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Abstract. The course of an epidemic can often be successfully described mathematically using compartment
models. These models result in a system of ordinary differential equations. Two well-known examples are the SIR
and the SEIR models. The transition rates between the different compartments are defined by certain parameters
that are specific for the respective virus. Often, these parameters are known from the literature or can be determined
using statistics. However, the contact rate or the related effective reproduction number are in general not constant in
time and thus cannot easily be determined. Here, a new machine learning approach based on physics-informed neural
networks is presented that can learn the contact rate from given data for the dynamical systems given by the SIR and
SEIR models. The new method generalizes an already known approach for the identification of constant parameters
to the variable or time-dependent case. After introducing the new method, it is tested for synthetic data generated by
the numerical solution of SIR and SEIR models. The case of exact and perturbed data is considered. In all cases,
the contact rate can be learned very satisfactorily. Finally, the SEIR model in combination with physics-informed
neural networks is used to learn the contact rate for COVID-19 data given by the course of the epidemic in Germany.
The simulation of the number of infected individuals over the course of the epidemic, using the learned contact rate,
shows a very promising accordance with the data.
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1. Introduction. In December 2019 the new and previously unknown coronavirus SARS-
CoV-2 appeared for the first time in Wuhan, China, from where it has spread all over the world.
Due to the effects of globalization and a high frequency of private and business travel, the
virus and COVID-19, the infectious disease caused by the coronavirus, spread rapidly within
Asia and only shortly after in Europe and America. On March 11, 2020, the World Health
Organization (WHO) declared the outbreak as a pandemic; see [3].

Mathematical modeling of virus epidemics is a well-known field in applied mathematics
and compartment models are well-established approaches to simulate the course of an epidemic
within a population. A simple but yet powerful model is the SIRmodel introduced by Kermack
and McKendrick already in 1927, [20]. In the SIR model, the population is divided into three
disjoint groups denoted as compartments. The susceptible individuals are denoted by S, the
infected and infectious individuals are denoted by I , and the recovered or removed individuals
are denoted by R. Then, in the course of the epidemic, there is a transition of the individuals
first from the compartment for S to that for I and then from there to the compartment for
R; see Figure 2.1. The flow from one compartment to another is determined by a number of
parameters that are characteristic for the modeled disease. This model yields a system of three
ordinary differential equations (ODEs) where the unknowns are the number of individuals in
each compartment. Given the initial values in each compartment, the course of the epidemic
can be simulated by numerically solving the system of ODEs. An extension of the SIR model
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is obtained by dividing the compartment I into two subgroups. Those who are exposed to
the virus and thus infected but not yet infectious are gathered in the compartment E, and
those who are already infectious are put into the compartment I; see Figure 2.2. Again, this
results in a system of ordinary differential equations for the—now four—unknown numbers
of individuals in each compartment. This model is denoted as SEIR model. There exist
many excellent introductions and surveys to the field of modeling infectious diseases using
compartment approaches; see, e.g., [7, 8, 18] and the references cited therein.

In practice, modeling the spread of a specific virus using a compartment model requires
the knowledge of the parameters defining the flows from one compartment to another. Some
of the parameters can be estimated from medical data using statistical methods. Others
cannot be easily obtained this way. For instance, the parameter denoted as the contact rate
β is time-dependent and is usually not so easily estimated directly from the available data;
see, e.g., the remark in [7, Sect. 2.3.2]. Here, parameter identification methods have to be
applied; see, e.g., [31] where numerical methods are discussed to compute the parameters of a
dynamical system by a least squares fit. A brief overview of the parameter identification in
general epidemiological compartment models using the nonlinear least squares method is, for
example, given in [24, Chap. 4]. In, e.g., [12, 30], (weighted) nonlinear least squares methods
are applied to several compartment models and an investigation of parameter uncertainties
using a general bootstrap approach [15] is provided. Additionally, for the special case of the
COVID-19 pandemic, in [17, 26] combinations of the nonlinear least squares method and quasi-
Newton methods are considered for the estimation of different unknown parameters in specific
compartment models. Let us remark that we do not claim to provide a complete list here. A new
approach to solve parameter identification problems for dynamical systems using nonlinear
least squares based on physics-informed neural networks (PINNs) has been introduced in [29].
The relation of the PINN approach with nonlinear least squares formulations with constraints
given by the dynamical system is described, for example, in more detail in Section 4.

We present an approach to estimate the time-dependent contact rate in SIR and SEIR
models using PINNs. This approach has been introduced in [29] for both the discretization of
partial differential equations and the identification of constant parameters. By now, the PINN
approach has been applied to a wide range of parameter identification problems, for example,
for photonic metamaterials and nano-optics [11], nonlinear conservation laws on decomposed
domains [19], or integral equations such as non-local Poisson and non-local turbulence
models [25]. In the present paper, we extend this approach to time-dependent parameters and
apply it to compartment models from mathematical epidemiology. The main idea of PINNs is
to combine the potential of neural networks to approximate a (nonlinear) functional relation
based on data with domain knowledge, here, from epidemic modeling. More precisely, we
integrate a priori knowledge in form of ordinary differential equations into the loss function of
deep neural networks. The construction of hybrid models, which combine black-box modeling
and the use of scientific domain expertise, is one core area of scientific machine learning. In
contrast to a number of existing methods, we are especially able to estimate a contact rate
which is variable in time. This is achieved by decomposing the global parameter identification
problem on the complete time interval into a number of shorter time intervals. For each time
interval, we then apply our machine learning techniques to obtain a separate estimate of the
contact rate. We verify the potential of our new method by testing it first on several different
scenarios with synthetic data for both SIR and SEIR models. In these cases, we generate the
synthetic data by numerically solving the systems of ODEs of the SIR and SEIR models,
using both exact data and data with noise. Finally, as a proof of concept, we apply our new
parameter identification algorithm based on PINNs to estimate the time-dependent contact
rate of an SEIR model for the real data of the COVID-19 pandemic in Germany.
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The remainder of the paper is organized as follows. In the next section, we provide a
brief introduction of the SIR and SEIR compartment models. In Section 3, we introduce
the parameter identification problem for compartment models in a general form. In Section 4,
we then first introduce PINNs, describe how to use them for parameter identification, and
apply them to SIR and SEIR models. Section 5 introduces our new approach for learning
time-dependent parameters using PINNs by decomposing the problem in shorter time intervals
and learning local contact rates. Next, in Section 6, we describe our data preprocessing and
the training procedure. Finally, in Section 7, we first provide numerical results for a set of
experiments with synthetic data. This data has been generated by solving the SIR and SEIR
models, respectively, numerically. We use exact data and data with noise to prepare ourselves
for realistic data from real epidemics. Then, as a proof of concept for real data, we apply our
new method to an SEIR model and data of the COVID-19 pandemic in Germany.

