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UPPER HESSENBERG AND TOEPLITZ BOHEMIAN MATRIX SEQUENCES:
A NOTE ON THEIR ASYMPTOTICAL EIGENVALUES AND SINGULAR VALUES∗

MANUEL BOGOYA†, STEFANO SERRA-CAPIZZANO†, AND KEN TROTTI†

Abstract. In previous works, Bohemian matrices have attracted the attention of several researchers for their
rich combinatorial structure, and they have been studied intensively from several points of view, including height,
determinants, characteristic polynomials, normality, and stability. Here we consider a selected number of examples of
upper Hessenberg and Toeplitz Bohemian matrix sequences whose entries belong to the population P = {0,±1},
and we propose a connection with the spectral theory of Toeplitz matrix sequences and Generalized Locally Toeplitz
(GLT) matrix sequences in order to give results on the localization and asymptotical distribution of their spectra and
singular values. Numerical experiments that support the mathematical study are reported. A conclusion section ends
the note in order to illustrate the applicability of the proposed tools to more general cases.

Key words. matrix (Bohemian, (upper) Hessenberg, Toeplitz), matrix sequence (Toeplitz, GLT), eigenvalue,
singular value, spectral and singular value symbol/distribution

AMS subject classifications. 15B05, 15B36, 15A18, 11C20, 65F08, 65F15

1. Introduction. A set of matrices having entries belonging to a fixed population P is
called Bohemian, where the name has neither a geographic nor an anthropological meaning,
but it comes from the simple acronym Bounded Height Matrix of Integers, that is, Bohemi.

Whereas it is not strictly true, the majority of works (see [8, 27] and the references therein)
have focused their attention on the case where P is made up of integers (or subsets of integers)
or on the simplest case with P = {0,±1}; see, e.g., [7, 17]. It is worth mentioning at this
point that Olga Taussky-Todd in her instructive work [25] writes the following illuminating
incipit:

“This subject is very vast and very old. It includes all of the arithmetic theory of quadratic forms,
as well as many other classical subjects, such as Latin squares and matrices with elements +1
or −1 which enter into Euler’s, Sylvester’s or Hadamard’s famous conjectures”.

Then Gear [16] and again Taussky-Todd [26] considered more general instances with P
composed of integers.

A further different point of view has been introduced by Tao and Vu [24], who have
considered real, symmetric, random matrices with upper triangular and diagonal entries being
independent random variables. In this setting, quite different from the standard one, the authors
prove results on the expected spectra.

In this short note, we take the very standard and simple case of upper Hessenberg and
Toeplitz Bohemian matrix sequences with the population P = {0,±1}; see, e.g., [8, 9, 11, 12]
and the references therein. In particular in [9, Figure 1 and Figure 2], the plots of the spectra
of small-size upper Hessenberg and Toeplitz Bohemian matrices are reported. Furthermore,
in the Conclusion Remarks in [9, last lines at Page 17], the authors observe some kind of
asymptotics for such spectra, but the authors admit that “many puzzles remain” and that “they
do not have any explanation” for the observed asymptotic behavior when the matrix size
grows.

For trying to cope with this problem, we put the study in the context of Toeplitz matrix
sequences, endowed with a Lebesgue-integrable generating function and in the much more
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general setting of the ∗-algebra of Generalized Locally Toeplitz (GLT) matrix sequences
endowed with Lebesgue-measurable symbols (see [5, 14] and the references there reported).

With the help of these tools, we can easily describe the asymptotic behavior of the
singular values by identifying the singular value distribution function. However, the considered
matrices, also due to their upper Hessenberg nature, are highly non-normal. Consequently,
the information on the singular values does not imply any precise result on the eigenvalues
in terms of either localization or distribution. For the eigenvalues, the results that we obtain
are in fact less precise and a bit more difficult to establish, but in any case we arrive at giving
localization results and an indication of the spectral distribution.

We emphasize that only two precise examples of matrix sequences taken from the literature
are considered in the paper. However, as it will become clear in the sequel, the techniques are
simple and quite general and can be adapted to more general Bohemian matrix sequences with
a population of integers.

