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DECOMPOSITION AND COMPOSITION OF DEEP CONVOLUTIONAL NEURAL
NETWORKS AND TRAINING ACCELERATION VIA SUB-NETWORK

TRANSFER LEARNING∗
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Abstract. Deep convolutional neural network (DCNN) has led to significant breakthroughs in deep learning.
However, larger models and larger datasets result in longer training times slowing down the development progress
of deep learning. In this paper, following the idea of domain decomposition methods, we propose and study a new
method to parallelize the training of DCNNs by decomposing and composing DCNNs. First, a global network is
decomposed into several sub-networks by partitioning the width of the network (i.e., along the channel dimension)
while keeping the depth constant. All the sub-networks are individually trained, in parallel without any interprocessor
communication, with the corresponding decomposed samples from the input data. Then, following the idea of
nonlinear preconditioning, we propose a sub-network transfer learning strategy in which the weights of the trained
sub-networks are recomposed to initialize the global network, which is then trained to further adapt the parameters.
Some theoretical analyses are provided to show the effectiveness of the sub-network transfer learning strategy. More
precisely speaking, we prove that (1) the initialized global network can extract the feature maps learned by the
sub-networks; (2) the initialization of the global network can provide an upper bound and a lower bound for the cost
function and the classification accuracy with the corresponding values of the trained sub-networks. Some experiments
are provided to evaluate the proposed methods. The results show that the sub-network transfer learning strategy
can indeed provide good initialization and accelerate the training of the global network. Additionally, after further
training, the transfer learning strategy shows almost no loss of accuracy and sometimes the accuracy is higher than if
the network is initialized randomly.

Key words. deep convolutional neural networks, decomposition and composition, parallel training, transfer
learning, domain decomposition
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1. Introduction. Deep convolutional neural network (DCNN) [17] is one of the most
successful models in deep learning [16] and it has brought significant improvements to the field
of computer vision for a wide range of problems, including image classification [7, 14], object
detection [21, 27], semantic image segmentation [3, 23, 28], and many other applications.
DCNN is capable of integrating multilevel of features from the dataset [7], and by increasing
the depth of the network more accuracy can be obtained [29, 31]. Another approach to making
networks more expressive is to increase the network width, such as GoogLeNet in [31, 32].
Larger (deeper and wider) models and larger datasets have led to breakthroughs in accuracy.
However, it results in much longer training time and memory intensity negatively impacting
the development of DCNNs [6, 36] in many important applications, such as computational
finance, autonomous driving, and medical imaging [36]. Therefore, reducing the training time
of DCNN is critical. Below we provide an overview of existing methods for accelerating the
network training.

Distributed training. Generally speaking, there are two ways to parallelize training:
model parallelism and data parallelism [6, 13]. On a multi-processor computer, model paral-
lelism partitions the network into pieces, and different processors train different pieces. In
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model parallelism, frequent communication between different processors is needed since the
calculation of the next layer usually requires all the outputs of the previous layer; that is,
different processors need to synchronize, which is costly. In data parallelism, the dataset is
partitioned into parts stored in each processor, and each processor has a local copy of the
network with its parameters. Distributed synchronous stochastic gradient descent (SGD) is
a widely used method in data parallelism. It divides the dataset into minibatches and then
maps them onto a pool of parallel processors [6, 36]. However, in synchronous SGD, scaling
the training to a large number of processors means an increase in the batch size used in each
iteration, which causes convergence problems in solving the optimization problem and results
in poor generalization [6, 9, 36]. To avoid the problem, new training algorithms are developed
to increase the batch size in synchronous SGD without loss of accuracy. For example, with
ResNet-50 [7] and the dataset ImageNet-1K [5], the batch size and number of processors have
been successfully increased from batch size of 1K on 128 processors [9] to batch size of 32K
on 1024 processors [36]. In addition, in synchronized data parallelism, the communication
is needed in every iteration in order to obtain the sum of local gradients and to broadcast the
global parameters [36].

Network pruning. Network pruning is a technique of model compression for saving
computation and storage [4]. The method explores the redundancy in the model parameters
and attempts to remove the redundant and uncritical connections. The criterion of pruning
is to evaluate the importance or contribution of weights; thus, the less important weights
can be pruned. For example, in [18], neurons with small magnitude of weights are pruned.
Molchanov et al. [25, 26] used Taylor expansions to approximate a filter’s contribution. Yu et
al. [37] utilized a neuron importance score propagation algorithm to propagate the importance
scores to every weight. Liu et al. [22] imposed a scaling factor and facilitated one channel-level
pruning during the training process. In addition, there is also growing interest in training
compact DCNNs with sparsity constraints [8, 22, 35].

In the present paper, we propose a new method to accelerate the training of DCNNs
by decomposing and composing DCNNs motivated by the idea of domain decomposition
methods for solving partial differential equations on large scale computers [30].

Domain decomposition. Domain decomposition methods are a family of highly parallel
methods for solving partial differential equations [30, 34]. They are based on the divide and
conquer philosophy for solving a problem defined on a global domain by iteratively solving
subproblems defined on smaller subdomains [34]. The advantage of domain decomposi-
tion methods is the straightforward applicability for parallel computing [2, 19]. Additional
advantages also include localized treatment for the specificity of subdomain problems [34].

Following the domain decomposition methods, firstly, a DCNN (also called a global
network in this paper) is decomposed into K sub-networks by partitioning the width of the
network (i.e., along the channel dimension) while keeping the depth constant. Correspondingly,
each sample is decomposed into K subsamples, which are then used to train the corresponding
sub-networks. Note that the trainings of sub-networks are completely independent of each
other and can be performed on parallel computers without any interprocessor communication.
The width-based partitioning of DCNNs is based on the intuitive assumption that there is
information redundancy when using global networks to deal with subsamples. In addition,
since the sub-networks focus on the subdomains of the samples, it may help to boost the
models’ ability to capture fine details, which is of crucial importance for dense prediction
tasks such as semantic segmentation. Secondly, after the sub-networks are trained, we propose
a sub-network transfer learning strategy in which the weights of the trained sub-networks are
composed to initialize the global network. The composition is almost the reverse process of
the decomposition but with the weights connected between different sub-networks set as zero
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tensors. The global network with such initialization is then further trained to learn long-range
contextual information that cannot be learned by the sub-networks.

Compared with existing distributed training methods for DCNNs, the new approach is
different in the following ways: 1) across the data dimension, we decompose each sample
into K subsamples, and the subsamples on one subdomain are used to train one sub-network,
which is different than partitioning the dataset into parts in the current data parallel approaches;
2) across the model dimension, we decompose a global network into sub-networks that can
be trained completely independently, which is different from the current model parallelism
in which the computation in one processor depends on that in the other processors; 3) the
communication between different sub-networks only occurs in the initialization of the global
network; that is, the weights of the trained sub-networks are composed to initialize the global
network.

Similar to network pruning, the decomposition is based on the intuition that there is
information redundancy in the process of computing the global network. The difference is that
we decompose the global network into sub-networks for the purpose of parallelization of the
training, and then the sub-networks are composed to initialize the global network that will be
further trained.

Some theoretical analyses are developed to show the effectiveness of the initialization
provided by the sub-network transfer learning strategy. First, we show that the initialized
global network can extract the feature maps learned by the trained sub-networks. Second, it is
proven that the initialization of the global network offers an upper bound and a lower bound
for the cost function and the classification accuracy. The bounds depend on those of the trained
sub-networks. Finally, the proposed approach is evaluated by some experiments involving
image classification tasks. The experiments show that the sub-network transfer learning
strategy can provide a good initialization and accelerate the training of the global DCNNs.
Additionally, after further training, the global network shows almost no loss of accuracy;
sometimes the global network initialized by the sub-network transfer learning strategy offers
higher accuracy than those initialized randomly.

This paper is organized as follows. In Section 2, we first present a method to decompose a
global network into sub-networks, along with some notations and preliminaries (Section 2.1).
Secondly, a sub-network transfer learning strategy in which the weights of the trained sub-
networks are composed to initialize the global network is proposed (Section 2.2). Third,
we present a theory to show the effectiveness of the sub-network transfer learning strategy
(Section 2.3). Section 3 provides some experiments to evaluate the proposed approach. Finally,
Section 4 gives a concluding summary of this work.

2. Proposed approaches. In this section, we first introduce a way to decompose a
DCNN into sub-DCNNs and then a way to compose several subnetworks into a global
DCNN. Furthermore, some theoretical results about the effectiveness of the sub-network
transfer learning strategy are derived by analyzing the intermediate features, cost function,
and classification accuracy of the global network. For the simplicity of presentation, some
assumptions about the architecture of the networks are made in this section. For example,
we assume 2D DCNNs are used for classification. Note that the proposed approaches are
applicable to general DCNNs without requiring these assumptions.

2.1. Decomposition of DCNNs.

2.1.1. Notations and preliminaries. In this section, we assume that a DCNN for classi-
fication is a network consisting of some convolutional layers and some fully connected (FC)
layers, followed by a classification module. A convolutional layer consists of a convolutional
operation, a nonlinearity operation, and a feature pooling operation. The form of an FC
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layer can be regarded as a special case of a convolutional layer with the receptive field as the
whole input of this layer. The classification module is usually a softmax layer. Some formal
descriptions of the operations are given below.

Conventions. The input and output of each layer are 3D tensors called feature maps,
where the third dimension of the tensors is the number of independent feature maps, and the
first and the second are the height and the width, respectively. Assume a classification task with
samplesX = {x1,x2, . . . ,xN} and their corresponding ground truth Y = {y1,y2, . . . ,yN},
where yi ∈ {0, 1}C and the integer C denotes the number of classes and yi(c) = 1 indicates
that the ground truth of xi is in the c-th class.