2. Compartment models in mathematical epidemiology. In this section, we provide
a brief description of two compartment models common in mathematical epidemiology, the
SIR and the SEIR model; see [7, 8, 18] and the references therein for more details. The
entire population of a region is divided into a fixed number of suitable groups referred to as
compartments [20].

2.1. The SIR model. For the SIR model, the population of size N is divided into three
disjoint groups or compartments, respectively: susceptible (S), infectious (I), and removed, e.g.,
immunized, (R) members of the population; see also Figure 2.1. The individuals are transferred
between compartments as indicated in the flow diagram shown in Figure 2.1 with the transition
rates occurring in the differential equation (2.1). In epidemiological compartment models, it is
assumed that all individuals in the same group have the same characteristics and thus that all
groups are homogeneous. Mathematically, the SIRmodel is given by the initial value problem

dS

dt
= −β S I

N
dI

dt
= β

S I

N
− γ I(2.1)

dR

dt
= γ I

with given initial values S(t0) ≥ 0, I(t0) ≥ 0, and R(t0) ≥ 0 at some initial time t0. Here,
the parameter γ, also denoted as mean infective period, represents the proportion of infected
individuals recovering in unit time. Hence, γ can be computed as 1/D, where D denotes the
number of time units an infected person carries and can spread the disease. The parameter β is
the contact rate, the average number of infectious contacts an infectious person makes in unit
time. Thus, N ·β is the expected number of people an infected person infects in unit time. The
model preserves the total number of individuals, and hence, the functions S(t), I(t), and R(t)
satisfy the condition S(t) + I(t) + R(t) = N at any time t ≥ t0. Let us note that this is a
feasible assumption since, in general, an epidemic has a relatively short time scale (compared
to the lifespan of an individual) for which new births as well as deaths can be neglected, and
additionally, travel restrictions are often enforced during an epidemic.

2.2. The SEIR model. In the basic SIR model, each individual is considered to be
infectious as soon as it becomes infected. However, for many epidemic infections, there
is a significant exposed period during which an individual that has been infected is not
yet infectious itself. In order to incorporate this exposed phase within the SIR model
(see Section 2.1), a fourth compartment for an exposed population is added, denoted by (E).
More precisely, the SIRmodel is extended by letting infected but not yet infectious individuals
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FIG. 2.1. Schematic representation of the SIR model.
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FIG. 2.2. Schematic representation of the SEIR model.

first move from susceptibles (S) to exposed (E) members of the population. Only after an
exposed phase, they are transferred from the exposed (E) to the infectious (I) compartment;
see also Figure 2.2. The resulting SEIR model is then given by the initial value problem

dS

dt
= −β S I

N
dE

dt
= β

S I

N
− κE

dI

dt
= κE − γ I

dR

dt
= γ I

(2.2)

with given initial values S(t0) ≥ 0, E(t0) ≥ 0, I(t0) ≥ 0, and R(t0) ≥ 0. The parameters β
and γ are defined as in the SIR model. The additional parameter 1/κ denotes the mean of an
assumed exponential distribution for the exposed period, defined as the time each individual
spends in the compartment E. In analogy to the SIR model, the SEIR model is also based
on the assumption of a constant population size N with S(t) + E(t) + I(t) +R(t) = N at
any time t ≥ t0.

3. Parameter identification problem. The SIR and SEIR compartment models de-
scribed in Section 2 are systems of first-order ordinary differential equations of the general
form

∂Up
∂t

(t) + Fp(Up(t)) = 0, t ∈ [t0, T ](3.1)
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with

Up(t) =

u
1
p(t)
...

unp (t)

 and Fp(Up) =

f
1
p (Up)

...
fnp (Up)


where uip ∈ C1(R) and f ip ∈ C(Rn), i = 1, . . . , n. In particular, the function Fp depends
on certain parameters p ∈ Rk, and therefore, the solution Up depends on p as well. Moreover,
t0 is the initial time and T the final time.

Now, let p = (pt, pf ) be partitioned into trainable parameters pt ∈ Rkt and fixed
parameters pf ∈ Rkf with k = kt+kf . Furthermore, let Ûj be given data at times t1, . . . , tM .
Then, we would like to solve the inverse problem

arg min
pt

1

M

M∑
j=1

‖Up(tj)− Ûj‖2,(3.2)

where ‖ · ‖ is an appropriate norm; later in the paper, we use the Euclidean norm. In other
words, we seek to determine the optimal vector of trainable parameters pt, such that the
resulting solution Up is the best fit to our given data in a least squares sense.

In the context of our epidemiological models, we obtain

U(γ,β) =

SI
R

 and F(γ,β) =

 −βIS/N
βIS/N − γI

γI

 ,

for the SIR model and

U(κ,γ,β) =


S
E
I
R

 and F(κ,γ,β) =


−βIS/N

βSI/N − κE
κE − γI
γI


for the SEIR model. Note that the equations for S, E, and I are independent of R, and
hence, the last equation can be decoupled in both models. In a post-processing step, for the
SIR model, R(t) can then be computed as R(t) = N − S(t)− I(t) for all time points where
S(t) and I(t) are known. Using additionally the compartment E, we can proceed analogously
for the SEIR model, having R(t) = N − S(t)− E(t)− I(t). Hence, we only consider the
reduced systems

U(γ,β) =

(
S
I

)
and F(γ,β) =

(
−βSI/N

βSI/N − γI

)
,(3.3)

and

U(κ,γ,β) =

SE
I

 and F(κ,γ,β) =

 −βSI/N
βSI/N − κE
κE − γI

 ,(3.4)

respectively, in the inverse problem (3.2).
In practice, the recovery rate γ and the exposure rate κ can be assumed to be roughly

constant for all individuals and in time. They can typically be estimated based on statistical
data and are often available in the medical literature. On the other hand, the contact rate β

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

6 V. GRIMM, A. HEINLEIN, A. KLAWONN, M. LANSER, AND J. WEBER
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FIG. 4.1. Graphical representation of a PINN. The derivatives needed for the evaluation of the residual are
computed using automatic differentiation in a backward propagation (red). The parameters to identify pt are trainable
parameters of the neural network, the parameters pf are fixed.

is subject to many external influences such as governmental policies (e.g., school/university
closures, lockdown, social distancing, etc.) or changing behavior of the population (life style,
hygiene standards, etc.) and thus can vary significantly over time. Hence, we will use values
of γ and κ from the literature, and therefore, fix those parameters, whereas we select β as a
trainable parameter. In particular, in our set of numerical experiments, we will consider both
cases: a constant β and a β(t) which varies over time in the inverse problem

arg min
β

1

M

M∑
j=1

‖Up(tj)− Ûj‖2.(3.5)

As a discretization for the SIR and the SEIR models, we will apply physics-informed neural
networks.