The present work is organized as follows. In Section 2 we set the notation and the main
definitions regarding Bohemian matrices, Hessenberg matrices, and Toeplitz matrices: a
separate part concerns the notion of distribution in the eigenvalue and singular value sense, the
definition of Toeplitz matrix sequences, and of the ∗-algebra of GLT matrix sequences with
their main properties. In Section 3 we use the machinery of the previous section in the specific
cases of upper Hessenberg and Toeplitz Bohemian matrix sequences by indicating how to
generalize the results in a wider setting. For supporting the analysis, a selection of numerical
experiments is reported with a related critical discussion. A short conclusion section (that is
Section 4) ends the present note.

2. Notations, definitions, tools. A family of Bohemian matrices is a set of matrices
where the entries are independently sampled from a finite set, usually integers, of bounded
height. Such families arise in many applications, e.g., compressed sensing, and, as already
emphasized in the introduction, the properties of matrices selected “at random” from such
families are of practical and mathematical interest. Studying such matrices leads to many
unanswered questions. In the sequel we state the problem of understanding the spectral features
of such matrices such as localization and distribution. More in detail, for such matrices we are
interested in the eigenvalues and singular values, both in terms of the localization set and of
the asymptotical spectral and singular value distribution as the matrix size N tends to infinity
according to Definition 2.7. Let us now introduce some basic definitions and results.

Let A ∈ CN×N . Then we denote by Λ(A) the set of eigenvalues λ of the matrix A and
by Σ(A) the set of singular values σ of A.

DEFINITION 2.1. Let A ∈ CN×N be nonsingular, and consider the uniquely solvable
linear system Ax = b. Then the condition number µ(A) is defined as

µ(A) = ‖A‖ · ‖A−1‖,

where ‖ · ‖ is the spectral norm.

REMARK 2.2. The condition number µ(A) of a matrixA gives a bound of how inaccurate
the solution x of the linear system Ax = b will be after numerical computations due to round-
off errors. Therefore, when µ(A) is large, then we say that the matrix A is ill-conditioned.
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DEFINITION 2.3 ([8]). An upper Hessenberg Bohemian matrix HN ∈ CN×N is a matrix
of the form

HN =


h1,1 h1,2 h1,3 · · · h1,N
s1 h2,2 h2,3 · · · h2,N
0 s2 h3,3 · · · h3,N
...

. . .
. . .

. . .
...

0 · · · 0 sN−1 hN,N

 ,

with sk = eiθk and usually sk ∈ {−1,+1} and hi,j ∈ P , where P is a fixed finite set called
the population set.

Moreover, the height of the matrix HN , written height(HN ) := ‖vec(HN )‖∞, is the
largest absolute value of any entry in HN .

DEFINITION 2.4. Let f ∈ L1([−π, π]), and let {fk}k∈Z be the sequence of its Fourier
coefficients defined as

fk =
1

2π

∫π
−π

f(θ)e−ikθ dθ, k ∈ Z.

Then the matrix sequence {TN}N∈N with TN = [fi−j ]
N
i,j=1 is called the sequence of Toeplitz

matrices generated by f , which in turn is called the generating function of {TN}N∈N, and
TN is denoted by TN (f).

DEFINITION 2.5. The Wiener class is the set of functions f(θ) =
∑∞
k=−∞ fkeikθ such

that
∑∞
k=−∞ |fk| <∞.

Note that the Wiener class forms a subalgebra of the continuous and 2π-periodic functions
as indicated in the remark below.

REMARK 2.6. Let {TN}N∈N be a Toeplitz sequence with TN = [fi−j ]
N
i,j=1. If {fk}k∈Z

is such that
∑∞
k=−∞ |fk| < ∞, then the series

∑∞
k=−∞ fkeikθ converges uniformly in the

infinity norm to a continuous and 2π-periodic function f , which belongs to the Wiener class
and which is the generating function of {TN}N∈N, i.e., TN = TN (f), for all N ∈ N.

We continue by giving the definition of the spectral distribution in the sense of the
eigenvalues and of the singular values together with the associated notion of the symbol.