Multi-channel convolution. Assume that the input V is a 3D tensor with element Vi,j,l
within channel l at row i and column j. Let the convolutional kernel be a 4D kernel tensor
K with element Km,n,l,k giving the connection strength between a unit in channel k of the
output and a unit in channel l of the input, with an offset of m rows and n columns between
the output unit and the input unit. Then, the output Z is produced by convolving K across V ,
that is, Z = V ∗K and

(2.1) Zi,j,k =
∑
m,n,l

Vi+m−1,j+n−1,lKm,n,l,k.

Note that it is assumed in this section that there are no skip connections in the DCNN and
each layer contains only one multichannel convolution if not specified otherwise.

Stacking multi-layers. Denote a L-layer DCNN as F (x; Θ), where x is the input of the
network and Θ = {θ1, . . . , θL} is the set of parameters. In addition, denote Θl = {θ1, . . . , θl}
as the set of parameters of the first l layers, and denote the output of the l-th layer by

(2.2) xl = f l(xl−1; θl) = F l(x0; Θl)

with x0 = x, where f l denotes a convolutional layer or an FC layer. By regarding the FC
layer as a special case of a convolutional layer, the kernel of the l-th layer is denoted by
wl ∈ Rtl1×t

l
2×c

l
in×c

l
out (as defined in (2.1)), where clin and clout are the number of channels of the

input and output of this layer, respectively, and tl1, tl2 are the kernel widths. Generally, for the
FC layers, as the receptive field is the whole input, the kernel width of the first FC layer is
adapted to the size of the input of this layer. For the other FC layers, the kernel width is 1. The
output of the network is denoted by xL = F (x; Θ) ∈ RC , where C is the number of classes,
and we denote xL = (xL(1), . . . ,xL(C))>.

Classification module. A classification module is a softmax function that normalizes the
input (i.e., xL) into a probability distribution; that is, the output of the classification module is
given by

(2.3) ŷ(c) =
ex

L(c)

‖exL‖1
, c = 1, . . . , C,

where ŷ(c) is the posterior probability of the c-th class. The predicted class ĉx is
ĉx = arg maxc ŷ(c) = arg maxc x

L(c). Then, for sample x and its ground truth y, its cost
function is defined as the cross entropy loss:

(2.4) J(x;y,Θ) = −
C∑

c=1

y(c) log ŷ(c).
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With observation samples {X,Y }, the network is trained to solve the optimization problem:

Θ∗ = arg min
Θ

N∑
i=1

J(xi;yi,Θ).(2.5)

Notations of tensors. Assume x ∈ RH×W×D is a 3D tensor with element xi,j,k where
(i, j, k) ∈ Ω, Ω is a Cartesian product and Ω = [H] × [W ] × [D] with [H] = {1, . . . ,H}.
Given a, b ∈ Z+ with a ≤ b, denote by

[a : b] := {a, a+ 1, . . . , b}.

Given a Cartesian product Ω̃ ⊂ Ω, that means, there exist H̃, W̃, D̃ ⊂ [H], [W ], [D] such that
Ω̃ = H̃ × W̃ × D̃, we define some bijective mappings:

τh : H̃ → [|H̃|], τw : W̃ → [|W̃|], and τd : D̃ → [|D̃|],

where | · | denotes the cardinality of a set. In addition, the mappings, τh, τw, and τd, are
order-preserving mappings; that is,

τh(i1) < τh(i2), τw(j1) < τw(j2), τd(k1) < τd(k2), for any i1 < i2, j1 < j2, k1 < k2.

Then we denote a subdomain of x with respect to Ω̃ by

x̃ = DΩ̃(x),with element x̃ĩ,j̃,k̃ = xi,j,k

where

(i, j, k) ∈ Ω̃, ĩ = τh(i), j̃ = τw(i), and k̃ = τd(k).

In this paper, the Cartesian product used to decompose a tensor is assumed to satisfy that

hi+1 − hi = 1, wj+1 − wj = 1, and dk+1 − dk = 1, with

H̃ = {h1, . . . , hn}, W̃ = {w1, . . . , wn}, and D̃ = {d1, . . . , dn}.

With this assumption, the decomposition is “neighbor preserving”; that is, for any i1, i2 ∈ H̃,
j1, j2 ∈ W̃ , and k1, k2 ∈ D̃, we have

τh(i1)− τh(i2) = 1 ⇒ i1 − i2 = 1,

τw(j1)− τw(j2) = 1 ⇒ j1 − j2 = 1,

τd(k1)− τd(k2) = 1 ⇒ k1 − k2 = 1.

Given a set of Cartesian products {Ωk}Kk=1 where

(2.6) Ωi ∩ Ωj = ∅,
K⋃

k=1

Ωk = Ω,

we call {x̃k = DΩk
(x) | k = 1, . . . ,K} a complete decomposition of x.

Activation fields of subdomains. Given a DCNN F and a subdomain Ω̃ of the input,
the activation field of Ω̃ in the l-th layer, which is denoted by GF,l(Ω̃), represents the largest
subdomain of the output of this layer that only responds to Ω̃. More formally, let

Λ = {Ω̄ | DΩ̄(F l(x1; Θl)) = DΩ̄(F l(x2; Θl)),∀ Θ,x1,x2 with DΩ̃(x1) = DΩ̃(x2)},

then it holds that GF,l(Ω̃) ∈ Λ and Ω̄ ⊂ GF,l(Ω̃) for any Ω̄ ∈ Λ.
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2.1.2. Decomposing a DCNN into sub-networks. Assume that we have a L-layer
global network designed for a classification task with samples X and labels Y where each
sample xi ∈ RH×W×D, and a set of Cartesian products {Ωk}Kk=1 where Ωk ⊂ Ω and
Ω = [H]× [W ]× [D]. For example, let the sample xi be a natural RGB image (i.e., D = 3),
then we decompose xi in the first and second dimensions but not the third dimension. The
samples of the k-th subdomain can be denoted as Xk = {DΩk

(x1),DΩk
(x2), . . . ,DΩk

(xn)}.
Then, for these K subdomains, we construct their corresponding sub-networks by decom-
posing the global network into K sub-networks. The global network is decomposed by
partitioning the width (i.e., along the channel dimension) of the global network while keeping
the depth constant. Hence, the architecture of the sub-networks is almost the same as that of
the global network except for the channel number of the feature maps and the first FC layer
where the kernel width is adapted to the size of the input of this layer. Formally, following
the notations in Section 2.1.1, denote wl ∈ Rtl1×t

l
2×c

l
in×c

l
out and wl

k ∈ Rtl1,k×t
l
2,k×c

l
k,in×c

l
k,out

as the convolutional kernel of the l-th layer in the global network and the k-th sub-network,
where clin, clk,in (clout, c

l
k,out) are the number of channels of the input (output) feature map, and

tl1, tl2 (tl1,k, tl2,k) are the kernel width. In addition, let H l, W l (H l
k, W l

k) be the height and
width of channels of the input feature map in the l-th layer of the global network (the k-th
sub-network). Then, we have

(2.7)



∑K
k=1 c

l
k,in = clin, l = 2, . . . , L,∑K

k=1 c
l
k,out = clout, l = 1, . . . , L− 1,

c1k,in = c1in, c
L
k,out = cLout,

tl1,k = tl1, t
l
2,k = tl2, except the first FC layer,

tl1 = H l, tl2 = W l, the first FC layer,
tl1,k = H l

k, t
l
2,k = W l

k, the first FC layer.

We employ the well-known VGG16 [29] as an example. Figure 2.1 and Table 2.1 illustrate
the architecture of VGG16 and the sub-networks decomposed from VGG16. The VGG16
is uniformly decomposed into K = 4 partitions, and the input samples are also uniformly
decomposed into K = 4 partitions (with K = n2, i.e., n = 2 partitions in both the first and
second dimension); here, uniformly means that the decomposition of inputs is a complete
decomposition satisfying (2.6), and

(2.8)


H1

k = bH1/nc,W 1
k = bW 1/nc, for inputs,

clk,in = clin/K, l = 2, . . . , L,

clk,out = clout/K, l = 1, . . . , L− 1,

H l
k = bH l/nc,W l

k = bW l/nc, for convolutional layers and the first FC layer,

where the last equality holds when using the same padding in convolutional operations.
Then, the samples of each subdomain and their ground truth are used to train the corre-

sponding sub-network Fk(DΩk
(xi); Θk) by optimizing the subtasks: for each k,

(2.9) Θ∗k = arg min
Θk

N∑
i=1

Jk(DΩk
(xi);yi,Θk).

Note that the trainings of sub-networks are completely independent of each other and can be
performed on parallel computers without any interprocessor communication.

The goal of decomposing the subsamples into K subdomains is to save the computational
time of the sub-networks and thus accelerate the training. The idea of the width-based
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max pooling
fully connected + ReLU

convolution + ReLU

224x224x3 224x224x64

112x112x128

56x56x256
28x28x512

14x14x512
7x7x512

1x1x4096 1x1x1000

112x112x3 112x112x16

56x56x32

28x28x64
14x14x128 7x7x128

3x3x128
1x1x1024 1x1x1000

FIG. 2.1. Illustration of the decomposition of DCNN by the proposed method. The global network (VGG16) is
uniformly decomposed into 4 sub-networks by partitioning the “width” of the global network while keeping the depth
constant. The input is also decomposed into 4 partitions. (top) The architecture of VGG16. (bottom) The architecture
of one of the sub-networks.

partitioning is based on the assumption that there is information redundancy when using global
networks to deal with the decomposed samples. In addition, by keeping the depth constant,
we can compose the sub-networks into the global network in a reverse process discussed in
Section 2.2. Note that although the lack of information in the subsample and the reduction in
the number of feature maps of sub-networks may reduce the accuracy of the sub-networks, the
sub-networks are composed to initialize a global network that will be trained further.