4. Physics-informed neural networks. The basic idea of physics-informed neural net-
works (PINNs) is to integrate a priori knowledge in form of physical laws or domain expertise
modeled by ordinary or partial differential equations into a deep learning model. In particular,
this is done by differentiating neural networks with respect to their input variables and model
parameters; see [29] for more details. Then, in addition to the data error, the residual of the
differential equation is minimized in a least squares sense as part of the loss function.

4.1. Discretizing systems of ODEs using PINNs. In order to solve (3.2), we first dis-
cretize (3.1) using a PINN and then solve the inverse problem simultaneously while training
the neural network. A PINN for discretizing (3.1) is based on a standard neural network

NNW,b
p : R→ Rn(4.1)

approximating the solution

Up : R→ Rn
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of the system of first-order ODEs. Here, the superscript indices indicate that the neural
network is determined by its weights W and biases b. In particular, we use a dense neural
network with the scaled exponential linear unit (SELU) [22] activation function; this network
is marked as neural network in Figure 4.1. In order to discretize (3.1) by the neural network
NNW,b

p , the weights W and biases b can now be optimized such that NNW,b
p fits the data Ûj ,

j = 1, . . . ,M , in a least squares sense, solving

arg min
W,b

1

M

M∑
j=1

‖NNW,b
p (tj)− Ûj‖2︸ ︷︷ ︸

=:MSEW,b
U

,(4.2)

where MSE stands for mean squared error. In order to extend NNW,b
p to a PINN, we enhance

the loss function MSEW,bU from (4.2) by the additional term

Fp(NNW,b
p , t) =

∂NNW,b
p

∂t
(t) + Fp(NNW,b

p (t)),

which corresponds to the residual of our system of ODEs (3.1). The evaluation of the residual
requires the computation of the time derivative of the neural network output ∂NNW,b

p /∂t.
This can be done using the backward propagation algorithm and automatic differentiation [5],
which is also the standard algorithm used to compute gradients in deep neural networks in
gradient-based optimization schemes.

Now, satisfying

Fp(NNW,b
p , t) = 0 ∀t ∈ [t0, T ](4.3)

is equivalent to NNW,b
p solving (3.1) exactly. Since, in practice, we cannot enforce (4.3)

exactly on the entire interval [t0, T ], we enforce this condition at certain points in time
t1, . . . , tL in a least squares sense. We call these the collocation points. More precisely, we
add the mean squared residual error

MSEW,bFp
:=

1

L

L∑
j=1

‖Fp(NNW,b
p , tj)‖2(4.4)

to our loss function (4.2). In summary, the neural network NNW,b
p of the form (4.1) becomes

a PINN by simply adding the term (4.4) to the loss function. Hence, a PINN discretizing (3.1)
is obtained solving the minimization problem

arg min
W,b

(MSEW,bU + MSEW,bFp
).(4.5)

4.2. Choosing the data and collocation points. Even though, the points in time where
data are available, t1, . . . , tM , and the collocation points t1, . . . , tL are, in principle, inde-
pendent of each other, a common choice is {t1, . . . , tL} = {t1, . . . , tM}. Later, we will
also consider the case {t1, . . . , tL} ⊃ {t1, . . . , tM}, which provides the possibility to eval-
uate the residual-loss in more points in time than we have data available for S,E, I, and
R. This to the residual-loss having a higher impact on the overall loss function and hope-
fully to a more accurate approximation of the contact rate β. In order to ensure that, in a
batch stochastic gradient algorithm (SGD), ti and tj are always in the same batch if ti = tj ,
we reformulate (4.5) as follows. In particular, we choose a single set of points in time
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{t1, . . . , tN} := {t1, . . . , tL} ∪ {t1, . . . , tM} and introduce, for each specific ti, binary data
and residual flags αdi and αri , respectively. These flags specify which loss terms are enforced
for time ti. Consequently, we use a modified loss function to obtain a minimization problem
equivalent to (4.5)

arg min
W,b

N∑
j=1

(
αdj
Md
‖NNW,b

p (tj)− Ûj‖2 +
αrj
Mr
‖Fp(NNW,b

p , tj)‖2
)
,(4.6)

where Md =
∑N
j=1 α

d
j and Mr =

∑N
j=1 α

r
j . Note that, in this paper, we will only consider

the cases (αdj = αrj = 1) or (αdj = 0 and αrj = 1) for each index j. In other words, the ODE
residual (4.3) is always enforced in all points of time, even if no data fit is enforced. For the
sake of brevity, we did not include a full study on the influence of αdj and αrj on the training
performance of the PINN.

4.3. Parameter identification using PINNs. Now, in order to approximate the inverse
problem (3.2), we release the parameters pt in the minimization problem (4.6) and obtain

arg min
W,b,pt

(MSEW,bU + MSEW,bFp
).(4.7)

Therefore, we solve the discrete inverse problem approximately. Minimizing additionally with
respect to the trainable parameters pt actually means that during the training of the PINN, i.e.,
during the optimization of the neural network, the parameters pt are treated as variables. Thus,
pt are actually additional network parameters and are treated as W and b during the training.
This is reasonable, since the residual loss MSEW,bFp

actually depends on pt. The optimization
of (4.7) may be improved by introducing a weighting factor ω that balances the loss terms,
yielding

arg min
W,b,pt

(MSEW,bU + ωMSEW,bFp
);(4.8)

see Section 6.3 for more details on choosing ω.

4.4. Application to SIR and SEIR models. In this section, we apply PINNs in order
to approximate the inverse problem (3.2) for the SIR and SEIR models using temporal
epidemiological data for the number of susceptible, exposed, and infected individuals. Here,
we consider the SIR and SEIR models as systems of ODEs and reduce them exclusively
to the compartments S and I or S, I , and E, respectively, as described in Section 3. In
particular, we consider (3.3) and (3.4) for the SIR model and the SEIR model, respectively.
The respective PINN is obtained by training a neural network (4.1) on this data using the
composed loss function (4.6).

SIR model. For the SIR model, we employ a dense neural network

NNW,b
p : R→ R2

t 7→
(
SW,bp

IW,bp

)
=:

(
S
I

)
approximating (S (t) , I (t))

T , where S and I follow the SIR model; cf. (3.3) and Section 2.1.
In order to enforce this in a least squares sense, we minimize the mean residual error MSEW,bFp

defined in (4.4), where

Fp(NNW,b
p , t) =

(
∂S
∂t (t)− β S(t)I(t)N
∂I
∂t (t) + β S(t)I(t)N − γI(t)

)
.

http://etna.ricam.oeaw.ac.at
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At the same time, we want to minimize the mean squared data error

MSEW,bU = MSEW,bS + MSEW,bI

where

MSEW,bS =

N∑
i=1

αdi
Md

(
SW,bp (ti)− Ŝi

)2
, MSEW,bI =

N∑
i=1

αdi
Md

(
IW,bp (ti)− Îi

)2
,

and Ŝi and Îi is given data at time ti. Please refer to Section 6.3 for additional information on
where we minimize the residual error and how we select the collocation points. In order to
approximately solve the inverse problem (3.5) using a PINN discretization, we then choose
pt = β and pf = γ and obtain the discrete inverse problem

arg min
W,b,β

(MSEW,bU + ωMSEW,bFp
).