DEFINITION 2.7. Let f : [a, b]→ C be a measurable function defined on [a, b] ⊂ R. Let
C0(C) be the set of continuous functions with compact support over C, and let {AN}N be a
sequence of matrices of size N with eigenvalues λj(AN ), j = 1, . . . , N . We say that {AN}N
is distributed as the pair (f, [a, b]) in the sense of the eigenvalues, and we write

{AN}N ∼λ (f, [a, b]),

if the following limit relation holds for all F ∈ C0(C):

lim
N→∞

1

N

N∑
j=1

F (λj(AN )) =
1

b− a

∫ b
a

F (f(t))dt.(2.1)

In this case, the function f is called the spectral symbol (or the symbol in the eigenvalue sense)
of {AN}N .

In perfect analogy, with σj(AN ), j = 1, . . . , N , denoting the N singular values of AN ,
we say that {AN}N is distributed as the pair (f, [a, b]) in the sense of the singular values, and
we write

{AN}N ∼σ (f, [a, b]),
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if the following limit relation holds for all F ∈ C0(C):

lim
N→∞

1

N

N∑
j=1

F (σj(AN )) =
1

b− a

∫ b
a

F (|f(t)|)dt.(2.2)

In this case, the function f is called the symbol in the sense of the singular values of {AN}N .
REMARK 2.8. When f is continuous, an informal interpretation of the limit relation (2.1)

is that when the matrix size is sufficiently large, the eigenvalues of AN can be approximated
by a sampling of f on a uniform equispaced grid of the interval [a, b] up to a relatively small
number of potential outliers. In the present context, the expression “relatively small” means
o(N) with N denoting the matrix size. When |f | is continuous, an informal interpretation of
the limit relation (2.2) is that when the matrix size is sufficiently large, the singular values of
AN can be approximated by a sampling of |f | on a uniform equispaced grid of the interval
[a, b], again up to a relatively small number of potential outliers.

For Hermitian Toeplitz matrix sequences, the following theorem due to Szegő, Tyrtysh-
nikov, etc. holds (see, e.g., [14] and the references therein): here we report it in the version
due to Tyrtyshnikov and Zamarashkin [29].

THEOREM 2.9. Let f ∈ L1([−π, π]) be a real-valued function almost everywhere. Then,

{TN (f)}N ∼λ (f, [−π, π]).

In the general case we have

{TN (f)}N ∼σ (f, [−π, π]).

We end this introductory part by recalling a property of the spectral norm of Toeplitz matrices
and stating relevant results on GLT matrix sequences contained, e.g., in [14]. Given a square
matrix X of order N , we denote its spectral norm by ‖X‖ (see also Definition 2.1), that is,
its maximal singular value (‖X‖ = maxi=1,...,N σi(X)), which coincides with the spectral
radius in the case of a normal matrix, and we recall that every Hermitian matrix is also normal.

Given a Toeplitz sequence {TN (f)}N∈N generated by f , it holds that (see [23, Corol-
lary 3.5]):

f ∈ L∞([−π, π]) ⇒ ‖TN (f)‖ 6 ‖f‖∞, ∀N ∈ N.

In short, the GLT class is a matrix sequence algebra obtained as the closure under some
algebraic operations among Toeplitz matrix sequences, diagonal sampling matrix sequences
(see Definition 2.10), and zero-distributed matrix sequences (see item GLT4). Furthermore,
the GLT algebra includes any sequence of matrices coming from “reasonable” approximations
by local discretization methods (FDs, FVs, FEs, Isogeometric Analysis, etc.) of partial dif-
ferential equations (see, e.g., [3, 13, 21, 22]). The formal definition is rather technical,
difficult, and involves heavy notation: therefore we just give and briefly discuss the notion
in one dimension, which is the case of interest in our setting. In the sequel, we report a few
properties of the GLT class [14], which are sufficient for studying the spectral features of the
matrix sequence {AN}N we are interested in (see the pioneering work by Tilli [28] and the
generalization/modifications provided in [14, 15, 21, 22] for a more detailed discussion).

Let us start by recalling the definition of diagonal sampling matrices.
DEFINITION 2.10. Given a Riemann-integrable function a defined over [0, 1]. By a

diagonal sampling matrix of order N we mean

DN (a) = diag
j=1,...,N

a
( j
N

)
.
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Throughout, we use the following notation

{AN}N∈N ∼GLT ψ(x, θ), (x, θ) ∈ [0, 1]× [−π, π],

to say that the sequence {AN}N∈N is a GLT sequence with GLT symbol ψ(x, θ). Here we
report five main features of the GLT class (see [14, 21, 22]).