Computational complexity and memory usage analysis of global and sub-networks.
We use the number of floating point operations (FLOPs) [26], which is regarded as a strong
predictor of the energy usage and latency of a network [33], to estimate the computational
complexity of a network. As defined in [26], for a multichannel convolution operation (2.1)
with stride 1 and the same padding (without bias), its FLOPs are given by

(2.10) FLOPs = HW (2cint1t2 − 1)cout,

where each multiplication or addition is counted as one floating point operation; H , W , and
cin are the height, width, and number of channels of the input feature map, respectively, t1 and
t2 are the kernel width, and cout is the number of output channels. Note that, as mentioned
before, an FC layer can be regarded as a special case of a convolutional layer; thus, its FLOPs
can be obtained similarly. In addition, we denote one GFLOPs to be one billion (i.e., 109)
FLOPs. Note that, in this paper, the FLOPs of a network refers to the FLOPs of one forward
propagation of the network with the batch size of 1.
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TABLE 2.1
The output size and the kernel size of each layer in the VGG16 (global network) and in the sub-networks, when

the global network and the input image are uniformly decomposed into 4 partitions.

output size kernel size
global network sub-network global network sub-network

input layer 224× 224× 3 112× 112× 3 - -
layer 1 224× 224× 64 112× 112× 16 3× 3× 3× 64 3× 3× 3× 16
layer 2 224× 224× 64 112× 112× 16 3× 3× 64× 64 3× 3× 16× 16
layer 3 112× 112× 128 56× 56× 32 3× 3× 64× 128 3× 3× 16× 32
layer 4 112× 112× 128 56× 56× 32 3× 3× 128× 128 3× 3× 32× 32
layer 5 56× 56× 256 28× 28× 64 3× 3× 128× 256 3× 3× 32× 64
layer 6-7 56× 56× 256 28× 28× 64 3× 3× 256× 256 3× 3× 64× 64
layer 8 28× 28× 512 14× 14× 128 3× 3× 256× 512 3× 3× 64× 128
layer 9-10 28× 28× 512 14× 14× 128 3× 3× 512× 512 3× 3× 128× 128
layer 11-13 14× 14× 512 7× 7× 128 3× 3× 512× 512 3× 3× 128× 128
layer 14 1× 1× 4096 1× 1× 1024 7× 7× 512× 4096 3× 3× 128× 1024
layer 15 1× 1× 4096 1× 1× 1024 1× 1× 4096× 4096 1× 1× 1024× 1024
layer 16 1× 1× 1000 1× 1× 1000 1× 1× 4096× 1000 1× 1× 1024× 1000

We compare the computational complexity between the global network and the sub-
networks. Assume that the input images are uniformly decomposed into K = n2 partitions,
and the width of the global network is uniformly decomposed into the same number of
partitions. That is, (2.7) and (2.8) hold. We also assume that the convolution in the l-th layer of
the global network has the input sizeH l×W l×clin and the kernel has the size tl1×tl2×clin×clout.
According to (2.10), its computational complexity is given by O(H lW ltl1t

l
2c

l
inc

l
out). Then, for

the layers of the sub-networks except the first convolutional layer and the FC layers, since
(2.7) and (2.8) hold, the complexity is O(H lW ltl1t

l
2c

l
inc

l
out/K

3), which is 1/K3 of that of the
global network. In the first FC layer, since the kernel width is adapted to the size of the input
of this layer, the complexity of each sub-network is given by O((H lW l)2clinc

l
out/K

4), which
is 1/K4 of that of the global network. Similarly, these ratios in the first convolutional layer
and the FC layers (except the first FC layer and the last layer) are 1/K2, and this ratio in the
last FC layer is 1/K. Generally speaking, for a DCNN (e.g., ResNet50 or ResNet101 [7]) in
which all the FC layers (except the last layer) are replaced by a single global average pooling
layer [20] (global average pooling outputs the spatial average of each feature map at the
last convolutional layer), the convolutional layers contain the vast majority of computations;
thus the computational complexity of each sub-network is approximately 1/K3 of that of the
global network. For example, Table 2.2 displays the FLOPs of some global networks (some
well-known DCNNs: VGG16, ResNet50, and ResNet101 [7]) and their corresponding sub-
networks when the number of partitions K = 4, from which we can see that the computational
complexity in the forward-propagation step of each sub-network is approximately 1/60 of that
of the global network; and the back-propagation step is similar.

Next, we consider the memory usage of the sub-networks during training, which contains
mainly the memory for the parameters, the gradient of the parameters (and the first-order or
second-order momentum of the parameters when using the momentum term in the gradient
descent algorithm), and the outputs of all layers of networks. 1) For the parameters, in the
first layer and the last layer, the number of parameters (or their gradients, momentums) in
each sub-network is 1/K of that of the global network. In the first FC layer, since the kernel
width is adapted to the size of the input of this layer, this ratio is approximately 1/K3. In the
other layers, this ratio is 1/K2. For example, Table 2.2 lists the number of parameters of some
global networks (VGG16, ResNet50, and ResNet101) and their corresponding sub-networks
when the number of partitions is K = 4, from which we can see that the number of parameters
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of each sub-network is approximately 1/13 of that of the global network for ResNet50 and
ResNet101, and this ratio is approximately 1/33 for VGG. 2) For the outputs of each layer,
in the convolutional layers, the memory usage of each sub-network is 1/K2 of that of the
global network, and this ratio for the FC layers (except the last layer) is 1/K. In general, the
convolutional layers contain the vast majority of the outputs of all layers; thus, during training,
the memory usage of the outputs of all layers of the sub-network is about 1/K2 of that of the
global network.

TABLE 2.2
The floating point operations (FLOPs, with input size of 214 × 214 × 3) and the number of parameters (‘M’

means 106, i.e., one million) of the global networks (VGG16, ResNet50, and ResNet101) and their corresponding
sub-networks when the global networks and the input images are uniformly decomposed into 4 partitions.

network GFLOPs # param

VGG16 31.65 138.35M
VGG16-subNet 0.52 4.17M

ResNet50 7.10 25.56M
ResNet50-subNet 0.13 1.99M

ResNet101 14.62 44.55M
ResNet101-subNet 0.25 3.19M

2.2. Composition of DCNNs via the sub-network transfer learning strategy. In this
section, we propose an algorithm for composing the trained sub-networks to initialize the
global network via the sub-network transfer learning strategy. Since the sub-networks are
obtained by partitioning the width of the global network while keeping the depth of the DCNN
constant, an intuitive idea is to compose the weights in a reverse process of the decomposition
but with the weights connected between different sub-networks set to be zero tensors. Taking
VGG16 as an example, the illustration of how to compose 4 sub-networks into one global
network is shown in Figure 2.2. More formally, by using the same notations, the weights
wl of the global network are initialized by composing the weights {wl

k}k of the trained
sub-networks as follows:

• For the first layer, by (2.7), we have t11 = t11,k, t12 = t12,k, c1in = c1k,in, and
c1out =

∑
k c

1
k,out, then let

DΩ
′
k
(w1) = w1

k, for k ∈ [K],

Ω
′

k = [t11]× [t12]× [c1in]× {1 +

k−1∑
i=1

c1i,out :

k∑
i=1

c1i,out}.(2.11)

• For the other convolutional layers and the FC layers except the first and last layers,
by (2.7), we have tl1 = tl1,k, tl2 = tl2,k, clin =

∑
k c

l
k,in, clout =

∑
k c

l
k,out, then let

DΩ
′
k
(wl) = wl

k, for k ∈ [K],DΩ′′ (w
l) = 0,

Ω
′

k = [tl1]× [tl2]× {1 +

k−1∑
i=1

cli,in :

k∑
i=1

cli,in} × {1 +

k−1∑
i=1

cli,out :

k∑
i=1

cli,out},

Ω
′′

=
(
[tl1]× [tl2]× [clin]× [clout]

)
\ ∪Kk=1Ω

′

k,(2.12)

where 0 is a zero tensor.
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• For the first FC layer, by (2.7), we have clin =
∑

k c
l
k,in, clout =

∑
k c

l
k,out and tl1, tl2

are adapted to the size of the input of this layer, and

DΩ
′
k
(wl) = wl

k, for k ∈ [K],DΩ′′ (w
l) = 0,

Ω
′

k =
(
GF,l−1(Ωk) ∩ ([tl1]× [tl2]× {1 +

k−1∑
i=1

cli,in :

k∑
i=1

cli,in})
)

× {1 +

k−1∑
i=1

cli,out :

k∑
i=1

cli,out},

Ω
′′

=
(
[tl1]× [tl2]× [clin]× [clout]

)
\ ∪Kk=1Ω

′

k.(2.13)

It is assumed that valid padding is used in convolutional operations; the case of other
kinds of padding can be obtained similarly but considering the boundary of Ω

′

k.
• For the last FC layer, we have tL1 = tL1,k, tL2 = tL2,k, cLin =

∑
k c

L
k,in and

cLout = cLk,out = C, then let

DΩ
′
k
(wL) = wL

k , for k ∈ [K],

Ω
′

k = [tL1 ]× [tL2 ]× {1 +
∑k−1

i=1
cLi,in :

∑k

i=1
cLi,in} × [C].(2.14)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(1) (2) (3)

FIG. 2.2. Illustration of composing 4 sub-networks into one global network by the proposed method. Three
layers of the example VGG16 are shown. The weights in the corresponding layers of the k-th sub-network are denoted
by wk (note that, for simplicity, we use the same notation for different layers). (1) The first convolutional layer. (2)
One of the intermediate convolutional layers. The connections with zero weights from feature maps (d) to (e), (f), and
(g) are shown. Other connections with zero weights (from (a) to (f), (g), and (h); from (b) to (e), (g), and (h); from (c)
to (e), (f), and (h)) are omitted for simplicity. (3) The last FC layer.
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Then, the global network is optimized according to (2.5). In summary, the training of a global
network by the decomposition and composition method is described in Algorithm 1.