Therefore, in the neural network, the weights W and biases b as well as the contact rate β are
chosen as trainable parameters, whereas γ is fixed during the optimization; see Figure 4.1.

SEIR model. The extension to the SEIR model is straightforward. In particular, we
consider the neural network

NNW,b
p : R→ R3

t 7→

SW,bp

EW,bp

IW,bp

 =:

SE
I


approximating (S(t), E(t), I(t))T ; see also (3.4) and Section 2.2. Then, we choose pt = β
and pf = (γ, κ) and again minimize the loss function

arg min
W,b,β

(MSEW,bU + ωMSEW,bFp
),

where the residual is given by

Fp(NNW,b
p , t) =

 ∂S
∂t (t)− β S(t)I(t)N
∂E
∂t (t) + β S(t)I(t)N − κE(t)
∂I
∂t (t) + κE(t)− γI(t)

 ,

and the mean squared data error is the sum of

MSEW,bS =

N∑
i=1

αdi
Md

(
SW,bp (ti)− Ŝi

)2
,

MSEW,bE =

N∑
i=1

αdi
Md

(
EW,bp (ti)− Êi

)2
, and

MSEW,bI =

N∑
i=1

αdi
Md

(
IW,bp (ti)− Îi

)2
.

Let us remark that solving the inverse problem (4.5) is denoted as data-driven discovery
of differential equations in [29]. In this work, our aim is to use such data-driven discovery,
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FIG. 5.1. Estimates for β(t) for an SIR model for a synthetic contact rate with a sharp jump (marked in
black). We show comparative results for different time frame lengths, i.e., ∆t ∈ {2, 3, 4, 5, 10 }. The results shown
are averages over 10 runs for each time frame with different random initializations each.

i.e., parameter identification, and PINNs to estimate the contact rate β of an SIR model or
an SEIR model for the COVID-19 pandemic in the year 2020. In particular, using PINNs
for the data-driven discovery, i.e., parameter estimation, of ordinary differential equations
means that we use PINNs for the solution of an inverse problem. In contrast to the more
common solution of forward problems, here, we do not have a typical offline training phase
and a subsequent online testing phase for the neural network. Instead, when solving an inverse
problem, we use separate neural networks for each course of the parameter β(t) which are
explicitly trained using the corresponding training data for the compartments S, E, and I . Let
us note that in contrast to [29], we will establish a procedure that enables us to estimate a
time-dependent parameter β(t) in (2.1). This is a clear novelty compared to [29] where the
data-driven discovery of partial differential equations is used to estimate a model parameter
which remains constant in time. Here, our main idea is to partition the entire interval [t0, T ] for
the parameter identification into a number of shorter time intervals. Within each of these time
intervals, we assume a constant contact rate β for which we compute an estimate using the
machine learning approach described in this section. In particular, our proposed method can
trivially be executed in parallel for all time intervals and can thus be relatively quickly updated
any time new data becomes available. Subsequently, we assemble the different estimates for β
for all time intervals and thus obtain an estimated contact rate β(t) which is variable in time.
Please refer to Section 5 for more details.

5. Learning a time-dependent contact rate. In the inverse problems introduced in Sec-
tion 4.4, we have assumed a constant contact rate β in the SIR and SEIR models. This is the
simplest case. In reality this is an inappropriate assumption most of the time. In particular, the
contact rate β depends on several external factors and circumstances, such as governmental
policies (e.g., school/university closures, lockdown, social distancing, etc.) or changing behav-
ior of the population (life style, hygiene standards, etc.). Therefore, it can vary significantly
over time such that using a constant β is not appropriate for modeling the entire course of
the ongoing pandemic. Instead, we now consider a time-dependent contact rate β(t). This is
an extension of the parameter estimation in [29], where solely a constant model parameter is
estimated using PINNs. In order to learn a time-dependent parameter β(t) at a given time ti,
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we consider a short time interval containing ti; we denote this short time interval as a time
frame. More precisely, we define the time frame tfi corresponding to ti as

(5.1) tfi = [ti −∆t, ti + ∆t] ∩ [t0, T ],

where ∆t determines the time frame length 2∆t; in practice, we only consider full days, i.e.,
ti ∈ Z and ∆t ∈ N. Under the assumption that β(t) does not vary drastically on each time
frame tfi, we can approximate β(t) on tfi by a constant βi and solve the corresponding inverse
problem (4.5) on that time frame. Using this approach, we can find values βi approximating
β(ti) for any ti ∈ [t0, T ], and thus, for a whole time grid discretizing [t0, T ]. Let us remark
that we always choose a discretization with a single discretization point for each day in [t0, T ].
Therefore, we consider one time frame for each day in [t0, T ] and thus the time frames are
overlapping as long as ∆t is larger than half a day. Note that the problems on the time frames
are completely local and can be computed independently of each other.

For stability reasons, we train a batch of separate PINNs estimating β(ti) on each time
frame tfi instead of just a single PINN. The PINNs of the same batch differ only in their random
initialization of the network parameters, for which we use the LeCun normal initialization [23],
and the initialization of the contact rate β. To finally obtain βi, we compute the median of all
estimates of all PINNs in the batch corresponding to tfi. Let us note that we deliberately have
chosen the median instead of the mean of all resulting estimations, since the median is more
robust with respect to outliers and thus a more reliable approximation for β(t). Furthermore,
the median is always an actual estimate generated by one of the networks, in contrast to the
mean.

Let us briefly comment on the effect of the specific value of ∆t on the estimate of the
contact rate β. We can observe that with an increasing ∆t, the smoothing effect with respect to
short-term variations in the parameter β increases. This is caused by our assumption that β(t)
is constant on each local time frame. The importance of choosing an appropriate value for ∆t
is clearly visible in Figure 5.1. If ∆t is too small, we lack sufficient data about the development
of the epidemic to obtain robust predictions from training the PINNs; this is visible for the
cases ∆t = 2, 3, where the estimate of β is highly volatile in the second half of the course of
β(t) and the respective results are thus not feasible. On the other hand, if ∆t is too large, the
estimate of β is fairly inaccurate in the area of the sharp jump for β(t) and we are unable to
replicate the sudden change in the values of β; cf. the purple line corresponding to ∆t = 10
in Figure 5.1. Additionally, an increasing time frame length is directly related to an increasing
computational effort as more training data are used for each time frame. Therefore, in our
computations, we aim at using a rather small ∆t while still obtaining satisfying estimates.
For the computations in Figure 5.1, the choices ∆t = 4, 5 both provide satisfying estimates,
obtaining a good trade-off between the two above mentioned aspects. For our numerical
computations in Section 7, we have decided to use ∆t = 5.