GLT1 Let {AN}N∈N ∼GLT ψ(x, θ) with ψ : Ω → C, Ω = [0, 1] × [−π, π]. Then it
holds that {AN}N∈N ∼σ (ψ,Ω). In the case where the matrices AN are Hermitian,
{AN}N∈N ∼λ (ψ,Ω).

GLT2 The set of GLT sequences form a ∗-algebra, i.e., it is closed under linear combi-
nations, products, inversion (whenever the symbol vanishes, at most, in a set of
zero Lebesgue measure), transposed conjugation. Hence, the sequence obtained via
algebraic operations on a finite set of input GLT sequences is still a GLT sequence,
and its symbol is obtained by following the same algebraic manipulations for the
corresponding symbols of the input GLT sequences.

GLT3 Every Toeplitz sequence {TN (f)}N∈N generated by an L1([−π, π])-function f(θ)
is such that {TN (f)}N∈N ∼GLT f(θ), with the specifications reported in item
GLT1. Every diagonal sampling sequence {DN (a)}N∈N, where a(x) is a Riemann-
integrable function, is such that {DN (a)}N∈N ∼GLT a(x).

GLT4 Every sequence which is distributed as the constant zero in the singular value sense is
a GLT sequence with symbol zero and vice versa. In formulae, {AN}N∈N ∼σ (0,Ω),
Ω = [0, 1]× [−π, π], if and only if {AN}N∈N ∼GLT 0. These matrix sequences are
called zero-distributed matrix sequences.

3. Main results and numerical experiments. Consider the Bohemian matrices AN ,
BN ∈ RN×N , with P = {−1, 1} and sk = 1, k = 1, . . . , N , of the form

AN =


−1 −1 −1 · · · −1
1 −1 −1 · · · −1
0 1 −1 · · · −1
...

. . . . . . . . .
...

0 · · · 0 1 −1

 , BN =


1 (−1)1 (−1)2 · · · (−1)N−1

1 1 (−1)1 · · · (−1)N−2

0 1 1 · · · (−1)N−3

...
. . . . . . . . .

...
0 · · · 0 1 1

 .

We note that AN and BN are Toeplitz matrices, but retrieving the symbol of the matrix
sequences {AN}N , {BN}N is not trivial. Indeed, the respective coefficients are constant in
modulus, and therefore the generating function in the sense of the Toeplitz terminology (see
Definition 2.4) cannot exist due to the Riemann-Lebesgue Lemma. As a consequence, we
have to try the use of the GLT tools for finding a (Lebesgue-measurable) symbol in the sense
of Definition 2.7. More precisely we write

AN = ĨN −RN , BN = ĨN + SN ,

with

ĨN =


0

1
. . .
. . . . . .

1 0

 , RN =


1 · · · · · · 1

. . .
...

. . .
...
1

 ,
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SN =


(−1)0 (−1)1 · · · (−1)N−1

. . . . . .
...

. . . (−1)1

(−1)0

 ,
and we note that

R−1N =


1 −1

. . . . . .
. . . −1

1

 , S−1N =


1 1

. . . . . .
. . . 1

1

 .

Now, since R−1N , S−1N are banded Toeplitz matrices, from Remark 2.6 and GLT3 it holds that

{R−1N }N ∼GLT 1− e−iθ,

{S−1N }N ∼GLT 1 + e−iθ,
(3.1)

θ ∈ [−π, π], since R−1N = TN (1− e−iθ), S−1N = TN (1 + e−iθ) in the sense of Definition 2.4.
Through property GLT2, equation (3.1) can be written as

{RN}N ∼GLT
1

1− e−iθ
,

{SN}N ∼GLT
1

1 + e−iθ
,

and hence, by item GLT2, we deduce

{AN}N ∼GLT a(θ) = eiθ − 1

1− e−iθ
=

eiθ − 2

1− e−iθ
,

{BN}N ∼GLT b(θ) = eiθ +
1

1 + e−iθ
=

2 + eiθ

1 + e−iθ
,

with a(θ), b(θ) : [−π, π]→ C.
REMARK 3.1. From GLT1, it holds that {AN}N ∼σ a(θ) and {BN}N ∼σ b(θ).