The proposed decomposition and composition method is motived by the nonlinear pre-
conditioning of Newton’s method. The training of the sub-networks and the global network
corresponds to a nonlinear process that is local to the subdomains and the outer loop corre-
sponds to the global Newton iteration, respectively. The initialization of the global network
by the sub-network transfer learning strategy corresponds to the nonlinear preconditioner.
However, compared to the standard nonlinear domain decomposition preconditioner, the
stochastic gradient descent method is used instead of Newton’s method in the training of the
sub-networks and the global network. Besides, the nonlinear preconditioner of DCNNs is
applied only once, while the nonlinear preconditioner is applied in every iteration (or some
iterations) in the nonlinear preconditioning of Newton’s method.

Algorithm 1 Training of a global network by the decomposition and composition method
Input: A classification task with samples {X,Y } with X = {x1, . . . ,xN} and

ground truth Y = {y1, . . . ,yN};
A set of Cartesian product {Ωk}Kk=1.

Output: A trained global network F (x;y,Θ∗) with parameters Θ∗.
1: Decompose samples X to Xk = {DΩk

(x1), . . . ,DΩk
(xn)} for k ∈ [K].

2: Construct the corresponding sub-networks Fk(DΩk
(xi); Θk) by decomposing the width

of the global network, as described in Section 2.1.2.
3: Use the gradient descent algorithm to solve the optimization problem for the sub-networks:

Θ∗k = arg minΘk

∑N
i=1 J(DΩk

(xi);yi,Θk).
4: Compose {Θ∗k}Kk=1 to initialize Θ according to (2.11)–(2.14).
5: Use the gradient descent algorithm to solve the optimization problem:

Θ∗ = arg minΘ

∑N
i=1 J(xi;yi,Θ), with the initial value Θ.

2.3. Some analysis of the sub-network transfer learning strategy. In this section, we
provide some theoretically analysis of the effectiveness of the sub-network transfer learning
strategy in which the trained sub-networks are composed to initialize the global network. First,
we show that the initialized global network can extract the feature maps learned by the trained
sub-networks. Second, it is proven that the initialization of the global network provided by the
sub-network transfer learning strategy offers upper and lower bounds for the cost function and
the classification accuracy. The bounds depend on those of the trained sub-networks. Note
that, for simplicity, it is assumed that the DCNN contains L layers (some convolutional layers
and some FC layers), followed by a softmax layer; valid padding is used in convolutional
operations, and the decomposition of the inputs is a complete decomposition defined in (2.6).

First, due to the properties of convolutional operations and the stacking architecture of
DCNNs, we show that the initialized global network can extract the feature maps learned by
the trained sub-networks. In addition, the output of the initialized global network is the sum of
those of the trained sub-networks.

THEOREM 2.1. For samples {X,Y } and a global network F (x; Θ) of L layers where
x ∈ X , given a set of Cartesian products {Ωk}Kk=1 satisfying (2.6) and the corresponding
trained sub-networks Fk(DΩk

(x); Θ∗k) decomposed from the global network, if Θ is initialized
by (2.11)–(2.14), then it holds that:
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(1) for the first L− 1 layers, we have that,

DΩl
k
(F l(x; Θl)) = F l

k(DΩk
(x); Θ∗k

l), l = 1, . . . , L− 1,

for Ωl
k = {(τ1, τ2, τ3) | (τ1, τ2, τ3) ∈ GF,l(Ωk), τ3 ∈ {1 +

k−1∑
i=1

cli,out :

k∑
i=1

cli,out}},

(2.15)

where F l and F l
k denote the output of the l-th layer of the global network and the k-th sub-

network, as defined by (2.2);
(2) for the L-th layer, the outputs satisfy

(2.16) FL(x; ΘL) =

K∑
k=1

FL
k (DΩk

(x); Θ∗k
L);

(3) the output of the softmax layer satisfies

(2.17) ŷ =
e
∑K

k=1 FL
k (DΩk

(x);Θ∗k
L)

‖e
∑K

k=1 FL
k (DΩk

(x);Θ∗k
L)‖1

.

Proof. For simplicity, we assume that there are only convolutional operations (without
biases) and FC operations in the DCNNs, and there is no pooling and nonlinearity operation;
that is, θl = wl (and θ∗k

l = wl
k). The case of more general DCNNs can be proven similarly.

Following (2.2), denote the input of the l-th layer as F l−1(x; Θl−1) for l = 2, . . . , L− 1,
x0 = x for l = 1, and the output of the l-th layer as F l(x; Θl) = F l−1(x; Θl−1) ∗ wl.
Similarly, for the k-th sub-network Fk, the output of the l-th layer is

F l
k(DΩk

(x); Θ∗k
l) = F l−1

k (DΩk
(x); Θ∗k

l−1) ∗wl
k.

By representing Ωl
k in (2.15) as Ωl

k = τ1
k,l× τ2

k,l× τ3
k,l, let Ω̃l

k = [|τ1
k,l|]× [|τ2

k,l|]× τ3
k,l. Then,

it is easy to see that

DΩ̃l
k
(DGF,l(Ωk)) = DΩl

k
.

(1) We use mathematical induction. For l = 1, we have

DΩ1
k
(F 1(x; Θ1)) = DΩ1

k
(x ∗w1) = DΩ̃1

k
(DGF,1(Ωk)(x ∗w1)) = DΩk

(x) ∗w1
k,

where the third equality holds according to (2.11). Thus (2.15) holds for l = 1.
Assume that (2.15) holds for the (l − 1)-th layer, that is,

DΩl−1
k

(F l−1(x; Θl−1)) = F l−1
k (DΩk

(x); Θ∗k
l−1).

For the l-th layer, we have

DΩl
k
(F l(x; Θl)) = DΩl

k
(F l−1(x; Θl−1) ∗wl)

= DΩ̃l
k
(DGF,l(Ωk)(F

l−1(x; Θl−1) ∗wl))

= DΩ̃l−1
k

(DGF,l−1(Ωk)(F
l−1(x; Θl−1))) ∗wl

k(2.18)

= DΩl−1
k

(F l−1(x; Θl−1)) ∗wl
k

= F l−1
k (DΩk

(x); Θ∗k
l−1) ∗wl

k = F l
k(DΩk

(x); Θ∗k
l),
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where the third equality holds according to (2.12); or (2.13) for the first FC layer. Therefore,
(2.15) holds for l = 1, . . . , L− 1.
(2) For the layer L− 1, from (1), we have

DΩL−1
k

(FL−1(x; ΘL−1)) = FL−1
k (DΩk

(x); Θ∗k
L−1).

Then, for the layer L, according to (2.14), it holds that

(FL−1(x; ΘL−1)) ∗wL =

K∑
k=1

DΩL−1
k

(FL−1(x; ΘL−1)) ∗wL
k

=

K∑
k=1

FL−1
k (DΩk

(x); Θ∗k
L−1) ∗wL

k .

That is, (2.16) holds.
(3) It can be directly deduced from the definition (2.3) of the softmax module and (2.16).

In the following theorem, we show that the initialization of the global network by the
sub-network transfer learning provides an upper bound and a lower bound for the cost function
and the classification accuracy with the corresponding values of the trained sub-networks.

THEOREM 2.2. For samples {X,Y }, with X = {xi}Ni and Y = {yi}Ni , and a global
network F (xi; Θ) of L layers, given a set of Cartesian products {Ωk}Kk=1 satisfying (2.6)
and the corresponding trained sub-networks Fk(DΩk

(xi); Θ∗k) decomposed from the global
network, let Θ be initialized by (2.11)–(2.14). Denote the cost function of Fk(DΩk

(xi); Θ∗k)
and F (xi; Θ) as

rk =

N∑
i=1

rik for rik = Jk(DΩk
(xi);yi,Θ

∗
k), and r =

N∑
i=1

J(xi;yi,Θ),

where J and Jk are defined as in (2.4). In addition, the sets of samples correctly classified by
Fk(DΩk

(xi); Θ∗k) and F (xi; Θ) are denoted as X̃k ⊂ X and X̃ ⊂ X , respectively. Then, it
holds that

⋂K
k=1 X̃k ⊂ X̃ and

J(xi;yi,Θ) ≤ Jk(DΩk
(xi);yi,Θ

∗
k), k = 1, . . . ,K, for xi ∈

K⋂
k=1

X̃k.

More generally,

(2.19) r ≤
N∑
i=1

( min
k∈K+

i

rik +
∑

k∈K−i

rik),

where K+
i = {k | xi ∈ X̃k} and K−i = {k | xi ∈ X \ X̃k}.

Proof. Denote xL,k
i = (xL,k

i (1), . . . ,xL,k
i (C))> and xL

i = (xL
i (1), . . . ,xL

i (C))>

as the outputs of Fk(DΩk
(xi); Θ∗k) and F (xi; Θ), respectively, in the L-th layer. For any

xi ∈ X̃k and any j 6= cxi
, where yi(cxi

) = 1 (i.e., the ground truth of xi is the cxi
-th class),

we have that xL,k
i (j) ≤ xL,k

i (cxi). That is, for any xi ∈
⋂K

k=1 X̃k, xL,k
i (j) ≤ xL,k

i (cxi),
∀j 6= cxi

, for k = 1, . . . ,K. From (2.16) in Theorem 2.1, we have that xL
i (j) ≤ xL

i (cxi
),

∀j 6= cxi
. Thus, xi ∈ X̃ , that is,

⋂K
k=1 X̃k ⊂ X̃ .
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According to (2.3) and (2.17), the output of the softmax layer of the initialized global
network is given by
(2.20)

ŷ(c′) =
exp(

∑K
k=1 x

L,k
i (c′))

‖ exp(
∑K

k=1 x
L,k
i )‖1

=
exp(

∑K
k=1 x

L,k
i (c′))∑C

c=1 exp(
∑K

k=1 x
L,k
i (c))

, for c′ = 1, . . . , C.