6. Data preprocessing and training procedure. In this section, we describe the differ-
ent steps of our training procedure for the parameter estimation for epidemic models using
PINNs; cf. Sections 4 and 5. In particular, training a PINN to estimate the contact rate β of an
epidemic model is not straightforward and cannot be done out-of-the-box. It requires, among
others, an appropriate scaling of the training data as well as the loss terms. Moreover, since the
number of data points is rather low for our time frames, we use an additional set of collocation
points.

6.1. Rescaling the data. In preliminary experimental results, we have noticed that ex-
treme differences in the magnitude of the training data for S and I or S,E, and I , respectively,
can deteriorate the convergence in the optimization process of a PINN. Therefore, before
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starting the iterative training, we always apply a logarithmic scaling followed by a min-max
scaling; see Figure 7.2. The min-max scaling is applied separately for each compartment. As
a result, all training data only take on values in [0, 1], which is considered to be beneficial
for the convergence of the model parameters W and b of a neural network; see, e.g., [6, Sect.
8.1] or [23]. Let us note that we reverse both types of scalings in the forward call of the
PINN. Otherwise, we would have to explicitly consider the scaling of the training data when
computing the derivatives for the residual terms in each step of the training procedure. To
obtain standardized magnitudes of the residuals we further divide them by the size of the
population N .

6.2. Additional collocation points. As described Section 4.2, we do not necessarily use
the same points of time to fit the data and the residuals. In particular, due to the rather small
∆t (cf. Section 5) and the resulting low number of data points within each time frame, we use
additional collocation points in order to improve the robustness of the training. More precisely,
we evaluate the residual in the original data points, i.e., at each full day, and in eight additional,
equidistant points in between. Hence, the number of collocation points is approximately nine
times larger than the number of data points.

6.3. Balancing the loss terms. In addition to the aforementioned data preprocessing,
we also incorporate certain scaling strategies in order to balance the loss terms in (4.5). Let
us note that all described techniques are equally valid for both the SIR as well as the SEIR
model.

Weight routines. As explained in Section 4, the loss function of our PINN consists of
two components, the data loss MSEW,bU and the residual loss MSEW,bFp

. In order to control
the ratio of these two components, we introduced a weighting factor ω for the residual loss;
cf. (4.8).

We divide the training process into several phases, which are defined as follows. In each
phase of the training process marked with index i, we choose a specific value for the weighting
factor ωi in (4.8). Thus, for the first phase in our training process, we always set ω1 = 0,
exclusively minimizing the loss function with respect to the data. For the subsequent phases
of the training, we found the following procedure to be a good choice: we set ω2 = 10−2 and
then to reduce ωi recursively by a factor of 10 until we obtain ω13 = 10−13 in the last phase.
In each of the resulting 13 phases, we train the neural networks for 500 epochs using an early
stopping criterion ([27] or [16, Sect. 7.8]) with a patience of 10 epochs with respect to the
total loss (4.5) (please refer to [16, Sect. 8.1.3] for a standard definition of an epoch in the
context of stochastic gradient descent methods). Let us note that when changing the weighting
factor ωi in each phase, we continue the training of the network using the current values of the
network parameters of the preceding phase as starting values for the next training phase.

α-scaling. In preliminary experiments, we have noticed a strong tendency to underes-
timate the parameter β(t) on “flat” parts of the curves for S, (E,) and I . When examining
the different components of the loss function, we observed a strong correlation between these
“flat” parts and significantly low residual loss terms for the respective variables. In order to
align the magnitudes of the data and the residual loss, we adaptively scale the residual loss to
the same order of magnitude as the data loss. In particular, after the first phase of our training
process, we compute the ratio

α :=
MSEW,bFp

MSEW,bU

and multiply all subsequent weights ωi by this ratio α. We denote this process by α-scaling
for the remainder of this paper.
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FIG. 7.1. PINN for the SEIR model: the neural network is partitioned into three decoupled networks discretizing
S, E, and I . For the SIR model, the E is omitted.

7. Numerical results. In this section, our aim is to extract the presumably unknown
parameter β(t) from daily data for S, E, and I . As the neural network of our PINN for
the SIR and SEIR models, we use a neural network that is composed of two or three,
respectively, decoupled neural networks discretizing S, E, and I; see Figure 7.1 for a graphical
representation of the network structure. In particular, we use a dense feed-forward neural
network with ten layers, consisting of 100 neurons per layer for each variable. As the activation
function we use the scaled exponential linear unit (SELU) [22] in combination with the LeCun
normal initialization [23]. Furthermore, we use a batch size of one and a learning rate of 1e-7
to minimize the loss function with the Adam optimizer [21]. For stability reasons, we always
train 5 PINNs estimating β for each time frame and use the obtained median as the final
estimate βi for the respective time frame; cf. also Section 5 and Figure 7.18 at the end of this
section for an exemplary investigation of the robustness of our method. All computations were
performed on NVIDIA V100-GPUs with CUDA 10.1 using Python 3.6 and tensorflow-gpu
2.3 [4] in double precision.

7.1. Synthetic data with constant contact rate. For our first numerical experiments,
we apply our proposed parameter identification procedure to the simplest case possible, which
is assuming a constant contact rate β over the entire course of the epidemic. For this purpose,
we have generated synthetic data as a solution of the system of ordinary differential equations
(ODEs) of the SIR model (2.1) for realistic and constant values of the model parameters β
and γ. We solve the ODEs using an adaptive Runge-Kutta-4-5 method provided by the Python
package SciPy [32] with initial values S(0) and I(0). Specifically, we have used the initial
values I(0) = 50, R(0) = 0 and the parameters N = 80 000 000, β = 0.5, and γ = 1

4 in our
simulation. The resulting curves for S and I are shown in Figure 7.2.

As a first sanity check to prove that our proposed method works appropriately, we consider
the inverse problem with constant contact rate β as described in Section 4.4 on the whole
interval [t0, T ] at once. Hence, we train a batch of five PINNs estimating β and compute
the final estimate for β as the median value. We obtain the final constant estimate 0.5019
compared to the true value β = 0.5. This corresponds to a relative error of 3.8e-3 and is
thus fairly accurate. The resulting curves for the obtained simulation for I using the learned
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estimate of β as well as the respective training data are shown in Figure 7.3. We additionally
show the effective reproduction number Rt in Figure 7.3; see, e.g., [13] for a definition of Rt.
For any time t ≥ t0, it can be computed as

Rt =
β(t)

γ
∗ S(t)

N
.

Let us note that for t = 0 this yields the basic reproduction number R0; see also [24, p. 32].
As we can observe from Figure 7.3, our computed estimate of Rt (denoted by learned Rt) is
almost identical to the actual values of Rt (denoted by synth Rt).

