our proposed nonlinear upscaling is able to give better
numerical solutions.
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FIG. 4.10. Solutions at the first 5 time steps(left) and last 5 time steps(right) for Example 4. First and third
columns: upscaled reference solution. Second and Forth columns: upscaling numerical solution using stacked local
neural network.

5. Conclusion. In this paper, we develop deep learning based nonlinear upscaling for
nonlinear transport equations with heterogeneous velocity. The technique is based on the
recently developed NLMC method. To construct the coarse scale model, local downscaling
operations are used to reconstruct fine scale information from coarse grid averages. Due to the
nonlinearity of the problem, these local solutions are expensive to compute. To overcome this
bottleneck, we propose the use of deep neural network to approximate this procedure. Since a
reduced model is used, the learning process is robust, and the resulting neural network gives
accurate approximations. With the use of our upscaling model, we only need to learn some
local maps. This means that the number of parameters to be trained is much less compared
with the learning of a global map. It is this local learning idea that helps the approximation
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using the proposed deep neural network method. The proposed approach shows promising
numerical results.

Our proposed approach is based on the training of neural networks in oversampling
regions. This locality framework has potentials for future developments. In future work, we
plan to design local neural networks that allow the use of media properties, physical parameters
in the equations and local mesh configuration as inputs. In this case, we expect that only one
single neural network is enough, and this network can be applied to a wider class of problems
and to many local oversampling regions with various geometries.

Acknowledgements. Eric Chung’s work is partially supported by the Hong Kong RGC
General Research Fund (Project numbers 14304719 and 14302018) and the CUHK Faculty of
Science Direct Grant 2020-21. The first two authors thank NVIDIA – NVAITC for providing
computing resources.

REFERENCES

[1] A. ABDULLE AND Y. BAI, Adaptive reduced basis finite element heterogeneous multiscale method, Comput.
Methods Appl. Mech. Engrg., 257 (2013), pp. 203–220.

[2] G. ALLAIRE AND R. BRIZZI, A multiscale finite element method for numerical homogenization, Multiscale
Model. Simul., 4 (2005), pp. 790–812.

[3] T. ARBOGAST, Implementation of a locally conservative numerical subgrid upscaling scheme for two-phase
Darcy flow, Comput. Geosci, 6 (2002), pp. 453–481.

[4] T. ARBOGAST, G. PENCHEVA, M. WHEELER, AND I. YOTOV, A multiscale mortar mixed finite element
method, Multiscale Model. Simul., 6 (2007), pp. 319–346.

[5] G. BARENBLATT, I. P. ZHELTOV, AND I. KOCHINA, Basic concepts in the theory of seepage of homogeneous
liquids in fissured rocks [strata], J. Appl. Math. Mech., 24 (1960), pp. 1286–1303.

[6] J. BARKER AND S. THIBEAU, A critical review of the use of pseudorelative permeabilities for upscaling, SPE
Reserv. Eng., 12 (1997), pp. 138–143.

[7] D. L. BROWN AND D. PETERSEIM, A multiscale method for porous microstructures, arXiv preprint
arXiv:1411.1944, 2014. https://arxiv.org/abs/1411.1944

[8] Y. CHEN, L. DURLOFSKY, M. GERRITSEN, AND X. WEN, A coupled local-global upscaling approach for
simulating flow in highly heterogeneous formations, Adv. Water Resour., 26 (2003), pp. 1041–1060.

[9] S. W. CHEUNG, E. T. CHUNG, Y. EFENDIEV, E. GILDIN, Y. WANG, AND J. ZHANG, Deep global model
reduction learning in porous media flow simulation, Comput. Geosci., 24 (2020), pp. 261–274.

[10] E. T. CHUNG AND Y. EFENDIEV, Reduced-contrast approximations for high-contrast multiscale flow problems,
Multiscale Model. Simul., 8 (2010), pp. 1128–1153.

[11] E. T. CHUNG, Y. EFENDIEV, AND S. FU, Generalized multiscale finite element method for elasticity equations,
Int. J. Geomath., 5(2) (2014), pp. 225–254.

[12] E. T. CHUNG, Y. EFENDIEV, AND W. T. LEUNG, Generalized multiscale finite element method for wave
propagation in heterogeneous media, Multicale Model. Simul., 12 (2014), pp. 1691–1721.

[13] , Constraint energy minimizing generalized multiscale finite element method in the mixed formulation,
Comput. Geosci., 22 (2018), pp. 677–693.

[14] , Constraint energy minimizing generalized multiscale finite element method, Comput. Methods
Appl. Mech. Eng., 339 (2018), pp. 298–319.

[15] E. T. CHUNG, Y. EFENDIEV, W. T. LEUNG, M. VASILYEVA, AND Y. WANG, Online adaptive local
multiscale model reduction for heterogeneous problems in perforated domains, Appl. Anal., 96 (2017),
pp. 2002–2031.

[16] , Fast online generalized multiscale finite element method using constraint energy minimization, J. Com-
put. Phys., 355 (2018), pp. 450–463.

[17] , Non-local multi-continua upscaling for flows in heterogeneous fractured media, J. Comput. Phys., 372
(2018), pp. 22–34.

[18] E. T. CHUNG, Y. EFENDIEV, W. T. LEUNG, AND M. WHEELER, Nonlinear nonlocal multicontinua upscaling
framework and its applications, Int. J. Multiscale Comput. Eng., 16 (2018), pp. 487–507.