Since the ground truth of xi is the cxi-th class, then y(c) = 1 if c = cxi and 0 otherwise.
Then, for any xi ∈

⋂K
k=1 X̃k and k̃ ∈ [K], according to (2.4), (2.17), and (2.20), we have

(2.21)

J(xi;yi,Θ) = −
C∑

c=1

y(c) log ŷ(c) = − log ŷ(cxi)

= − log
exp(

∑K
k=1 x

L,k
i (cxi))∑C

c=1 exp(
∑K

k=1 x
L,k
i (c))

= − log
exp(xL,k̃

i (cxi
))∑C

c=1 exp(
∑K

k=1 x
L,k
i (c)−

∑
k 6=k̃ x

L,k
i (cxi

))

= − log
exp(xL,k̃

i (cxi))∑C
c=1 exp(xL,k̃

i (c) +
∑

k 6=k̃(xL,k
i (c)− xL,k

i (cxi
)))

≤ − log
exp(xL,k̃

i (cxi
))∑C

c=1 exp(xL,k̃
i (c))

= J(DΩk̃
(xi);yi,Θ

∗
k̃
),

where the inequality holds since xL,k
i (c) ≤ xL,k

i (cxi) for any k ∈ [K].
Assume that K+

i 6= ∅ and denote k̃i = arg mink∈K+
i
rik. Similar to (2.21), it holds that

J(xi;yi,Θ)

=− log
exp

(
xL,k̃i

i (cxi
)
)

C∑
c=1

exp
(
xL,k̃i

i (c) +
∑

k 6=k̃i

k∈K+
i

(
xL,k
i (c)− xL,k

i (cxi)
)

+
∑

k∈K−i

(
xL,k
i (c)− xL,k

i (cxi)
))

≤− log
exp

(
xL,k̃i

i (cxi
)
)

∑C
c=1 exp

(
xL,k̃i

i (c) +
∑

k∈K−i

(
xL,k
i (c)− xL,k

i (cxi)
))

≤− log
exp

(
xL,k̃i

i (cxi)
)

(∑C
c=1 exp(xL,k̃i

i (c))
)(∑C

c=1 exp
(∑

k∈K−i
(xL,k

i (c)− xL,k
i (cxi

)
))

= min
k∈K+

i

rik − log
1∑C

c=1 exp
(∑

k∈K−i
(xL,k

i (c)− xL,k
i (cxi

)
)

≤ min
k∈K+

i

rik − log
1∏

k∈K−i

(∑C
c=1 exp(xL,k

i (c)− xL,k
i (cxi))

)
= min

k∈K+
i

rik −
∑

k∈K−i

log
exp

(
xL,k
i (cxi)

)∑C
c=1 exp

(
xL,k
i (c)

) = min
k∈K+

i

rik +
∑

k∈K−i

rik.
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If K+
i = ∅, then

J(xi;yi,Θ) ≤− log
ΠK

k=1 exp(xL,k
i (cxi))

ΠK
k=1(

∑C
c=1 exp(xL,k

i (c)))

=
∑

k∈K−i

− log
exp(xL,k

i (cxi
))∑C

c=1 exp(xL,k
i (c))

=
∑

k∈K−i

rik.

Thus, (2.19) holds.
From Theorem 2.2, we know that the global network initialized by the trained sub-

networks has a good initialization in terms of the cost function and the classification accuracy
if the samples are reasonably decomposed and the sub-networks are well trained. In fact,
in our experiments in Section 3, the sub-network transfer learning strategy can provide a
good initialization for the global network when the samples are just uniformly decomposed.
Sometimes the experimental results are stronger than the theoretical estimates in Theorem 2.2.
Furthermore, some assumptions are made to simplify the analysis and to make the proof
rigorous; however, the results of our experiments imply that the sub-network transfer learning
strategy can also provide a good initialization for the global network that has more general
architectures; for example, that contains global average pooling layers or skip connections.

2.4. Extension to Other Types of Neural Networks. In this section, we will extend the
proposed approach of decomposition and composition of DCNNs for classification to other
types of network architectures, and to other types of data, e.g., 1D and 3D data.

Fully connected neural networks. For 1D input data, fully connected neural networks
or 1D CNNs are usually used. For 1D CNNs [11], the 1D convolution of size k can be regarded
as a special 2D convolution of size k × 1. Thus, the proposed approach and the theoretical
results also apply to 1D CNNs. For fully connected neural networks, the fully connected layer
can be similarly regarded as a special case of a convolutional operation with the kernel width
to be 1, with regarding the number of neurons as the channel number. Since the input sample
is decomposed along the channel, we modify the composition of the weights in the first layer
(2.11) to

DΩ
′
k
(w1) = w1

k, for k ∈ [K],

Ω
′

k = [t11]× [t12]× Ωk × {1 +

k−1∑
i=1

c1i,out :

k∑
i=1

c1i,out},

where {Ωk}Kk=1 is the set of Cartesian products used to decompose the input samples. With
such modification, the proposed approach and the theoretical results are also applicable to
fully connected neural networks.

Regression tasks. Generally, classification tasks are used to predict the discrete values,
and regression tasks are used to predict the continuous values. The network architecture for
regression tasks can be set to be almost the same as that for classification tasks, except the last
FC layer (i.e., the L-th layer) and the soft-max layer [15]. More specifically, we remove the
soft-max layer, and replace the last FC layer with an FC layer with linear activations equal in
number to the dimension of the target space. For a regression task with sample X = {xi}Ni=1

and their corresponding ground truth Y = {yi}Ni=1, assume that a network for this regression
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task outputs the prediction Ŷ = {ŷi}Ni=1, then its cost function is defined by

D(Y, Ŷ ) =
1

N

N∑
i=1

‖ŷi − yi‖,

where ‖ · ‖ denotes some kind of norm. This cost function measures the mean absolute error
(MAE) or the mean squared error (MSE) when the norm is the L1 or the square of the L2 norm.
Since the first L− 1 layers are the same as those of the network for classification tasks, the
proposed approach and the theoretical results for the first L− 1 layers are applicable to the
networks for regression tasks. Then for the L-th layer, we first divide the weights of the
sub-networks by K before composing these weights, that is, (2.14) is modified to

DΩ
′
k
(wL) =

1

K
wL

k , for k ∈ [K].

With such modification, the result (2.16) in Theorem 2.1 satisfies

(2.22) FL(x; ΘL) =
1

K

K∑
k=1

FL
k (DΩk

(x); Θ∗k
L).

That is, assume that the k-th sub-networks outputs the prediction Ŷk = {ŷk,i}Ni=1 for
k = 1, . . . ,K, then the outputs of the global network initialized by these sub-networks
satisfy

(2.23) ŷi =
1

K

K∑
k=1

ŷk,i, for i = 1, . . . , N.

Therefore, denoting the cost function of the sub-networks by D(Y, Ŷk), the cost function of
the global network satisfies

D(Y, Ŷ ) =
1

N

N∑
i=1

‖ 1

K

K∑
k=1

ŷk,i − yi‖ ≤
1

N

N∑
i=1

1

K

K∑
k=1

‖ŷk,i − yi‖ =
1

K

K∑
k=1

D(Y, Ŷk).

Therefore, the cost function of the global network is bounded from above by the average of
the cost function of the trained sub-networks.

Auto-encoders. A typical auto-encoder is a feedforward neural network that is built by
a stack of fully connected layers, and the output layer has the same number of neurons as
the input layer. The idea is that the auto-encoder is trained to reconstruct the input pattern at
the output of the network by minimizing the difference between the input and the output. As
mentioned above, by regarding the fully connected layer as a special case of a convolutional
operation, the composition of the auto-encoder can be set to (2.12) and (2.11). Then, (2.15)
in Theorem 2.1 holds for all the layer of the auto-encoder. Thus, the output of the global
network initialized by the sub-networks is the concatenation of the outputs of the sub-networks.
More formally, for an input vector x and its decomposition xk = DΩk

(x), denote the output
of the k-th sub-network by x̂k, then the output x̂ of the global network initialized by the
sub-networks satisfies

DΩk
(x̂) = x̂k.
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Thus, the reconstruction error satisfies

D(x, x̂) = ‖x− x̂‖ = ‖
K∑

k=1

(DΩk
(x)−DΩk

(x̂))‖

≤
K∑

k=1

‖DΩk
(x)−DΩk

(x̂)‖ =

K∑
k=1

D(xk, x̂k).

Therefore, the cost function of the global network is upper bounded by the sum of the cost
function of the sub-networks.

Residual neural networks. As proposed in [7], a residual block of a residual neural
network is defined as

(2.24) y = F(x, {Wi}) + x,

where x and y are the input and output of the layers considered, and F(x, {Wi}) represents
the residual mapping, which is usually a stack of convolutions. It is assumed that the output
channel of F(x, {Wi}) and x are the same. Besides, as mentioned above, we assume that
a valid padding is used in convolutional operations. Thus, to ensure the sum in (2.24) is
well-defined, it is assumed that x is cropped on the boundaries before adding such that its size
is the same as F(x, {Wi}). Without loss of generality, let F(x, {Wi}) be a convolutional
operation with a convolutional kernel W . The cropping of x can be regarded as convolving a
convolutional kernel KW across x, where KW is of the same size as W and

(2.25) (KW )d(w+1)/2e,d(h+1)/2e,k,k = 1 and 0 otherwise, for all output channel k,

where w and h denote the widths of the kernel. Therefore, (2.24) can be rewritten as

(2.26) y = x ∗W + x ∗KW ,

where the activation function and the biases are omitted for simplicity since the element-wise
operations do not affect the decomposition and composition operations. Besides, for the case
that F(x, {Wi}) contains more than one convolutional layers, the second term in (2.26) is a
stack of convolutions that correspond to the convolutions of F(x, {Wi}).