In the next set of experiments, we already apply our proposed procedure for learning a
time-dependent contact rate using time frames of smaller length; see Section 5. However,
for the SIR model, we use the same training data as before; see Figure 7.2. To generate
a second data set for S, E, and I , we perform simulations using the SEIR model and the
parameters γ = 1/11, κ = 1/3 and β = 0.5. This means that, for both data sets, we learn
a time-dependent contact rate β(t) which, in the training data, is actually constant in time.
For all presented results, we have used ∆t = 5. We show the learned estimates of β and the
resulting simulated curves for I , using the estimates β, as well as the resulting estimates for
Rt in Figure 7.4 and Figure 7.5 for the SIR model and the SEIR model, respectively. As we
can observe from both figures, our estimate of β is sufficiently good, since both the SIR and
the SEIR model deliver curves for I and Rt which are fairly close to the synthetic training
data. However, the obtained simulation using the SEIR model is more accurate compared
to the SIR model. Thus, even if we allow for a time-dependent contact rate in our proposed
procedure using time frames, we are able to recover the constant contact rate β quite accurately.
Let us remark that, for the first ∆t days and the final ∆t days, the length of the time frame is
always shorter than the usual time frame length of 2∆t+ 1; see (5.1) for the definition of a
time frame. Using a short time frame, the estimate of β(t) can sometimes be deteriorated; see
also Figure 5.1 and the corresponding discussion in Section 5 on different time frame lengths.
Hence, in some of our experiments, the estimates of β(t) for the first and/or last few days are
deteriorated due to the reduced time frame length; see, e.g., the last few days in Figure 7.5
or Figure 7.10 for this effect. We will not further discuss this effect for all following examples
explicitly to avoid redundant discussions.

As a next step, we investigate the quality of the parameter identification for synthetic
data when the data are perturbed. For this purpose, we have added a normally distributed
noise ε with mean zero and variance one to the original values I for the infectives for both
the SIR and the SEIR model as well as to the original values E for the exposed for the
SEIR model. More precisely, we have added the term ε ∗ (I(t)/15) and ε ∗ (E(t)/15) to
each value of I(t) and E(t) with t ∈ [t0, T ] respectively. The respective perturbed training
data for I and the simulation results obtained when using the learned estimates of β, together
with the corresponding estimated values of Rt are presented in Figure 7.6 for the SIR model
and in Figure 7.7 for the SEIR model, respectively. For both epidemic models, we obtain
satisfactory results in terms of the parameter estimation of β. Thus, our proposed method
seems to be robust for data with and without inaccuracies in the reported numbers of the
infectives, when assuming a constant contact rate β. Again, the resulting estimates for β and
Rt are even more accurate when using the SEIR model compared to the SIR model.

7.2. Synthetic data with time-dependent contact rate. For the numerical experiments
considered so far, the contact rate β was always constant in time. However, for real-world
applications, using real data of the Corona pandemic in 2020, we need to be able to approximate
values for a parameter β(t) which varies over time. For this purpose, we explicitly integrated
the procedure of using time frames into our workflow; see Section 5.
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FIG. 7.2. Synthetic training data for the SIR model for N = 80 000 000, I(0) = 50, R(0) = 0, β = 0.5,
γ = 1
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FIG. 7.3. Simulation result considering the SIR model using the constant learned estimate 0.5019 without
time frames (tf0 = [t0, T ]) and the corresponding synthetic training data. The obtained estimate of β corresponds to
a relative error of 3.8e-3.

7.2.1. Discontinuous contact rate with jumps. For the first set of numerical experi-
ments with a time-dependent contact rate, we construct a synthetic training dataset that differs
from the dataset in Figure 7.2 predominantly in the values and the course of β(t). In particular,
we now use a contact rate β(t) with a single jump defined by

(7.1) β(t) =

{
0.5 t ≤ 40

0.4 elsewhere

for both the SIR and the SEIR model. We obtain the corresponding new training datasets by
running simulations of the epidemic models (see Section 2.1 and Section 2.2) with the initial
values N = 80 000 000, I(0) = 50, R(0) = 0, and the parameters γ = 1

4 for the SIR model
and γ = 1/11, κ = 1/3 for the SEIR model, respectively. The resulting curves for S and I
for the SIR model are presented in Figure 7.8. Let us note that the discontinuity in the contact
rate β(t) leads to a noticeable kink in the curves for S and I at the time interval 40 < t < 41.
This kink is particularly visible in the plot of the logarithmized and min-max-scaled data
in Figure 7.8b. We show the learned estimates of β for all time frames in Figure 7.9 (left) and
in Figure 7.10 (left) in comparison to the true value of β (see (7.1)) for the SIR model and
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FIG. 7.4. Results for the SIR model with a constant contact rate β = 0.5. Left: Estimate of β with ∆t = 5.
Right: Comparison of simulation results for the SIR model using the learned estimates of β per time frame (denoted
by sim data I) or using β itself (denoted by synth data I), i.e., using the learned β versus the synth β from the left
figure. We further show the computed estimates of Rt per time frame (denoted by learned Rt) versus Rt for the
training data (denoted by synth Rt).
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FIG. 7.5. Results for the SEIR model with a constant contact rate β = 0.5. Left: Estimate of β with ∆t = 5.
Right: Comparison of simulation results for the SEIR model using the learned estimates of β per time frame or
using β itself, i.e., using the learned β versus the synth β from the left figure. See Figure 7.4 for the labeling.

the SEIR model, respectively. For both models we can observe that in the area around the
jump, we obtain a ’smoothed’ estimate of the contact rate β(t). Please refer to Section 5 and
especially to Figure 5.1 for a more detailed analysis of this effect. Additionally, we present
the obtained simulated values for the infectives I and the exposed E in Figure 7.9 (right)
and Figure 7.10 (right), respectively, when using the corresponding estimates of β as generated
by the PINNs. In both cases, the resulting curves are fairly close to the true training data.
Again, using the SEIR model yields a more accurate parameter estimate than using the SIR
model.

In correspondence to Section 7.1, we additionally perform our parameter identification
procedure on perturbed synthetic training data. In particular, we generate the noise added to the
number of infectives and exposed, for both the SIR and the SEIR model in exactly the same
way as in Section 7.1. The results obtained by training the PINNs for the perturbed training
data are shown in Figure 7.11 and Figure 7.12. For both epidemic models, our proposed
approach is clearly able to provide a satisfactory estimate of the time-dependent contact rate β,
even for a perturbed training data set.
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FIG. 7.6. Results for the SIR model with a constant contact rate β = 0.5 and normally distributed noise. Left:
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FIG. 7.7. Results for the SEIR model with a constant contact rate β = 0.5 and normally distributed noise.
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7.2.2. Synthetic data for a second wave. As a more realistic but still synthetic example
for the development of an epidemic disease, we tested our procedure for synthetic data
emulating a second wave; see [8, Sect. 9.6.2]. This means that, after a temporary decrease in
the number of infectives and an intermediate rather flat part of the curve for I , the absolute
number of infectives increases again. This kind of periodic behavior can be observed for
real-world pandemics, e.g., as for the flu outbreak in 1918 ("Spanish flu"); see, e.g., [8, Sect.
9.6.2]. To model such a behavior for the infectives I , we use an extended approach to compute
the time-dependent reference value for the contact rate β(t) for the SIR and the SEIR model
inspired by the periodic function given in [8, Sect. 9.6.2].