Moreover, when taking the absolute value of the symbols a(θ), b(θ), we find

|a(θ)| =
∣∣eiθ − 2

∣∣
|1− e−iθ|

=

√
5− 4 cos(θ)√
2− 2 cos(θ)

=

√
1

2− 2 cos(θ)
+ 2,

|b(θ)| =
∣∣2 + eiθ

∣∣
|1 + e−iθ|

=

√
5 + 4 cos(θ)

2 + 2 cos(θ)
=

√
1

2 + 2 cos(θ)
+ 2.

It is now straightforward to see that |a(θ)| , |b(θ)| are both symmetric with respect to θ = 0,
and, as a consequence of Remark 2.8, a better approximation of the singular values is obtained
by restricting the definition interval of the functions |a(θ)| , |b(θ)| from [−π, π] to [0, π].

If we look at Figure 3.7, we can fully appreciate the agreement of the singular values
of the two matrix sequences with respect to their symbols, in accordance with Definition 2.7
and Remark 2.8: notice that we have plotted a monotonically increasing rearrangement of the
symbols since the singular values are in non-decreasing order.
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Now we continue with the analysis of the eigenvalues.
REMARK 3.2. Let DN = diag

j=1,...,N
((−1)j) be the diagonal matrix whose j-th diagonal

entry is (−1)j . Then BN can be obtained from AN through the transformation

BN = −DNANDN .

Since DN = D−1N , it follows that DNANDN has the same spectrum as AN , and therefore it
holds that Λ(BN ) = −Λ(AN ). Let EN = diag

j=1,...,N
(ε−j) be the diagonal matrix whose j-th

diagonal element is ε−j . Then, following the Beam-Warming “replacement trick” [2], which
consists in multiplying on the left by EN and on the right by its inverse E−1N , we obtain the
matrices

ÃN =


−1 −ε1 −ε2 · · · −εN−1
1
ε

−1 −ε1 · · · −εN−2
0 1

ε
−1 · · · −εN−3

...
. . .

. . .
. . .

...
0 · · · 0 1

ε
−1

 , B̃N =


1 (−ε)1 (−ε)2 · · · (−ε)N−1
1
ε

1 (−ε)1 · · · (−ε)N−2
0 1

ε
1 · · · (−ε)N−3

...
. . .

. . .
. . .

...
0 · · · 0 1

ε
1

 ,

which are respectively similar to AN and BN .
According to the Definition 2.4 of a Toeplitz matrix generated by a function, the matrices

ÃN , B̃N are respectively generated by the functions

ãε(θ) =
1

ε
eiθ −

∞∑
k=0

εke−ikθ,

b̃ε(θ) =
1

ε
eiθ +

∞∑
k=0

(−ε)ke−ikθ.

(3.2)

In both cases, the series of the absolute values of the Fourier coefficients satisfies∣∣∣∣1ε
∣∣∣∣+

∞∑
k=0

∣∣εk∣∣ =
1

ε
+

1

1− ε
<∞, 0 < ε < 1.

Therefore, according to Remark 2.6, the functions ãε(θ), b̃ε(θ) belong to the Wiener class.
Hence, by using the GLT machinery we have

{ÃN}N ∼GLT ãε(θ) =
1

ε
eiθ −

∞∑
k=0

εke−ikθ =
1

ε
eiθ − 1

1− εe−iθ
,

{B̃N}N ∼GLT b̃ε(θ) =
1

ε
eiθ +

∞∑
k=0

(−ε)ke−ikθ =
1

ε
eiθ +

1

1 + εe−iθ
,

and more precisely, ÃN = TN (ãε), B̃N = TN (b̃ε).
To find the optimal ε we introduce the Gershgorin Theorem (see [30] for further details

and insights).
THEOREM 3.3 (Gershgorin Theorem [30]). Let A = [ai,j ] ∈ CN×N , and set

Γi(A) = {z ∈ C : |z − ai,i| 6 ri(A)}, i = 1, . . . , N,

Γ(A) =

N⋃
i=1

Γi(A),
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where Γi(A) is called the i-th Gershgorin circle of A, Γ(A) is the Gershgorin set of A, and

ri(A) =
∑

j=1,...,N

j 6=i

|ai,j | , i = 1, . . . , N,

is the radius of the i-th Gershgorin circle of A. Then it holds that

λ ∈ Γ(A), ∀λ ∈ Λ(A).