The proposed decomposition and composition method is applicable to DCNNs containing
residual blocks, which is performed along the channel dimension of the weights. Then, it can
be proven that (2.15) also holds for residual neural networks. From (2.26), we have

F l
k(DΩk

(x); Θ∗k
l) = F l−1

k (DΩk
(x); Θ∗k

l−1) ∗wl
k + F l−1

k (DΩk
(x); Θ∗k

l−1) ∗Kl
k

F l(x; Θl) = F l−1(x; Θl) ∗wl + F l−1(x; Θl) ∗Kl,

whereKl
k andKl, that correspond to wl

k and wl, respectively, are defined as (2.25). Assuming
that (2.15) holds for the (l − 1)-th layer, from (2.18), we have

DΩl
k
(F l−1(x; Θl−1) ∗wl) = F l−1

k (DΩk
(x); Θ∗k

l−1) ∗wl
k,

DΩl
k
(F l−1(x; Θl) ∗Kl) = F l−1

k (DΩk
(x); Θ∗k

l−1) ∗Kl
k.

Thus,

DΩl
k
(F l(x; Θl)) = DΩl

k
(F l−1(x; Θl) ∗wl) +DΩl

k
(F l−1(x; Θl) ∗Kl)

= F l
k(DΩk

(x); Θ∗k
l).

Thus, (2.15) is applicable to residual neural networks, then other results in Theorems 2.1
and 2.2 can also be proven in the case of classification tasks or regression tasks.
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Recurrent neural networks. A recurrent neural network (RNN) is a type of artificial
neural network that treats sequential data or time-series data. We consider a typical RNN
that contains a stack of blocks shown in Figure 2.3, that is, a standard fully connected
neural network plus added loops. In RNNs, the hidden state is dependent on the previous
computations and the weights are shared across all time steps. More formally, we denote
the input, the hidden state, and the output at time step t and the l-th block by xl

t, s
l
t, and ol

t,
respectively, which satisfy

slt = σ(U lxl
t +W lslt−1 + bl),(2.27)

ol
t = σ(V lslt + cl),(2.28)

xl+1
t = ol

t,

with xt = x1
t denoting the input of the RNN at time step t. By regarding the fully connected

layer as a special case of a convolutional operation, the proposed approaches of decomposition
and composition of DCNNs are applicable to RNNs. Note that, due to (2.27), the decompo-
sition of the output channel of U l and W l need to be the same to ensure that the sum of the
terms corresponding to the previous hidden state and the input is well-defined.

FIG. 2.3. A block of a recurrent neural network and the unfolding in time of the computation involved in
its forward computation, where xt, st, and ot denote the input, the hidden state, and the output at time step t,
respectively.

For the theoretical analysis, (2.15) can be shown to be true for RNNs. For simplicity, with
the input x1

t,k := DΩk
(xt), we denote the input, the hidden state, and the output at time step

t and the l-th block of the k-th sub-network by xl
t,k, slt,k, and ol

t,k, respectively, and xl
t, s

l
t,

and ol
t for the global network initialized by the sub-networks. Besides, similar to the case of

DCNNs, we denote the term Ωl
k in (2.15) by Ωl

k,i, Ωl
k,h, and Ωl

k,o, which correspond to the
input, the hidden state, and the output, respectively. Then, we prove

(2.29) DΩl
k,i

(xl
t) = xl

t,k, DΩl
k,h

(slt) = slt,k, DΩl
k,o

(ol
t) = ol

t,k, for all t and l.

Assuming that the time-series data starts from time step 0, with fixing t = 0, the RNN is
actually a standard fully connected neural network, then (2.29) holds when t = 0. Additionally,
DΩl

k,i
(xl

t) = xl
t,k holds for all t when l = 1. Therefore, by using mathematical induction,

with assuming that DΩl
k,i

(xl
t+1) = xl

t+1,k and DΩl
k,h

(slt) = slt,k, we only need to prove that

DΩl
k,h

(slt+1) = slt+1,k and DΩl
k,o

(ol
t+1) = ol

t+1,k. As mentioned above, σ, bl, and cl are
omitted in the following derivation for simplicity. First, we have

DΩl
k,h

(slt+1) = DΩl
k,h

(U lxl
t+1 +W lslt) = DΩl

k,h
(U lxl

t+1) +DΩl
k,h

(W lslt).
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Then, since the decomposition of the output channel of U l and W l is the same as mentioned
above, and DΩl

k,i
(xl

t+1) = xl
t,k+1, DΩl

k,h
(slt) = slt,k, then, from (2.18), we have

DΩl
k,h

(U lxl
t+1) = U l

kx
l
t+1,k, DΩl

k,h
(W lslt) = W l

ks
l
t,k,

where U l
k and W l

k denote the weights that correspond to the k-th sub-network. Thus,

DΩl
k,h

(slt+1) = U l
kx

l
t+1,k +W l

ks
l
t,k = slt+1,k.

From (2.28), the connection between ol
t+1 and slt+1 is actually a standard fully connected

layer, thus DΩl
k,o

(ol
t+1) = ol

t+1,k holds. Additionally, for the output and upper bound of the
cost function, the theoretical results can be proven for classification tasks or regression tasks.

Besides, for 3D image data, 3D CNNs are usually used, to which the proposed approach
and the theoretical results are applicable by simply replacing 2D convolutions with 3D
convolutions.

3. Experiments. In this section, the proposed approach is evaluated by some experi-
ments with some image classification tasks. In addition, some visualization techniques are
implemented to visualize the initialization obtained by the composition of the sub-networks.
The results demonstrate that the sub-network transfer learning strategy can indeed provide a
good initialization for the global network and accelerate the training of the global network.
All the experiments are carried out using the TensorFlow 1.2 library on a workstation with 4
NVIDIA Tesla V100 32G GPUs. We compare the performance between two training strate-
gies: 1) to train the global network with the parameters randomly initialized (referred to as
“GNet-R”), 2) to train the sub-networks (referred to as “SNets”) in parallel and then further
train the global network initialized by the sub-network transfer learning method (referred to as
“GNet-T”). The sub-networks and the global networks are trained using the same computing
resources. The global networks are trained using the data-parallel strategy on a workstation
with 4 GPUs. The sub-networks are trained in parallel by a multiprocessing strategy, in
which GPUs are uniformly assigned to sub-networks; for example, for the case of 4 (or 8, 16)
sub-networks, one GPU is assigned to one (or 2, 4) sub-network. Besides, all the models are
optimized using the mini-batch Adam optimization algorithm.

3.1. Image classification tasks.

3.1.1. Experiments on CIFAR-10/CIFAR-100. We test the proposed method on the
CIFAR-10/CIFAR-100 dataset [12] consisting of 50k training images and 10k validation
images in 10/100 classes. The images of the dataset are RGB images of size 32× 32.

Experimental setting. We use the residual networks [7]. Networks of three different
numbers of layers are used, all of which are a stack of convolutional layers (with a 3 × 3
convolutional operation, a batch normalization (BN) [10] operation, and a ReLU function) that
end with a global average pooling, a 10-way (or 100-way) FC layer, followed by a softmax
layer. In these networks, the first layer is a convolutional layer, followed by a stack of 6n
layers with convolutions on the feature maps of sizes {32, 16, 8}, with 2n convolutional layers
for each feature map size and with the filter numbers of {64, 128, 256}. That is, there are
6n + 2 stacked weighted layers in total. In addition, shortcut connections are connected
to the pairs of 3 × 3 layers; i.e., a total of 3n shortcuts. Note that we experiment on the
cases of n = 5, 9, 18 (i.e., 32, 56, 110 layers), which are denoted by ResNet32, ResNet56,
and ResNet110, respectively. In our experiments, we decompose the images into K = 4
sub-images. The input images are decomposed into 4 sub-images with and without overlap
by decomposing into 2 partitions in both the width and height dimensions. The sub-images
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without and with overlap are of size 16 × 16 and 20 × 20, respectively. The networks are
uniformly decomposed into K = 4 sub-networks. The input data are normalized to have
a mean of zero and then scaled to [0, 1]. In addition, the training data are augmented by
randomly horizontal flipped and randomly shifted in an on-the-fly way during the training.

We compare the training time and the classification accuracy between the two training
strategies mentioned before. When evaluating the classification accuracy, the randomly
initialized global networks are trained for 200 epochs starting with a learning rate of 0.001,
which is divided by 10 at 80, 140, and 160 epochs and then divided by 2 at 180 epochs. The
sub-networks are trained for 120 epochs also starting with a learning rate of 0.001, which
and is divided by 10 at 60, 80, and 100 epochs. For the global networks initialized by the
sub-network transfer learning method, they are trained for 80 epochs, and the learning rate
starts from 0.0001 and is divided by 10 at 20 and 40 and then divided by 2 at 60 epochs. That
is, in these two training strategies, the numbers of epochs of training of the strategies are the
same; i.e., 200. Also the learning rate is the same for the last 80 epochs. The batch size is
set to 32 in all the cases. In addition, an adaptive learning rate schedule is used, in which the
learning rate is divided by 101/2 if it makes no improvement in the classification accuracy for
validation data in 5 epochs.

Training time analysis. We compare the training time between the global network and
four sub-networks using the same computing resources. Table 3.1 shows the FLOPs and the
number of parameters of the global network and one sub-network; with the dataset Cifar10.
Since their network architecture is almost the same, the number of parameters of the sub-
network in the overlapping case is the same as that in the non-overlapping case, which is
approximately 1/16 of that of the global network. Besides, in the case of overlap and non-
overlap, the computational complexity of each sub-network is approximately 1/40 and 1/60
of that of the global network, respectively. Table 3.2 shows the training times for 10 epochs
with different batch sizes of the global network and four sub-networks, taking ResNet32 for
Cifar10 as an example. From the results, we observe that for the two training strategies, 1)
without data augmentation, the training time of the global network is on average 2.33 (or 2.70)
times that of four sub-networks in the overlapping (or non-overlapping) case; 2) with data
augmentation, the training time of the global network is on average 2.19 (or 2.34) times that
of four sub-networks in the overlapping (or non-overlapping) case; 3) the memory usage of
the global network is approximately 4 times that of four sub-networks in the non-overlapping
case, which is consistent with the analysis in Section 2.1.2. Note that in the case of data
augmentation, the parallel efficiency of the sub-networks decreases due to images processing
by the CPUs, especially when the batch size becomes larger. This can be improved by using
GPUs (NVIDIA Data Loading Library), but this is beyond the scope of this paper.