Specifically, for our experiments with the SIR model, we compute the contact rate β(t)
as

(7.2) β(t) = β0
(
1 + c · cos(π(t+ t0)/45))

)
;

with the parameters N = 10 000, I(0) = 150, t0 = 11, c = 0.45, and β0 = 0.35. We further
set the parameter γ in (2.1) as γ = 1

4 and compute the respective simulation for S and I for
120 days starting from t0. The resulting solution for the infectives I for this specific parameter
set is shown in Figure 7.13. When applying our parameter estimation procedure to this specific
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FIG. 7.8. Synthetic training data for the SIR model for N = 80 000 000, I(0) = 50, R(0) = 0, γ = 1
4

and
discontinuous β(t) as defined in (7.1).
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FIG. 7.9. Results for the SIR model and a contact rate β(t) with a jump. Left: Estimate of β(t) with ∆t = 5.
Right: Comparison of simulation results for the SIR model using the time-dependent estimate of β(t) or using β(t)
itself, i.e., using the learned β versus the synth β from the left figure. See Figure 7.4 for the labeling.

set of training data, we obtain the results shown in Figure 7.14. In the top row on the left,
we show the obtained estimate for the contact rate β for all time frames. As we can observe
the estimation for β is fairly accurate for the entire course of the epidemic, even though it is
slightly perturbed within the last part of the curve, i.e., for approximately t ≥ 75. Moreover,
the resulting simulation for the infectives when using the estimated values for β(t) is very
accurate. In particular, we are able to replicate the second increase in the number of infectives,
which is fairly moderate compared to the first increase at the beginning of the curve; cf. the
figure in the bottom row in Figure 7.14.

Additionally, we tested our procedure for the same set of training data with additional
noise added. Again, the noise, i.e., the perturbation in the data, is generated in the same way as
in Section 7.1. The corresponding estimate of β(t) as well as the resulting simulated solution
for the infectives are shown in Figure 7.15. As already in Sections 7.1 and 7.2.1, the proposed
method is robust with respect to perturbations in the data and does still deliver satisfactory
estimates for the contact rate.

For the numerical experiments obtained by using the SEIR model, we have chosen a
slightly different set of model parameters since using the same set of parameters as for the
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SIR model did not result in a course of infectives that emulates a second wave. In particular,
for the simulations with the SEIR model, we compute a time-dependent contact rate β(t) by

(7.3) β(t) = β0
(
1 + c · cos(π(t+ t0)/35))

)
and set the remaining parameters as follows: N = 10 000, I(0) = 50, t0 = 10, c = 0.75, and
β0 = 0.2. We further set the parameters γ and κ in (2.2) as γ = 1

4 and κ = 1
5 and compute

the respective simulation for S, E, and I for 120 days starting from t0. We show the results
in Figure 7.16. Here, we observe that the learned β is very accurate for the complete course of
the epidemic, even during the second wave with very low numbers of infected individuals.

We also present results for noisy SEIR data in Figure 7.17; the noisy data have been
generated as described in Section 7.1. Again, we observe that our method is robust against
perturbations visible both from the learned β as well as from the resulting simulations using
the learned β.

Let us note that the sets of experiments in this section are the closest to reality in the
sense that they resemble a typical course of an epidemic disease. Thus, these results serve as a
proof of concept that we are able to estimate a time-dependent contact rate within epidemic
models fairly accurately using PINNs as long as the data are in conformity with the underlying
epidemic model. Moreover, the proposed method is also robust with respect to moderate
perturbations in the reported numbers of infectives.

Finally, let us briefly comment on the robustness of our approach. As already mentioned
in Section 5, we always train a batch of PINNs for each time frame and select the median
of all corresponding parameter estimates as the final learned estimate of β for the respective
time frame. However, a priori it is not clear how many runs per time frame are appropriate to
obtain a fairly reliable estimate of the contact rate. To further investigate the robustness of
our approach and to decide for a suitable number of runs per time frame, we have tested our
procedure for a single run as well as for 5 and 10 runs per time frame; see Figure 7.18. For
this set of experiments, we have trained the PINNs for an SIR model using a time-dependent
contact rate β(t) as defined in (7.2) with the same set of the parameters as before. As we
can observe in Figure 7.18, using 5 as well as 10 runs per time frame both deliver fairly
similar results. We obtain a fairly accurate estimate of the reproduction number Rt and do not
observe any extreme fluctuation within the parameter estimation. However, selecting only one
randomly chosen run per time frame results in larger perturbations of the estimate of Rt in the
later course of the epidemic. Therefore, we have decided to always compute a batch of 5 runs
for each time frame for all the experiments presented in this paper.

7.3. Realistic contact rate for COVID-19 data in Germany. As a final proof of con-
cept for our approach to estimate the contact rate β(t) and the related effective reproduction
number Rt within epidemic models, we consider the real data for the COVID-19 epidemic
in Germany, based on the number of infected individuals as reported by the Johns Hopkins
University; see [14]. Since individuals infected with COVID-19 are not infectious immediately
and a significant exposed period exists, we consider the SEIR model here. However, the
parameter κ needed for the transition rate from the exposed to the infectious compartment is
difficult to obtain directly from the available COVID-19 data. Thus, we first take the incubation
period defined as the time from infection or exposure to the virus until the onset of symptoms
and then subtract the presymptomatic infectious period in order to define 1/κ. It has been
reported in the literature [10] that the mean presymptomatic infectious period can vary between
less than 1 and 4 days in different studies. As value for the incubation period, we choose 7.76
days, which is reported as the median estimate for the incubation time in [28]. Combining
this choice with 2.76 days as value for the presymptomatic infectious period, yields κ = 1/5.
Let us note that other estimates of the incubation period are within the range of 5–6 days; see
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for this simulation: N = 10 000, I(0) = 150, t0 = 11, c = 0.45, β = 0.35, and γ = 1
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.