The optimal ε for ÃN or B̃N in the Gershgorin sense is the one that minimizes the Gershgorin
set of ÃN or B̃N , respectively.

PROPOSITION 3.4. The optimal ε in the Gershgorin sense is ε ≈ 1

2
for both matrices

ÃN , B̃N , at least for N large enough.
Proof. We note that, since the main diagonals of ÃN , B̃N are constant, the center of

the Gershgorin circles for these matrices does not depend on the row index. Therefore, we
only have to minimize the maximum radius. Let ri(ÃN ), ri(B̃N ) be the radius of the i-th
Gershgorin circle for the matrices ÃN , B̃N , respectively. We note that, due to the presence of
the absolute value, for all i = 1, . . . , N , it holds that

ri := ri(ÃN ) = ri(B̃N ) 6
1

ε
+

i−1∑
j=0

εj 6
1

ε
+

ε

1− ε
.

The thesis follows by considering the previous bound for ri as a function of ε and by setting
its derivative to zero.

Let us fix ε = 0.5. Then Proposition 3.4 tells us that ri 6 3, and in this case, Theorem 3.3
tells us that the Gershgorin set Γ(ÃN ) is a circle centered at z = −1 with radius 6 3. Similarly,
Γ(B̃N ) is a circle centered at z = 1 with radius 6 3. By looking at Figures 3.2 and 3.4 we
can see that the optimal radius is

√
5.

Figure 3.1 displays the real and imaginary parts of Λ(AN ), Λ(ÃN ) and Figure 3.2 displays
Λ(AN ), Λ(ÃN ) in the complex plane for N = 200, 1600. We note that, even with N = 200,
the difference between the two spectra is visible, and the difference becomes more marked
as N increases. Indeed, the condition number µ(EN ) = ε−N of the matrix EN increases
exponentially when increasing N , and, in accordance with Remark 2.2, the matrix ÃN is
severely ill-conditioned. Therefore, the computation of its eigenvalues is affected by severe
numerical instabilities.

Figures 3.3 and 3.4 display Λ(BN ), Λ(B̃N ) for N = 200, 1600. We note that since the
matrix EN is also involved in the computation of B̃N , the computation of Λ(B̃N ) is affected
by numerical instability.

Figures 3.1 to 3.4 show that the theoretically optimal ε does not yield a good estimate of
the spectrum of the matrices AN , BN through ÃN , B̃N . Therefore, we vary ε ∈ [0.1, 1] and
compute the error eAN

ε between AN and ÃN to see its behavior.
We define eAN

ε as

eAN
ε =

∥∥∥sort Λ(AN )− sort Λ(ÃN )
∥∥∥ ,

where sort Λ(X) denotes the complex vector containing the eigenvalues of X ordered with
increasing real part, and, in case of two equal real parts, we order with respect to increasing
imaginary part. eBN

ε is defined similarly with BN in place of AN .
Figure 3.5 displays eAN

ε and eBN
ε when varying ε ∈ [0.1, 1] for different values of N . A

comparison between the images in Figure 3.5 shows that eAN
ε behaves similarly to eBN

ε . Both
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(a) AN . (b) ÃN .

FIG. 3.1. Real and imaginary parts of the matrices AN , ÃN with ε = 0.5 and N = 200, 1600.
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FIG. 3.2. Spectrum in the complex plane of the matrices AN (blue dots) and ÃN (black dots) with ε = 0.5 and
N = 200, 1600.
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(a) BN . (b) B̃N .

FIG. 3.3. Real and imaginary parts of matrices BN , B̃N with ε = 0.5 and N = 200, 1600.
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FIG. 3.4. Spectrum in the complex plane of the matrices BN (blue dots) and B̃N (black dots) with ε = 0.5
and N = 200, 1600.
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FIG. 3.5. Errors eAN
ε (left) and eBN

ε (right) for varying ε ∈ [0.1, 1], with N = 20, 40, 100, 200.