TABLE 3.1
The FLOPs and the number of parameters of global networks with different depth (for dataset Cifar10) and one

of their corresponding sub-networks with and without (inside the brackets) overlap in the sub-images. The sub-images
without and with overlap are of size 16 × 16 and 20 × 20, respectively. The “ratio” refers to the ratio of the FLOPs
or the number of parameters of the global network to that of the sub-network. The global networks and the input
images are uniformly decomposed into 4 partitions.

ResNet32 ResNet56 ResNet110
global-net sub-net ratio global-net sub-net ratio global-net sub-net ratio

# param 7.44M 0.47M 15.83 13.65M 0.86M 15.87 27.62M 1.74M 15.87

GFLOPs 2.24
0.056

(0.037)
40

(60.54) 4.08
0.103

(0.067)
39.61

(60.90) 8.23
0.207

(0.135)
39.76

(60.96)
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TABLE 3.2
Taking ResNet32 for Cifar10 as an example, the training times for 10 epochs (with different batch sizes) of the

global network and four sub-networks with and without data augmentation, when the global networks are uniformly
decomposed into 4 partitions, and the input images are decomposed into 4 partitions with and without (inside the
brackets) overlap. The “ratio” means the ratio of the training time of the global network to that of the sub-network.
Note that “—” means that there is not enough storage space when training the networks.

batch size 32 128 512 2048 8192 16384 32768

w/o data
augmentation

global network 1395 s 461 s 228 s 182 s 173 s — —
4 sub-networks 620 s ( 565s) 180 s (170 s) 94 s (83 s) 83 s (67 s) 77 s (60 s) 80 s (64 s) 68 s (—)

ratio 2.25 (2.46) 2.56 (2.71) 2.42 (2.75) 2.19 (2.71) 2.25 (2.88) — —

w/ data
augmentation

global network 1484 s 472 s 216 s 174 s 169 s — —
4 sub-networks 627 s (588 s) 191 s (181) 101 s (89 s) 88 s (87 s) 84 s (79 s) 94 s (88 s) 82 s (—)

ratio 2.37 (2.52) 2.47 (2.60) 2.14 (2.43 ) 1.98 (2.00) 2.01 (2.14) — —

TABLE 3.3
The classification accuracy rates of the validation data of the global networks initialized by the sub-network

transfer learning strategy (“GNet-T”) and those randomly initialized (“GNet-R”) and that of the 4 trained sub-
networks (“SNet-1” to “SNet-4”) with and without (inside the brackets) overlap in the sub-images. The sub-images
without and with overlap are of size 16 × 16 and 20 × 20, respectively. Suffix-trained means that the global networks
are trained, otherwise, it indicates the global networks are initialized but not further trained.

Cifar10 (%) Cifar100 (%)
ResNet32 ResNet56 ResNet110 ResNet32 ResNet56 ResNet110

SNet-1
80.49

(68.92)
81.02

(69.27)
81.50

(69.08)
52.30

(40.11)
53.40

(40.35)
52.36

(39.73)

SNet-2
80.33

(68.18)
80.08

(68.64)
81.53

(68.09)
51.55

(44.01)
52.91

(39.23)
52.00

(37.49)

SNet-3
80.63

(68.68)
81.08

(68.79)
80.10

(68.69)
52.58

(40.04)
52.74

(39.65)
53.21

(36.55)

SNet-4
78.97

(68.40)
79.52

(68.18)
79.81

(67.92)
52.21

(40.47)
52.16

(39.73)
51.46

(37.97)

GNet-T
88.33

(81.11)
88.28

(80.65)
87.87

(80.54)
57.70

(42.74)
60.44

(43.70)
56.00

(38.85)

GNet-T-trained
94.40

(94.24)
94.76

(94.08)
94.44

(94.27)
74.24

(73.13)
74.49

(72.94)
71.91

(70.72)
GNet-R-trained 93.26 93.12 92.37 73.68 72.53 70.68

Classification accuracy analysis. Figure 3.2 displays the accuracy curves of GNet-R and
GNet-T during training. Figure 3.3 shows the comparison of the training curves between the
overlapping case and the non-overlapping case. Table 3.3 presents the classification accuracy
of the sub-networks, the global network initialized by the sub-network transfer learning method
(with and without further training), and the global network randomly initialized. Figure 3.1
displays the training time of the two training strategies. According to the results, we conclude
that: for both the overlapping and non-overlapping cases, 1) the sub-network transfer learning
strategy can provide a good initialization for the global network in terms of classification
accuracy; 2) before further training, the global network initialized by the trained sub-networks
can obtain much higher classification accuracy than all of the trained sub-networks. It is
stronger than the theoretical results in Theorem 2.2, which only justifies that the intersection
of the set correctly identified by the trained sub-networks can be correctly identified by the
global networks initialized by the sub-networks; 3) the sub-network transfer learning strategy
can accelerate the training saving about 1/4 of the training time; 4) after further training, the
global networks initialized by the proposed approach usually offers higher accuracy than those
initialized randomly. Additionally, Table 3.3 and Figure 3.3 illustrate that, the accuracy of the
sub-networks, as well as that of the global network initialized by the trained sub-networks
before and after further training, is higher in the case of overlap than in the case of non-overlap.
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FIG. 3.1. Training times of the two training strategies. Note that “SNets-overlap” and ‘SNets-non-overlap”
refer to the cases that the input images are decomposed with and without overlap, respectively.

3.1.2. Decomposing into more partitions. For the proposed network decomposition
method, there is a trade-off between the expressive power of the sub-networks and the parallel
efficiency of the sub-networks training. More specifically, as the number of decompositions
increases, the parallel efficiency of sub-network training improves, but the expressive ability
of the sub-networks may be inadequate due to the reduced number of convolutional kernels.
In addition, as the number of decompositions of input samples increases, the samples contain
less information. Next, we will perform comparative experiments using different numbers of
partitions.

Experimental setting. We experiment on the dataset “Food101” [1], which contains
101 food categories, with 101,000 RGB images of size 224 × 224. For each class, 750
training images and 250 validation images are provided. We use the well-known ResNet50
and ResNet101 [7], which end with a 1024-way FC layer, a 101-way FC layer, followed by a
softmax layer. To investigate the performance of decomposing networks into more partitions,
we decompose the networks and the input images into 4, 8, and 16 partitions. For input
images, in the case of 4 partitions, the input images are decomposed into 4 sub-images of
size 140 × 140 by decomposing into 2 partitions in both the width and height dimensions
and then applying overlap between each pair of neighboring subdomains; for 8 partitions, the
decomposition is illustrated as Figure 3.4; for 16 partitions, the input images are cropped to
images of size 176×176 by cropping 24 pixels on the boundaries, which are then decomposed
into 16 sub-images of size 70 × 70 by decomposing into 4 partitions in both the width and
height dimensions with overlap. The motivation of these decompositions of input images is
based on the assumption that the information at the center of the image usually contributes
more to the classification task. The input data are normalized to have a mean of zero and then
scaled to [0, 1]. In addition, the training data are augmented by randomly rotated, zoomed,
horizontal flipped, and shifted in an on-the-fly way during the training. In all the experiments,
the batch size is set to 128, and we apply 300 iterations in each epoch.

When comparing the classification accuracy between the two training strategies, the
numbers of iterations of training in the two strategies are the same; namely, the epoch number
of the global network randomly initialized (i.e., “GNet-R”) is equal to the sum of the epoch
number of one sub-network (i.e., “SNet”) and that of the global network initialized by the
composition of the trained sub-networks (i.e., “GNet-T”). More specifically, GNet-R is trained
for 200 epochs, the learning rate starts from 0.001, and is divided by 10 at 120 and 180 epochs.
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Cifar10-ResNet110: accuracy curve of validation data
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Cifar100-ResNet32: accuracy curve of validation data

GNet-R
GNet-T-overlap
max acc of GNet-R: 73.68%
max acc of GNet-T-overlap: 74.24%

epochs
0 50 100 150 200

a
c
c

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Cifar100-ResNet56: accuracy curve of validation data
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Cifar100-ResNet110: accuracy curve of validation data
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FIG. 3.2. Classification accuracy for validation data during training for different networks and datasets Cifar10
(top) and Cifar100 (bottom). The comparison between the global network initialized by the sub-network transfer
learning strategy (“GNet-T-overlap”) and the global network randomly initialized (“GNet-R”). The suffix “overlap”
in “GNet-T-overlap” refers to the decomposition of the input images with overlap. Note that only the case of overlap
is shown since the curves of the non-overlapping case are similar to those of the overlapping case. From left to right
are the networks with 32, 56, and 110 layers, respectively.

The sub-networks are trained for 100 epochs with learning rate starting from 0.001, divided
by 10 at 80 epochs. Then GNet-T is trained for 100 epochs, learning rate starting again from
0.001, but this time divided by 10 at 60 and 80 epochs. In addition, an adaptive learning rate
schedule is used, in which the learning rate is divided by 101/2 if it makes no improvement in
the classification accuracy for validation data in 5 epochs.