[19] E. T. CHUNG, Y. EFENDIEV, AND G. LI, An adaptive GMsFEM for high contrast flow problems, J. Com-
put. Phys., 273 (2014), pp. 54–76.

[20] E. T. CHUNG AND W. T. LEUNG, A sub-grid structure enhanced discontinuous galerkin method for multiscale
diffusion and convection-diffusion problems, Commun. Comput. Phys., 14 (2013), pp. 370–392.

[21] E. T. CHUNG, M. VASILYEVA, AND Y. WANG, A conservative local multiscale model reduction technique for
stokes flows in heterogeneous perforated domains, J. Comput. Appl. Math., 321 (2017), pp. 389–405.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
https://arxiv.org/abs/1411.1944


ETNA
Kent State University and

Johann Radon Institute (RICAM)

NONLINEAR UPSCALING FOR TRANSPORT EQUATIONS 207

[22] M. DROHMANN, B. HAASDONK, AND M. OHLBERGER, Reduced basis approximation for nonlinear
parametrized evolution equations based on empirical operator interpolation, SIAM J. Sci. Comput., 34
(2012), pp. A937–A969.

[23] W. E AND B. ENGQUIST, Heterogeneous multiscale methods, Comm. Math. Sci., 1 (2003), pp. 87–132.
[24] Y. EFENDIEV AND L. DURLOFSKY, Numerical modeling of subgrid heterogeneity in two phase flow simula-

tions, Water Resour. Res., 38 (2002), Art. 1128, 11 pages.
[25] , A generalized convection-diffusion model for subgrid transport in porous media, Multiscale

Model. Simul., 1 (2003), pp. 504–526.
[26] Y. EFENDIEV, J. GALVIS, AND T. HOU, Generalized multiscale finite element methods (gmsfem), J. Com-

put. Phys., 251 (2013), pp. 116–135.
[27] Y. EFENDIEV, J. GALVIS, AND X. WU, Multiscale finite element methods for high-contrast problems using

local spectral basis functions, J. Comput. Phys., 230 (2010), pp. 937–955.
[28] Y. EFENDIEV AND A. PANKOV, Numerical homogenization of monotone elliptic operators, Multiscale

Model. Simul., 2 (2003), pp. 62–79.
[29] , Numerical homogenization of nonlinear random parabolic operators, Multiscale Model. Simul., 2

(2004), pp. 237–268.
[30] , Homogenization of nonlinear random parabolic operators, Adv. Differential Equations, 10 (2005),

pp. 1235–1260.
[31] D. FAFALIS AND J. FISH, Computational continua for linear elastic heterogeneous solids on unstructured

finite element meshes, Int. J. Numer. Methods Eng., 115 (2018), pp. 501–530.
[32] J. FISH AND W. CHEN, Space–time multiscale model for wave propagation in heterogeneous media, Com-

put. Methods Appl. Mech. Eng., 193 (2004), pp. 4837–4856.
[33] J. FISH AND R. FAN, Mathematical homogenization of nonperiodic heterogeneous media subjected to large

deformation transient loading, Int. J. Numer. Methods Eng., 76 (2008), pp. 1044–1064.
[34] J. FISH AND S. KUZNETSOV, Computational continua, Int. J. Numer. Methods Eng., 84 (2010), pp. 774–802.
[35] J. FISH, K. SHEK, M. PANDHEERADI, AND M. S. SHEPHARD, Computational plasticity for composite struc-

tures based on mathematical homogenization: theory and practice, Comput. Methods Appl. Mech. Eng.,
148 (1997), pp. 53–73.

[36] S. FU AND E. T. CHUNG, A local-global multiscale mortar mixed finite element method for multiphase
transport in heterogeneous media, J. Comput. Phys., 399 (2019), Art. 108906, 13 pages.

[37] P. HENNING AND M. OHLBERGER, The heterogeneous multiscale finite element method for elliptic homoge-
nization problems in perforated domains, Numer. Math., 113 (2009), pp. 601–629.

[38] J. KYTE AND D. BERRY, New pseudofunctions to control numerical dispersion, Soc. Pet. Eng. J., 15 (1975),
pp. 269–276.

[39] S. H. LEE, M. LOUGH, AND C. JENSEN, Hierarchical modeling of flow in naturally fractured formations
with multiple length scales, Water Resour. Res., 37 (2001), pp. 443–455.

[40] A.-M. MATACHE AND C. SCHWAB, Two-scale fem for homogenization problems, ESAIM Math. Model. Nu-
mer. Anal., 36 (2002), pp. 537–572.

[41] C. OSKAY AND J. FISH, Eigendeformation-based reduced order homogenization for failure analysis of
heterogeneous materials, Comput. Methods Appl. Mech. Eng., 196 (2007), pp. 1216–1243.

[42] H. OWHADI AND L. ZHANG, Metric-based upscaling, Comm. Pure. Appl. Math., 60 (2007), pp. 675–723.
[43] G. PANASENKO, Multicontinuum wave propagation in a laminated beam with contrasting stiffness and density

of layers, J. Math. Sci, (2018), pp. 1–13.
[44] A. PANKOV, G-Convergence and Homogenization of Nonlinear Partial Differential Operators, Kluwer,

Dordrecht, 1997.
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