(a) Singular values of AN and ÃN . (b) Singular values of BN and B̃N .

FIG. 3.6. Singular values of matrices AN , ÃN , BN , B̃N with ε = 0.5 and N = 200, 1600.

errors decrease with increasing ε up to ε ≈ 0.6, and then the error stagnates and collapses
to machine precision when ε = 1, i.e., when ÃN , B̃N coincide with AN , BN , respectively.
We also note that eAN

ε , eBN
ε increase significantly with increasing N to eAN

ε ≈ eBN
ε ≈ 1 for

N = 200.

The reason for such a large error is again the high condition number of the transfor-
mation matrix EN , which is involved in the computation of the matrices ÃN , B̃N . From
a computational point of view, the matrices ÃN , B̃N are so ill-conditioned that even with
ε ≈ 0.9, the computation of the spectrum is affected by strong numerical instabilities. Here
we want to show that, even in the case of the singular values, the computation is affected
by numerical instability, and the results are not reliable. Figure 3.6 provides the singular
values of the matrices AN , ÃN , BN , B̃N . Again, we note that the strong ill-conditioning of
the matrices ÃN , B̃N leads to large errors in the computation of Σ(ÃN ),Σ(B̃N ), which are
visibly different from Σ(AN ),Σ(BN ).
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FIG. 3.7. Comparison between the singular values of AN (left), BN (right) and their monotonically increasing
respective symbols.

On the other hand, Figure 3.7 shows that, according to Remark 2.8, the uniform sampling
of the functions |a(x)| , |b(x)| overlaps the plot of Σ(AN ),Σ(BN ), ordered from the smallest
to the largest. This shows that the theoretical derivations are much more informative than the
numerical calculations. In other words, the numerical experiments do not give the right infor-
mation due to numerical instabilities: the theoretical derivations are much more informative.

We now use the limiting set concept to provide a visual understanding of the spectrum
of AN and BN . Let T be the unit complex circumference, and write t = eiθ. For a function
h : T→ C in L1(T), the limiting set of the Toeplitz matrix sequence {TN (h)}N is given by

LS(h) := lim inf
N→∞

Λ(TN (h)).

According to the work of Schmidt and Spitzer [20], when h is a Laurent polynomial, the
limiting set LS(h) turns out to be a finite union of analytic arcs, and we can expect that the
eigenvalues of TN (h) approximate it (in the Hausdorff metric) as N → ∞. In such a case,
LS(h) can be obtained by

(3.3) LS(h) =
⋂

%∈(0,∞)

Λ(T (h%)),

where h%(t) := h(%t) and T (h%) is the well-known Toeplitz operator with symbol h%. Thanks
to the classical Coburn lemma (see, e.g., [6, Theorem 1.10, p. 20]),

Λ(T (h%)) = R(h%) ∪ {λ ∈ C \ R(h%) : wind(h%, λ) 6= 0},

where wind(h%, λ) stands for the winding number of h% around the point λ. In plane words,
the spectrum of T (h%) is the range of h% together with all its enclosed points in C. The
result (3.3) was extended by Day in [10] to rational functions. Since we are interested in the
spectra of AN and BN , for N ∈ N, we can take a look at the respective limiting sets.

From (3.2) we obtain

ãε(θ) =

(
1

ε

)
t−

(
1

ε

)
t(

1

ε

)
t− 1

, b̃ε(θ) =

(
1

ε

)
t+

(
1

ε

)
t(

1

ε

)
t+ 1

,
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FIG. 3.8. The spectrum of AN for N = 200 (black dots), and the spectrum of T (ãε) for different values of ε
(shaded regions).
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FIG. 3.9. The eigenvalues of ÃN (black dots) and the spectrum of T (ãε) (shaded regions).

and hence ãε and b̃ε are rational functions in the variable t. Using the relations

[ãε]%(θ) =

(
%

ε

)
t−

(
%

ε

)
t(

%

ε

)
t− 1

= ãε/%(θ), [b̃ε]%(θ) =

(
%

ε

)
t+

(
%

ε

)
t(

%

ε

)
t+ 1

= b̃ε/%(θ),

together with (3.3) we obtain

LS(ãε) =
⋂

%∈(0,∞)

Λ(T ([ãε]%)) =
⋂

ε∈(0,∞)

Λ(T (ãε)),

LS(b̃ε) =
⋂

%∈(0,∞)

Λ(T ([b̃ε]%)) =
⋂

ε∈(0,∞)

Λ(T (b̃ε)).