Experimental results. Table 3.4 shows the FLOPs and the number of parameters of the
global network and one sub-network, which indicates that 1) the number of parameters of
the sub-network is approximately 1/K2 of that of the corresponding global network where
K denotes the number of sub-networks that the global network is decomposed into, and 2)
in the case of 4 partitions, the computation of the sub-network is approximately 1/33 of the
corresponding global network; as the number of partitions increases to 8 and 16, this ratio
decreases to 1/(33× 8) and 1/(33× 8× 5). In addition, Table 3.4 and Figure 3.5 display the
training times of the two training strategies. It indicate that, when using 4 GPUs, for the same
number of iterations and batch size, the training time of K sub-networks is approximately
1/4 of that of the global network; thus, the sub-network transfer learning strategy accelerates
the training, which saves about 3/8 of the training time; as shown in Figure 3.5. Note that in
theory, the training time of the sub-networks should decrease as the partition number increases,
since the computation of the sub-networks decreases exponentially as the partition number
increases; but in our experiments, the parallel efficiency of 8 (or 16) sub-networks is reduced
since 2 (or 4) sub-networks share one GPU. Additionally, Table 3.4 also shows the training
time of using one GPU. When using one GPU, the training of the sub-network also shows an
acceleration compared with the training of the global network. But this speedup is smaller
than the case of using 4 GPUs.
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Cifar10-ResNet32: accuracy curve of validation data
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Cifar10-ResNet56: accuracy curve of validation data
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Cifar10-ResNet110: accuracy curve of validation data
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Cifar100-ResNet32: accuracy curve of validation data
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Cifar100-ResNet56: accuracy curve of validation data
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Cifar100-ResNet110: accuracy curve of validation data
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FIG. 3.3. Classification accuracy for validation data during training for different networks and datasets Cifar10
(top) and Cifar100 (bottom). The comparison between the global network initialized by the sub-networks trained by
overlapping and non-overlapping sub-images. “CNet-T-overlap” and “CNet-T-nonoverlap” refer to the cases there
the input images are decomposed with and without overlap, respectively. From left to right are the networks with 32,
56, and 110 layers, respectively.

FIG. 3.4. Illustration of the way of partitioning each image in dataset “Food101” into 8 sub-images.

Figure 3.6 and Table 3.5 show comparisons of the classification accuracy between the two
training strategies. According to the results, we conclude that 1) as the number of partitions
increases, the initialization provided by the trained sub-networks seem to be worse, 2) in
general, after further training, the accuracy of the global network initialized by the sub-network
transfer learning strategy decreases as the number of partitions increases, and 3) after further
training, the sub-network transfer learning strategy shows almost no loss of accuracy, except
for the case when ResNet101 is decomposed into 16 partitions. These results indicate that
decomposition into too many partitions reduces the quality of the initialization and also
performs poorly after training.

3.1.3. Visualization of the initialization obtained by sub-network composition. Both
the theoretical analysis in Section 2.3 and the experimental results in Section 3.1.1 and 3.1.2
show the effectiveness of the initialization provided by the sub-network transfer learning
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FIG. 3.5. Training times of the two training strategies for dataset Food101 and ResNet50, ResNet101. And “4”,
“8”, and “16” indicate that the global networks are decomposed into 4, 8, and 16 partitions. In all the cases four GPUs
are used. Thus, one GPU is assigned to 1, 2, and 4 sub-network in the case of 4, 8, and 16 partitions, respectively.
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Food101-ResNet50: accuracy curve for validation data
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Food101-ResNet50: Top-5 accuracy curve for validation data

GNet-R (max Top-5 acc: 91.77%)
GNet-T-4 (max Top-5 acc: 91.67%)
GNet-T-8 (max Top-5 acc: 91.56%)
GNet-T-16 (max Top-5 acc: 91.82%)
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Food101-ResNet101: accuracy curve for validation data
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Food101-ResNet101: Top-5 accuracy curve for validation data

GNet-R (max Top-5 acc: 90.86%)
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GNet-T-8 (max Top-5 acc: 92.68%)
GNet-T-16 (max Top-5 acc: 91.82%)

FIG. 3.6. Classification accuracy for validation data during training for different networks and dataset Food101.
Comparisons between the global network initialized by the sub-network transfer learning strategy (“GNet-T”, and

“4”, “8”, and “16” indicate that the global networks are decomposed into 4, 8, and 16 partitions.) and the global
network randomly initialized (“GNet-R”). (Rows) ResNet50 and ResNet101. (Columns) Top-1 and top-5 accuracy
curves.
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TABLE 3.4
The FLOPs and the number of parameters of the global networks (“GNet”) and one of their corresponding

sub-networks (“SNet”, and “4”, “8”, and “16” mean 4, 8, and 16 partitions, respectively ); the training time of
the global networks and 4 (or 8, 16) sub-networks for 10 epochs. The global networks and the input images are
decomposed into 4, 8, 16 partitions as described in the experimental setting. We consider the cases of using four
GPUs and one GPU. When using four GPUs, one GPU is assigned to 1, 2, and 4 sub-network in the case of 4, 8 and
16 partitions, respectively.

ResNet50 ResNet101
GNet SNet-4 SNet-8 SNet-16 GNet SNet-4 SNet-8 SNet-16

# param 25.79M 1.66M 0.43M 0.12M 44.86M 2.87M 0.74M 0.20M
GFLOPs 7.79 0.23 0.028 0.0056 15.26 0.42 0.050 0.0096

training time 4 GPUs 2227 s 427 s 420 s 521 s 2507 s 623 s 607 s 736 s
of 10 epochs 1 GPU 2723 s 1347 s 987 s 1277 s 2920 s 1650 s 1533 s 2210 s

TABLE 3.5
The classification accuracy (Top-1 and Top-5) of the validation data of Food-101 by using ResNet50 and

ResNet101. The comparison between the global networks that are initialized by the sub-network transfer learning
strategy (“GNet-T”, and “4”, “8”, and “16” mean 4, 8, and 16 partitions, respectively) and the randomly initialized
(“GNet-R”). Suffix-trained means that the global networks are trained; otherwise, it indicates that the global networks
are initialized but not further trained.

ResNet50 ResNet101
Top-1(%) Top-5(%) Top-1(%) Top-5(%)

GNet-T-4 49.09 74.58 54.69 79.43
GNet-T-8 25.59 51.11 26.80 54.45
GNet-T-16 13.65 37.03 10.76 31.85
GNet-T-4-trained 75.31 91.67 75.39 91.90
GNet-T-8-trained 75.08 91.67 76.56 92.68
GNet-T-16-trained 74.34 91.82 70.55 91.82
GNet-R-trained 75.72 91.77 74.40 90.86

strategy. Next, we visualize the initialization provided by the composition of the trained sub-
networks. More specifically, two visualization techniques are used 1) to show the feature maps
of the trained sub-networks and those of the global network initialized by the sub-networks,
and 2) for both the sub-networks and the global network, to use the class activation mapping
(CAM) technique [38], in which the predicted class score is mapped back to the previous
convolutional layer to produce a coarse localization map highlighting the important regions in
the image.

We experiment on the dataset “Dogs vs. Cats” with images of cats or dogs by using an
11-layer DCNN that consists of 10 convolutional layers (with one max-pooling for every 2
convolutional layers) and ends with a global average pooling layer and a 2-way FC layer
with softmax. The DCNN is uniformly decomposed into 4 sub-networks by the proposed
method. Each sample (of size 224× 224) is decomposed into 4 sub-images of size 140× 140
by decomposing into 2 partitions in both the width and height dimension with overlap.

For technique 1), Figure 3.7 displays some feature maps of the trained sub-networks
and subdomains of the feature maps of the global network initialized by the sub-networks,
where the subdomain Ωl

k is defined as in (2.15) in Theorem 2.1, and the feature maps in
the 1st, 3rd, and 5th layers are shown. It can be seen that the subdomains of the feature
maps extracted by the global network are the same as the feature maps extracted by the
corresponding sub-network, which is consistent with the result (1) in Theorem 2.1.

For technique 2), we use the CAM technique [38] to produce a coarse localization map
highlighting the important regions in the image. For example, denote {Xn}n as the feature
maps of the final convolutional layer, and denote wn as the weight corresponding to class ‘cat’
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layer 1 for sub-networks

 layer 3 for sub-networks

layer 1 for global networks

layer 3 for global networks
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layer 5 for sub-networks

layer 5 for global networks

FIG. 3.7. Some feature maps in the 1st, 3rd, and 5th layers of the trained sub-networks and subdomains of the
feature maps of the global network initialized by the sub-networks, where the subdomain Ωl

k is defined as in (2.15).

for the global average pooling unit n. Then, the class activation map for class ‘cat’ is given by
M =

∑
n wnXn, which is then upsampled to the size of the input image. Figure 3.8 displays

such localization maps for predicting the ground truth category, which contains the CAM
visualizations of the trained sub-networks, the global network initialized by the sub-networks
with or without further training, and the global network randomly initialized with or without
further training. In general, even without further training, the global network initialized by
the trained sub-networks can highlight the important regions for prediction; for example,
it can localize the cat regions for the images containing cats. But for the global network
randomly initialized without training, its CAM visualization appears to be haphazard. Besides,
after further training, both the CAM visualizations of the global network initialized by the
sub-networks and that randomly initialized can locate the important regions for prediction.
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(a)

(b) (c)

(d) (e)

FIG. 3.8. The CAM visualization of: the trained sub-networks (a), the global network initialized by the trained
sub-networks without and with further training ((b) and (c) for without and with, respectively), and the global network
randomly initialized without and with training ((d) and (e) for without and with, respectively). The red regions
correspond to high scores. Even without further training, the global network initialized by the trained sub-networks
can highlight the important regions for prediction.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

DECOMPOSITION AND COMPOSITION OF DCNNS 185

4. Conclusion. In this paper, following the idea of domain decomposition methods,
we propose and study a deep convolutional neural network decomposition and composition
technique for the purpose of paralleling the training of DCNNs. In the decomposition stage,
the global network is decomposed into sub-networks that are trained completely independently
with the decomposition of the samples. Then, following the idea of nonlinear preconditioning
of Newton’s method [24], the sub-networks are composed to initialize the global network
by the sub-network transfer learning strategy. Similar to domain decomposition methods,
the advantages of the proposed approaches include the applicability for parallelization of the
computations and boosting the models’ ability to capture fine details. The theoretical analysis
and experiments indicate that the proposed approaches can provide a good initialization for
DCNNs and accelerate the training. Only 2D, low resolution images are studied in this paper.
The technique is expected to show more advantages for more difficult problems such as high
resolution 3D images, and larger clusters of GPUs.
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