[2, Sect- 5]. Finally, we have to define γ, which is given by the duration of infectiousness of
an individual. Following [9], we assume that an individual is infectious for 8 days after the
onset of symptoms. Let us note that there are also other choices possible; see [2, Sect. 10],
where, e.g., 9–10 days are cited for mild to moderate courses of the disease. However, since
in compartment models we mix all individuals with different courses of the disease, we have
to make a certain choice within the range of published possibilities. Combining this choice
with the previously selected value of 2.76 days for the presymptomatic infectious period, we
decided to define γ = 1/11. Let us note that these values have been chosen to carry out some
experiments with realistic data. We are aware of the fact that more experiments and a careful
analysis with different sets of data are needed to make reliable predictions in the future. In
fact, we have tried a few more combinations of κ and γ within the range of values given in
the literature and have shown the results for the best choice in Figure 7.20. The selection of
the best pairs of parameters κ and γ should be automated, e.g., by using an outer loop and a
global error measure. This is left for future work.

While the data for I(t) and R(t) can easily be accumulated using the daily reported
new infections and recoveries, we have to generate the training data for E(t) artificially.
We therefore assume that each reported new infection actually entered the compartment E
five days earlier to compute an estimate of E(t) for the training process of the PINNs. The
resulting curves for I(t) and E(t) used as data are shown in Figure 7.19. Furthermore, we use
N = 83 149 300 as a constant approximation of the population of Germany. Let us remark
that we neglect births, deaths, and traveling individuals in our computations.

We report the learned effective reproduction number Rt as well as the simulation results
for I(t) and E(t) using the SEIR model and the learned β(t) in Figure 7.20. Especially for
the first large wave of infections during April and May the simulation results fit the real data
very accurately. Obviously, the simulation is better for I(t). Considering the data for July
and August, the fit is less sufficient as well as for a short period in late June. As we have
shown in the previous sections, our approach has always been able to produce quite accurate
fits if the data are obtained by SEIR simulations, even if they are disturbed. Hence, a likely
conclusion is that the evolution of the real COVID-19 epidemic in Germany in the summer is
not in good accordance with any SEIR model and the data might be disturbed by, e.g., many
travelers during the summer holidays, bringing infections into Germany from abroad and thus
from outside of the respective compartment. This and the fact that less than 0.05% of the
total population is infected at all makes it hard to fit the data. Please also note that the slight
increase of infections in late June is due to a local outbreak of COVID-19 in a slaughterhouse.
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FIG. 7.14. Results for the SIR model and a contact rate β(t) with a second wave. Top, left: Estimate of β(t)
with ∆t = 5. Top, right and bottom: Complete simulation for the SIR model using the obtained estimate of β(t)
and a zoom to the second wave (bottom).

Such an effect is also not covered by the assumptions of the SEIR compartment model that
we use. Of course also our assumptions might be too strict and other parameter choices for κ
and γ as well as different machine learning related parameter choices have to be considered in
the future.

8. Conclusion and future work. We have considered a machine learning approach
based on physics-informed neural networks to estimate parameters of dynamical systems.
Previously, this method has been only applied to the case of constant parameters. In the
present work, we have generalized it to the case of variable or time-dependent parameters
and applied it to SIR and SEIR compartment models from mathematical epidemiology. We
have tested the new approach for several sets of numerical experiments with synthetic data
that have been generated by numerically solving the systems of ODEs defining the different
compartment models. In our numerical experiments, we have used both the exact data and
data perturbed by noise. In both cases and for different examples of contact rates (constant,
discontinuous, time-dependent) as well as for the cases of a single and second wave, we were
able to identify the parameters satisfactorily. From this we conclude that the approach based
on PINNs presented here, can identify parameters of SIR and SEIR models as long as the
training data are in agreement with the model assumptions. For synthetic data, we consistently
obtained more accurate parameter estimates for the SEIR model compared to the SIR model.

Finally, we extended our tests to real data from the COVID-19 epidemic in Germany and
tested our approach using PINNs with an SEIR model. Here, we are also able to identify the
time-dependent contact rate and the resulting simulated number of infectious individuals I is
in good agreement with the real data, at least until early or mid June. The simulated number of
exposed individuals E is slightly underestimated. The local increase of infectious individuals
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FIG. 7.15. Results for the SIR model, a contact rate β(t) with a second wave and normally distributed noise
on the training data. Top, left: Estimate of β(t) with ∆t = 5. Top, right and bottom: Simulation for the SIR model
using the obtained estimate of β(t) and a zoom to the second wave (bottom).

in late June and the increase in July and August has not been captured satisfactorily although
an increase of the contact rate and the related effective reproduction number can be seen in the
learned data; but the latter is below one and thus the number of individuals does not increase.
One possible explanation is that the real data at this stage of the course of the epidemic are
not modeled well enough anymore by an SEIR model since, for instance, in this period,
many infections were caused abroad while traveling. Also, the slight increase in late June
occurred due to a local outbreak related to a slaughterhouse and its workers [1]. Thus, the
assumption of homogeneous compartments was not satisfied anymore. Also, the dark number
of unreported cases has not been considered in this model. Finally, we note that we have used
the same incubation period for all age cohorts and assumed a constant degree of infectiousness
- in contrast to an age of infection model. Overall, we nevertheless conclude that our new
approach can be used to identify parameters of dynamical systems in compartment models.
However, to obtain more accurate results for realistic epidemic data, we should extend our
studies to more detailed models from mathematical epidemiology and also refine our machine
learning approach. This will be the topic of future work.

Acknowledgments. We gratefully acknowledge the use of the computational facilities
of the Center for Data and Simulation Science (CDS) at the University of Cologne and of
the department of mathematics and computer science of the Technical University of Freiberg
operated by the university computing center (URZ). We also gratefully acknowledge the use of
the real data for the COVID-19 epidemic in Germany obtained from Johns Hopkins University.
This work was supported in part by the Helmholtz School for Data Science in Life, Earth, and
Energy (HDS-LEE), https://www.hds-lee.de.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
https://www.hds-lee.de


ETNA
Kent State University and

Johann Radon Institute (RICAM)

24 V. GRIMM, A. HEINLEIN, A. KLAWONN, M. LANSER, AND J. WEBER

0 20 40 60 80 100 120
0.05

0.10

0.15

0.20

0.25

0.30

0.35
β

synth β
learned β

0 20 40 60 80 100 120
0

25

50

75

100

125

150

175

200

Po
pu
lat
ion

synth data E
synth data I
sim data E
sim data I

0.2

0.4

0.6

0.8

1.0

1.2

R t

SEIR simulation  ith ΔtΔ5 for synthetic data

synth Rt

learned Rt

40 50 60 70 80 90 100 110 120
0

2

4

6

8

10

Po
pu
lat
ion

SEIR simulation  ith ΔtΔ5 for synthetic data
synth data E
synth data I
sim data E
sim data I

FIG. 7.16. Results for the SEIR model and a contact rate β(t) with a second wave. Top, left: Estimate of
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FIG. 7.17. Results for the SEIR model, a contact rate β(t) with a second wave and normally distributed noise
on the training data. Top, left: Estimate of β(t) with ∆t = 5. Top, right and bottom: Simulation for the SIR model
using the obtained estimate of β(t) and a zoom to the second wave (bottom).
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