The previous equations suggest a strategy for approximating a limiting set: plot the spec-
trum Λ(T (ãε)) for different values of ε, trying to get the “thinner” possible region. Fig-
ure 3.8 illustrates a sequence of four images plotting Λ(AN ), for N = 200, together with
Λ(T (ãε)) for carefully selected values of ε. From these plots, it is easy to deduce that the set
LS(ãε) = {z ∈ C : |z| = 2, Re(z) 6 0} and hence the eigenvalues of AN must be ar-
bitrarily close to this set. A similar analysis can be applied to b̃ε producing the equality
LS(b̃ε) = {z ∈ C : |z| = 2, Re(z) > 0}.

We now turn our attention to the spectra of ÃN and B̃N . A classical theorem (see, e.g.,
[4, Corollary 2.18, p. 28]) asserts that in our case the eigenvalues of ÃN are contained in
Λ(T (ãε)) with the possible exception of o(1) outliers for every sufficiently large N . We can
use this result to explain the behavior of Λ(ÃN ) and Λ(B̃N ) shown in Figures 3.2 and 3.4.
Figure 3.9 shows that most of the eigenvalues of ÃN approach the boundary of Λ(T (ãε)) (i.e.
R(ãε)) for selected values of ε. Thus, because of the numerical restrictions induced by the
severe ill-conditioning of the considered matrices, the eigenvalues of ÃN are evolving like the
dynamic process sketched in Figure 3.8.
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4. Concluding remarks and open problems. In the previous literature, Bohemian ma-
trices have attracted the attention of several researchers for their rich combinatorial structure,
and they have been studied intensively from several points of view, including height, determi-
nants, characteristic polynomials, normality, and stability.

Here we considered a selected number of examples of upper Hessenberg and Toeplitz
Bohemian matrix sequences whose entries belong to the population P = {0,±1}. In this
setting, we proposed a connection with the spectral theory of Toeplitz matrix sequences
and Generalized Locally Toeplitz (GLT) matrix sequences in order to give localization and
asymptotical distribution results on their spectra and singular values. Numerical experiments
support the mathematical study.

For appreciating our study, we refer to the last 7 lines of the concluding remarks in [9]
regarding the spectral properties of such matrices: indeed we can affirm that our Toeplitz
and GLT machinery sheds some light on the spectral and singular value structure of upper
Hessenberg and Toeplitz Bohemian matrix sequences with the population P = {0,±1}.
Our mathematical tools do not depend on the population P , and hence, more cases can be
considered as long as we remain in the GLT setting.

For giving a concrete example of the potential of our spectral tools, consider an example of
upper Hessenberg Toeplitz Bohemian matrix with increasing entries belonging to the integers,
that is,

XN =


−1 −2 −3 · · · −N + 1
1 −1 −2 · · · −N + 2
0 1 −1 · · · −N + 3
...

. . . . . . . . .
...

0 · · · 0 1 −1

 .

We have

XN = TN (eiθ)−R−2N = TN (eiθ)− T−2N (1− e−iθ).

Therefore,

{XN}N ∼GLT eiθ − 1

(1− e−iθ)2
,

and consequently all the Toeplitz and GLT machinery of our note can be used successfully
again, including the Beam-Warming “replacement trick” [2].

A further direction which deserves to be explored is the case where the population is
constituted by a selection of small blocks of fixed dimension instead of scalars. In that case
the Toeplitz and GLT machinery can be used again but in the block setting, which has been
developed in detail in [1]; see also the references therein.

Finally, we emphasize that the high numerical instability in computing the eigenvalues
of the proposed large matrices gives an indication that we are far from a normal setting. The
latter is also confirmed by the fact that the singular values and their asymptotic symbol differ
substantially from the moduli of the eigenvalues, as indicated theoretically by the use of
the Beam-Warming “replacement trick”. In this direction a connection with the theory of
ε-pseudospectra (see [18, 19] and the references there reported) should exist, and also this
direction deserves to be the subject of future investigations.
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